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Abstract. The paper develops a formal-econometric empirical test of an economic the-

ory of entrepreneurial choice under uncertainty. An entrepreneur is an individual who

manages a firm that produces one commodity with labor, an intermediate good, and cap-

ital. He pays dividends to shareholders, invests in bonds and capital, and has an n-period

planning horizon. Conditioned on the values of current-period prices, the entrepreneur

aims to maximize the expected value of a utility function that varies with the dividends

he pays each period and with his firm’s balance-sheet variables at the end of the planning

horizon. His behavior differs in interesting ways from the behavior of entrepreneurs in

the neo-classical theory of the firm. The contrasts call for a test of the theory’s empirical

relevance. In the empirical context that confronts the theory in the paper, my empirical

formal-econometric test of the theory demonstrates that it has empirical relevance.
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1 Introduction

This paper presents a theory of entrepreneurial choice in a world in which the en-

trepreneur cannot foresee with certainty the behavior of prices during the periods of

his planning horizon. I introduced the theory in Stigum (1969). Here, I develop an

empirical formal-econometric test of its empirical relevance.

The theory is a natural extension of the neo-classical theory of the firm that David

M. Kreps describes in Chapter 7 of his book, Kreps (1990). Since the way entrepreneurs

act in the two theories differs, a test of the empirical relevance of my theory is called

for. In Section 4 I formulate and carry out an empirical formal-econometric test of my

theory. The test demonstrates that the theory is empirically relevant.

The paper is organized as follows. Section 2 presents the theory. It is about an

entrepreneur who has an n-period planning horizon, and who - subject to the production

and financial constraints that he will face - aims to maximize his firm’s profit and his own

expected utility. For the intended empirical analysis, I show that there exists a function

of first-period prices and budget vectors, U(·), with an interesting property. The first-

period part of an optimal expenditure plan for n periods can be found by maximizing

U(·) subject to the current-period production and financial constraints.

Section 3 presents the formal-econometric structure within which the test is carried

out, and explicates the meaning of its component parts. They comprise a theory uni-

verse, a data universe, and a bridge. The test adds up to a test of the empirical relevance

of each one of a family of theorems that I derive from the axioms of the theory universe.

Their empirical relevance is examined in an empirical context that the axioms of the

data universe delineate. The two universes are disjoint and the bridge describes how

their variables are related to one another.

Section 4 presents the applied formal- econometric test of my theory. The test is

interesting because of the way it highlights the importance of economic theory in em-

pirical analyses. I have observations of the current-period choices of four hundred en-
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trepreneurs and the prices they faced. The function, U(·), that I present in Section 2,

enables me to test the empirical relevance of the theory by testing the empirical rele-

vance of characteristics of the first-period part of an n-period optimal expenditure plan.

In the Appendix I describe the functions that I have used to generate my data.

2. A Theory of Entrepreneurial Choice under Uncertainty

In this paper, the entrepreneur is an individual who operates a firm that is owned by

many investors, each one of which possesses a portion of the firm’s outstanding shares.

I assume that the entrepreneur owns one share himself, and that he under no circum-

stances will sell it. The shares and their price I denote by the letters M and pM.

The firm produces one output, y, with three inputs, L, x, and K, in accord with the

prescriptions of a production function, g(·), as follows:

y = g(L,x,K), with (y,L,x,K) ∈ R3
+×R++ (1)

Here, L is short for labor, x for an intermediate good, and K for capital. The function,

g(·), is an instantaneous point-input-point-output variety production function. I assume

that g(·) is increasing, strictly concave, and twice differentiable with ∂ 2g(L,x,K)
∂L∂x > 0. The

prices of y, L, x, and K I denote by the letters py, w, px, and pK .

The entrepreneur is a price taker in all markets. He uses the firm’s profit, pyy−wL−

pxx, to pay the shareholders dividends, d, to invest in capital and in bonds that mature

in one period, µ , and to adjust the number of outstanding shares. In a given period, i,

the budget constraint for this activity is

pyiyi −wiLi − pxixi −di − (pµiµi −µi−1)− pKi(Ki −Ki−1)+ pMi(Mi −Mi−1)≥ 0 (2)

where µi−1, Ki−1, and Mi−1 record, respectively, the bonds and capital that the firm

owns and the number of outstanding shares at the beginning of period i. I take bonds

and shares to be continuous variables. Moreover, I take capital to be a fixed factor of

3



production. Hence, the entrepreneur’s investment in new capital in one period cannot

be used in the production of y before the next period. Finally, I assume that there is no

market for Ki−1 in period i, and that there is no storage facility for commodities and

intermediate goods.

A period is a week or a month. I assume that the entrepreneur has an n-period

planning horizon, a utility function, V , and a subjective probability distribution, Q(dP),

of the values which the respective prices assume in each period. The utility function is a

function of the dividends that the entrepreneur pays the shareholders in each period and

of the firm’s balance-sheet variables at the end of his planning horizon. Thus,

V =V (d1, . . . ,dn,µn,Kn,Mn) (3)

where the function, V (·) : Rn
+ × [−Nµ ,Nµ ]×R+ × [1,NM), is taken to be twice dif-

ferentiable, strictly concave, increasing in the di’s, µn, and Kn, and decreasing in Mn.

Moreover, a positive value of µn is an investment. A negative value of µn is a one-period

loan. The interest rate in period n on such loans, rn, equals ((1/pµn)−1). Finally, Nµ

and NM are finite positive constants with NM > 1.

Let a circumstance be a vector of positive prices. I assume that the entrepreneur in

the first period of his planning horizon chooses an optimal expenditure plan - that is a

family of vectors,

(y1,L1,x1,d1,µ1,K1,M1, . . . ,yn,Ln,xn,dn,µn,Kn,Mn),

that, for i = 1, . . . ,n, and for each and every circumstance that may occur, satisfies the

conditions,

(yi,Li,xi,di,Ki)≥ 0, Nµ ≥ µi ≥−Nµ , NM ≥ Mi ≥ 1 (4)

yi = g(Li,xi,Ki−1), (5)

Ki ≥ Ki−1, with K0 equal to a positive constant (6)

pyiyi −wiLi − pxixi −di − (pµiµi −µi−1)− pKi(Ki −Ki−1)+ pMi(Mi −Mi−1)≥ 0 (7)
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and maximizes the expected value of V (·) with respect to Q(dP) conditioned upon the

observed values of py1, w1, px1, pµ1, pK1, and pM1.

Formulating an optimal expenditure plan is a cumbersome way to determine what

the entrepreneur’s optimal first-period choice of variables is. However, under reasonable

conditions on Q(dP), one can show - cf., Theorem T 30.5, p. 813 in Stigum (1990) -

that there exists a function, U(·), such that the first-period part of an optimal expenditure

plan, (y1,L1,x1,d1,µ1,K1,M1), is a vector that maximizes the value of U(·) subject to

the first-period production and budget constraints. Specifically, there is a function,

U(·) : R6
++×R+× [−Nµ ,Nµ ]×R+× [1,NM)→ R+, (8)

of ((py1,w1, px1, pµ1, pK1, pM1),d1,µ1,K1,M1), such that the entrepreneur in the first

period of his planning horizon chooses a vector, (y1,L1,x1,d1,µ1,K1,M1), that maxi-

mizes the value of U(·) subject to the conditions,

(y1,L1,x1,d1,K1 −K0)≥ 0, Nµ ≥ µ1 ≥−Nµ , NM ≥ M1 ≥ 1 (9)

y1 = g(L1,x1,K0), and (10)

py1y1 −w1L1 − px1x1 −d1 − (pµ1µ1 −µ0)− pK1(K1 −K0)+ pM1(M1 −M0)≥ 0 (11)

where K0, µ0 , M0, Nµ , and NM are suitable positive constants. In this paper, I as-

sume that U(·) is twice differentiable, strictly concave in (d1,µ1,K1,M1), increasing in

(d1,µ1,K1), and decreasing in M1.

Here an example may be useful. Example 1 describes a two-period version of the

theory I presented above.

Example 1 In this example, n= 2, µ0 =A, K0 = 5, M0 = 25, and for i= 1,2, (yi,Li,xi)∈

R3
+, (di,µi,Ki) ∈ R3

+, and Mi ∈ [1,49]. The corresponding prices are

P1 = (py1,w1, px1, pµ1, pK1, pM1),

P2 = (py2,w2, px2, pµ2, pK2, pM2),
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with Pi ∈R6
++, i = 1,2, (pµ1, pK1)< 1, and (pµ2, pK2)< 1. For i = 1,2, the production

and budget constraints are, respectively:

yi = g(Li,xi,Ki−1) = L(1/4)
i x(1/4)

i + γ logKi−1,

Ki ≥ Ki−1, and

pyiyi −wiLi − pxixi −di − (pµiµi −µi−1)− pKi(Ki −Ki−1)+ pMi(Mi −Mi−1)≥ 0.

Finally, the two-period utility function, V (·), is

V (d1,d2,µ2,K2,M2) = d(1/3)
1 · (d2 ·µ2 ·K2 · (50−M2))

(1/6).

In this two-period theory, the first-period utility function is

U(P1,d1,µ1,K1,M1 −50) = (1/4)(2/3)d(1/3)
1

E
{
(pµ2 pK2 pM2)

−(1/6) [
π(py2,w2, px2,K1)+ pK2K1 +µ1 + pM2(50−M1)

](2/3)
∣∣∣P1

}
,

where E{(·)|P1} denotes the expected value of (·) conditioned on the value of P1, and

the value of π(py2,w2, px2,K1) equals the second-period profit of the firm. The latter

depends on the value of K1.

3. A Formal-econometric Structure for an Empirical Test

The theory of entrepreneurial choice under uncertainty that I outlined in Section 2 is

a family of models of Q(dP) and the equations in (1)-(3). The theory is not meant to

describe entrepreneurial behavior under uncertainty. Instead it is a family of models

that describe characteristic features of entrepreneurial choice in a world in which the

entrepreneur cannot foresee with certainty the behavior of prices during his planning

horizon.

Different families of models of Q(dP) and the equations in (1)-(3) constitute dif-

ferent theories of entrepreneurial choice under uncertainty. Members of a given fam-

ily of models may be very different even though they describe characteristics of en-

trepreneurial choice in one and the same theory. I assume that the model of Q(dP) may

6



vary among theories, but each family of models of Q(dP) and the equations in (1)-(3)

has only one model of Q(dP).

The way entrepreneurial choice varies with the models is interesting and of funda-

mental importance to the way theory is used in the empirical analysis of entrepreneurial

choice under uncertainty. For example, even though the members of a given family

describe choice characteristics of many different entrepreneurs, the entrepreneurs share

many characteristics. Their choice of y, L, and x satisfies Hotelling’s Lemma, ensures

that marginal cost equals the price of y and maximizes the firm’s profit. Similarly, their

choice of d, µ , K, and M ensures that the marginal efficiency of the entrepreneur’s in-

vestments in µ and K equal, respectively, the interest rate on one- period loans and the

firm’s conditionally expected rate of return from an additional unit of capital in period

one.

A theory of entrepreneurial choice under uncertainty; i.e., a particular family of

models of Q(dP) and the equations in (1)-(3), is empirically relevant if it contains a

model that is empirically relevant. Looking for an empirically relevant model is not

meaningful. To test the empirical relevance of the theory, one must look for choice

characteristics which the models of the given family of models share. The theory is

empirically relevant only if the data do not reject the validity of one of them.

My data comprise observations of a sample of entrepreneurs’ choice of first-period

budget vectors and of the prices they faced. In the following applied formal-econometric

analysis, I will use these data to see if a family of models of Q(dP) and the equations

in (8)-(11) is empirically relevant. If it is, I may claim that the corresponding family of

models of Q(dP) and the equations in (1)-(3) is empirically relevant.

3.1 The Theory Universe

I imagine that the variables in the family of models of Q(dP) and the equations in (8)-

(11) belong to a theory universe. This theory universe is a triple,
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(ΩT ,ΓT ,(ΩT ,ℵT ,PT (·))), where ΩT is a subset of a vector space, ΓT is a finite set of

assertions concerning properties of vectors in ΩT , and (ΩT ,ℵT ,PT (·)) is a probabil-

ity space. The latter comprises ΩT , a σfield of subsets of ΩT , ℵT , and a probability

measure, PT (·) : ℵT → [0,1].

The assertions in ΓT consist of six axioms, A1-A6.

A1 ΩT ⊂ R3 ×R4 ×R3 ×R3 ×R×R7 ×R2. Thus, ωT ∈ ΩT only if

ωT = (y,L,x,d,µ,K,M, py,w, px, pµ , pK, pM,χ,u,z) for some

(y,L,x) ∈ R3, (d,µ,K,M) ∈ R4, (py,w, px) ∈ R3, (pµ , pK, pM) ∈ R3, χ ∈ R, u ∈

R7, z ∈ R2, and

(y,L,x,d,µ,K,M, py,w, px, pµ , pK, pM,χ,u,z) ∈ R23.

A2 For all ωT ∈ΩT , (y,L,x)∈R3
+, and (d,µ,K,M)∈R+×[−Nµ ,Nµ ]×R+×[1,NM).

Moreover, (py,w, px, pM) ∈ (0,50)4, and (pµ , pK) ∈ (0,1)2.

In the intended interpretation of y, L, x, d, µ , K, M, py, w, px, pµ , pK , and pM, y

denotes the firm’s output, (L,x) denotes a pair of inputs. Moreover, d denotes dividends,

a positive µ denotes a bond that matures in one period, and a negative µ denotes a one-

period loan, K denotes the capital that is used in the production of y, and M denotes

the firm’s outstanding shares. Finally, the components of (py,w, px) denote the respec-

tive first-period prices of y, L, and x; and the components of (pµ , pK, pM) denote the

respective first-period prices of µ , K, and M. The χ and the components of u and z are

error terms. The u and z are to be used to describe the relationship between theoretical

variables and data variables.

The given theory variables also satisfy the conditions in axioms A3 and A4. In them,

K0 in A3 and µ0, K0, and M0 in A4 denote initial quantities of µ , K, and M.

A3 There is a function, g(·) : R3
+ → R+, which is increasing, strictly concave, twice
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continuously differentiable with ∂ 2g(L,x,K)
∂L∂x > 0 such that, for all ωT ∈ ΩT ,

y = g(L,x,K0); pyy−wL− pxx ≥ 0;

py∂g(L,x,K0)

∂L
= w;

py∂g(L,x,K0)

∂x
= px.

A4 Let π = pyy−wL− pxx, and let π∗ = π + µ0 + pKK0 − pMM0. In addition, let

P and D, respectively, be short for (py,w, px, pµ , pK, pM) and (d,µ,K,M). There

exists a twice continuously differentiable function,

U(·) : R6
++×R+× [−Nµ ,Nµ ]×R+× [1,NM)→ R+,

of (py,w, px, pµ , pK, pM), d, µ , K, and M that is strictly concave in D, increasing

in (d,µ,K), and decreasing in M. Moreover, for all ωT ∈ ΩT ,

∂U(P,D)

∂d
= A+χ;

∂U(P,D)

∂ µ
= pµ

∂U(P,D)

∂d
;

∂U(P,D)

∂K
= pK

∂U(P,D)

∂d
;

∂U(P,D)

∂M
=−pM

∂U(P,D)

∂d
;

π
∗−d − pµ µ − pKK + pMM ≥ 0.

In the intended interpretation of A3 and A4, the equations in A3 record the neces-

sary conditions on the entrepreneur’s choice of y, L, and x that ensure that his choice

maximizes the firm’s profit. The equations in A4 record the necessary conditions on the

entrepreneur’s choice of D that ensure that his choice maximizes his utility. The equa-

tions in both axioms concern the equilibrium values of g(·) and the partial derivatives

of g(·) and U(·) and not properties of the functions themselves.

A5 Let (y,L,x)(·) : ΩT → R3
+, (py,w, px)(·) : ΩT → R3

++, (d,µ,K,M)(·) : ΩT →

R+× [−Nµ ,Nµ ]×R+× [1,NM), (pµ , pK, pM)(·) : ΩT → R3
++, and (χ,u,z)(·) :

ΩT → R10, be defined by the equations,[
(y,L,x)(ωT ),(d,µ,K,M)(ωT ),(py,w, px)(ωT ),

(pµ , pK, pM)(ωT ),(χ,u,z)(ωT )
]
= ωT , and ωT ∈ ΩT .
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The vector-valued functions,

(y,L,x)(·), (d,µ,K,M)(·), (py,w, px)(·), (pµ , pK, pM)(·), (χ,u,z)(·),

(p−1
µ , p−1

K )(·),
(

∂g(L,x,K0)

∂L
,

∂g(L,x,K0)

∂x

)
(·), and(

∂U(P,D)

∂d
,

∂U(P,D)

∂ µ
,

∂U(P,D)

∂K
,

∂U(P,D)

∂M

)
(·)

are measurable with respect to ℵT . They have, subject to the conditions on which

ΓT insists, a well-defined joint probability distribution relative to PT (·), the RPD,

where R is short for researcher, P for Probability, and D for distribution.

A6 Relative to PT (·), the components of

(y,L,x,d,µ,K,M, py,w, px, pµ , pK, pM,χ,u,z)(·), (p−1
µ , p−1

K )(·),(
∂g(L,x,K0)

∂L
,

∂g(L,x,K0)

∂x

)
(·), and(

∂U(P,D)

∂d
,

∂U(P,D)

∂ µ
,

∂U(P,D)

∂K
,

∂U(P,D)

∂M

)
(·)

have finite means and finite positive variances. Moreover, the χ(·) and the compo-

nents of u(·) and z(·) have means zero and are independently distributed of each

other, of the components of P and D, and of the partial derivatives of g(·) and

U(·).

In the intended interpretation of A5 and A6, the RPD delineates statistical properties

of the theoretical variables. Thus, the RPD of (py,w, px, pµ , pK, pM)(·) is not a model of

the entrepreneur’s subjective probability distribution of current-period prices. I assume

that the PT (·) and the ranges of the variables in A1 and A2 may vary with the families

of models of A1-A6. However, they do not vary with the models in a given family.

3.2 The Data Universe

I imagine that the data I will use to test the empirical relevance of my theory axioms

belong in a data universe. This data universe is a triple, (ΩP,ΓP,(ΩP,ℵP,PP(·))), where
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ΩP is a subset of a vector space, ΓP is a finite set of assertions concerning properties of

vectors in ΩP, and (ΩP,ℵP,PP(·)) is a probability space. The latter comprises ΩP, a σ

field of subsets of ΩP, ℵP, and a probability measure, PP(·) : ℵP → [0,1].

The assertions in ΓP consist of four axioms, D1-D4.

D1 ΩP ⊂R7×R6×R2×R4×R4×R6. Thus, ωP ∈ΩP only if ωP =(Y,V,mg,mu,η ,δ )

for some Y ∈R7, V ∈R6, mg∈R2, mu∈R4, η ∈R4, δ ∈R6, and (Y,V,mg,mu,η ,δ )∈

R29.

D2 Suppose that ωP ∈ΩP and that ωP =(Y,V,mg,mu,η ,δ ) for some (Y,V,mg,mu,η ,δ )∈

R29. There exist constants, ai, i = 1, ...,6, such that

V1mg1 = a1V2 +δ1, V1mg2 = a2V3 +δ2; (12)

mu1 = a3 +δ3, mu2 = a4 ·V4 +δ4,

mu3 = a5 ·V5 +δ5, mu4 = a6 ·V6 +δ6. (13)

In the intended interpretation of these axioms, the denotation of the components

of Y are observations of the respective components of (y,L,x,d,µ,K,M), and the de-

notation of the components of V are observations of the respective components of

(py,w, px, pµ , pK, pM). Moreover, the components of mg are observations of the re-

spective values of the partial derivatives, ∂g(L,x,K0)
∂L and ∂g(L,x,K0)

∂x ; the components of

mu are observations of the respective values of the partial derivatives, ∂U(P,D)
∂d , ∂U(P,D)

∂ µ
,

∂U(P,D)
∂K , and ∂U(P,D)

∂M ; and the components of η and δ are error terms.

D3 Let Y (·) : ΩP → R7, V (·) : ΩP → R6, mg(·) : ΩP → R2, mu(·) : ΩP → R4, η(·) :

ΩP → R4, and δ (·) : ΩP → R6 be defined by the equations,

(Y (ωP),V (ωP),mg(ωP),mu(ωP),η(ωP),δ (ωP)) = ωP and ωP ∈ ΩP.

The vector-valued functions, Y (·), V (·), mg(·), mu(·), η(·), δ (·), and (V 4−1,V 5−1)(·)

are measurable with respect to ℵP and have, subject to the conditions on which
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ΓP insists, a well-defined joint probability distribution, the TPD, where T is short

for true, P for probability, and D for distribution.

D4 Relative to PP(·), Y (·), V (·), mg(·), mu(·), η(·), δ (·), and (V−1
4 ,V−1

5 )(·) have

finite means and finite positive variances. Moreover, the components of δ are

orthogonal to the components of V, and the components of η and δ have zero

means and are independently distributed of each other.

In the intended interpretation of D1- D4, the TPD plays the role of the data generat-

ing process. Specifically, I assume that TPD has one model, and that this model is a true

rendition of the data generating process. According to D4, the variables in TPD have

finite means and finite positive variances. Moreover, D1- D4 implies that the equations

in (12) and (13) have a TPD model. The researcher does not know the model of TPD.

Table 1. TPD Means of Production Variables

Mean Std. err. 95% conf. interval

Y1 444.3416 1.7283 [440.9438, 447.7393]

Y2 125.3647 0.2608 [124.8521, 125.8774]

Y3 223.5203 2.3923 [218.8171, 228.2234]

V1 3.7201 0.0812 [3.5605, 3.8798]

V2 5.1477 0.1034 [4.9445, 5.3509]

V3 4.5191 0.0704 [4.3808, 4.6575]

For the empirical analysis I have a random sample of 400 observations of the com-

ponents of Y , V , mg, and mu. If my assumptions about the TPD are valid, I can obtain

good estimates of the variables’ TPD means and variances and of the TPD values of the

parameters in equations (12) and (13).

I begin with the six production variables, Y1, Y2, Y3, V1, V2, and V3. They must have

finite means. Table 1 attests to that. Table 2 records estimates of the TPD values of the
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parameters in (12) - with mv1 and mv2 short for V1mg1 and V1mg2. In the table, RMSE

is short for the square root of the mean square error of the residual, R− sq is short for R

square, F designates F statistic, and P is short for Prob. > F .

Table 2. Estimates of the TPD Values of the Parameters in (12)

Equation Obs. Parms RMSE R− sq F P > F

mv1 400 1 0.4182 0.9944 70383.36 0.0000

mv2 400 1 0.5233 0.9881 33137.81 0.0000

Variable Coefficient Std. err. t P > |t| 95% conf. interval

mv1 on V2 1.0001 0.0038 265.30 0.000 [0.9927, 1.0075]

mv2 on V3 1.0065 0.0055 182.04 0.000 [0.9956, 1.0174]

So much for the production variables. Next I must consider Y4, Y5, Y6, Y7, V4, V5,

and V6. All of them except Y5 must have positive means. Besides, the means of V4 and

Table 3. TPD Means of Dividends and Balance-sheet Variables

Variable Mean Std. err. 95% conf. interval

Y4 16.1481 0.2066 [15.7419, 16.5543]

Y5 21.8662 0.4076 [21.0648, 22.6676]

Y6 70.8180 0.4958 [69.8433, 71.7927]

Y7 59.8945 0.3401 [59.2259, 60.5632]

V4 0.9089 0.0015 [0.9060, 0.9119]

V5 0.9017 0.0013 [0.8993, 0.9042]

V6 3.9878 0.0136 [3.9610, 4.0145]

V5 ought to be less than one. Table 3 attests to that. Table 4 records an estimate of the
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TPD values of the parameters in (13). It is important to observe that I have formulated

D1 – D4 without using the theory axioms. Hence, in the TPD, there are no theory-based

true values of the parameters in (12) and (13). I introduce the theory into the empirical

analysis with the bridge principles in B1 - B6. In reading them, note that I relate the

entrepreneur’s decision variables, y, L, x, d, µ , K, M, and the partial derivatives of g(·)

and U(·) to the observed values of the corresponding components of Y , mg, and mu. In

contrast and in the tradition of Trygve Haavelmo (cf. Haavelmo, 1944, pp. 7-8), I relate

the variables over which the entrepreneur has no control, py, w, px, pµ , pK , and pM, to

the true values in the data universe of the corresponding components of V .

Table 4. Estimates of TPD Values of the Parameters in (13)

Equation Obs. Parms RMSE R− sq F P > F

mu2 400 1 0.0581 0.9984 252750.7 0.0000

mu3 400 1 0.1463 0.9898 38813.54 0.0000

mu4 400 1 0.0099 1.0000 1.66e+08 0.0000

Variable Coefficient Std. err. t P > |t| 95% conf. interval

mean of mu1 1.5998 0.0064 - - [1.5872, 1.6124]

mu2 on V4 1.6065 0.0032 502.74 0.000 [1.6003, 1.6128]

mu3 on V5 1.5980 0.0081 197.01 0.000 [1.5821, 1.6140]

mu4 on V6 -1.6001 0.0001 -1.3e+04 0.000 [-1.6003, -1.5998]

3.3 The Bridge

The Bridge is a pair, (Ω,ΓT P), where Ω is a subset of ΩT ×ΩP, and ΓT P is a set of

six assertions about the vectors in Ω. It is understood that a researcher’s observations

consist of pairs, (ωT ,ωP), where ωT ∈ ΩT , ωP ∈ ΩP, and (ωT ,ωP) ∈ Ω.

The components of ωT are unobservable, while the components of ωP that are not error
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terms are observable. For example, in the present Bridge, one of the components of ωT

may record the entrepreneur’s intended payment of dividends to shareholders, while the

corresponding component of ωP will record a sample entrepreneur’s actual payment of

dividends to his shareholders.

B1 Ω ⊂ ΩT ×ΩP. Thus, ω ∈ Ω only if ω = (ωT ,ωP) for some ωT ∈ ΩT ,ωP ∈ ΩP,

and (ωT ,ωP) ∈ ΩT ×ΩP; i.e., ω ∈ Ω only if

ω = ((y,L,x,d,µ,K,M, py,w, px, pµ , pK, pM,χ,u,z),

(Y,V,mg,mu,η ,δ )) for some (y,L,x,d,µ,K,M, py,w, px, pµ , pK, pM,χ,u,z)∈ΩT ,

(Y,V,mg,mu,η ,δ ) ∈ ΩP, and ((y,L,x,d,µ,K,M, py,w, px, pµ , pK, pM,χ,u,z),

(Y,V,mg,mu,η ,δ )) ∈ ΩT ×ΩP.

B2 ΩT and ΩP are disjoint, and ℵT and ℵP are stochastically independent.

B3 In the probability space, (ΩT ×ΩP,ℵ,P(·)), which the probability spaces in the

theory universe and the data universe generate, Ω ∈ ℵ, and P(Ω)> 0.

B4 ΩT ⊂ {(y,L,x,d,µ,K,M, py,w, px, pµ , pK, pM,χ,u,z) ∈ ΩT for which there is a

(Y,V,mg,mu,η ,δ )∈ΩP such that ((y,L,x,d,µ,K,M, py,w, px, pµ , pK, pM,χ,u,z),

(Y,V,mg,mu,η ,δ )) ∈ Ω}.

B5 For all (ωT ,ωP) ∈ Ω,

(y,L,x)(ωT )+(u1,u2,u3)(ωT ) = (Y1,Y2,Y3)(ωP)

(d,µ,K,M)(ωT )+(u4,u5,u6,u7)(ωT ) = (Y4,Y5,Y6,Y7)(ωP)

(py,w, px)(ωT ) = (V1,V2,V3)(ωP)− (η1,η2,η3)(ωP)

(pµ , pK)(ωT ) = (V4,V5)(ωP), and (pM)(ωT ) = (V6)(ωP)−η4(ωP);(
∂g(L,x,K0)

∂L , ∂g(L,x,K0)
∂x

)
(ωT )+(z1,z2)(ωT ) = (mg1,mg2)(ωP); and(

∂U(P,D)
∂d , ∂U(P,D)

∂ µ
, ∂U(P,D)

∂K , ∂U(P,D)
∂M

)
(ωT ) = (mu1,mu2,mu3,mu4)(ωP).

In the intended interpretation of these axioms, Axiom B5 is not meant to establish

an ordinary errors-in-variables relationship between theoretical variables and data vari-
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ables. Instead, the first two equations and the last two equations delineate how the RPD

of the left-hand variables is to be assigned to the corresponding data variables. This

distribution, the MPD, may be very different from their TPD. The third, fourth, and fifth

equation describe how the RPD of py, w, px, pµ , pK , and pM is to be assigned to the

true values of the corresponding components of V. This is the MPD of the true values of

the components of V.

To obtain the MPD of the observed values of V, it is necessary to establish a theorem,

and to add an assumption, B6, about ℵT , the σ field of subsets of ΩT . The theorem is

an easy consequence of axioms A, D, and B. I will sketch a proof of it.

Theorem 1 Suppose that the A, D, and B axioms are valid. For all (ωT ,ωP) ∈ Ω,

let

u7+ j(ωT ) = η j(ωP), j = 1, . . . ,4.

The four u7+ j(·)’s are well defined on Ω, and the third, fourth, and fifth equation in B5

can be rewritten as follows:

(py,w, px)(ωT )+(u8,u9,u10)(ωT ) = (V1,V2,V3)(ωP),

(µ, pK)(ωT ) = (V4,V5)(ωP),

pM(ωT )+u11(ωT ) =V6(ωP).

It suffices to consider one case in the proof of Theorem 1. Let j = 2 and consider

the equation, u9(ωT ) = η2(ωP). Suppose that there are two pairs in Ω, (ω0
T ,ω

0
P) and

(ω1
T ,ω

0
P), at which the two values of u9(·) differ: i.e., where u9(ω

0
T ) ̸= u9(ω

1
T ). The two

equations,

V2(ω
0
P)−η2(ω

0
P) = pK(ω

0
T ),

V2(ω
0
P)−η2(ω

0
P) = pK(ω

1
T ),
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imply that pK(ω
0
T ) = pK(ω

1
T ). But if that is so, the two equations,

V2(ω
0
P) = u9(ω

0
T )+ pK(ω

0
T ),

V2(ω
0
P) = u9(ω

1
T )+ pK(ω

1
T ),

imply that u9(ω
1
T ) = u9(ω

0
T ).

Then the final assumption about the Bridge.

B6 The vector valued function, (u8, . . . ,u11)(·) is measurable with respect to ℵT .

Relative to PT (·), its components have zero means, finite positive variances, and

are independently distributed of each other and of χ(·), z(·), (u1, . . . ,u7)(·), the P

and D in A4−A6, and the partial derivatives of g(·) and U(·) in A6.

3.4 B4 and the MPD

It remains to say a few words about the role of B4 in the construction of the MPD.

To show how B4 helps determine the meaning of the MPD, I let Ω(T,P) = {ωT ∈

ΩT for which there is an ωP ∈ ΩP with (ωT ,ωP) ∈ Ω}, and observe that according to

B4, ΩT ⊂ Ω(T,P). Next, I let G and H, respectively, be sets in the ranges of Y (·) and

V (·), and observe that, with y=(y,L,x,d,µ,K,M), u=(u1, . . . ,u7), x=(py,w, px, pµ , pK, pM),

and v = (u8, . . . ,u10,0,0,u11),

MPD({(Y,V ) ∈ G×H}) =
PT{ωT ∈ ΩT : y(ωT )+u(ωT ) ∈ G,x(ωT )+ v(ωT ) ∈ H}∩Ω(T,P)

PT (Ω(T,P))

= PT ({ωT ∈ ΩT : y(ωT )+u(ωT ) ∈ G,x(ωT )+ v(ωT ) ∈ H}).

Thus, the MPD of (Y,V ) equals the RPD distribution of (y+u,x+ v).

4. The Empirical Analysis

My sample of 400 observations of the components of (Y,V,mg,mu) is a random sample.

According to A6 and B2−B5, the components of (Y,mg,mu) have finite means and
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finite positive variances in the MPD. According to A6, B2−B6, and Theorem 1, the

components of V have, also, finite means and finite positive variances in the MPD.

From this it follows that Tables 1−4 TPD estimates of the means of Y and V and of

the parameters in equations (12) and (13) are, also, estimates of the values of the same

means and parameters in the MPD. In the MPD there are theory-based true values of a1,

a2, and a3. As I shall show, they are, respectively, 1, 1, and A. A4 does not insist on a

true value of A, but the MPD estimate of A in Table 4 suggests that the true value of A

with 95% certainty lies in the interval, (1.5872,1.6124).

4.1 The empirical relevance of A3

In the intended interpretation of Axiom A3, the axiom describes characteristics of an

entrepreneur’s choice of production variables that maximize his firm’s profit. With that

interpretation in mind, I can deduce from A3, B2 - B6, and Theorem 1 all the charac-

teristics of such choice that are characteristics that the entrepreneurs in my sample must

share if my theory is empirically relevant. To see if my sample entrepreneurs’ choices

have the required characteristics, I begin by recording in Table 5 the correlation matrix

of the production variables. According to A3

Table 5. MPD Correlation Matrix of Production Variables

Y1 Y2 Y3 V1 V2 V3

Y1 1.0000

Y2 -0.0129 1.0000

Y3 -0.1837 -0.2179 1.0000

V1 0.1158 0.1330 -0.3485 1.0000

V2 0.0331 -0.0319 -0.0462 -0.0173 1.0000

V3 0.0150 -0.0603 -0.1308 0.0547 0.1287 1.0000
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and theorems that I can deduce from it, ∂y/∂ py > 0; ∂L/∂w < 0; and ∂x/∂ px < 0.

Hence, my theory is empirically relevant only if the table shows that the entrepreneurs’

supply of y varies positively with its price, and that their demand for an input varies

negatively with its price.

The table gives me no reason to reject the theory. To see why, let a, b, and c denote

respectively, the MPD means of the current-period values of y, L, and x; and let α , β ,

and γ denote, respectively, the mean values of the current-period prices of y, L, and x.

Then, observe that

(y−a+u1)(py −α +u8) = (Y1 −a)(V1 −α),

(L−b+u2)(w−β +u9) = (Y2 −b)(V2 −β ),

(x− c+u3)(px− γ +u10) = (Y3 − c)(V3 − γ).

From these equations and A6, B2 – B6, Theorem 1, and the table it follows that, in

the MPD,

E(Y1 −a)(V1 −α) = E(y−a)(py −α)> 0;

E(Y2 −b)(V2 −β ) = E(L−b)(w−β )< 0; and

E(Y3 − c)(V3 − γ) = E(x− c)(px − γ)< 0,

in accord with the predictions of my theory.

Next, I will obtain estimates of the data version of the relations which the last two

equations in A3 depict. I do that by regressing V1 ·mg1 on V2 and V1 ·mg2 on V3. The

rationale that underlies my arguments is as follows: There is an MPD model of the

equations in (12) in which

V1mg1 = α1V2 +ξ1,

V1mg2 = α2V3 +ξ2,
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and ξ1 and ξ2 have mean zero and finite positive variances. To see why, observe that A3

and B5, B6, and Theorem 1, the first equation has an MPD model with α1 = 1.

V1mg1 = (py +u8)

(
∂g
∂L

+ z1

)
= w+ pyz1 +

∂g
∂L

·u8 +u8z1 =V2 +

(
pyz1 +

∂g
∂L

·u8 +u8z1 −u9

)
.

Now, by A6, D4, B2, EV1mg1 = EV2. Consequently, the true value of α1 must equal

1. By a similar argument, I find that α2 = 1. But if that is so, I can conclude that my

theory is empirically relevant only if the confidence intervals of the MPD estimates of

the coefficients in Table 2 contain the number one, which they do.

It will be interesting to see if my observations, also, accord with Hotelling’s Lemma.

For that purpose, let

rmπ =V1Y1 −V2Y2 −V3Y3,

and observe first that my assumptions about TPD and MPD imply that there is an MPD

model of the equation,

rmπ = α +aV1 +bV2 + cV3 +ξ , (14)

in which ξ has mean zero and finite positive variance. Then, let

π = py · y−wL− px · x, and

mπ = (py +u8)(y+u1)− (w+u9)(L+u2)− (px +u10)(x+u3).

A3 implies that Hotelling’s Lemma is valid in the theory-to wit:

∂π

∂ py
= y+ py

∂y
∂ py

− py
∂g
∂L

∂L
∂ py

− py
∂g
∂x

∂x
∂ py

= y,

and by a similar argument, ∂π

∂w = −L, and ∂π

∂ px
= −x. In addition, by A3, B5, and
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Theorem 1,

mπ = rmπ,

∂mπ

∂ py
= y+u1 = Y1 =

∂ rmπ

∂V1
,

∂mπ

∂w
=−(L+u2) =−Y2 =

∂ rmπ

∂V2
,

∂mπ

∂ px
=−(x+u3) =−Y3 =

∂ rmπ

∂V3
.

When regressing rmπ on V1, V2, and V3, it follows from the observations above that the

constant in (14) equals zero and that Hotelling’s Lemma and my theory are empirically

relevant only if the confidence intervals of the estimated coefficients of V1, V2, and V3

contain the mean values of Y1, −Y2, and −Y3. Tables 1 and 6 show that they do.

Table 6. An MPD Test of Hotelling’s Lemma

Equation Obs Parms RMSE R2 F P>F

rmπ1 400 3 259.7794 0.9140 1406.773 0.000

Variable Coefficient Std.err. t P>|t| 95% conf. interval

V1 452.2555 7.0351 64.29 0.000 [438.4248, 466.086]

V2 -130.2235 5.5835 -23.32 0.000 [-141.2006, -119.2465]

V3 -222.8214 7.3486 -30.32 0.000 [-237.2684, -208.3744]

It remains to see if the entrepreneurs in my sample allocate their resources so that

the marginal cost of producing y equals its price. Let

c(y) = wL+ pxx, and rmc(Y1) =V2Y2 +V3Y3

be the cost of producing y in the theory and data universe, and let

mc(y+u1) = (w+u9)(L+u2)+(px +u10)(x+u3).
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According to A3, B5, and Theorem 1, mc(y+u1) = rmc(Y1). Moreover,

mc(y+u1) = (py+u8)(y+u1)−mπ(y+u1);
∂mπ

∂y
= 0; and

∂mc
∂y

= (py+u8).

Likewise,

rmc(Y1) =V1Y1 − rmπ(Y1);
∂ rmπ

∂Y1
= 0; and

∂ rmc(Y1)

∂Y1
=V1.

Table 7. An MPD Estimate of the Marginal Cost of Y1

Equation Obs Parms RMSE R2 F P>F

rmc 400 2 409.5867 0.9440 3354.542 0.0000

Variable Coefficient Std. err. t P>|t| 95% conf. interval

Y1 3.7216 0.0460 80.97 0.000 [3.6312, 3.8119]

rmπ -0.3259 0.0232 -14.04 0.000 [-0.3715, -0.2795]

Finally, observe that my assumptions about the TPD and MPD imply that there are

constants, a and b, and an error term, ξ , with mean zero and finite positive variance,

such that

rmc = aY1 +brmπ1 +ξ .

Hence, it is the case that

(1+b)rmc(Y1) = (a+bV1)Y1 +ξ ,

and that

(1+b)
∂ rmc(Y1)

∂Y1
= (a+bV1).

But if that is so, then
∂ rmc(Y1)

∂Y1
=V1
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if and only if b ̸= 0, and a =V1. Thus, I can test whether the marginal cost of producing

Y1 equals its price by checking if the estimate of b is significantly different from zero

and if the confidence interval of the estimate of a contains V1. Tables 7 and 1 show that

the two conditions are satisfied.

4.2 The empirical relevance of A4

So much for the production variables. Next I must consider the interpretation of Y4, Y5,

Y6, Y7, V4, V5, and V6. In the intended interpretation of Axiom A4, the axiom describes

characteristics of an entrepreneur’s choice of dividends and balance-sheet variables that

maximizes the value of his utility in (8) subject to the conditions in (9) - (11). With

that interpretation in mind, I can deduce from A4, B2 - B6, and Theorem 1 all the

characteristics of such choices that depict characteristics that the entrepreneurs in my

sample must share if my theory is empirically relevant.

I begin with the first four equations in A4. It follows from A4, A6, B2 – B6, and

Theorem 1 that there exist four random variables, ξ1,ξ2,ξ3, and ξ4 with MPD means

zero and finite positive variances such that

mu1 = A+χ = A+ξ1

mu2 =V4(A+χ) = AV4 +ξ2

mu3 =V5(A+χ) = AV5 +ξ3

mu4 =−(V6 −u11)(A+χ) =−AV6 +ξ4

MPD estimates of the mean of mu1 and the coefficients in the last three equations

are recorded in Table 4. My theory is empirically relevant only if the three estimates of

A lie in the confidence interval of the mean of mu1. All three do.

Next I must check the marginal efficiency condition for investments in bonds. Be-

fore I display my results, a few words about the meaning of marginal efficiency of

capital are called for. In the neo-classical theory, the marginal efficiency of capital is
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the rate of discount that will equate the price of fixed capital with the present value of

the entrepreneur’s income from the firm’s fixed capital during his planning horizon (cf.

Keynes, 1936, p. 135). My idea of the marginal efficiency of capital under conditions of

uncertainty differs. It is like Irving Fisher’s idea of a consumer’s rate of time preference

(Fisher, 1961, p. 62). I describe it below for investments in µ and K.

Let r = (1/pµ)− 1 be the rate of interest on one-period loans; let mK be the en-

trepreneur’s expected return during the planning horizon from a first-period additional

unit of capital conditioned on the observed values of first period prices; and let rK be

defined by the equation, mK/(1+ rK) = pK . It follows from A4 that the entrepreneur

invests in µ and K up to the point, where

∂U/∂d −∂U/∂ µ

∂U/∂ µ
= r (15)

mK ·∂U/∂d −∂U/∂K
∂U/∂K

= rK (16)

In (15) and (16), the term, ∂U/∂d, records the expected value of the marginal util-

ity of an extra unit of dividends in period one. In the same period, ∂U/∂ µ equals the

expected value of the marginal utility to the entrepreneur of the income that would be

forgone if one unit less is invested in µ . The two concepts combine to form what I in

Stigum (1969) called the marginal efficiency of an extra unit of investment in µ . Simi-

larly, mK · ∂U/∂d and ∂U/∂K combine to form a relation that I will call the marginal

efficiency of capital.

With these concepts in mind, (15) and (16) insist that in equilibrium the entrepreneur

invests in µ and K up to the point, where the marginal efficiency of investments in µ

and K equal, respectively, the interest rate on one-period loans and the conditionally

expected rate of return from an additional unit of capital in period one.

There are six variables involved in the analysis of the entrepreneur’s investment

in bonds, dividends - Y4, bonds - Y5, price of bonds - V4, two of the marginal-utility

variables in the equations in (13) - mu1 and mu2, the interest rate on one-period loans -
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ccr1, and the marginal efficiency of the investment in Y5 - mefmu1. The definition of the

last two variables are as follows: mefmu1 = (mu1 −mu2)/mu2 and ccr1 = 1/V4 − 1.

The mean values of the two mus, mefmu1, and ccr1 are listed in Table 8. According

to A4 – A6, B5, and (15), my theory is empirically relevant in the present empirical

context only if the mean value of ccr1 lies in the confidence interval of the mean value

of mefmu1. It does.

Table 8. MPD Means of Variables Involved in Bond Investment

Variables Mean Std. err. 95% conf. interval

V4 0.9089 0.0015 [0.9060, 0.9119]

ccr1 0.1014 0.0018 [0.0979, 0.1049]

mu1 1.5998 0.0064 [1.5872, 1.6124]

mu2 1.4520 0.0037 [1.4447, 1.4593]

mefmu1 0.1042 0.0050 [0.0944, 0.1141]

Next, the marginal efficiency condition on investment in capital. There are six vari-

ables involved in the empirical analysis of the entrepreneur’s investment in capital, cap-

ital - Y6, price of capital - V5, two of the marginal-utility variables in the equations in

(13) - mu1 and mu3, the rate of return to capital - ccr3, and the marginal efficiency of

the investment in Y6 - mefmu3. With the mK = 1 in (16), the definitions of the last two

variables are as follows:

mefmu3 = ((mu1 – mu3)/mu3) and ccr3 = (1/V5) – 1.

The mean values of the two mus and mefmu3 and ccr3 are listed in Table 9.
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Table 9. MPD Means of Variables Involved in Capital Investment

Variables Mean Std. err. 95% conf. interval

V5 0.9017 0.0013 [0.8993, 0.9042]

ccr3 0.1098 0.0015 [0.1068, 0.1129]

mu1 1.5998 0.0064 [1.5872, 1.6124]

mu3 1.4410 0.0076 [1.4261, 1.4559]

mefmu3 0.1222 0.0074 [0.1078, 0.1367]

According to A4 – A6, B5, and (16), my theory is empirically relevant in the present

empirical context only if the mean value of ccr3 lies in the confidence interval of the

mean of mefmu3. It does.

For the present test the value of mK is irrelevant since (mK ·mu1/mu3)−1=(mK/V5)−

1, and the 1 and the mK cancel.

4.3 Concluding remarks

I have, now, checked the empirical relevance of all the characteristics that my sample

entrepreneurs must share if the theory is empirically relevant. The checks were carried

out with MPD distributed data variables. They did not give me reasons to reject the

empirical relevance of the theory in an empirical context in which the data are MPD

distributed.

It remains to show that the theory is, also, empirically relevant in an empirical con-

text in which the TPD is the data generating process – i.e., in the present empirical

context. To do that I must demonstrate that the bridge principles, B1 – B6, are valid in

the present empirical context. They are valid - according to the Status of bridge prin-

ciples in applied econometrics - only if all the data admissible models of the MPD are

congruent models of the TPD (cf. p. 7 in Stigum (2016)).
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A model of the MPD is data admissible only if its parameters lie in the 95% con-

fidence band of the parameters of a meaningful estimate of the MPD. It is a congruent

model of the TPD only if it encompasses the TPD and is coherent with the a priori theory

in D 1 and D 2 by containing a model of the equations in (12) and (13) (cf. Definition 2

on p. 6 in (Stigum, 2016)).

To demonstrate that a data admissible model of the MPD is a congruent model of the

TPD, I show, first, that an MPD model in some sense encompasses the TPD. Let MT and

MP be econometric models whose variables are listed in D 1 and satisfy the conditions

imposed on them in D 1 and D 2. Assume that the MT variables are MPD distributed,

that the MP variable are TPD distributed, and let ∆ be a vector whose components are

the parameters whose estimated values are listed in Tables 1-9. Moreover, let sn denote a

sample of n observations of the data variables, and let m0
P(·) and m0

T (·) be, respectively,

the Stata 17 estimators of the components of ∆ in the TPD and the MPD distributions.

Finally, let TP(·) : ℵP → [0,1] be the probability measure on (ΩP,ℵP) corresponding

to TPD, and let MP(·) : ℵP → [0,1] be the probability measure on (ΩP,ℵP) which –

in accord with Kolmogorov’s Consistency Theorem (cf. Theorem T 15.23 on p. 347

in Stigum (1990)) - is induced by a given MPD. This measure varies with the MPD in

question.

Since the two estimators are identical, it is the case, both in TP(·) measure and

in MP(·) measure, that m0
T (sn) = m0

P(sn), a.e.. The estimates in Tables 1-4 are MPD

estimates as well as TPD estimates. Similarly, the estimates in Tables 5-9 are TPD

estimates as well as MPD estimates. Consequently, the two pairs, (MP,m0
P(sn)) and

(MT ,m0
T (sn)), in fact, mutually encompass each other (cf. in this context, Bontemps

and Mizon, 2008, pp. 727-728).

Since a data admissible model of the MPD contains a model of the equations in (12)

and (13), the preceding observations imply that a data admissible model of the MPD is

a congruent model of the TPD. From this and the Status of bridge principles in applied
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econometrics it follows that the bridge principles, B1 – B6, are empirically valid in an

empirical context in which the data are TPD distributed.

In the present case, the validity of B1 – B6 and the fact that my theory is empirically

relevant in an empirical context with MPD distributed data imply that the theory is, also,

empirically relevant in an empirical context in which the data are TPD distributed.

5. Appendix

In this Appendix I describe the functions that I use to generate my data.

5.1 Auxiliary variables

z1 = wz1 = runiform(0,1) + 0.01393

z2 = wz2 = rbeta(0.75,0.75) + 0.012386

u1 = du1 = rgamma(7.5,3) – 22 = 4·cxu1

u2 = du2 = rweibull(5,25) – 22

u3 = du3 = rchi2(100) - 100

u4 = du4 = rnormal(2,2) - 2

u5 = du5 = rlaplace(2,1) – 1

u6 = du6 = rt(100)

z7 = rchi2(100)

wv423 = the end of the following sequence of calculations:

· generate wv41 = 0.083*rgamma(7.5,1) + 0.01*rlaplace(2,1)

· wv411 = ((wv41 + 0.4)/2)

· wv412 = ((wv411 + 0.3)/1.4)

· wv413 = ((wv412 + 0.3)/1.2)

· wv414 = ((wv413 + 0.3)/1.2)

· wv415 = ((wv414 - 0.05)/0.99)

· wv416 = ((wv415 + 0.1)/1.1)
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· wv417 = ((wv416 + 0.1)/1.1)

· wv418 = ((wv417 + 0.1)/1.1)

· wv419 = ((wv418 + 0.1)/1.1

· wv420 = ((wv419 + 0.1)/1.1)

· wv421 = ((wv420 + 0.1)/1.1)

· wv422 = ((wv421 + 0.1)/1.1)

· wv423 = ((wv422 + 0.1)/1.1)

xwv58 = the end of the following sequence of calculations:

· generate xwv5 = 0.02*rhypergeometric(500,70,300) + 0.01*rnormal(0,1)

· xwv51 = ((xwv5 + 0.3)/1.5)

· xwv52 = ((xwv51 + 0.15)/1.1)

· xwv53 = ((xwv52 + 0.1)/1.1)

· xwv54 = ((xwv53 + 0.1)/1.1)

· xwv55 = ((xwv54 + 0.1)/1.1)

· xwv56 = ((xwv55 + 0.1)/1.1)

· xwv57 = ((xwv56 + 0.1)/1.1)

· xwv58 = ((xwv57 + 0.1)/1.1)

5.2 The variables in Table 1

y1 = ddy1 = 4*(107.686 + 5*wz1 + cxu1)

y2 = ddy2 = 121.6389 + 5*wz1 + du2

y3 = cdcy3 = 18.911 + 9 *rweibull(5,25) + 2*runiform (0,1) + 0.5056

V1 = ddv1 = 1.7686 + 2*wz1 + du5

V2 = cddv2 = (4 - 2*wz2 + du4) - 0.006

V3 = ddv3 = (6 - 3*wz2 + du6) + 0.105
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5.3 The variables in Table 2

mg1 = (cddv2/ddv1) + rnormal(1,1) – 1

mg2 = (ddv3/ddv1) + rnormal(1,1) – 1

5.4 The variables in Table 3

Y4 = wy4 = 1.5*rgamma(7.5,1) + 0.1*rbinomial(100,0.5)

Y5 = wy5 = 3*rgamma(7.5,1) + 0.01*(rbinomial(100,0.5) - 50)

Y6 = wy6 = 10 + 3*rbinomial(40,0.5) + 0.1*(rnormal(2,1) - 1)

Y7 = wy7 = 10 + 0.5*z7 + 0.1*rlaplace(2,1)

V4 = wv423

V5 = xwv58

V6 = wxv6 = 2 + 0.02*z7 + 0.001*rt(100)

5.5 The variables in Table 4

mu1 = wmu1 = 1.6 + 0.025*(rbinomial(100,0.5) - 50)

mu2 = xwmu2 = 1.6*wv423 + 0.1*runiform(1,3) - 0.2

mu3 = wxwmu3 = 1.6*xwv58 + 0.01*(rchi2(100) - 100) + 0.005

mu4 = xwmu4 = 1.6*wxv6 + 0.01*rt(100)

Acknowledgements

I am the sole author of the paper. In writing it, I have benefitted from interesting and

constructive criticisms of my work by Professor Edwin Leuven. With K. Waagan’s help,

I used Stata for my statistical calculations. There is no funding for the paper, and there

are no areas of conflict.

30



References

Bontemps, C. and Mizon, G. (2008). Encompassing: Concepts and implementation.

Oxford Bulletin of Economics and Statistics, 70:721–750.

Fisher, I. (1961). The Theory of Interest. August M. Kelly, New York.

Haavelmo, T. (1944). The probability approach in econometrics. Econometrica, 12:iii–

vi and pp. 1–115.

Keynes, J. (1936). The General Theory of Employment, Interest, and Money. Harcourt

Brace, New York.

Kreps, D. (1990). A Course in Microeconomic Theory. Princeton University Press, New

Jersey.

StataCorp (2021). Stata Release 17: The University of Oslo’s version of Stata - a

Statistical Software Program for Data Science.

Stigum, B. P. (1969). Entrepreneurial choice over time under conditions of uncertainty.

International Economic Review, 10:426–443.

Stigum, B. P. (1990). Toward a Formal Science of Economics: The Axiomatic Method

in Economics and Econometrics. MIT Press, Cambridge, MA.

Stigum, B. P. (2016). The status of bridge principles in applied econometrics. MDPI’s

Online Journal, Econometrics, 4:22.

31


