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1 Introduction

The transition away from a fossil-energy based economy has become an imperative in
the face of mounting environmental challenges and increasing global demand for sustain-
able development (Stern (2007); Stiglitz et al., 2009). Technological change is going to
be a key to reaching these ambitious targets. Understanding the drivers of green techno-
logical change is therefore vital to understand the overall effectiveness of different climate
policy measures.

In this paper we investigate how firms that supply inputs to producers of dirty final
goods, react to a strong negative price shock to the dirty final goods by switching their
resources from dirty to clean R&D activities. After peaking at $108 a barrel on June 20,
2014, the oil price plunged to $44 a barrel by January 28, 2015, a drop of 60 percent in a
little over 7 months. This was a large, negative, and exogenous shock to the current and
future price of oil and the shock provides a natural experiment to study the dynamics of
resource reallocation within firms that supply the oil industry.

We first develop a theoretical framework which builds on the model of directed tech-
nical change in Acemoglu et al. (2012). We consider an economy where two goods, clean
and dirty, are produced by combining a range of inputs. Technological progress is driven
by investment in innovation by the firms producing inputs. We extend the model by Ace-
moglu et al. by two additional key features. First, we assume that rescaling of the stock
of R&D personnel is associated with an adjustment cost for the firm. .1 This extension of
the model implies that in the aftermath of a negative shock to expected returns to dirty
innovation, firms with pre-existing capabilities in dirty innovation will face an incentive
to divert their R&D activities towards clean innovation. Second, we allow for spillovers
from the more mature, dirty, R&D activity towards clean R&D. This extension works in
the opposite direction: After a negative shock to dirty innovation returns, exposed firms
will scale down all types of R&D.

The theoretical model allows us to develop a set of propositions which we take to the
data. Our empirical analysis is based on detailed micro data from Norway, a country
which has a major oil extraction industry and a large fringe of firms supplying inputs to
this industry. We start by documenting a few stylized facts which motivate our analysis.
First, we show that there is persistence in R&D activities at the firm level: a firm that
has positive R&D expenditures in one period has a 90 percent probability of continuing in
the subsequent period. Second, we find that the share of firms with clean R&D increases
sharply around the time of the shock. Third, we show that the majority of the increase in

1We build on the framework in Bloom et al. (2013), which is motivated by the empirical finding that
firms facing increased low-cost competition in international markets increase their innovation efforts, see
Bloom et al. (2012).
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clean R&D is coming from firms that have on-going investments in non-clean R&D. These
facts indicate that the negative shock to expected profits in the oil supply industry had
implications for clean R&D in the sector, but also that existing firms reacted differently
to the shock.

We estimate the causal effect of the oil price shock on clean R&D investments in firms
supplying inputs to oil producing firms. We propose a novel method for identification
where we rely on firm-level trade data to compute a measure of firm exposure to the
oil price shock. We find that firms that are more exposed to the 2014 fall in oil prices
increase their clean R&D more than firms that are less exposed to the shock. This is
true if we look at the likelihood of investing in clean R&D, the share of clean relative to
non-clean R&D, or the value of clean R&D. We also document that the firms which are
most exposed to the shock have higher probabilities both of starting new investments in
clean R&D, and of switching from non-clean to clean R&D. In light of our theoretical
model, we argue that our findings suggest that there are within-firm adjustment costs for
R&D.

Digging further into the mechanisms, we investigate whether the firms we identify as
being more exposed to the negative oil price shock experience subsequent decreases in
sales and profits. This is indeed the case, as sales per employee decreases, as does profits,
although the latter finding is not as robust as the first. We also explore whether the
exposed firms simply intensify their R&D investments across the board, but this is not
the case. We find no effect on total R&D investments, the number of R&D employees or
on the share of R&D employees in total employment.

Our empirical findings support the hypothesis that within-firm dynamics lead firms
already engaged in dirty innovation to redirect their innovation efforts towards clean
technologies as a response to a negative shock to future profits in fossil energy production
and extraction.

The paper relates to several strands of literature. The theoretical framework builds
directly on the well-established literature on directed technical change and climate, in
particular Acemoglu et al. (2012).2 Dechezleprêtre and Hémous (2022) provide a recent
review.3 We add to this literature by including within-firm dynamics, in a model allow-

2This newer literature itself builds on seminal papers on directed technical change, such as Hicks
(1932) and Acemoglu (2002).

3Acemoglu et al. (2012) underline the key role of R&D subsidies in climate policy, in addition to
a carbon price, when there is path dependency in technical change. Acemoglu et al. (2016) estimate a
similar model using micro data from US energy markets and conclude that, although the carbon tax plays
an important role, subsidies for clean R&D are key to achieving the shift from dirty to clean technologies.
Similar conclusions are drawn in Greaker et al. (2018). The key role of R&D subsidies in optimal climate
policy is also underlined by Casey (2024). Hart (2019) use a model structure closer to that normally
used in integrated assessment models of climate change (see e.g. Golosov et al. (2014)), resulting in a
more important role for the carbon price. By allowing for complementarities between technology and
energy inputs in production, Lemoine (2024) reaches a similar conclusion with regards to the importance
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ing for innovation to take place both in clean and dirty technology at the same time.
Our paper shares the feature of parallel innovation in both sectors with Fried (2018),
who presents a dynamic general equilibrium model with endogenous innovation, which
is calibrated using historical oil shocks. Our paper complements Fried’s in several ways.
First, by offering a well-identified empirical exploration of the effect of a negative shock
to the expected future profits from oil extraction, and, second, by highlighting a specific
channel through which clean R&D is affected by the shock from the supply-side, through
within-firm dynamics.

On the empirical side, the paper contributes to the literature investigating the relation
between relative energy prices and clean innovation. The findings of Newell et al. (1999)
indicate that higher energy prices will induce more rapid development of energy-saving
technologies. Similarly, Popp (2002) finds that higher energy prices are associated with
a significant increase in energy-saving innovations at the industry-level. Aghion et al.
(2016), who made another key contribution to this literature, showed that firms in the
auto industry tend to innovate more in clean and less in dirty technologies when they face
higher tax-inclusive fuel prices. A similar pattern, with a positive relationship between
energy prices and energy-saving innovation are also found by Crabb and Johnson (2010),
Calel and Dechezleprêtre (2016), Ley et al. (2016) and Hu et al. (2023).4 Popp (2002)
underlines the useful distinction between demand and supply side factors driving technical
change. The main focus of this literature has been the demand-side effect on clean
innovation of changes in relative energy prices: As prices of fossil fuels rise, incentives
for clean innovation are strengthened. We focus on a specific channel through which
lower prices to producers of fossil energy can speed up clean R&D efforts from the supply
side. Specifically, we show that our empirical findings are in line with within-firm costs of
rescaling R&D activity. We also study a wide range of firms and we have rich information
about the firms and do not have to rely on patent data to measure clean innovation.5

Lastly, the paper speaks to the new and active literature on shock propagation in
networks. Barrot and Sauvagnat (2016) identify firm-specific shocks among supplier
firms, and find that their domestic buyers experience substantial losses as a consequence.
Dhyne et al. (2022) focus on the opposite direction and examine how suppliers are affected
when their buyers are hit by shocks. Most of this literature is focused on short-run effects

of sufficient carbon pricing.
4See also Dugoua and Gerarden (2023) and Dugoua and Dumas (2021) for recent contributions to

the literature on environmental policy and energy prices. See Popp et al. (2010) and Popp (2019) for
reviews of the literature on environmental policy and innovation more broadly.

5See Golosov et al. (2014) for a key contribution to the literature on optimal carbon pricing, and
Timilsina (2022) and Köppl and Schratzenstaller (2023) for reviews of this literature. Important con-
tributions to the broader literature on optimal climate policy are, among others, Gerlagh et al. (2009),
Stern and Valero (2021) and Blanchard et al. (2023).
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of short-run shocks; we contribute by focusing on a large and persistent shock and it’s
effect on investments.

The paper is organized as follows. Section 2 lays out the theoretical model of directed
technical change with within-firm transition costs and technology spillovers. In Section
3, we describe the context and data used for the empirical analysis, and present a set
of stylized facts. The empirical strategy is described in Section 4, while the empirical
results are presented in Section 5. In Section 6 we provide some concluding remarks.

2 Theoretical Framework: Directed Technical Change
with Adjustment Costs and Technological Spillovers

In this section, we develop a stylized model of directed technical change, to guide
our empirical analysis on the impact of a permanent drop in the price of fossil fuels on
investments in clean R&D. We build on Acemoglu et al. (2012), and develop a model that
allows us to investigate how a negative price shock to a dirty final good may propagate
through the supply chain and induce a diversion of R&D investments from dirty to clean
R&D among input producers. In particular, our model allows us to illustrate how clean
R&D activity in firms supplying inputs to the fossil energy extraction sector may react
differently to a drop in the oil price, compared to firms that do not deliver their inputs
to the fossil fuel producers.

We extend the model by Acemoglu et al. (2012) by allowing firms to differ in their
innovation productivity with respect to dirty and clean R&D. The heterogeneity across
firms implies that firms make different choices regarding clean and dirty R&D activity.
Moreover, we build on the empirical findings of for example Bloom (2007) who finds that
R&D investments are highly persistent across business cycles, and attribute this finding
to adjustment costs of rescaling activity. To reflect such adjustment costs, we include a
convex cost of rescaling the size of the R&D activity within the firm. Finally, we assume
that there are within-firm spillovers from the more mature R&D activity (dirty) to the
less mature (clean) activity.

2.1 The Model

Consider a discrete-time, infinite-horizon economy where two final goods, j = c, d, are
produced in each time period. The clean good, denoted by subscript c, in quantity Yct,
and the dirty good, denoted by subscript d, in quantity Ydt. We consider a small, open
economy and therefore the final-good prices are exogenously given.

Each final good is produced by competitive producers using a continuum of inputs
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that are specific to the type of final good produced, with the production technology:

Yjt =
∫ 1

0
A1−α

jit xα
jitdi, j = c, d, (1)

with α ∈ (0, 1) where xjit is the quantity of input ji . Ajit denotes the productivity of
the input. We abstract away from the use of other inputs such as labor in the final good
sector, in order to keep the framework as simple as possible.

There is a mass of 1 firms that can produce inputs. The unit cost in production of
inputs is constant and independent of both type and productivity of the input, given by
ϕ. Without loss of generality, we follow Acemoglu et al. (2012) and let ϕ = α2.

Innovation takes place within the input-producing firms. Define Ajt as the aggregate
state of the technology for the final good type j at time t across all firms producing
inputs, with:

Ajt ≡
∫ 1

0
Ajitdi. (2)

A successful innovation for input xjit will increase the productivity of the input, Ajit, by
a common factor (1 + γ) > 1. Let subscript k denote a firm k. When an innovation
for input ji happens in firm k, the firm obtains a one-period patent and is allocated the
monopoly rights for input xji for the current time period. We follow Acemoglu et al.
(2012) and assume that for all inputs with no successful innovation, the monopoly rights
are allocated to a random firm.

To innovate, the firms must hire scientists to conduct R&D activity. There is a mass
of 1 scientists available in the market, and they have skills that can be used for both
clean and dirty R&D. A firm hiring a scientist chooses whether to put a scientist to work
on dirty or clean R&D. A scientist that is hired for type-j R&D activity is randomly
assigned to an input of that type. The input producers act competitively in the market
for scientists. Let skjt be the number of scientists hired by firm k for type-j R&D activity
in period t, and let skt = skdt + skct, be the total number of scientists hired by firm k in
period t.

Firms are heterogenous and the probability of innovation of type j in firm k depends
on a firm and final good specific innovation productivity, ηkj ∈ {0, ηj} with ηj ∈ (0, 1), and
on a concave innovation production function gj(·). We allow for within-firm technological
spillovers from the more mature (dirty) R&D activity towards the less mature (clean)
R&D activity. For the relevant range of skct and skdt, the clean-innovation production
function is therefore given by gc(skct, skdt),with gc(0, skdt) = 0, gc(1, 1) ≤ 1, ∂gc/∂skct >

∂gc/∂skdt ≥ 0, ∂2gc/∂s2
kct < 0, ∂2gc/∂s2

kdt = 0 and ∂2gc/∂skct∂skdt ≥ 0, while all third
derivatives are zero.
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For dirty innovation, only the number of scientists working on dirty R&D is relevant,
since there are no technological spillovers from the less mature towards the more mature
R&D activity. The dirty-innovation production function is given by gd(skdt), with gd(0) =
0, gd′(·) > 0, gd′′ < 0, gd′′′ = 0 and gd(1) ≤ 1.6

Firms will not engage in R&D of type j if their innovation productivity for that type
is zero. We can therefore divide the input producers into four groups, depending on ηkc

and ηkd:

• Group I: ηkc = ηc, ηkd = 0. Engage only in clean R&D.

• Group II: ηkc = 0, ηkd = ηd. Engage only in dirty R&D.

• Group III: ηkc = ηc, ηkd = ηd. Engage in both types of R&D.

• Group IV : ηkc = 0, ηkd = 0. Are not active (can be disregarded).

Let λl ∈ [0, 1] denote the share of firms that belong to group l, with λI +λII +λIII +λIV =
1.

We further assume that the rescaling of R&D activity is subject to adjustment costs.
To reflect such adjustment costs we include a convex cost of rescaling the size of the R&D
activity within the firm.7 To keep the framework as simple as possible, the adjustment
cost is separable from the innovation productivity and given by:

Rk = c ·
(

skt − skt−1

skt−1

)2

, (3)

for firm k, with c > 0. Note that a key to the results presented in the following is that
the cost of rescaling depends on the overall level of R&D activiity in the firm, not on
whether the activity is related to clean or dirty inputs.

The aggregate productivity of type-j inputs will develop over time according to:

Act =
(

1 + γ
∫ 1

0
ηkcg

c(skct, skdt)dk
)

Act−1 (4)

Adt =
(

1 + γ
∫ 1

0
ηkdgd(skdt)dk

)
Adt−1 (5)

with
∫ 1

0 skt = 1 in equilibrium. Allocation of scientists is therefore, oof course, drives
the technological state of the economy in the long run. In the following, we make one
further simplifying assumption, namely that all input producers are myopic in the sense

6To ensure an interior solution with respect to skjt to the problem of a firm with ηkj = ηj , we assume
limskdt→0 gd(skdt) = ∞ and limskct→0 gc(skct, skdt) = ∞.

7The assumption of convex adjustment costs is standard in the labor market literature, see
e.g.Hamermesh (1995)
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that they do not take future adjustment costs into account when they make their R&D
investment decision. 8The value of potential innovation as a result of investment in R&D
arise in the current time period, and are of course included in the firms’ objectives.

2.2 Market Equilibrium

Let pjt denote the exogenous price of final good j in period t, while pjit denotes the
price of input ji. The producer of final good type j will choose inputs to maximize profits:

max
xjit

pjt

∫ 1

0
A1−α

jit xα
jitdi −

∫ 1

0
pjitxjitdi. (6)

Solving the maximization problem gives the downward-sloping demand for each input:

pjit(xjit) = αpjtA
1−α
jit xα−1

jit . (7)

The monopolistic producer of good xjit will maximize profits subject to the final good
producers’ demand for inputs. In equilibrium, production of, and profits related to, input
ji are given by

xjit =Ajitp
1

1−α

jt (8)

πjit =α(1 − α)Ajitp
1

1−α

jt (9)

The expected within-period revenue from hiring a scientist for type-j R&D activity
for firm k in period t, denoted Ikjt, is given by:

Ikct =ηkcg
c(skct,skdt)

∫ 1

0
πcitdi = ηkcg

c(skct, skdt)α(1 − α)p
1

1−α
ct (1 + γ)Act−1 (10)

Ikdt =ηkdgd(skdt)
∫ 1

0
πditdi = ηkdgd(skdt)α(1 − α)p

1
1−α

dt (1 + γ)Adt−1 (11)

Because scientists are randomly assigned to a variety within the type they are hired
for, it is the aggregate input quality for that type, Ajt−1,that determines the expected
revenue from hiring.

Scientists are paid wage wt, and firm k thus hires scientists to solve the following

8Forward-looking firms will take into account not only the current adjustment costs, but also those
expected to be incurred in the future. For a firm adjusting its R&D up or down, the expected future
adjustment costs provide an incentive to rescale somewhat quicker, relative to the optimal rescaling for a
myopic firm. However, as long as the future adjustment costs are discounted, the key effect of including
the adjustment costs on the firms’ decisions is captured in the myopic problem presented in the following.
Hence, we make the assumption about myopic behaviour in order to keep the framework as simple as
possible.
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problem in period t:

maxskdt,skct

{
α(1 − α)(1 + γ)

(
ηkcp

1
1−α
ct Act−1g

c(skct, skdt) + ηkdp
1

1−α

dt Adt−1g
d(skdt)

)

−wtskt − c ·
(

skt−skt−1
skt−1

)2
}

,
(12)

subject to skt = skct + skdt.

We let the resulting demand for scientists from a firm k in group I, which only
conducts clean R&D activity, be given by sI

kct(pct, wt). Demand for scientists from firm k

in group II, which only conducts dirty R&D activity, is given by sII
kdt(pdt, wt), and demand

for scientists from firm k in group III, which conducts both types of R&D activity, is
given by sIII

kct (pct, pdt, wt) and sIII
kdt(pct, pdt, wt). The fourth group of firms does not conduct

any research and does therefore not demand any scientists. Equilibrium in the market
for scientists requires that the demand for scientists in each period t from each group of
input producers is equal to the supply of scientists, which we have set to one:

λIsI
kct(pct, wt) + λIIsII

kdt(pdt, wt) + λIIIsIII
kct (pct, pdt, wt) + λIIIsIII

kdt(pct, pdt, wt) = 1 (13)

We note that group I is not directly affected by a change in the price of dirty goods,
while group II is not directly affected by a change in the price of clean goods.

2.3 Comparative Statics

Let us now consider the effect of a fall in the price of the dirty final good on clean
innovation. Specifically, we want to compare the effect for a firm in group III, that
is engaged in both clean and dirty R&D, to that of a firm in group I, that is only
engaged in clean R&D. Because we want to compare otherwise similar firms, assume now
that all firms have the same total number of scientists hired in the previous period, i.e.
skt−1 = st−1 for all k. To get at these effects, we must consider all general-equilibrium
effects in the model.

We show in the Appendix Section ?? that the direct effect of a fall in the price of the
dirty final good on demand for scientists is negative for firms in group II and III, which
supply the producers of the dirty final good with inputs: Their revenue falls, and returns
to dirty R&D innovation fall. As a consequence, these firms will reduce their dirty R&D
activity and thus their demand for scientists, which in turn leads to a decline in wages
(see equations 29, 32 and 37).

The decline in wages will induce all firms that are active in R&D, including the firms
in group I, to expand their R&D activity (see equations 33-36).
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Firms in group III are active in both dirty and clean R&D. The impact of a price shock
for dirty goods on their clean R&D activities depends both on the wage effect, which is also
experienced by firms in group I, as well on within-firm dynamics related to technological
spillovers and adjustment costs: The presence of technological spillovers implies that
reduced dirty R&D activity leads to lower marginal productivity of scientists working on
clean innovation,. This in turn leads to reduced clean R&D activity. Adjustment costs,
on the other hand, imply that these firms increase the resources they allocate towards
clean innovation, relative to firms in group I, because the net marginal cost of their
clean R&D activity decreases as they downscale their dirty R&D. In other words, the
adjustment costs make firms shift some of their scientist from dirty to clean R&D rather
than firing them. The effect of a change in the price of the dirty final good on the demand
for scientists for clean R&D activity in group III depends on what effects that dominate.

The following two propositions summarize our key conclusions regarding the relative
impact of a price shock for firms that only conduct clean R&D (group I ) and firms
active in both clean and dirty R&D (group III ), using the case without spillovers and
adjustment costs as a benchmark:

Proposition 1. When there are no within-firm technological spillovers, and there are no
adjustment costs, a drop in the price of the dirty final good, pdt, will induce the same
change in clean R&D in all firms engaged in clean R&D, independently of whether the
firms are also active in dirty R&D or not:

dsI
kct

dpdt

=dsIII
kct

dpdt

. (14)

Proof. All calculations and expressions are provided in the Appendix, Section B, see
specifically Equation 41. When ∂gc/∂skdt = ∂2gc/∂skct∂skdt = c = 0, it follows

that the direct effect on clean R&D, the first term in Equation 39 , is zero for firms
in both groups. Moreover, the indirect effect (the second term in Equation 39 and the
full expression in Equation 40) is the same across the two groups.

Proposition 2. If there are within-firm technological spillovers and adjustment costs,
and the effect of the adjustment costs dominates the spillover effect, firms engaged in
both dirty and clean R&D will respond to a fall in the price of the dirty final good by
increasing their clean R&D activity, compared to the firms only engaged in clean R&D:

dsIII
kct

dpdt

>
dsI

kct

dpdt

. (15)

If, on the other hand, the spillover effect dominates the effect of the adjustment costs,
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the firms with both dirty and clean R&D activity, will respond to the price fall by reducing
their clean R&D activity relative to the firms only engaged in clean R&D activity:

dsIII
kct

dpdt

<
dsI

kct

dpdt

. (16)

Proof. See the Appendix, Section B, specifically Equation 41.

3 Data and Stylized Facts

In this section, we first present the large, negative shock to oil prices that occurred
in the second half of 2014, which we shall use to identify the consequences of a big drop
in the price of a dirty final good for investments in clean R&D. We then present the
rich data at hand, and document three stylized facts, which together with the theoretical
framework presented above, motivate our empirical design.

3.1 The oil shock

Our analysis relies on a quasi-natural experiment created by the large and sudden drop
in oil prices. After peaking at $107.95 a barrel on June 20 2014, the oil price plunged to
$44.08 a barrel by January 28, 2015, a drop of 59.2 percent in a little over 7 months. The
oil price plunged in 2014 due to a set of factors. The main reason was a combination of
an oversupply in the market and low global demand for oil. The increased production of
shale oil in the US increased susbtantially, while the OPEC countries contributed to the
oversupply by maintaining high production levels despite the falling price. At the same
time, the economic slowdown in China and Europe reduced the global demand for oil,
further exacerbating the supply-demand imbalance.

The result was a large, negative shock to the current and future price of oil. Figure
1 shows the development of the price of brent oil over the time period we study. As
can be clearly seen from the graph, oil prices plummeted starting in June 2014. Figure
2 shows the future price of oil as estimated in Q4 of 2014, and clearly illustrates that
markets anticipated that prices would remain low for the foreseeable future. This drop
in future prices is important for our analysis, as the decisions firms are making about
investments in R&D are forward-looking in nature, and firms are unlikely to respond
much to temporary fluctuations in the price. For individual firms in the supply chain,
such as the firms we include in our analysis in this paper, the price fall must be treated
as exogenous. Hence, the 2014 oil price drop serves an ideal quasi-natural experiment
that allows us to study the dynamics of resource reallocation among firms that supply
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the oil extraction industry.

Figure 1: Oil price: Brent Blend (Source: U.S. Energy Information administration)
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Figure 2: Crude Oil Price and Oil Future Prices
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The fall in the oil price in 2014 had a substantial negative impact on expected output
growth in the firms in Norway supplying the oil industry. Figure 3 reports the results from
the business sector survey conducted regularly by the Norwegian Central bank for the
period January to August 2015. According to the survey, expectations varied significantly
across sectors, with a positive outlook in most sectors, while the industries serving and
supplying the oil sector stand out, with a very negative outlook for both domestic sales
and exports. It should be noted that the technology, intermediates and capital goods used
for offshore extraction of oil differs substantially from the technology used for onshore
oil extraction. It is therefore unlikely that the firms supplying the Norwegian offshore
industryexperienced increased demand for their product as a consequence of the positive
shale oil shock in the US.

Figure 3: Expected Output Growth
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Note: The figure shows expected annual output growth the coming six months by
sector in the Norwegian economy based on the Norwegian Central bank regular
survey of the business sector. Source: The Norwegian Central Bank Monetary
Policy Report 3/2015.

3.2 Data

Our empirical analysis is based on five data sets. The first data set is administrative
firm register data from Statistics Norway. The data set covers the universe of firms across
all sectors. The firm register provides information on the date of the entry and exit of
each individual firm, allowing us to calculate the firm’s age. The register also holds data
on firms’ number of employees.
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The second data set is income statement and balance sheet data from Statistics Nor-
way for all private non-financial joint-stock companies. Since 85 percent of Norwegian
firms with one or more employees are joint-stock firms, this means that it covers almost
the entire universe of firms in Norway. The income statement and balance sheet data are
based on data from annual accounting reports that, according to Norwegian law, must
be filed with the public Register of Company Accounts.

The third data set is the R&D survey. The survey provides information about the
value of R&D expenditures, the number of and the wage bill of R&D personnel. Impor-
tantly, the survey also gives information about the share of R&D related to clean energy.
More detailed descriptions of the R&D data can be found in the Appendix ,Section A.

The fourth data set is product-level trade data for the universe of firms in Norway.
The data is at the HS8 product-level and covers all goods that are imported or exported
by Norwegian firms.

The fifth data set provides complete information on all direct support from the gov-
ernment for R&D and innovation to firms.9 We link all data sets with a unique firm
identifier.

3.3 Sample selection

For our analysis, we focus on all joint stock firms in the manufacturing sector (NACE
#10 to 35) that are covered by the R&D survey. This gives us an unbalanced panel of
approximately 1,300 firms per year. We focus on the manufacturing sector, as these firms
are responsible for the vast majority of trade in goods. We use information about which
goods are imported by oil producers (NACE 06) to construct our exposure measure as
described below in Section 4.1. Our sample is constructed to cover the years 2007 to
2017. The years 2007-2013 define the pre-shock period, and 2014-2017 define the post-
shock period.

3.4 Stylized facts on R&D and clean R&D

We present three stylized facts on the development of R&D and clean R&D in the
aftermath of the oil price shock.

Fact 1: There is persistence in R&D activities at the firm-level. A firm that has
positive R&D expenditures in one period, has a 90 percent probability of continuing
in the subsequent period. This inertia in R&D activities is in line with the empirical
findings of Bloom (2007) who finds that R&D investments are highly persistent across

9For more details see https://www.ssb.no/en/teknologi-og-innovasjon/forskning-og-innovasjon-i-
naeringslivet/statistikk/naeringspolitiske-virkemidler.
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business cycles, and supports the hypothesis that the rescaling of R&D activity is subject
to adjustment costs.

Table 1: Annual transition rates

Status year t Status year t+1
No R&D R&D

No R&D 0.862 0.138
R&D 0.098 0.902

Note: The table shows transition rates for firms in
the baseline sample and covers the years 2007 to
2017.

Fact 2: The share of firms investing in clean R&D increased after the oil price shock
both in absolute and relative terms. In 2013, the share of firms with positive R&D in our
sample was 40 percent and the share of firms investing in clean R&D was only 5 percent.
Fast-forward to 2017, and the numbers have increased to 46 percent for overall R&D,
whereas the share of firms investing in clean R&D has more than doubled, to 11 percent.
Figure 4 shows the increase in the share of firms with clean R&D expenditure relative to
all firms engaged in R&D firms.

Figure 4: Share of firms with clean R&D
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Note: The table shows the share of firms in the baseline sample that reports
investments in clean R&D. The sample covers the years 2007 to 2017.

Fact 3: The majority of the increase in clean R&D comes from firms that have on-
going investments in non-clean R&D. Figure 5 shows how the aggregate change in clean
R&D can be decomposed into 3 categories: firms starting to do R&D (including new
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entrants), firms who stop doing R&D (including exiting firms), and continuing R&D
performers. For each of these categories, we split firms into two groups, depending on
whether their R&D investments are 100 percent clean or a combination of clean and
non-clean. As the graph shows, the majority of the increase in clean R&D after the oil
price shock comes from firms with both clean and non-clean R&D.

Figure 5: Decomposition of Clean R&D

Note: The figure shows the annual percentage change in clean R&D – decomposed
according to the status of the firm, i.e. whether the firm starts, stops or continues
investment in both clean and dirty R&D (“mixed”), or starts, stops or continues
investment in just clean R&D. The sample covers the years 2007 to 2017.

4 Empirical Strategy

The point of departure for our empirical analysis is the theoretical framework devel-
oped above. According to Proposition 2, the relative impact of an oil price shock on
exposed firms (group III ) relative to non-exposed firms (group I ) is ambiguous. It thus
remains an empirical question. To investigate this question we develop a novel measure
of identification which makes us able to rely on firms’ heterogenous exposure to the shock
in our analysis.
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4.1 Identification: Measuring the exposure to the shock

To make progress towards estimating the causal effects of the oil price shock, we need
to identify which firms are exposed to the shock. The standard approach in the literature
has been to rely on sectoral input-output tables, which provide the share of production
in an industry i that is bought by industry j. However, this would not be satisfactory
for our purposes for two main reasons.

First, we are interested in the firm-level reaction to the shock, and we know from
a large literature in international trade that firms are very heterogeneous even within
narrowly defined industries. As we will describe below, our exposure measure shows that
there is a lot of variation in actual treatment within industries that would be classified
as either treated or control if we rely on sectoral input-output tables.

Second, if our treatment were defined at the industry-level, we would not be able to
control for any other contemporaneous shocks to industries.

ITherefore, we instead develop a novel firm-specific exposure measure leveraging the
detailed trade data. We exploit the rich information we have about firm-level imports by
oil producers to identify which products they use in their production, and construct our
firm-specific exposure measure by following these steps:

1. Identify the HS8 products imported by the oil producing industry (NACE #6) in
the pre-shock period. (2007-2013)10

2. Identify the firms in manufacturing that export products that are imported by the
oil producing industry (j ∈ o).

3. Calculate firm-level exposure xok as the share of “oil products” in firms’ total export
basket in 2013 as xok = ∑

j∈o xkjt/
∑

j xkjt for t = 2013.

More details on the construction and underlying assumptions are given in the Appendix,
Section C.

Measuring exposure to the shock in this way has some clear advantages compared to
using sector-level input-output tables. First, it captures the fact that the oil price shock
was a global shock. Compared to measuring the exposure only through domestic linkages,
we are capturing the extent to which firms are exposed to the oil price drop through
international trade. Second, and crucial for identification, it gives firm-level variation in
exposure. Compared to using sectoral input-output linkages, using our exposure measure
allows us to control for other, potentially time-varying, factors that are affecting all firms
in an industry.

10We use a period of more than one year, to account for the fact that firms’ sourcing of capital goods
we be subject to lumpiness over time.
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Using our exposure measure does come at a cost, as it reduces the sample to only
goods-exporting firms in the manufacturing sectors, and we are therefore not able to
capture firms that trade in services. Moreover, our measure relies on the assumption that
a firm’s share of exports directed towards the oil producing industry is an appropriate
measure of the share of the firm’s activity devoted to these products.

Figure 6 highlights the importance of using a firm-specific measure. The box plot
describes the within-industry variation in the exposure measure for all of our manufac-
turing industries. The median of the exposure measure is shown by the line within the
box, and the box’s boundaries represent the first (Q1) and third (Q3) quartiles, indicating
the middle 50 percent of the data. The difference between Q3 and Q1 is the interquartile
range (IQR), and the whiskers extend from the box to the smallest and largest values
within 1.5 times the IQR from the quartiles, highlighting the range of the data. The
points outside this range are plotted individually as outliers, indicating data points that
differ significantly from the rest of the distribution.

The box plot shows that there is substantial variation in the exposure of firms within
practically all of the manufacturing industries. An alternative to our approach would be
to follow the commonly used classification from Statistics Norway, which defines sectors
with at least 50 percent of its value of production directed to the petroleum sector to
be oil related.11 This would in practice mean that we would have classified all firms in
industries 25, 26, 27, 28, 30 and 33 as being affected by the shock, and firms in all other
industries as not affected. We find it reassuring that these sectors also stand out as being
strongly affected with our approach. However, as Figure 6 shows, there is substantial
exposure also among firms in the other industries. In particular, NACE 22 (Manufacture
of rubber and plastic products), NACE 29 (Manufacture of motor vehicles, trailers and
semi-trailers), NACE 31 (Manufacture of furniture) and NACE 32 (Other manufacturing)
stand out as having medians close to 1.

11See Statistics Norway for details: https://www.ssb.no/246994/naeringsundergrupper-i-
standard-for-naeringsgruppering-sn2007-som-er-gruppert-som-petroleumsrettet-leverandorindustri-
og-utvinningstjenester .
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Figure 6: Within-industry Variation in Exposure

Note: The median of the exposure measure is shown by the line within the box, and the
box’s boundaries represent the first (Q1) and third (Q3) quartiles, indicating the middle 50
percent of the data. The difference between Q3 and Q1 is the interquartile range (IQR),
and the whiskers extend from the box to the smallest and largest values within 1.5 times the
IQR from the quartiles. The points outside this range are plotted individually as outliers.

4.2 Empirical Model

To estimate the effects of the oil price shock, we rely on a difference-in-difference
model based on the theoretical framework developed in Section 2. This model allows us
to causally identify the effect of the oil price shock on clean R&D investments, as we
compare firms that are more affected by the oil price shock to other firms – before and
after 2014. The baseline specification takes the form:

ykt = αk + βxok × Postt + γZkt + δst + εkt, (17)

where the outcome variable ykt are various measures related to clean R&D investments.
xok depicts firm exposure to the shock based on the product portfolio (see Section 4.1),
while αk are firm fixed effects, capturing all time-invariant differences between the more
exposed and less exposed firms. Crucially, we are able to control for industry-year fixed
effects (NACE 2-digit). These industry-specific trends are captured by δst . Our coeffi-
cient of interest is β, which captures how firms exposed to the shock respond in the years
following the shock. xok measures firm k’s exposure as defined in Subsection 4.1 above,
and Postt is a dummy variable that equals one in the the post-period ( t > 2013). Zkt is
a vector of firm-level controls aimed at ensuring that the more exposed and less exposed
firms are comparable. We include the following firm-level controls: log employment, log
tangible assets, export share, and energy share, and a dummy which depicts whether
or not the firm has received public funding for R&D and innovation. Energy share is
calculated as energy cost related to production and transport relative to sum of opera-
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tional costs.12 As all of these variables themselves are possibly affected by the oil price
shock, we measure them at baseline and interact with year dummies. Standard errors
are clustered at the firm-level. On the left hand side, we include various measures of the
firms’ clean innovation activities, measures of income and profits, as well as measures of
R&D activities more generally.

5 Empirical Results on Clean Innovation

Our main variables of interest are related to clean R&D activities. We start by
analyzing the effect on the probability of doing clean R&D as measured by a dummy
variable that takes the value of 1 if the firm reports any clean R&D investment, and
0 otherwise. The results from estimating different versions of Equation (17) with and
without controls and fixed effects can be found in Table 2.

In column (1), we simplify and only include industry-year fixed effects. We find that
for a firm with average exposure, the shock leads to an increase in the likelihood of
reporting any clean R&D investment by approximately 4.5 percentage points relative to
the firms in the control grooup, that are not exposed according tou our measure. The
baseline likelihood of having any clean R&D investment is 7.5 percent, meaning that
this effect is substantial and of economic importance. In column (2), we add firm fixed
effects, which attenuates the coefficient slightly, but not by much. In column (3), we add
our baseline control variables, except that we leave out the control for he firm’s energy
share in the production process. We add this control in column (4) to reach our preferred
specification. We find that the energy share is the only control variable that seems to
have some bite. An effect of including energy share in the regression is not surprising, as
firms with substantial use of energy in production may clearly also be affected by the oil
price drop through this direct channel. We also estimate our preferred spefication using
PPML instead of OLS. Our results suggest that firms that where relatively more exposed
to the oil price shock, due to their delivery of inputs to the oil producing sector, were
more likely to invest in clean R&D after the shock.

12Manufacturing firms in Norway typically rely on two main sources energy: fossil fuels for transport
and some types of machinery and electricity based on hydro power. In the Appendix Section D we show
how firms’ cost of energy have developed over time for each of these energy goods and in aggregate, see
Figure 8.
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Table 2: Probability of Clean R&D

Variable: Dummy Dummy Dummy Dummy Dummy
(1) (2) (3) (4) (2)

Postt*xok 0.044** 0.039** 0.042** 0.055*** 0.499**
(0.019) (0.020) (0.020) (0.020) (0.199)

Controls ex. energy No No Yes Yes Yes
Controls incl. energy No No No Yes Yes
Firm FE No Yes Yes Yes Yes
Industry*year FE Yes Yes Yes Yes Yes
Estimator OLS OLS OLS OLS PPML
Obs. 11,695 11,695 11,695 11,695 3,024

Note: Standard errors in parenthesis are clustered on firm. Controls include baseline levels
of log employment, log tangible assets, export share, and a dummy for public funding,
all interacted with year dummies. A control for energy share is included where indicated.
∗p < 0.1, ∗ ∗ p < 0.05, ∗ ∗ ∗p < 0.01.

We are interested not only in the likelihood of investing in clean R&D, but also in the
share of clean R&D in each firm’s total R&D. To get at the share, we replace the dummy
variable with a variable capturing the value of clean R&D investments relative to the
total R&D investments of the firm. The results can be found in columns (1) and (2) in
Table 3 below, and show a positive and significant effect also on this measure, although it
is not as precisely estimated as the dummy. These findings suggest that firms exposed to
the oil price shock are increasing their clean R&D investments relative to their non-clean
investments relatively more than other firms. In columns (3) and (4) we replace the share
of clean R&D with the value of clean R&D, in logs in column (3) and levels in column
(4). Here, we find support for the hypothesis that exposed firms are increasing their clean
R&D spending also in absolute terms, although the effect in column (4) is just below the
threshold for significance at the 10 percent level.
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Table 3: Clean R&D: Share and Value

Variable: Share Share Log Value Value
(1) (2) (3) (4)

Postt*xoi 1.575* 0.358* 0.346** 0.716
(0.899) (0.218) (0.140) (0.470)

Controls Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes
Ind.*year FE Yes Yes Yes Yes
Estimator OLS PPML OLS PPML
Obs. 11,695 3,024 11,695 3,024

Note: Standard errors in parenthesis are clustered on firm. Log Value is
measured as log(1 + Clean R&D expenditures). Controls include baseline
levels of log employment, log tangible assets, export share, energy share
and a dummy for public funding, all interacted with year dummies. ∗p <
0.1, ∗ ∗ p < 0.05, ∗ ∗ ∗p < 0.01.

The findings presented in Table 2 and 3 support the hypothesis that firms exposed to
the oil price shock through the oil producers’ supply chain will react relatively stronger
to the price shock, in terms of investments in green R&D.

We investigate further where the increase in clean R&D investments is originating – is
it mainly due to firms that have previously not invested in any R&D that start investing,
or is it mainly driven by firms with pre-existing R&D investments that reallocate their
R&D spending towards clean activities? To get at this, we create two dummy variables:
First, “New Clean” equals one if the firm reports spending on clean R&D in period t but
did not in period t − 1. Second, “R&D to Clean” equals one if the firm reports spending
on clean R&D in period t but did not in period t − 1, conditional on the firm reporting
positive R&D spending in general in period t − 1.

The results from this exercise is found in Table 4. In column (1), we see a strong
and positive coefficient, indicating that firms that are more exposed to the shock are
significantly more likely to start new, clean R&D projects, compared to firms that are
not exposed. In columns (2) and (3) we show the results from using the “R&D to Clean”
dummy. In column (2), all firms are included, regardless of whether or not they report
any R&D spending, In column (3), we limit the sample to firms that report positive R&D
investments before the shock. We, again, find that firms that are more exposed to the
shock are more likely to start new clean R&D projects – this effect is particularly strong
if we narrow the sample to include only R&D performers.
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Table 4: Switching into Clean R&D

Variable: “New Clean” “R&D to Clean” “R&D to Clean”
(1) (2) (3)

Postt×xoi 0.033*** 0.018** 0.056***
(0.011) (0.009) (0.022)

Controls Yes Yes Yes
Firm FE Yes Yes Yes
Industry*year FE Yes Yes Yes
Control group All firms All firms R&D firms
Observations 11,695 11,695 4,751

Note: Standard errors in parenthesis are clustered on firm. “New Clean” is a dummy that
takes the value of 1 if the firm has positive investments in Clean R&D in year t, but not
in t-1. “R&D to Clean” is the same as “New Clean” conditional on having invested in
R&D in t-1. Controls include baseline levels of log employment, log tangible assets, export
share, energy share and a dummy for public funding, all interacted with year dummies.
∗p < 0.1, ∗ ∗ p < 0.05, ∗ ∗ ∗p < 0.01.

To summarize our results: we find that firms that are more exposed to the 2014
fall in the oil price increase their clean R&D more than firms that were less exposed
to the shock. This is true if we look at the likelihood of investing in clean R&D, the
share of clean relative to non-clean R&D, or the value of clean R&D. We also document
that the firms which are most exposed to the shock have higher probabilities of starting
new investments in clean R&D, and switching from non-clean to clean R&D. We will
now explore what mechanisms are at play to produce these effects. Clean R&D in more
exposed firms reacting more strongly to the oil price shock indicates that within-firm
dynamics such as adjustment costs, are relevant for the understanding the full effect of
such price drops on green technological progress.

Robustness A potential concern is that more exposed firms face different pre-trends
compared to those less exposed. Similar pre-trends for the two groups of firms would
be reassuring, indicating that our identification strategy is solid. We investigate the
pretrends by estimating the dynamic pattern of our main outcome variable, the dummy
for clean R&D:

ykt = αk + βxok × δt + γZkt + δst + εkt, (18)

The result from estimating this specification is illustrated in Figure 7. First, the lack
of evidence of any sort of pattertn in the pre-trends is reassuring, and suggests that our
treatment and control firms are behaving similarly in our pre-period. We see a clear
upward trajectory beginning in 2014 and turning significant from 2015.
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Figure 7: Dynamic DID

Note Each point presents the event-study coefficient estimates and 90% confidence
intervals of Equation 18.

Although our dynamic difference-in-difference estimation is reassuring, one cannot
exclude the possibility that our results are driven by something other than the oil price.
In particular, if clean energy prices increased substantially during the time period we are
looking at, this would have incentivized firms to ramp up their clean R&D investments.,
and exposed firms might in theory be hit differently by changes in clean energy prices,
compared to less exposed firms. However, figure 9 in Appendix Section D shows how
clean energy prices evolved over our sample period. If anything, they declined smoothly
over the time period in question.

Mechanisms In our theoretical framework, within-firm reallocation from non-clean to
clean R&D after a negative oil price shock is driven by the fall in expected profits from
producing inputs for the oil-extracting sector. We therefore next investigate whether
the firms we identify as being more exposed to the negative oil price shock experience
subsequent decreases in sales and profits. We create two new variables, sales per employee
and an indicator variable for operating profits. The indicator takes on the value of either
0, -1 or 1, depending on whether the firms makes zero, negative or positive profits. We
estimate Equation (17) with these two new variables as dependent variables. The results
from these regressions can be found in Table 5. We find that sales per employee decreases
significantly, as does profits, although the latter finding is not as robust as the first. Our
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results suggest that the mechanism suggested by the theoretical model is indeed at play.

Table 5: Sales per employee and Profits indicator

Variable: Sales per emp. Sales per emp. Profits indicator Profits indicator
(1) (2) (3) (4)

Postt×xoi -0.082*** -0.043* -0.179*** -0.081
(0.026) (0.026) (0.049) (0.060)

Controls Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes
Year FE Yes No Yes No
Industry FE Yes No Yes No
Industry*year FE No Yes No Yes
Observations 11,695 11,695 11,695 11,695

Standard errors in parenthesis are clustered on firm. Income is measured as operating income and
profits as an indicator for operating profits. Controls include baseline levels of log employment, log
tangible assets, export share, energy share and a dummy for public funding, all interacted with year
dummies. The indicator for operating profits takes on 0, -1 and 1 depending on whether the firms
makes zero, negative or positive profits. ∗p < 0.1, ∗ ∗ p < 0.05, ∗ ∗ ∗p < 0.01.

Finally, we explore whether the most exposed firms simply intensify their R&D in-
vestments across the board, relative to other firms. As shown in Table 6, we find no
effects on total R&D investments, the number of R&D employees, or on the share of
R&D employees in total employment. These results suggest that firms are not scaling
up all R&D investments in response to the shock. Rather, in line with our theoretical
predictions, they are reallocating resources towards clean R&D investments.

Table 6: R&D

Variable: R&D dummy log R&D emp R&D emp share
(1) (2) (3)

Postt×xoi -0.015 -0.008 -0.001
(0.028) (0.007) (0.001)

Controls Yes Yes Yes
Firm FE Yes Yes Yes
Industry*year FE Yes Yes Yes
Observations 11,695 11,695 11,695

Standard errors in parenthesis are clustered on firm. Log R&D employment is
log(1+R&D employees). Controls include baseline levels of log employment, log
tangible assets, export share, energy share and a dummy for public funding, all
interacted with year dummies. ∗p < 0.1, ∗ ∗ p < 0.05, ∗ ∗ ∗p < 0.01.
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6 Concluding Remarks

In this paper, we aim to shed light on a potentially important channel through which
changes in the price of fossil fuels may affect investments in clean technology. We do so
by developing a theoretical framework that highlights the role of with-firm dynamics in
adjusting to a price shock. We take the theory to the data, and our empirical findings
demonstrate that the long-term impacts of changes in energy prices through this less
researched channelmight be substantial. Our results indicate that the combination of
supply chain effects and within-firm dynamics may be essential in driving the shift in
resources from dirty towards clean R&D and technological development.

Our findings have some key policy implications. Understanding the mechanisms
through which firms react to external price shocks and the subsequent reallocation of
resources is crucial for designing effective policies that promote environmentally sustain-
able economic growth. We show that policies lowering the profitability in the oil produc-
ing sector may promote a shift towards investment in clean R&D, not only through the
induced structural change as resources move from fossil towards clean energy producing
firms, but also through within-firm reallocation in upstream industries.
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Appendix

A Data

The R&D survey measures R&D activity in the Norwegian business enterprise sec-
tor. The statistics are comparable to statistics for other countries and are reported to
the OECD and EUROSTAT. The R&D survey includes: (i) all firms with at least 50
employees; (ii) all firms with less than 50 employees and with reported intramural R&D
activity in the previous survey of more than NOK 1 million or extramural R&D of more
than NOK 3 million; (iii) among other firms with 10-49 employees a random sample was
selected within each strata (NACE 2-digit and size class).

The R&D survey provides details on the share of R&D spend in certain thematic
areas. We use information on the share of R&D spent on what we define as clean energy,
which encompasses the two areas: Renewable energy and Energy efficiency.

B Calculations for the analytical model

In the following, we provide the details for calculation of the signs of the first- and
second-order effects of the drop in the price of the dirty final good on clean R&D activity,
in the analytical model presented in Section 2,The calculations provided in the following
makes us able to compare the total effects of the price drop on clean R&D in firms engaged
in both clean and dirty R&D (group III) relative to firms only engaged in clean R&D
(group I), and provide proofs for Proposition 1 and 2.

For notational simplicity, let us define the function H l
kjt(·) as the derivative of the

objective function (Equation 12) of firm k, belonging to group l, with respect to skjt.
H l

kjt(·) represents the net value of a marginal increase in skjt for firm k in group l. Each
firm will hire scientists until the relevant marginal value is zero, i.e. until H l

kjt(·) = 0.
For firms in group I and II, the first-order conditions are given by:

HI
kct(skct, pct, wt) =α(1 − α)(1 + γ)ηcAct−1p

1
1−α
ct

∂gc(skct, 0)
∂skct

− wt − 2c
skct − skct−1

s2
kct−1

= 0

(19)

HII
kdt(skdt, pdt, wt) =α(1 − α)(1 + γ)ηdAdt−1p

1
1−α

dt gd′(skdt) − wt − 2c
skdt − skdt−1

s2
kdt−1

= 0.

(20)

For firms in group III, the two first-order conditions are given by:
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HIII
kct (skct, skdt, pct, wt) =α(1 − α)(1 + γ)ηcAct−1p

1
1−α
ct

∂gc(skct, skdt)
∂skct

− wt − 2c
skt − skt−1

s2
kt−1

= 0

(21)

HIII
kdt (skct, skdt, pct, pdt, wt) =α(1 − α)(1 + γ)

(
ηcAct−1p

1
1−α
ct

∂gc(skct, skdt)
∂skdt

+ ηdAdt−1p
1

1−α

dt gd′(skdt)
)

− wt − 2c
skt − skt−1

s2
kt−1

= 0 (22)

with skt = skct + skdt.

The first-order conditions in equations 19-22 give the demand for scientists from all
three groups of firms.

In the following, the group-specific superscripts are dropped for expressions that take
the same value for all relevant groups. For group I and II, respectively, the following
second-order conditions ensure that the first-order conditions characterize a maximum:

∂Hkct

∂skct

=α(1 − α)(1 + γ)ηcAct−1p
1

1−α
ct

∂2gc

∂s2
c

− 2c

s2
kt−1

≤ 0 (23)

∂Hkdt

∂skdt

=α(1 − α)(1 + γ)ηdAdt−1p
1

1−α

dt gd′′ − 2c

s2
kt−1

≤ 0. (24)

These inequalities follow directly from our initial assumptions. For group III, we also
require that:

∂Hkct

∂skct

∂Hkdt

∂skdt

−
(

∂HIII
kct

∂skdt

)2

≥0 (25)

with

∂HIII
kct

∂skdt

=∂HIII
kdt

∂skct

= α(1 − α)(1 + γ)ηcAct−1p
1

1−α
ct

∂2gc

∂sc∂sd

− 2c
1

s2
kt−1

≶ 0. (26)

The cross-derivative of the objective function of a firm in group III is positive if
the spillover effect dominates the effect of the adjustment cost, while it is negative if the
adjustment cost dominates. In either case, we assume that Equation (25) holds , i.e. that
the effect of dirty-scientist hiring on the marginal value and cost of hiring scientists for
clean innovation, independent of its direction, is not large enough to prevent an interior
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solution to the problem of any firm in group III.
First-order effects of the oil price drop. To get at the effects of the price drop

on each firm’s R&D activity (demand for scientists), we use the first-order conditions .
First, differentiating the first-order conditions with respect to pdt and w gives:

∂H l
kdt

∂pdt

=α(1 + γ)ηdAdt−1p
α

1−α

dt gd′(sl
kdt) > 0, for l = II, III. (27)

∂H l
kjt

∂wt

= − 1, for l = I, II, III ogj = d, t (28)

Next, it follows directly from differentiating the first-order conditions and using the
inequalities in equations 23-26 that:

∂sII
kdt

∂pdt

= −
∂HII

kdt

∂pdt

∂Hkdt

∂skdt

> 0 (29)

∂sIII
kdt

∂pdt

= −
∂Hkct

∂skct

∂HIII
kdt

∂pdt

∂Hkct

∂skct

∂Hkdt

∂skdt
−
(

∂HIII
kct

∂skdt

)2 > 0 (30)

∂sIII
kct

∂pdt

=
∂HIII

kct

∂skdt

∂HIII
kdt

∂pdt

∂Hkct

∂skct

∂Hkdt

∂skdt
−
(

∂HIII
kct

∂skdt

)2 ≶ 0 (31)

∂sIII
kct

∂pdt

+ ∂sIII
kdt

∂pdt

=
α(1 − α)(1 + γ)ηcAct−1p

1
1−α
ct

(
∂2gc

∂sc∂sd
− ∂2gc

∂s2
c

)
∂HIII

kdt

∂pdt

∂Hkct

∂skct

∂Hkdt

∂skdt
−
(

∂HIII
kct

∂skdt

)2 > 0 (32)

Effects of wage changes. Similarly, it follows, again from differentiating the first-
order conditions and using 23-26, that:

∂sI
kct

∂wt

=1
/

∂Hkct

∂skct

< 0, (33)

∂sII
kdt

∂wt

=1
/

∂Hkdt

∂skdt

< 0, (34)

∂sIII
kct

∂wt

=
(

− ∂Hkct

∂skdt

+ ∂Hkdt

∂skdt

)/(
∂Hkct

∂skct

∂Hkdt

∂skdt

−
(

∂HIII
kct

∂skdt

)2 )
< 0 (35)

∂sIII
kdt

∂wt

=
(

− ∂Hkct

∂skdt

+ ∂Hkct

∂skct

)/(
∂Hkct

∂skct

∂Hkdt

∂skdt

−
(

∂HIII
kct

∂skdt

)2 )
< 0. (36)

The market equillibrium condition in Equation 13 gives the equilibrium wage as a
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function of final good prices: wt(pct, pdt). Differentiating shows that the wage will drop
as a consequence of a fall in the fossil energy price:

∂wt

∂pdt

= −
λII ∂sII

kdt

∂pdt
+ λIII

(
∂sIII

kct

∂pdt
+ ∂sIII

kdt

∂pdt

)
λI ∂sI

kct

∂wt
+ λII ∂sII

kdt

∂wt
+ λIII

(
∂sIII

kct

∂wt
+ ∂sIII

kdt

∂wt

) > 0. (37)

We can now turn to the proof of Proposition 1 and 2.
Proof of Proposition 1 and 2. Define

∆ ≡ −dsIII
kct

dpdt

−
(

− dsI
kct

dpdt

)
, (38)

with

dsIII
kct

dpdt

=∂sIII
kct

∂pdt

+ ∂sIII
kct

∂wt

∂wt

∂pdt

(39)

dsI
kct

dpdt

=∂sI
kct

∂wt

∂wt

∂pdt

(40)

Insert from Equation (??) and (37) and reorganize, to get:

∆ = λIX1 + λIIX2 + λIIIX3, (41)

with:

X1 =∂sIII
kct

∂pdt

∂sI
kct

∂wt


> 0 if ∂sIII

kct

∂pdt
<0

< 0 if ∂sIII
kct

∂pdt
>0

(42)

X2 =
∂HII

kdt

∂pdt

∂Hkct

∂skct

∂Hkdt

∂skdt
−
(

∂HIII
kct

∂skdt

)2

∂HIII
kct

∂skdt

∂Hkct

∂skct

∂Hkdt

∂skdt

(
∂HIII

kct

∂skdt

− ∂HIII
kct

∂skct

(
1 − gd′(sIII

kdt)
gd′(sII

kdt)

))
, (43)

X3 =
∂HIII

kdt

∂pdt

∂Hkct

∂skct

∂Hkdt

∂skdt
−
(

∂HIII
kct

∂skdt

)2

∂HIII
kct

∂skdt

∂Hkct

∂skct


> 0 if ∂sIII

kct

∂pdt
<0

< 0 if ∂sIII
kct

∂pdt
>0

(44)
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The first fraction in X2 is always non-negative. The second fraction takes the same
sign as the fraction ∂HIII

kct /∂skdt, positive if the spillover effect dominates, negative if the
adjustment cost effect dominates. Next, the expression inside the inner brackets will take
a negative value as long as sIII

kdt ≤ sII
kdt. With sIII

kt−1 = sII
kt−1,where the group-III firm uses

only a share of their scientists for dirty R&D , we assume in the following that this is the
case. The second term in the outer brackets will then take a positive value.

If the adjustment costs dominates, the full expression in the outer brackets will be
negative, and X2 will take the opposite value of ∂HIII

kct /∂skdt. The same will be the case
if the spillover effect dominates, as long as ∂HIII

kct /∂skdt is not large too large. In the main
body of the paper, we assume this is the case. However, it is worth noting that for the
special case of very large spillover effects, X2 may take the same sign as ∂HIII

kct /∂skdt. As
a consequence, if λII is sufficiently large, the same can become true for the full expression
for ∆ in Equation (38). The firms in group II will react to the price drop by decreasing
their demand for scientists, which will push the wage down. If the share of firms belonging
to this group is very large, the firms in group III may face a wage drop that is large
relative to the drop in prices.

Given the signs of X1,X2 and X3, disregarding the special case just described, we
have:

∆


> 0 if ∂sIII

kct

∂pdt
<0

= 0 if ∂sIII
kct

∂pdt
=0

< 0 if ∂sIII
kct

∂pdt
>0

i.e., exposed-firm clean R&D increase more than clean R&D in non-exposed firms if
the rescaling cost dominates, while one would see the largest increase in the non-exposed
firms (and possibly even a decrease in exposed firms) if the spillover effect dominates.
This concludes the proof.

Note that the analysis presented above assumes interior solution to the maximization
problem of the firms with respect to skjt in for all firms with ηkjt = ηj. As a consequence,
a drop in the dirty-good price will only induce intensive-margin shifts in clean R&D, as
all firms with the ability to engage in clean R&D will have skct > 0 for any set of prices,
by assumption. However, allowing the marginal productivity of innovation to be finite
as skct approaches 0: limskct→0 gc(skct, skdt) ̸= ∞, would induce firms in group I and III

to engage in clean R&D activity only if the expected revenue is sufficiently high. As a
result, a drop in the dirty-good price would potentially induce increases in clean R&D in
both groups both on the extensive and on the intensive margin.
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C The firm-level measure of exposure to the oil price
drop

We use a two-step process to identify the level of exposure of each firm in our dataset
to the 2014 oil price drop.

First, we categorize all products imported to Norway as oil related or not oil related.
In this first step, we rely on data on imports to oil producing firms in Norway. All
products that are imported by these firms are defined as oil related. In the period before
the 2014 oil price drop, around 7000 products are imported to Norway, and about 1800
of these are imported (in any quantity) by the oil producing sector, and thereby defined
as oil related in our measure.

When determining which products to define as inputs to the oil prdouction , we take
into account the potentially strong home bias of the oil extraction sector operating in
Norway regarding the sourcing of inputs. Since the start of Norwegian oil extraction, it
has been a stated goal to build a Norwegian supply sector, and strong policy measures
have been in place to obtain this goal.

Building on Armington (1969) we assume that the production function of the oil
producers encompass different preferences for domestically produced and foreign inputs :

Ydt = βdi

∫ 1

0
A1−α

Dditx
α
Dditdi + (1 − βdi)

∫ 1

0
A1−α

Mditx
α
Mditdi, (45)

with subscript D denoting domestically produced inputs and subscript M denoting for-
eign inputs, while βdi is the value of the imported good in production relative to the
domestically produced good. The size of βdi determines the home bias for input di. For
higher values of βdi, input demand would be directed more towards domestically pro-
duced goods. If the home bias differs across sectors and inputs, the share of imports
of good xdi that is directed towards the oil producing sector will not be informative of
the relative importance of good xdi as an input in the oil producing sector.Therefore, we
do not weight the goods categorized as inputs to the oil producing sector using import
shares.
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D AdditionalFigures

Figure 8: Producer Price Index - Norway (2021=100)
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The figure shows the development of the producer price index for the do-
mestic market for the commodities/industries (i) oil- and gas extraction,
(ii) electricity, gas and steam and (iii) the aggregat of energy goods with
2021 as the reference year (2021=100).

Figure 9: Global renewable costs (IRENA)

The figure shows the development of cost of renewable energy according to
technology. Source: IRENA (www.irena.org)
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