Conservation by Lending

Bård Harstad \& Kjetil Storesletten

Stanford \& Minnesota

"Commitment by Lending"?

- Ideal policies often fail to be time consistent.
- Thus, a policymaker P_{t} would value a possibility to "tie the hands" of P_{t+1}.
- "Commitment by lending" allows P_{t} to borrow at an interest rate that depends on P_{t+t} 's policy.
- "Conservation by lending" combines a loan with a repayment that will be requested (or an interest rate that will be high) if and only if the forest cover falls relative to a benchmark.

Alternatives

- United Nation: REDD+ ("reducing emissions from deforestation and forest degradation").
- Traditional REDD+ contracts take the following form:
- If the deforestation level is below a benchmark, the forest-owning government will be paid.
- The amount is linear in the distance between a threshold and the actual deforestation level.
- There is no repayment/history dependence.
- The two instruments are not necessarily performing different.

A benchmark model

- A policymaker P governs a resource stock S_{t} and can extract fraction x_{t} to obtain (agric) benefit $A x_{t} S_{t}$, at cost $\frac{c}{2} x_{t}^{2} S_{t}$, but the per-period benefit of the forest is $b\left(1-x_{t}\right) S_{t}$.
- With discount factor $\delta \in(0,1), \mathrm{P}$ maximizes

$$
\begin{aligned}
& \left(A x_{t}+(1-b) x_{t}-\frac{c}{2} x_{t}^{2}+\delta v\left(x_{s}\right)\right) S_{t} \\
& \text { where } v\left(x_{s}\right)=\frac{x_{s} A+\left(1-x_{s}\right) b-x_{s}^{2} c / 2}{1-\delta\left(1-x_{s}\right)}
\end{aligned}
$$

- To reduce x to x_{*} from next period, P requests a loan (/payment) of

$$
L \geq \delta\left(v\left(x_{s}\right)-v\left(x_{*}\right)\right) S_{t}
$$

- Alternatively, a compensation k s.t.:

$$
\frac{x_{*} A+\left(1-x_{*}\right)(b+k)-x_{*}^{2} c / 2}{1-\delta\left(1-x_{*}\right)} S_{t} \geq v\left(x_{s}\right) S_{t}
$$

A benchmark model

- When both inequalities bind, they are equally costly:

$$
\frac{\left(1-x_{*}\right) k_{*}}{1-\delta\left(1-x_{*}\right)}=L_{*}
$$

- Both schemes implements the "first best" of conserving at least cost s.t. PC. (I.e., min costs s.t. IC \& PC.)
- So, they are equally costly for K (compensator, creditor, or donor).

Lessons

- The present-discounted costs of k and L were exactly the same in the benchmark model.
- But that model assumed:
(1) K faces no time inconsistency.problem.
(2) P faces no time inconsistency problem.
(3) P's preferences are constant over time.
(9) P is not subject to elections.
(6) There is no uncertainty.
(0) P is as patient as is K.
(1) P cannot borrow in the credit market.
- If we relax any of these assumptions, conservation by lending is less expensive!

1: K's time inconsistency

- The "conservation contradiction":
- If P expects K to compensate, P will be more inclined to conserve (even without compensation today).
- But when P conserves anyway, K will not need to pay.
- K will be tempted to not pay, if K cannot commit.
- ("The Market for Conservation and Other Hostages," JET 2016)

2: P's time inconsistency

- P_{t} in office today might be different from P_{t+1}.
- P_{t} fears that P_{t+1} will extract too much.
- Anticipating this, P_{t} extracts more if $\mathrm{s} /$ he is likely to be replaced
- Collier $(2010,1124)$: "ministers in the transitional government in the Democratic Republic of Congo (DRC) knew that they had only around three years in office. During this period many contracts were signed with resource extraction companies conceding very generous terms in return for signature bonuses that cashed in the value of the natural assets to the society".
- ... as in "The Conservation Multiplier" (JPE 2023).

2: P's time inconsistency: A model

- The party in power benefits Δ more from exploitation (because revenues can be diverted, spend on party perks, or because of corruption).
- The party in power now is in power later with probability $p<1$.
- This leads to $\beta \delta$-discounting (as with quasi-hyperbolic discounting) and time inconsistency problems: P_{t} wants P_{t+1} to conserve more.

2: P's time inconsistency: Results

- A loan ties the hands of P_{t+1}, making it less attractive to exploit.
- The larger is $(1-p) \Delta$, the larger is P's desire to commit
- and the smaller is the necessary loan from K
- but the larger is the compensation, k, that induces P to conserve now.
- With rotation of political power, K must compensate every P_{t} for its chance to extract.
- The loan conserves at least cost; REDD+ does not.

2: P's time inconsistency: Cost of the Loan

- Because of P_{t} 's time-inconsistency problem, the cost of the loan is small (and can be negative) if the requested reduction in x is small.'
- Because of lower costs, K will conserve more when using a loan, than when using REDD

2: P's time inconsistency: Calibration

- The literature suggests $\Delta / A \approx .15, \delta \approx .85, A=\$ 369$ per hectare.
- With this, we can calibrate the model and estimate the values of the parameters.
- F.ex., suppose $b=0$ and $x \approx .02$ with $p \approx .5$. (With 500 m hectares, \$10b).

2: P's time inconsistency: Combination

- With limits on $L, \mathrm{~K}$ needs to combine L with k.
- K's present-discounted cost from conservation depends on p :

$$
\frac{\partial \text { saving }}{\partial L}=-\frac{1-p}{p} \frac{1}{\delta}, \text { e.g.: } \frac{1-p}{p} \frac{1}{0.85} .
$$

3. Heterogeneity

- Even if $\Delta=0$, rotation/instability raises x_{m} if parties prefer different x_{s} 's.
- Each party thinks the other "mismanages" the resource.
- If the conservation-friendly party is expected to conserve even more, because of compensations from K, the exploitation-friendly party may want to exploit more.
- REDD+ can be counter-productive.
- Conservation by lending is more robust to heterogeneous parties

4. Endogenous p and elections

- If voters are identical, and voters forward-looking, then x_{t} cannot influence p.
- With heterogeneous parties, a "minority" party prefers a larger x_{t}.
- Voters (may) dislike that $x_{m}>x_{*}$, and thus prefer to elect a major party (self-enforcing eq.)
- The minority party may prefer to raise x_{t} to end its handicape.
- REDD+ might motivate voters to elect candidates with low b to get larger k.
- Conservation by lending might motivate voters to elect candidates that will not default.

Lessons

- The present-discounted costs of k and L were exactly the same in the benchmark model.
- But that model assumed:
(1) K faces no time inconsistency problem.
(2) P faces no time inconsistency problem.
(3) P's preferences are constant over time.
(9) P is not subject to elections.
(6) There is no uncertainty.
(0) P is as patient as is K .
(1) P cannot borrow in the credit market.
- If we relax any of these assumptions, conservation by lending is less expensive!

Implementation in practice

- Sustainability-linked bonds: "Unlike green or sustainable bonds, the funds raised with this instrument are not tagged to a specific use of proceeds but for general corporate purposes [but] the interest rate is dynamic and linked to some selected sustainability performance indicators"
- 2023: "Sovereign SLBs have been among the slowest of the existing labelled bond instruments to take off"... "just two countries, Chile and Uruguay, have issued SLBs so far. Both issued in 2022, the two SLBs raised \$2bn and \$1.5bn, respectively"
- "Brazil's recently elected leftwing president Luiz Inácio Lula da Silva, who has pledged to reduce logging to zero in the Amazon, could be next in line to try to issue an SLB".
- The points of this project is to shed light on the benefits of this instrument.

Lessons

- The present-discounted costs of k and L were exactly the same in the benchmark model.
- But that model assumed:
(1) K faces no time inconsistency problem.
(2) P faces no time inconsistency problem.
(3) P's preferences are constant over time.
(9) P is not subject to elections.
(6) There is no uncertainty.
(6) P is as patient as is K .
(1) P cannot borrow in the credit market.
- If we relax any of these assumptions, conservation by lending is less expensive!

	Chile	Uruguay
Key Performance Indicators (KPI)	KPI 1. Absolute GHG Emissions (in $\mathrm{MtCO}_{2} \mathrm{e}$) - Baseline: $109,460 \mathrm{MtCO}{ }_{2} \mathrm{e}$ (2018) KPI 2. Share of non-conventional renewable energy generation in the National Electric System (in \%) - Baseline: 27\% (2021) KPI 3. Percentage of women in board of directors at companies reporting to Chile's Financial Market Commission (CMF) (in \%) - Baseline: 14% (2022)	KPI 1. Education of aggregate gross GHG emissions (in GtCO_{2} e) per real GDP unit with respect to reference year (in \%) - Baseline: 19.45 GtCO2e (1990) KPI 2. Maintenance of native forest area (in hectares) with respect to reference year (in \%) - Baseline: 892,458 (2012)
Sustainability Performance Targets (SPT)	SPT 1a. Achieve annual GHG emissions of $95 \mathrm{MtCO}_{2}$ by 2030 SPT 1b. Maximum of $\mathbf{1 , 1 0 0} \mathrm{MtCO}_{2}$ between $\mathbf{2 0 2 0}$ and 2030 SPT 2a. Achieve 50\% of electricity generated from non-conventional renewable energy sources by 2028 SPT 2b. Achieve 60% electricity generation derived from nonconventional renewable sources by 2032 SPT 3. Achieve at least 40% of women representation in board of directors at companies to CMF by 2031	SPT 1a. Uruguay's Nationally Determined Contribution (NDC) commitment: Achieve at least 50\% reduction in GHG emissions by 2025 from the 1990 reference year SPT 1b. Outperformance compared to Uruguay's NDC commitment: Achieve more than $\mathbf{5 2 \%}$ reduction in GHG emissions intensity by 2025 from the 1990 reference year SPT 2a. Uruguay's NDC commitment. Maintain at least 100% of the native forest area compared to reference year 2012 SPT 2b. Outperformance compared to Uruguay's NDC commitment: Achieve an increase higher than 3% of the native forest area compared to reference year 2012
Bond Characteristics	- Max. coupon step-up of $\mathbf{2 5} \mathbf{b p s}$ if $\mathbf{2}$ SPTs or more are not met (see Sustainalytics (2023, p. 13-14) \& Browne-Amorim (2023)) - Coupon step-up of 12.5 bps if 1 SPT is not met - Multiple observation dates (see Chile's Ministry of Finance (2023a)) that could lead to step-up - Cumulative coupon payments	- Max. one-time coupon step-up of 15 bps if SPT 1 \& SPT 2 or more are not met (see Uruguay's Sovereign Debt Management Unit (2022, p. 57-58) \& BrowneAmorim (2023)) - Max. one-time coupon step-down of $\mathbf{1 5 b p s}$ if SPT1 \& SPT 2 are met (see Uruguay's Sovereign Debt Management Unit (2022, p. 57-58) \& BrowneAmorim (2023))
Reporting	- Chile publishes annual SLB reports with information on KPI evolution, SPT progress, and additional materials relevant for investors (see Chile's Ministry of Finance (2023b)) - Biennially information on KPI 1 (consistent with Chile's current NDC and the UNFCCC's requirements) - Annual information on the KPI 2 and 3	- Uruguay has an internal governance system in-place (recognized by UN-Global Support program as international best practice) to ensure the timeliness and quality of data reported to the UNFCCC. - Frequency: every two years reports to UNFCCC - Publication timing: two years post-data collection - Uruguay attempts to follow private-sector standards (as UNFCCC reporting timeframes are longer than International Captial Market Association's (IAMC)). - Move from biennially progress report on KPI 1 to annual frequency.

Verification	- Commitment to external verification (by Moody's ESG, Sustainalytics) in line with the Sustainability-Linked Bond Principles 2023 (verification conducted on bonds progress towards each SPT for each KPI at least once a year) (see Sustainalytics (2023))
Investment	- Initial investment of \$2 billion USD (Source:
- Demand: $\$ 8$ billion USD	
Browne-	- The bond carries a 4.346% coupon rate above 20-year maturity
Amorim (2023))	- Credit rating: A- (Fitch)

Commitment to external verification using the principals of the ICMA guidelines (see Uruguay's Sovereign Debt Management Unit (2022))

- Initial investment of $\$ 1.5$ billion USD
- Demand: $\$ 3.96$ billion USD
- The bond carries a 5.75% coupon rate above 12 -year maturity
- Credit rating: $\mathrm{BBB}+$ (R\&I)
- Highest credit rating Uruguay has ever received
- Forests are a key part of Uruguay's SLB (see KPI 2).

Lessons

- The present-discounted costs of k and L were exactly the same in the benchmark model.
- But that model assumed:
(1) K faces no time inconsistency problem.
(2) P faces no time inconsistency problem.
(3) P's preferences are constant over time.
(9) P is not subject to elections.
(6) There is no uncertainty.
(6) P is as patient as is K .
(1) P cannot borrow in the credit market.
- If we relax any of these assumptions, conservation by lending is less expensive!

