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1. Introduction 

The importance of knowledge spillovers across firm boundaries has remained central to economics 

for over a century, and arguably contributed to at least three Nobel prizes (Marshall 1890; Arrow 

1962; Romer 1986; Krugman 1991). The implications of knowledge spillovers for firms quickly 

emerged as a central theme in the early strategy literature as well (Cohen and Levinthal, 1990; 

Teece et. al. 1997). Absorptive capacity (ABS) argued that firms must first invest in the capacity 

to understand outside knowledge before they can recognize, use, and benefit from spillovers 

(Cohen and Levinthal 1990). It has proven to be one of the most influential theories in strategy and 

has inspired work in economics and other fields (Aghion and Jaravel, 2015). 

 

Despite its already widespread impact, ABS has remained vulnerable to theoretical and empirical 

critiques, “In its most reduced form, the theory holds that a firm's benefit from external knowledge 

increases with the level of its own R&D…the phenomenon currently ascribed to absorptive 

capacity is instead an artifact of prior empirical constraints.” (Knott 2008, pg. 2054-5) While an 

undeniably influential idea, subsequent theoretical and empirical research has often struggled to 

find sharp and causal tests of hypotheses, arguably due to a lack of specific mechanisms and the 

difficulty of randomizing the availability of knowledge outside a firm’s boundaries. 

 

While the theory of absorptive capacity implicitly acknowledges the importance of the individual 

– indeed, its first pages (Cohen and Levinthal 1990) explicitly built upon cognitive and 

psychological models of learning and creativity – the strategy field has typically focused on the 

firm as the level of analysis. Lack of attention to individuals shouldn’t surprise, however, given 

that the strategy field by definition seeks to understand organizational level advantage. 

Furthermore, ABS theory was formulated before widespread availability of data on individuals. In 

addition to their paradigmatic focus, strategy researchers lacked motivation to ponder the micro-

foundations of ABS, because by and large, such foundations could not be observed, let alone 

rigorously tested. 

 

Despite the firm level focus, knowledge spillovers ultimately flow between individual employees 

of different firms. Fortunately, and since the initial formulation of these theories, individual level 
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data has become widely available; for example, it is now possible to observe all the patenting 

inventors inside a firm, and if one accepts the convention that a citation is at least correlated with 

some kind of knowledge flow (Jaffe et.al., 1993; Roach and Cohen 2013), one can trace the flow 

of knowledge from one inventor to another – both within and across firm boundaries. Combining 

these data with advances in methods, and in particular, quasi-experimental and arguably causal 

research designs, opens up the opportunity to better test the observable implications of absorptive 

capacity. 

 

We argue that ABS can be usefully decomposed into 1) distinct mechanisms of absorption and 2) 

externally available knowledge that might be absorbed through that distinct mechanism. This 

enables theoretical elaboration of specific mechanisms, measurement of a firm’s capabilities of 

those specific mechanisms, and empirical identification of exogenous changes in externally 

available knowledge that might be absorbed though specific mechanisms. This decomposition 

remains consistent with the original formulation, “A key assumption in the model is that 

exploitation of competitors' research findings is realized through the interaction of the firm's 

absorptive capacity with competitors' spillovers.” (Cohen and Levinthal, 1990, pg. 141) 

 

Acknowledging a range of plausible pathways for absorptive capacity, we focus on the mechanism 

of inter-personal knowledge spillovers. Confirming a great deal of prior work, and identifying both 

the personal source and destination of individual spillovers, we first establish that such spillovers 

localize. We identify such inter-personal spillovers by extending a causal method of estimation that 

compares local citations to the same collaborative patent, in regions with a recently deceased 

inventor, relative to regions where her co-author remains alive. Returning to the original definition 

(Cohen and Levinthal 1990), we measure a firm’s absorptive capacity by its inventors’ experiences 

in specific fields. This enables us to establish that an inventor’s experience in a field increases their 

ability to make use of inter-personal knowledge spillovers, and that this effect is geographically 

localized. Again, consistent with the original formulation, absorptive capacity appears to matter 

most when inventors apply prior knowledge to create linkages into new fields. Finally, and in 

contrast to spillovers across boundaries, we illustrate in the discussion that knowledge flow within 

firms does not appear to localize. 
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2. Theory 

All firms have the potential to absorb knowledge from other firms, through a variety of 

mechanisms. Firms vary greatly, however, in how effectively they can exploit different 

mechanisms of absorptive capacity, for example, can they reverse engineer a competitor’s product, 

read and understand a competitor’s science publications, or take advantage of local knowledge 

spillovers? They also vary in their potential exposure or opportunity to exploit the different 

mechanisms, for example, are their competitor’s products physically accessible, do their 

competitors publish in the science literature, and are their competitors located nearby. Here we 

focus on local knowledge spillovers across firms as the source of external knowledge and measure 

a firm’s absorptive capacity as the pertinent experience and “personal absorptive capacity” of their 

inventors. We exogenously vary the availability of the source of spillovers through a natural 

experiment, namely the death of an inventor at another local firm. This experiment can isolate and 

provide insights into one micro-mechanism of ABS. 

 

There are many sources of new and external information for firms, for example, hiring, consulting, 

science papers, media, or product information. Each of these sources operates with different 

mechanisms and provides a different external and potential “conduit” by and through which 

knowledge can be recognized, assimilated, and applied. The conduit of inter-personal knowledge 

spillovers from other firms is localized (Balsmeier et. al. 2023), and this has not been highlighted 

to date in the ABS literature – that one possible and possibly very important conduit of ABS relies 

on the local and geographic context which firms operate in. A firm which operates near another 

firm makes itself vulnerable (in both positive and negative ways) to potential knowledge spillovers 

(Alcacer and Chung, 2007), through inter-personal knowledge spillover mechanisms. 

 

Understanding the inter-personal mechanisms of localized knowledge spillovers and absorptive 

capacity requires consideration of both the original source and destination of the knowledge 

spillover. Foreshadowing our identification strategy, we will define an inventor who dies during 

patent pendency as the “source inventor.” Restricting our analysis to co-authored patents whose 

inventors live in different regions, we will consider all inventors on all realized patents at other 

firms within a particular distance radius and a given time period around the deceased and still-

living inventors as “destination inventors.” We will measure the ABS of the realized destination 
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inventors with their prior patenting record – if they have invented in the same field as the source 

patent, we consider them as possessing ABS in that field. Identification will come from observing 

local citations in regions around still-living co-authors (where the external source of inter-personal 

spillovers remains available), relative to local citations in regions around the deceased inventor 

(where the source of inter-personal spillovers becomes unavailable). 

 

Hypotheses: 

Knowledge can flow across firm boundaries in many ways, for example, in the hiring of 

competitors’ employees, reading of published literature, reverse engineering of products, and the 

focus here, through the inter-personal interactions of employees that work at different 

organizations. Some of these interactions are intended, for example, engineers can be reluctant to 

seek help within their own firm, due to the fear of embarrassment and negative assessments by 

management. As a result, they often ask friends they can trust in outside firms (Allen 1977). Other 

interactions may not be intended, such as eavesdropping in the local coffee shop. 

 

While some firms pursue strict norms that proscribe such knowledge flow and regularly warn their 

employees that they will be prosecuted, most often following publicized leaks (Mickle, 2023), such 

norms vary greatly, in their intent and effectiveness. Regional norms also vary, for example, Silicon 

Valley engineers from competing firms have been described as particularly collaborative, in bars 

and other public places, and the region’s success has been partly attributed to this generous 

knowledge flow across firm boundaries (Saxenian 1994). Densely agglomerated clusters of firms, 

such as occur in Silicon Valley, increase the chance of random encounters and both intended and 

unintended sharing.  

 

While inter-personal knowledge flow can certainly occur at a distance – the time period we study 

includes the transition from the rotary dial telephone to smart phones and Zoom – they are much 

more likely as geographic distances shrink; longer geographic distances impose higher costs for 

interacting in person. Inter-personal mechanisms of spillovers usually rely upon physical presence 

of the source and destination and are much more likely to occur when people are physically 

proximal. Despite advances in communications and transportation technology, people are far more 

likely to interact if they are geographically proximate, for example, if they work together, socialize 
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after working, attend a professional (or any physical) event together, pass each other on the street, 

sit next to one another in a restaurant, or see one another at a shopping mall, Little League game, 

or school event. 

 

As the physical distance between the source and destination inventors increases, inter-personal 

knowledge flows will decrease. This will be particularly important for more recent, complex, and 

tacit knowledge that can be more effectively transmitted through personal contact. Old information, 

such as that published in textbooks, will be less localized, as it is already more widely known and 

available in the absence of the author. 

 

The argument that knowledge spillovers localize is old (Marshall, 1890; JTH 1993; Thompson and 

Fox-Kean, 2005; Roche 2020), however, here we focus on inter-personal mechanisms and establish 

that particular mechanism in the first hypothesis, before elaborating on the strategic implications 

of localized knowledge spillovers in later hypotheses. 

 

H1: Inter-personal knowledge spillovers localize. 

 

We now elaborate upon the theory of ABS by clearly specifying both the particular mechanism of 

absorption and the specific source of external knowledge. Building on H1, localized inter-personal 

knowledge spillovers provide one example of knowledge that is externally available to a local firm. 

Firms with appropriate ABS – in this case, an ability to learn from and absorb inter-personal 

knowledge spillovers - should be better able to take advantage of localized knowledge through this 

ABS mechanism. This implies first establishing the ABS of a firm’s inventors, and then observing 

the likelihood of application, when a source of knowledge is - or is not – locally available. 

 

Closely following the original arguments of ABS, we propose that inventors with experience in the 

field of the available knowledge source will have greater absorptive capacity in that field. An 

inventor with extant cognitive structures in a field will have a much easier time understanding, 

recognizing, and applying knowledge in that specific field. For example, if a firm’s inventor has a 

background in semiconductors or biotech, then s/he will be better able to absorb and take advantage 

of locally available knowledge in semiconductors or biotech, respectively. Empirically, this implies 
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that an inventor that has invented in semiconductors previously is more likely to take advantage of 

a locally available source of inter-personal knowledge spillovers, relative to a local inventor 

without semiconductor experience. 

 
H2: Absorptive capacity enables a firm’s inventors to take greater advantage of localized inter-
personal knowledge spillovers. 
 

 

Hypothesis 2 proposes that ABS makes the absorption and application of external knowledge 

easier. This argument might be incomplete, however – the advantage of experience could also vary 

with the difficulty of creative recombination. Building upon cognitive arguments, the original 

authors of absorptive capacity propose that, “…prior knowledge facilitates the learning of new 

related knowledge…prior possession of relevant knowledge and skill is what gives rise to 

creativity, permitting the sorts of associations and linkages that may have never been considered 

before.” (Cohen and Levinthal 1990, pg. 129 and 130, respectively).  

 

These arguments imply that an inventor with experience in the field of the source technology will 

be better able to absorb, apply, and link the knowledge in new and creative ways. If the 

recombination is easier, or “close”, incremental, and an exploitation within a field, the value of 

experience should be smaller. If the recombination is more difficult, or “distant” and explores a 

combination across fields, the value of pertinent experience - of absorptive capacity in the relevant 

field - should be greater.  

 

The argument can be re-stated from the perspective of and in the language of the regional 

economics literature, and in particular, by characterizing a spillover as a MAR, or within industry 

spillover (Glaeser et. al. 2012), and a Jacobs, or across industry spillover (Jacobs, 1969). A MAR 

spillover should be easier and less dependent upon the pertinent experience of the receiving node, 

because the cognitive demands of working within a field will be less. Empirically, invention within 

and application of externally available knowledge to the same technology field will depend less on 

ABS. A Jacobs spillover, however, will be more cognitively difficult and more dependent upon the 

pertinent experience of the receiving node. Empirically, invention outside the source field and 

recombination with a new field will depend more on ABS. Note that this hypothesis does not argue 
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that MAR spillovers are more and Jacobs spillovers less common, rather, that the importance of 

absorptive capacity will be greater for Jacobs spillovers. 

 
H3: The advantage of absorptive capacity will be greater for the creation of knowledge that links 
the prior knowledge to a new field. 
 
 

3. Identification strategy 

How might we estimate the causal impact of absorptive capacity? As argued above, there exist 

many conduits for ABS; here we focus upon an inventor’s experience in a field, and vary the 

availability of external knowledge. The problem can be reconceptualized as estimating the causal 

impact of an inventor's presence on the geographic flow of knowledge to another inventor. 

Consider first an idealized experiment where: 1) two people hold the exact same knowledge, 2) 

one person becomes randomly unavailable, and 3) the risk set and characteristics of every potential 

recipient of the knowledge (for both the unavailable and available person) can be observed. We 

propose that patent data can provide something close to this stylized experimental setup, when two 

co-inventors of the same patent live far away from one another, one of them dies after application 

but before the patent grant, and the location and characteristics of all future inventors who might 

use the knowledge can be observed.  

 

Figure 1 illustrates an idealized experiment with stylized patent data for explanation (the empirical 

reality is more complex, for example, multiple co-inventors and overlapping radii, and detailed at 

length in the appendices). Figures 2a to 2c show a corresponding example from real data. The 

approach makes three empirical assumptions. First, we assume that two co-inventors of the same 

patent hold the exact same piece of knowledge. Second, we assume that death makes a person 

unavailable to aid in the transmission of knowledge. Third, we assume that the different locations 

of the deceased and still living co-inventor allows us to separate future inventors into those who 

are close to the deceased inventor (and can be thought of as the treated group) from inventors who 

are close to the still living co-inventor (and can be thought of as the control group). Both groups of 

future inventors should be exposed to the exact same knowledge, i.e., the deceased patent, but the 

control group resides close enough to have easier in-person access to a living inventor of the patent. 
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The goal is to estimate the average propensity of all inventors living within circle A to cite patent 

p, relative to all inventors living within circle B. Note that under the null hypothesis that citations 

do not represent knowledge spillovers, we would not expect to find any significant difference in 

these propensities to cite. Furthermore, since we compare differentials within a patent, our approach 

should be immune to potential bias from unobserved reasons to cite patent p - other than being 

close to the still-living co-inventor. In other words, estimating effects within patents effectively 

rules out any observable or unobservable patent characteristic that influences the propensity to cite. 

Not needing to rely on matching two different inventions or similar but differently codified, 

prosecuted, or assigned versions of an invention is the key strength of this approach. 

 

 

Figure 1: idealized empirical situation for testing the impact of personal presence on 
knowledge diffusion. 
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Figure 2a: Excerpt of original US patent (7,200,681) front page with information on 
deceased and still living co-inventor resembling the stylized experiment above (Figure 1) 

 
 

Figure 2b: Mapping of deceased and living co-inventor of patent 7,200,681 

 
 

 

 

 

 

 

 

 

 

 

 



10 
 

Figure 2c: Zoom into deceased and living co-inventor locations of patent 7,200,681 

 
 

 

The approach makes two identifying assumptions. First, from the perspective of the inventors in 

circles A and B, it is equally likely to be exposed to the deceased inventor. This implies that where 

inventors die is quasi random and that death remains orthogonal to any location characteristic. In 

other words, inventors are not more or less likely to die where companies of the same industry co-

locate, local labor market conditions are not particularly good or bad, or universities are in close 

proximity. The second assumption is that inventor death has no direct effect on the co-inventors’ 

likelihood of being cited from within a certain radius, as might arise, for example, if inventor death 

had a negative impact on the future productivity of co-inventors (Javarel et al. 2018; Azoulay et al. 

2010).1 To minimize any such confounding influence in the first place we remove all follow-on 

work by co-inventors, as well as citations where any of the deceased patent’s inventors appear as 

a citing inventor on a future patent.  

 

                                                
1 We check the first assumption by considering deaths by younger inventors. "self-cite" means that at least one inventor 
of the cited patent is identical to an inventor of the death patent. To the extent that third parties are indirectly negatively 
affected by the still living co-author, we note that this would work against us finding a significant effect.    
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The identification strategy goes beyond Balsmeier et al. (2023) by explicitly shifting the focus from 

only the source of knowledge spillovers to both the source and the destination. At the cost of much 

more computation and data analysis, it takes all potential spillover destinations within a given 

radius into account, as opposed to focusing only on the actually realized spillovers. It enables more 

accurate estimation of the differences amongst citing inventors, e.g. whether they work at the same 

company. In this particular instance, the likelihood of internal knowledge diffusion, as opposed to 

external knowledge spillover, is probably sensitive to how many inventors live locally and how 

many inventors work for the same firm. For example, we would expect significant differences, for 

rural and possibly one company towns, where most potentially citing inventors work for the same 

firm, as opposed to the center of Silicon Valley, where tens of thousands of inventors work for 

different firms and still reside within close vicinities. 

 

Econometrics 

Now we translate our identification strategy into an equation and data structure that enables us to 

estimate how an inventor influences the local diffusion of knowledge about a given patent. 

Resembling the perspective of the potential recipients of a knowledge transfer, we aim to estimate 

the relative difference in the propensity to cite a given patent p by an inventor within a certain 

radius r to the deceased inventor as compared to the propensity to cite the same patent p by an 

inventor who resides within the same sized radius to the still-living co-inventor of the same patent 

p. As the dependent variable is a dichotomous variable taking value one in case of an observed 

citation of patent p and zero otherwise, we estimate assumedly independent Probit models (results 

remain robust to alternatively estimating LPMs, please see Appendix):        

 
Pr(𝐶𝑖𝑡𝑒()*+, = 1|𝑋) = 	Φ(𝛼5 + 	𝛽8𝐷𝑒𝑐𝑒𝑎𝑠𝑒𝑑)+ + 	𝜋+ + 𝜀()*+,)       (1) 

 

where 𝐶𝑖𝑡𝑒()*+, indicates a cite that comes from an inventor i within radius r of the location of 

inventor j for the same multi-author patent p within a time window of t since grant of p. 

𝐷𝑒𝑐𝑒𝑎𝑠𝑒𝑑)+	indicates the inventor who died after application but before the grant of patent p. Φ(⋅) 

is the cumulative standard normal distribution function, 𝜋+	is an indicator for patent fixed effects, 

and 𝜀𝑖𝑗𝑟𝑝𝑡 is the error term.  
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We present results for differing radii ranging from r=10 miles to r=100 miles. This implies 

independent and increasing concentric rings of the distance centered on the home towns of the 

inventors (deceased and still living) and home towns of citing inventors. Since we hold the cited 

(deceased) patent constant, any measurable difference in the propensity to cite should only come 

from differences in the local exposure to the deceased vs. still-living inventors -- and not from any 

characteristic of the deceased patent. In other words, we identify the effect from the difference in 

the citation propensity from the immediate vicinities of the deceased inventor, relative to the 

citation propensity from the immediate vicinities of the still living co-inventors. 

 

Data 

The data structure follows our econometric specification. The unit of observation is a potentially 

citing inventor from within a certain radius around the deceased or still living co-inventors. We 

consider each observed patent with a deceased inventor and at least one differently located co-

inventor(s) a quasi-natural experiment and combine them in one analysis sample to isolate and 

estimate the average local impact of an inventor. That implies that a potentially citing inventor may 

appear multiple times in the analysis sample if that specific inventor was at risk of citing different 

deceased patents at a given time. 

 

Building the analysis sample starts with the population of all US patent inventors that appear on at 

least one patent issued by the U.S. Patent and Trademark Office (USPTO), from 1976 through 

2005, during which time inventor deaths appear on the front page of the patent grant document. US 

inventors that died after application but before grant are often missing in many secondary patent 

data sources but appear as originally published on the USPTO html files (example in Figure 2a). 

We scraped all html data as described in Balsmeier et al. (2018) and kept only patents with at least 

two US inventors, with exactly one deceased inventor, and co-inventors who resided in a different 

city than the deceased. This leaves us with a total of 1,621 patents with exactly one deceased 

inventor that we consider quasi natural experiments. The total number of inventors on these 

deceased patents is 5,491. The distribution of inventors per patent (including the deceased) is 

skewed with most patents having two (41%), three (26%) or four inventors (14%), and the 

maximum of one patent with 18 inventors. Co-inventors tend to live relatively close to the deceased 

inventor at a median distance of 25 miles and an average of 284 miles, though some inventors 
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(13.2%) live more than 500 miles apart from the deceased. The number of patents applied for and 

granted per year ranges between 1 and 100, with higher numbers in the 1990s. 

 

The U.S. city and state for each inventor comes from the front page of the original patent document. 

As the original location data suffers from inconsistencies in location names and misspellings, we 

disambiguated all city-state combinations, and used the Google maps algorithm to identify 

remaining cases (for example, some inventors list a neighborhood or unincorporated township). 

Latitude and longitude data come from SimpleMaps. 2  

 

We then identified all potentially citing inventors from future US patents (within a 10 year citation 

window as a baseline) that reside within a certain radius around each inventor of a deceased patent, 

i.e. deceased and alive co-inventor. Citation data comes from the USPTO Patentsview database.3 

Locations of all potentially citing inventors were again disambiguated and longitude/latitude 

information added from SimpleMaps, enabling calculation of the geographic distance between each 

potentially citing inventor to each inventor of a deceased patent. Resembling an experimental setup 

as close as possible we exclude all potentially citing inventors that live in overlapping regions of 

the radii around the deceased and living co-inventors. Locations of all inventors on the potentially 

citing patents were again disambiguated and longitude/latitude information added from 

SimpleMaps. As the discussion of ABS mechanisms centers around across firm spillovers, we 

restrict our analysis sample further towards potentially citing inventors from different firms as the 

deceased patent. Data on each patent’s assignees comes from the Patentsview database.   

 

Since inventor deaths are spread out over many years and the entire country (see map in the 

Appendix), many US inventors were at some point at risk of citing a deceased patent. We observe 

a total of 1,669,992 million potentially citing inventors (within 100 mile radii). In fact, over their 

entire patenting career and considering a ten-year potential citation window, most of them were 

residing within 100 miles of multiple death events. Recall that our identification strategy relies on 

considering each deceased inventor as an independent quasi-natural experiment such that all 

inventors that were exposed to the treatment (death) will enter the risk set each time someone died 

                                                
2 https://simplemaps.com, accessed Nov. 26, 2020. 
3 https://patentsview.org/download/data-download-tables 



14 
 

within a given radii. This results in between 12,488,242 (10 mile radius) to 38,047,431 (100 mile 

radius) data points in the analysis sample. For detailed descriptive statistics see Table 1. To ease 

interpretation, consider 10 deceased inventors in Silicon Valley. Our approach implies that each 

time an inventor died in Silicon Valley, all Silicon Valley inventors that ever patented within ten 

years after death will enter the risk set each time an inventor deceased. The same applies to all still 

living co-inventors of the same patent of the deceased inventor, who will typically also reside in a 

technological hub. Further, most deceased inventors had more than one co-inventor, each of which 

generates a control group of its own. Hence, the number of observations around the still living 

inventors is significantly larger than around the deceased inventors. Noteworthy, our estimates will 

not be biased by the higher number of observations around the living inventors because we will 

estimate the average propensity to cite a given patent at the potentially citing inventor level. In this 

case we will only find a significant higher citation propensity around the living if the total amount 

of observed citations relative to the total amount of inventors at risk of citation is higher in the 

regions around the living as compared to the regions around the deceased inventor of the same 

patent. As a final remark on the descriptive statistics, each sample (10 to 100 miles radii) include 

a different number of cited patents because we can empirically identify effects only from inventors 

at risk of citation residing outside the overlapping regions of the radii we draw around the deceased 

and living co-authors. In some case, we find inventors at risk only inside overlapping regions, 

leading to the exclusion of those patents from the sample. For the same reason, we can neither 

include patents without any citation occurring from non-overlapping regions.  

 

Regarding the deceased patents only, the average number of cites that occur within 10 miles of a 

sampled inventor is 2.17, and increases to 5.55 within 150 miles. The number of cites is right 

skewed, with a median of zero or one, a maximum of 273 cites, and a high share of zeros ranging 

between 43% and 72% for the full analysis sample, over the entire available citation data. 31% of 

citations arise within 5 years, 59% within 10 years, and 80% within 15 years since patent grant. 

Since the last observed year of patent grant of the deceased patents is 2008 we observe at least a 

ten-year citation window for every patent which will thus also be our baseline citation window 

(while the last application date in the deceased sample is 2005, there is typically a delay or 

“pendency” for applications to be granted as patents by the USPTO, hence the last observed patent 

in the analysis sample was granted in 2008). We observe 15% of potentially citing inventors 
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residing within 10 miles, 19% within 20 miles, and 28% of citations within 150 miles of the 

inventors on the deceased patents. Deceased and still-living co-inventors do not appear to live in 

different areas, in particular, the U.S. geographic centroid is only 18 miles apart for the two groups 

(please see Appendix for a graphical illustration of the geographic dispersion of deceased and living 

co-inventors across the US). 

 

Table 1: Descriptive statistics of analysis sample 
 

Radii Obs. Obs. near 
deceased 

Obs. near 
living 

No. of 
cited 

patents 

No. of 
citing 

patents 

No. of 
citing 

inventors 

No. of 
cites 

No. of 
cites to 

deceased 

No. of 
cites to 
living 

10 12,488,242 4,134,101 8,354,141 253 1,128,803 902,075 2,320 360 1,960 
20 17,984,090 5,246,404 12,737,686 271 1,411,206 1,197,947 2,795 248 2,547 
30 22,658,814 7,440,182 15,218,632 257 1,502,296 1,306,227 2,323 250 2,073 
40 25,366,876 9,607,843 15,759,033 233 1,553,180 1,369,432 2,039 291 1,748 
50 26,701,337 10,618,879 16,082,458 208 1,606,011 1,426,226 1,904 270 1,634 
60 29,753,253 11,618,978 18,134,275 210 1,661,925 1,479,314 1,922 285 1,637 
70 31,638,921 12,418,315 19,220,606 214 1,722,612 1,537,432 1,934 287 1,647 
80 34,016,324 13,292,606 20,723,718 220 1,774,725 1,588,713 2,053 368 1,685 
90 36,143,949 14,222,011 21,921,938 214 1,821,190 1,628,172 2,296 568 1,728 
100 38,047,431 14,945,859 23,101,572 211 1,865,232 1,669,992 2,308 597 1,711 

Note: This table presents descriptive statistics on the analysis sample. Each observation refers to a potentially citing inventor 
from future US patents (within a 10 year citation window as a baseline) that reside within a certain radius around each 
inventor of a deceased patent, i.e. deceased and alive co-inventors. Observations near living are larger than observations near 
deceased inventor because most deceased inventors had more than one co-inventor. Citation and assignee data come from 
the USPTO Patentsview database. Geographic distances were calculated based on longitude/latitude information from 
SimpleMaps. Inventors at risk of citation are restricted to those with different assignees as compared to the deceased patent 
and not living in overlapping regions of circles drawn around the deceased and still living co-inventors of the same patent.  

 

 
4. Results 
 
Table 2 shows the results based on the analysis sample for each separate estimation of equation 

(1), where the dependent dichotomous variable indicates a cite from an inventor within the 

specified radii around a deceased patent’s inventor home city-center. Figures 3 illustrates the results 

graphically by plotting the estimated marginal citation propensities for at risk inventors residing 

around the deceased (grey dots) versus still living co-inventor of the deceased (green dots). 

Inventors who live within 10 miles of the deceased inventor are significantly more likely to cite a 

given patent relative to inventors living within 10 miles around the still living co-inventor. From 

there, the difference in the margins narrows with increasing distance, illustrating the localization 

of knowledge spillovers that can be attributed to physical collocation of inventors. Albeit being 
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small in absolute terms, which is to be expected given the low unconditional citation probability, 

the relative difference in the marginal citation propensities appears sizable.  

 

To calculate and interpret the marginal impact of deceased inventor, it is important to recall that 

the unconditional baseline probability of citing a specific patent is very small from a potentially 

citing inventor’s perspective. In the 10 miles analysis sample this likelihood is 0.0186%. Our model 

predicts that the likelihood of citing a given patent by an inventor close to the deceased inventor is 

on average 0.02 percentage points smaller than the unconditional probability, and 0.01 percentage 

points larger than the estimated probability for an inventor that lives close to a still living co-

inventor of the deceased. Putting this into perspective, we calculate that inventors who live within 

10 miles of the living inventor are about 8 times more likely to cite a given patent than inventors 

who live within 10 miles of the deceased inventor.  

 

Table 2 confirms the baseline Hypothesis 1; inter-personal knowledge spillovers across firm 

boundaries localize. Figure 3 illustrates the point estimates and confidence intervals from 10 to 100 

miles at 10-mile increments. The upper green estimates indicate how knowledge spillovers localize 

near the still-living inventor; the lower black estimates of the region around the deceased inventor 

are not significantly different from one another (indeed, one could draw a straight line between the 

confidence intervals of all ten point estimates). Note that the coefficients displayed in Table 2 can 

be interpreted as an estimation of the differences in the marginal effects  

 

 
Table 2: Localization of inter-personal knowledge spillovers across firms  

 
 10 20 30 40 50 60 70 80 90 100 
Dist. deceased -0.559*** -0.585*** -0.427*** -0.372*** -0.341*** -0.312*** -0.317*** -0.252*** -0.237*** -0.197*** 
  (0.102) (0.107) (0.060) (0.074) (0.071) (0.072) (0.068) (0.064) (0.061) (0.059) 
Pseudo R² 0.125 0.129 0.111 0.106 0.098 0.098 0.093 0.092 0.094 0.093 
N 12,488,242 17,984,090 22,658,814 25,366,876 26,701,337 29,753,253 31,638,921 34,016,324 36,143,949 38,047,431 

Patent FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 
Note: This table presents coefficient estimates (for marginal effects see Figure 3 below) of the Probit model specified in equation (1), where the 
dependent variable is a dummy variable indicating a cite that occur within a radius r of the location of inventor j for the same multi-author patent 
p within 10 years since grant of p. Unit of observation is a ‘cited patent inventor’-‘at risk of citing patent inventor’ pair. Dist. deceased = 1 indicates 
that the potentially citing inventor lives within radius r of the deceased inventor. Standard errors clustered at patent p reported in parentheses. 
Significant at the * 10% level; ** 5% level; *** 1% level. 
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Figure 3: Estimated citation propensities around deceased versus still living co-inventor as 
a function of geographic distance 

 

 
Note: This graph plots the marginal citation propensities around deceased versus still living co-inventors as coming from the 
Probit models presented in Table 2, where the dependent variable is a dummy variable indicating a cite that occurs within a 
radius r of the location of inventor j for the same multi-author patent p within 10 years since grant of p. Unit of observation is a 
‘cited patent inventor’-‘at risk of citing patent inventor’ pair. 

 
 

 
We now turn to the individual absorptive capacity as a function of inventor experience in the same 

technological area as the knowledge source. We measure experience based on the technological 

classification of each patent at the CPC subclass level. To determine whether an a potentially citing 

inventor has experience in the technology of the deceased patent we consider all CPC subclasses 

mentioned on any prior patents of inventors at risk of citation, i.e. we do not consider the cite 

generating patent itself as that tech classification might already be the result of the knowledge 

spillover and not the reason. For simplicity and ease of interpretation we differentiate between 

inventors with experience in the same CPC subclass from prior patenting and those that have no 

experience (see Appendix for robustness checks and models that control for prior patenting 

activity). We estimate differences across both groups by re-estimating our Probit model as 

introduced above with an additional dummy indicating citing inventor experience and the 

corresponding interaction of the experience dummy with the deceased dummy. Table 3 shows 
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tabular results and Figure 4 plots the corresponding marginal effects for inventors with experience 

(the upper red line) and without experience (the lower blue line) residing around the deceased (left 

panel) versus the still living inventor (right panel). 

 

Inventor experience has always a positive effect on absorbing knowledge (compare red versus blue 

estimates) but the positive effect is larger when destination node is in close geographic proximity 

to the knowledge source (compare red estimates on the left versus red estimates on the right). The 

experience effect appears to localize as well as the difference increases with lower distance. 

 

Table 3: Localization of inter-personal knowledge spillovers across firms with and without 
absorbing inventor experience 
 
 10 20 30 40 50 60 70 80 90 100 

Dist. deceased -0.621*** -0.672*** -0.410*** -0.341*** -0.311*** -0.297*** -0.300*** -0.274*** -0.225*** -0.189*** 
  (0.088) (0.108) (0.072) (0.088) (0.086) (0.084) (0.081) (0.077) (0.072) (0.071) 
Exp. in cpc (yes/no) 0.479*** 0.512*** 0.638*** 0.642*** 0.613*** 0.602*** 0.605*** 0.606*** 0.596*** 0.594*** 
  (0.066) (0.063) (0.060) (0.067) (0.068) (0.067) (0.066) (0.063) (0.061) (0.061) 
Interaction 0.157 0.229*** 0.024 -0.029 -0.053 -0.019 -0.028 0.045 -0.028 -0.012 
  (0.103) (0.086) (0.068) (0.073) (0.068) (0.067) (0.063) (0.067) (0.070) (0.069) 
Pseudo R² 0.157 0.165 0.162 0.156 0.144 0.143 0.138 0.140 0.138 0.137 
N 12.453.692 17.929.947 22.586.211 25.285.238 26.613.402 29.653.779 31.531.949 33.899.595 36.018.652 37.914.572 
Patent FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 
Note: This table presents coefficient estimates (for marginal effects see Figure 4 below) of the Probit model specified in equation (1), where the 
dependent variable is a dummy variable indicating a cite that occur within a radius r of the location of inventor j for the same multi-author patent 
p within 10 years since grant of p. Unit of observation is a ‘cited patent inventor’-‘at risk of citing patent inventor’ pair. Dist. deceased = 1 indicates 
that the potentially citing inventor lives within radius r of the deceased inventor. Exp. in cpc = 1 indicates that the potentially citing inventor has 
experience from prior patenting in the first mentioned CPC subclass of the cited patent p. Interaction represents the interaction term of dist. deceased 
and exp. in CPC. Standard errors clustered at patent p reported in parentheses. Significant at the * 10% level; ** 5% level; *** 1% level.  
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Figure 4: Estimated citation propensities around deceased versus still living co-inventor 
with and without absorbing inventor experience 

 
Note: This graph plots the marginal citation propensities around deceased versus still living co-inventors as coming from the Probit 
models presented in Table 3, where the dependent variable is a dummy variable indicating a cite that occurs within a radius r of the 
location of inventor j for the same multi-author patent p within 10 years since grant of p. Unit of observation is a ‘cited patent 
inventor’-‘at risk of citing patent inventor’ pair. Inventors with experience (red) and without experience (blue) residing around 
deceased (left) versus still living inventor (right). Potentially citing inventor has experience from prior patenting in the first mentioned 
CPC subclass of the cited patent p. 

 
 

Elaborating on the basic argument of ABS in Hypothesis 2, the third hypothesis argued that the 

value of physical presence and personal ABS is greater, when inventors create linkages from their 

old knowledge into other fields. From the regional economics literature, this more difficult 

recombination can be described as Jacobs (1969) spillover, as opposed to a within-field MAR 

spillover (Glaeser et. al. 1992). For expositional simplicity we will refer to the linkage of 

knowledge within fields as a MAR spillover and a linkage from the prior ABS knowledge to a new 

field as a Jacobs spillover. 

We analyze Jacobs and MAR spillovers by re-estimating our previous model with inventor 

experience separately for 1) citing inventors where the citing patent’s CPC subclasses is different 

than the deceased patent’s (‘Jacobs’) and 2) citing inventors where the citing patent’s CPC 

subclasses is the same as the deceased patent’s (‘MAR’). Note that we keep the same inventor 

experience definition as above, i.e. we differentiate whether the citing inventor has prior experience 
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in the deceased patent’s technology, irrespective of whether that technology is applied to a new 

area (‘Jacobs’) or the same (‘MAR’). Table 4 shows the estimated coefficients of our Probit models 

and Figure 5 plots the marginal citation propensities for each sample (Jacobs on the upper part, 

MAR on the lower part), for inventors with prior experience (red dots) or without (blue dots), and 

citing inventors residing around the deceased (right side) or living inventors (left side).  

The graph illustrates three take aways: 1) knowledge flows localize irrespective of whether 

knowledge is applied to new or known fields (compare narrowing margins on left part (living) and 

right part (deceased),  2) individual absorptive capacity as measured by prior experience is a 

differentiating factor only when it comes to applying knowledge to new fields (compare differences 

between red and blue estimates in the upper (Jacobs) and lower (MAR) parts),  3) ABS is most 

valuable if the source of knowledge is collocated in person (compare red estimates left and right in 

the upper part), confirming our prior result. 

Table 4: Jacobs and MAR spillovers across firms 
 
 10 20 30 40 50 60 70 80 90 100 

Panel A: Jacobs            
Dist. deceased -0.598*** -0.598*** -0.447*** -0.412*** -0.360*** -0.385*** -0.381*** -0.330*** -0.217** -0.126 
  (0.108) (0.092) (0.084) (0.101) (0.090) (0.093) (0.094) (0.112) (0.089) (0.085) 

Exp. in cpc (yes/no) 0.534*** 0.446*** 0.695*** 0.671*** 0.649*** 0.628*** 0.610*** 0.610*** 0.593*** 0.595*** 

  (0.068) (0.087) (0.078) (0.108) (0.110) (0.109) (0.112) (0.108) (0.110) (0.108) 

Interaction -0.228** 0.246** -0.018 -0.103 -0.066 -0.001 0.048 0.103 -0.116 -0.148 

  (0.101) (0.120) (0.138) (0.181) (0.181) (0.186) (0.190) (0.193) (0.136) (0.133) 

Pseudo R² 0.166 0.188 0.159 0.151 0.143 0.142 0.137 0.137 0.134 0.134 

N 5,564,551 7,286,262 8,344,126 8,567,680 9,130,419 9,807,156 10,349,107 10,872,674 11,793,732 12,765,042 

Panel B: MAR           

Dist. deceased -0.587*** -0.694*** -0.399*** -0.368*** -0.379*** -0.334*** -0.348*** -0.322*** -0.351*** -0.336*** 
  (0.151) (0.151) (0.099) (0.113) (0.111) (0.110) (0.103) (0.100) (0.097) (0.095) 
Exp. in cpc (yes/no) -0.103 -0.052 0.013 0.028 0.022 0.017 0.023 0.028 0.023 0.020 
  (0.065) (0.051) (0.059) (0.063) (0.065) (0.064) (0.063) (0.062) (0.061) (0.060) 
Interaction 0.196 0.144 0.016 0.018 0.022 0.033 0.019 0.073 0.124 0.138* 
  (0.135) (0.103) (0.083) (0.090) (0.089) (0.084) (0.082) (0.078) (0.076) (0.073) 
Pseudo R² 0.167 0.164 0.171 0.175 0.156 0.155 0.145 0.142 0.133 0.131 
N 1,400,470 2,083,250 2,746,686 3,120,775 3,228,361 3,598,717 3,776,784 3,978,929 4,197,971 4,268,055 
Patent FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 
Note: This table presents coefficient estimates (for marginal effects see Figure 5 below) of the Probit model specified in equation (1), where the 
dependent variable is a dummy variable indicating a cite that occur within a radius r of the location of inventor j for the same multi-author patent 
p within 10 years since grant of p. Unit of observation is a ‘cited patent inventor’-‘at risk of citing patent inventor’ pair. Dist. deceased = 1 indicates 
that the potentially citing inventor lives within radius r of the deceased inventor. Exp. in cpc = 1 indicates that the potentially citing inventor has 
experience from prior patenting in the first mentioned CPC subclass of the cited patent p. Interaction represents the interaction term of dist. deceased 
and exp. in CPC. The ‘Jacobs’ panel is restricted to citing inventor patents with the same CPC as the cited (deceased) patent. The ‘MAR’ panel is 
restricted to citing inventor patents with a different CPC as the cited (deceased) patent. Standard errors clustered at patent p reported in parentheses. 
Significant at the * 10% level; ** 5% level; *** 1% level.  
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Figure 5: Estimated citation propensities around deceased versus still living co-inventor 
with and without absorbing inventor experience and differentiating between Jacobs and 

MAR spillovers 
 

      
 

 
 

 
 

Note: This graph plots the marginal citation propensities around deceased versus still living co-inventors as coming from the Probit 
models presented in Table 3, where the dependent variable is a dummy variable indicating a cite that occurs within a radius r of the 
location of inventor j for the same multi-author patent p within 10 years since grant of p. Unit of observation is a ‘cited patent 
inventor’-‘at risk of citing patent inventor’ pair. Inventors with experience (red) and without experience (blue) residing around 
deceased (left) versus still living inventor (right). Potentially citing inventor has experience from prior patenting in the first mentioned 
CPC subclass of the cited patent p. The ‘Jacobs’ panel is restricted to citing inventor patents with the same CPC as the cited (deceased) 
patent. The ‘MAR’ panel is restricted to citing inventor patents with a different CPC as the cited (deceased) patent. 
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6. Discussion 

The work has a number of shortcomings. First, not all spillovers are technical and can be measured 

with patents. For example, business and science knowledge probably spills locally as well. Second, 

patents do not even cover all technical knowledge, for example, algorithms and trade secrets cannot 

be observed. Finally, the method is empirically very demanding, and our (still significant) results 

depend on relatively few observations. 

 

These shortcomings notwithstanding, the method opens a causal window into the impact of 

personal presence on knowledge flow between a particular source and particular destination. This 

work focused on the impact of organizational boundaries between the source and destination, and 

whether the destination inventor had prior experience in the field of the source inventor’s 

inventions. Other characteristics can also be studied, for example, what is the impact of personal 

presence upon intra-firm knowledge spillovers? What if the source and destination both lie within 

the same organization – do knowledge flows within firms also localize, and fall off locally when 

an inventor dies? Figure 6 illustrates how the method enables exploration of this possibility. 

 

Figure 6 illustrates, perhaps surprisingly, no localization of knowledge spillovers within firm 

boundaries, based on physical presence. The figure is essentially flat (no impact of geographic 

distance) and the difference in citations within the firm are not significantly different, for the region 

around the deceased, vs. the region around the still-living inventors. Following the death of an 

inventor, it appears that firms are quite capable of relying on other sources of information about 

the invention. Assumedly, technologies, notebooks, co-workers, and internal documentation 

provide enough contextual depth and detail to overcome the loss of one particular inventor. 
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Figure 6: Within firm knowledge spillovers do not localize. 

 
 

While it was the strategy literature that motivated the current work, the results provide some of the 

first causal evidence for the juxtaposition of physical presence and diverse expertise, in the 

realization of Jacobs’ spillovers (Jacobs 1969; Atkin et. al. 2022), namely, the knowledge flows 

across field and industry boundaries that create new industries and greater diversity. The current 

results imply that is not so much the (random) juxtaposition of diversity that results in new 

associations and linkages across fields, rather it is the physical colocation of people who have 

similar expertise and personal ABS. Ironically, it may be that similar backgrounds – be they 

technical, social, or geographical - facilitate risk taking and recombination into new fields. Future 

work should look for the sources of the inspiration that triggered the particular linkage to a new 

field – for example, perhaps the inventors became aware of and motivated to explore a new market 

or technological opportunity, or gained exposure to a new field through the inventors’ social 

networks. 

 

Recent research on the effectiveness of working from home confirms that physical collocation of 

employees is beneficial to their individual productivity, despite the widespread availability of more 
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advanced technology to collaborate and share information online (Carmody et. al. 2022). While 

this research has not yet isolated the impact of inter-personal knowledge spillovers, it points out 

that new collaboration technologies remain an imperfect substitute for collaboration in person. It 

is consistent with the finding of no significant differences in the localization of inter-personal 

spillover effects over our sampling period (please see the Appendix) despite covering an area of 

substantial technological advances in online communication, most prominently email and the early 

internet.  

 

The results have implications for other strategic frameworks besides ABS. For example, if personal 

knowledge spillovers exist across firm boundaries, and if such spillovers localize, then decisions 

on where to locate become decisions which can build – or lose - dynamic capabilities, defined as 

the ability to recognize and move into a strategically important area (Teece et. al. 1997). Firms 

should explicitly search out geographical locations that support their knowledge capability and 

innovation strategies. For example, if a firm needs to catch up in a field, they should locate next to 

the leader (or universities, see Balsmeier et. al. 2023), or if they are the leader, they should seek to 

locate where followers cannot set up shop next door (Alcacer and Chung, 2007). On the other hand, 

if a firm has prior experience in a technology, and no interest in applying that technology to new 

fields, then there is less need to locate near others (though that certainly appears be a short-sighted 

decision). 

 
 
7. Conclusion 

While the theory of absorptive capacity has been hugely influential in strategy research (Cohen and 

Levinthal 1990), empirical efforts to corroborate the theory with causal evidence have not followed 

easily (Knott 2008). By focusing on one possible type of absorptive capacity, namely the 

experience of a firm’s inventors, and taking advantage of an exogenous change in the availability 

of outside knowledge, namely the death of a local inventor, this work offers causal evidence for 

absorptive capacity. The method can apply to other tests of absorptive capacity and to other 

investigations on the personal presence of localized spillovers. Confirming conjectures from the 

original theory (Cohen and Levinthal, 1990), as well as Jacobs’ (1969) argument for the importance 

of physical presence for the creation of new industries, this work established that personal 

absorptive capacity matters most when inventors apply old knowledge to new fields. Perhaps 
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surprisingly, this work also illustrated that firms do not rely upon physical presence for internal 

knowledge transfer and that their within-firm knowledge transfers do not localize. 

 

While prior studies in the strategy literature were mostly agnostic about the geographic distance 

between the source and the recipient of a knowledge flow (Cohen and Levinthal, 1990; Teece et. 

al. 1997), and classic studies in the regional economics and knowledge flow literature (e.g. Glaeser 

et. al. 1992, Jaffe et. al. 1993) were mostly agnostic about organizational boundaries, this study 

brings both worlds together, confirming a strong localization of inter-personal knowledge flows 

across firms, and highlighting the important role of geographic distance and physical collocation 

of inventors for firm strategy. Ideally this knowledge flow across the field boundaries of strategy 

and regional economics will prove fruitful on both sides. 
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