Shock Therapy for Greener Growth The Dynamics of Firms' R&D Investments

Esther Ann Bøler, Imperial College & CEPR & CEP Katinka Holtsmark, Uni Oslo Karen Helene Ulltveit-Moe, Uni Oslo & CEPR

Dept. of Economics, University of Oslo, June 2024

(日本)(周本)(日本)(日本)(日本)

• How does a fall in the price of fossil energy affect clean innovation in firms supplying inputs in the fossil energy sector?

- How does a fall in the price of fossil energy affect clean innovation in firms supplying inputs in the fossil energy sector?
- Green R&D is likely to be under-supplied in the market

イロト 不得 トイヨト イヨト ヨ

- How does a fall in the price of fossil energy affect clean innovation in firms supplying inputs in the fossil energy sector?
- Green R&D is likely to be under-supplied in the market
- The fossil energy price or profitability is affected by:
  - Industrial policies directed towards these sectors
  - Carbon prices:
    - \* Push consumer prices up: Increase clean innovation from the demand side
    - \* Push producer prices down: Increase clean innovation from the supply side

- How does a fall in the price of fossil energy affect clean innovation in firms supplying inputs in the fossil energy sector?
- Green R&D is likely to be under-supplied in the market
- The fossil energy price or profitability is affected by:
  - Industrial policies directed towards these sectors
  - Carbon prices:
    - \* Push consumer prices up: Increase clean innovation from the demand side
    - $\star\,$  Push producer prices down: Increase clean innovation from the supply side
- A shock may lead to reallocation of resources:
  - Between firms and industries
  - Within firms

# Stylized fact 1: Inertia in R&D

| Table: Annual transition rates |                 |                |  |  |
|--------------------------------|-----------------|----------------|--|--|
| Status year t                  | Status year t+1 |                |  |  |
|                                | No R&D          | R&D            |  |  |
| No R&D<br>R&D                  | 0.862<br>0.098  | 0.138<br>0.902 |  |  |

# Stylized fact 2: Increase in clean R&D



#### Figure: Oil prices and Clean Innovation

Price evolution

| Bøler, Holtsmark & U-Moe |  |
|--------------------------|--|
|--------------------------|--|

Shock Therapy

# Stylized fact 3: Increase in clean R&D driven by firms that do both



3

イロト イヨト イヨト イヨト

# This paper

- Stylized theoretical model:
  - Directed technical change (clean and dirty) with heterogeneous firms
  - Explores how a persistent fall in price of oil may encourage clean innovation in the supply chain
  - Within-firm dynamics lead shock-exposed firms to react differently
- Empirical analysis
  - Uses rich firm-level data for Norway
  - Exploits that firms are differentially exposed to the 2014 oil price shock due to their supply linkages to the extractors of fossil energy
  - Findings indicate that shock-exposed firms react differently

# **Theoretical Framework**

# A stylized model of directed technical change

Production of two final (energy) goods: clean and dirty

• Exogenous final good prices (small, open economy)

イロト 不得 トイヨト イヨト ヨ

# A stylized model of directed technical change

Production of two final (energy) goods: clean and dirty

• Exogenous final good prices (small, open economy)

Production of a range of inputs for each final good

- Each variety produced by a monopolist
- One-period monopoly rights obtained by innovation for that variety

# A stylized model of directed technical change

Production of two final (energy) goods: clean and dirty

• Exogenous final good prices (small, open economy)

Production of a range of inputs for each final good

- Each variety produced by a monopolist
- One-period monopoly rights obtained by innovation for that variety
- Input produers can hire scientists for both types of R&D
  - Higher price of a final good gives higher profitability in R&D for inputs of that type
- Firms differ in their innovation probability:
  - Some firms have no R&D
  - Some firms do only one type of R&D
  - Some firms do both types of R&D

# Within-firm dynamics

- Spillovers from mature (dirty) to clean R&D activity
  - Imply positive relation between the two types of R&D within the firm

# Within-firm dynamics

- Spillovers from mature (dirty) to clean R&D activity
  - Imply positive relation between the two types of R&D within the firm
- Adjustment costs when rescaling total R&D activity
  - Imply negative relation between the two types of R&D within the firm

# A persistent oil price drop

A fall in  $p_{dt}$  leads to:

- Lower dirty production
- Lower profits in dirty input production and thus in dirty R&D
- Lower dirty R&D in all exposed firms.

# A persistent oil price drop

A fall in  $p_{dt}$  leads to:

- Lower dirty production
- $\bullet$  Lower profits in dirty input production and thus in dirty R&D
- Lower dirty R&D in all exposed firms.

All firms potentially increase clean innovation because scientist wage drops.

# A persistent oil price drop

A fall in  $p_{dt}$  leads to:

- Lower dirty production
- $\bullet$  Lower profits in dirty input production and thus in dirty R&D
- Lower dirty R&D in all exposed firms.

All firms potentially increase clean innovation because scientist wage drops.

Exposed firms after the shock:

- Spillovers suggest lower clean innovation (relative to other firms)
- Adjustment costs suggest higher clean innovation (relative to other firms)

# **Empirical Analysis**

# **Empirical Analysis**

Question:

What is the impact of the 2014 oil price shock on clean innovation in exposed firms relative to other firms?

# Data and Sample

- Accounting data for all joint-stock firms in the manufacturing sector in Norway
  - operating income, operating profits, employment
- Product-level (HS8) trade data for the universe of firms
  - exports, imports
- R&D survey
  - R&D expenditure, R&D personell, Share of green R&D in total R&D
  - Clean R&D: renewable energy, other environment-related energy
- Sample
  - All joint stock firms in the manufacturing sector (nace #10 to 35) that are covered by the R&D survey
  - Unbalanced panel of approximately 1,300 firms per year
  - Covers 2007-2017

# The 2014 Oil Price Shock



Figure: Oil price and Oil future prices (Source: Norges Bank)

| Bøler, I | Hol | tsmarl | < & | U-Moe |
|----------|-----|--------|-----|-------|
|----------|-----|--------|-----|-------|

#### The 2014 Oil Price Shock



Figure: Oil price and Oil future prices (Source: Norges Bank)

| Bøler, H | loltsmarl | k & U | -Moe |
|----------|-----------|-------|------|
|----------|-----------|-------|------|

### Aggregate investments in clean R&D



#### Figure: Oil prices and Clean Innovation

Price evolution

| Bøler, Holtsmark & U-Moe | Shock Therapy |
|--------------------------|---------------|
|--------------------------|---------------|

# Identification

• Challenge: identify which firms are most exposed to the shock

- Standard approach in the literature: Input-output tables
- Our approach: Firm-specific exposure measure based on trade data

# Identification

- Challenge: identify which firms are most exposed to the shock
  - Standard approach in the literature: Input-output tables
  - Our approach: Firm-specific exposure measure based on trade data
- Firm-specific oil industry exposure measure:
  - use firm-level imports by oil producers to identify which products they use in their production:
    - identify the HS8 products imported by the oil extraction industry (nace #6) in the pre-shock period (2007-2013)
  - use firm-level exports by suppliers to identify which firms sell these products:
    - identify the firms in manucfaturing that export products imported by the oil extraction industry (j ∈ o)
  - ▶ calculate firm-level exposure,  $x_{oi} \in [0, 1]$ , as the share of "oil products" in firms' total export basket in 2013

\* 
$$x_{oi} = \sum_{j \in o} x_{ijt} / \sum_j x_{ijt}$$
 for  $t = 2013$ 

## Exposure measure: Pros and cons

Benefits:

- Captures the fact that they oil price shock was global
- ② Gives firm-level variation
- Allows controlling for industry-level trends

Drawbacks:

- Reduces sample to only manufacturing + exporting firms
- O Misses indirect exposure
- Relies on assumption that share of exports is informative of share of production

### Shock exposure



#### Figure: Within-industry Variation in Exposure



イロト イヨト イヨト イヨト

#### Empirical model

Diff-in-diff: Compare firms affected by the oil price shock through the supply chain to other firms pre/post 2014:

$$y_{it} = \alpha_i + \beta x_{oi} \times Post_t + \gamma Z_{it} + \delta_{st} + \varepsilon_{it},$$

- x<sub>oi</sub> measures firm i's exposure
- $\alpha_i$  firm FE,  $\delta_{st}$  industry-year FE (NACE 2-digit)
- $Post_t = 1$  if t > 2013
- Z<sub>it</sub>: firm level controls
  - log employment, log tangible assets, export share, energy share and a dummy for public funding

▲□▶ ▲□▶ ▲目▶ ▲目≯ ●○○

measured at baseline and interacted with year dummies

#### **Outcome variables**

- Measures of clean (renewable energy) R&D activity
  - Clean energy R&D dummy
  - Clean energy share of R&D expenditures
  - Clean R&D expenditures
  - (Switchers)
- ( Measures of sales and profit: )
  - sales per employee
  - operating profits categorial variable (-1, 0, 1)
- ( Measures of R&D activity: )
  - R&D dummy
  - log R&D employment

## Results: Clean R&D

| Variable:        | Dummy<br>(1)        | Share<br>(3)      | Log Value<br>(5)   | -                     |
|------------------|---------------------|-------------------|--------------------|-----------------------|
| $Post_t^*x_{oi}$ | 0.055***<br>(0.020) | 1.575*<br>(0.899) | 0.346**<br>(0.140) | ► W/o controls ► PPML |
| Controls         | Yes                 | Yes               | Yes                |                       |
| Firm FE          | Yes                 | Yes               | Yes                |                       |
| Ind.*year FE     | Yes                 | Yes               | Yes                |                       |
| Obs.             | 11,695              | 11,695            | 11,695             |                       |

Table: Clean R&D

Standard errors in parenthesis are clustered on firm. Log Value is measured as log(1 + Green R&D expenditures). Controls include baseline levels of log employment, log tangible assets, export share, energy share and a dummy for public funding, all interacted with year dummis. \*p < 0.1, \* \* p < 0.05, \* \* \*p < 0.01.

# Mechanisms & robustness

- R&D in general **Link**
- Sales and profits Link
- Pre-trends Link
- Placebo using other technology types
- Renewable prices Link

# Conclusion

- Carbon pricing can affect clean innovation not only through higher demand for clean alternatives, but also through higher supply
- We show theoretically that within-firm dynamics may lead diretly exposed firms in the energy sector to react differently to a drop in the oil price, compared to less exposed firms
- We show empircally that exposed firms in the Norwegian oil supply sector increase clean innovation in repsonse to the 2014 drop in the oil price

# Conclusion

- Carbon pricing can affect clean innovation not only through higher demand for clean alternatives, but also through higher supply
- We show theoretically that within-firm dynamics may lead diretly exposed firms in the energy sector to react differently to a drop in the oil price, compared to less exposed firms
- We show empircally that exposed firms in the Norwegian oil supply sector increase clean innovation in repsonse to the 2014 drop in the oil price

• Carbon pricing (and other policy measures) may induce reallocation not only across, but also within, firms

# Thank you!

## Innovation and growth

•  $A_{jt}$ : Aggregate state of the technology of type j at time t:

$$A_{jt}\equiv\int_0^1 A_{jit}di.$$

• A successful innovation increases the quality of the input by:  $(1+\gamma)>1$   $\fi)$  Back

How may an oil price drop affect clean innovation?

A persistent drop in  $p^{oil}$  will:

- reduce profitability in fossil energy production and its supply chain
- lead to lower fossil energy related R&D
- lead to free resources for R&D activity in the market
  - $\Rightarrow$  higher clean innovation in "all" firms.

(日本)(周本)(日本)(日本)(日本)

How may an oil price drop affect clean innovation?

A persistent drop in  $p^{oil}$  will:

- reduce profitability in fossil energy production and its supply chain
- lead to lower fossil energy related R&D
- lead to free resources for R&D activity in the market ⇒ higher clean innovation in "all" firms.
- In addition: Directly exposed firms (in supply chain):
  - ▶ may invest more in clean R&D if rescaling of R&D activity is costly.
  - may invest less in clean R&F if there are within-firm technologial spillovers from fossil to clean innovation.

Back

### Shock exposure



#### Figure: Within-industry Variation in Exposure

▶ Details ▶ Back

イロト イヨト イヨト イヨト

# Box plot

- Median value: the line splitting the box in two represents the median value
  - ▶ shows that 50 % of the data lies below the median value and 50 % lies above
- Lower Quartile: the bottom edge of the box represents the lower quartile
  - shows the value at which the first 25 % of the data falls up to
- Upper Quartile: the upper edge of the box shows the upper quartile
  - $\blacktriangleright$  shows that 25 % of the data lies to the right of the upper quartile value
- Upper and lower values of the data: the horizontal lines stop at are the values of the upper and lower values of the data
- Outliers: the single points on the diagram

### Switchers

- "New Green"
  - ▶ Dummy=1 if no Green energy R&D=0 in t-1& Green energy R&D>0 in t
  - otherwise Dummy=0

►

- "From R&D to Green"
  - ▶ Dummy=1 if R&D=1 in t 1 & New Green=1 in t
  - ▶ Dummy=0 if R&D=1 t 1 & & New Green=0 in t
  - Column 2: Dummy=0 if R&D=0 in t 1
  - Column 3: Dummy=missing if R&D=0 in t-1

Back

## Results: Clean R&D

| Variable:             | Dummy<br>(1) | Dummy<br>(2) | Dummy<br>(3) | Dummy<br>(4) | _    |
|-----------------------|--------------|--------------|--------------|--------------|------|
| $Post_t * x_{oi}$     | 0.044**      | 0.039**      | 0.042**      | 0.055***     |      |
|                       | (0.019)      | (0.020)      | (0.020)      | (0.020)      |      |
| Controls exl. energy  | No           | No           | Yes          | Yes          | Back |
| Controls incl. energy | No           | No           | No           | Yes          |      |
| Firm FE               | No           | Yes          | Yes          | Yes          |      |
| Ind.*year FE          | Yes          | Yes          | Yes          | Yes          |      |
| Obs.                  | 11,695       | 11,695       | 11,695       | 11,695       |      |

Table: Clean R&D

Standard errors in parenthesis are clustered on firm. Controls include baseline levels of log employment, log tangible assets, export share, energy share and a dummy for public funding, all interacted with year dummies. \*p < 0.1, \* \* p < 0.05, \* \* \*p < 0.01.

# Results: R&D

|                        |                  |                    |                      | -      |
|------------------------|------------------|--------------------|----------------------|--------|
| Variable:              | R&D dummy<br>(1) | log R&D emp<br>(2) | R&D emp share<br>(3) | _      |
| $Post_t \times x_{oi}$ | -0.015           | -0.008             | -0.001               | -      |
|                        | (0.028)          | (0.007)            | (0.001)              | ► Back |
| Controls               | Yes              | Yes                | Yes                  |        |
| Firm FE                | Yes              | Yes                | Yes                  |        |
| Industry*year FE       | Yes              | Yes                | Yes                  |        |
| Observations           | 11,695           | 11,695             | 11,695               |        |
|                        |                  |                    |                      |        |

Table: R&D

Standard errors in parenthesis are clustered on firm. Log R&D employment is log(1+R&D employees). Controls include baseline levels of log employment, log tangible assets, export share, energy share and a dummy for public funding, all interacted with year dummies. \*p < 0.1, \*\*p < 0.0, \*\*p < 0.0.

#### Results: Sales and profits

-

|                        |                       |                       |                |                | - |
|------------------------|-----------------------|-----------------------|----------------|----------------|---|
| Variable:              | Sales per emp.<br>(1) | Sales per emp.<br>(2) | Profits<br>(3) | Profits<br>(4) |   |
| $Post_t \times x_{oi}$ | -0.082***             | -0.043*               | -0.179***      | -0.081         |   |
|                        | (0.026)               | (0.026)               | (0.049)        | (0.060)        |   |
| Controls               | Yes                   | Yes                   | Yes            | Yes            | • |
| Firm FE                | Yes                   | Yes                   | Yes            | Yes            |   |
| Year FE                | Yes                   | No                    | Yes            | No             |   |
| Industry FE            | Yes                   | No                    | Yes            | No             |   |
| Industry*year FE       | No                    | Yes                   | No             | Yes            |   |
| Observations           | 11,695                | 11,695                | 11,695         | 11,695         |   |

Table: Sales per employee and Profits indicator

Standard errors in parenthesis are clustered on firm. Controls include baseline levels of log employment, log tangible assets, export share, energy share and a dummy for public funding, all interacted with year dummies. The indicator for operating profits takes on 0, -1 and 1 depending on whether the firms makes zero, negative or positive profits. \*p < 0.01, \* \* p < 0.05, \* \* p < 0.01.

#### Results: Placebo using other tech fields

|                        | Table: Placebo |         | _      |
|------------------------|----------------|---------|--------|
| Variable:              | Bio tech R&D   | ICT R&D | -      |
|                        | (1)            | (2)     | _      |
| $Post_t \times x_{oi}$ | -0.015         | -0.032  |        |
|                        | (0.015)        | (0.024) | ► Back |
| Controls               | Yes            | Yes     |        |
| Firm FE                | Yes            | Yes     |        |
| Industry*year FE       | Yes            | Yes     |        |
| Observations           | 11,695         | 11,695  |        |

Standard errors in parenthesis are clustered on firm. Controls include baseline levels of log employment, log tangible assets, export share, energy share and a dummy for public funding, all interacted with year dummies. \*p < 0.1, \*\*p < 0.05, \*\*\*p < 0.01.

#### Falling Renewable Prices



# The Oil Price Shock 2014



Figure: Oil price: Brent Blend (Source: U.S. Energy Information administration)

Back

#### Results: Clean R&D PPML

|                   |              |              |              | _      |
|-------------------|--------------|--------------|--------------|--------|
| Variable:         | Dummy<br>(1) | Share<br>(3) | Value<br>(5) | _      |
| $Post_t * x_{oi}$ | 0.499**      | 0.358*       | 0.716        |        |
|                   | (0.199)      | (0.218)      | (0.470)      | ► Back |
| Controls          | Yes          | Yes          | Yes          |        |
| Firm FE           | Yes          | Yes          | Yes          |        |
| Ind.*year FE      | Yes          | Yes          | Yes          |        |
| Obs.              | 3,024        | 3,024        | 3,024        |        |
|                   |              |              |              |        |

#### Table: Clean R&D PPML

Standard errors in parenthesis are clustered on firm. Controls include baseline levels of log employment, log tangible assets, export share, energy share and a dummy for public funding, all interacted with year dummies. \*p < 0.1, \*\*p < 0.05, \*\*\*p < 0.01.

# Dynamic DID



### R&D expenditure



## Green energy share in R&D



## Share of firms with green R&D



# Two propositions

#### Proposition

W/o spillovers or adjustment costs:



 $\longrightarrow$  All firms engaged in clean R&D, independently of whether the firms are also active in dirty R&D or not, will respond equally

#### Proposition

With spillovers and adjustment costs:

$$\frac{ds_{kct}^{III}}{dp_{dt}} \stackrel{<}{=} \frac{ds_{kct}^{I}}{dp_{dt}}$$

 $\longrightarrow$  Exposed firms will respond more or less depending on whether the spillover effect dominates the effect of the adjustment costs or vice versa

▶ Back