Time series estimation and forecasting of Covid in Norway

Gunnar Bårdsen Ragnar Nymoen

22 March 2022 Preliminary.

Time series estimation and forecasting of Covid in Norway

Introduction

- Covid time series are typical examples of changing data-generating processes,
 - because of mutations and policy responses
 - over time and across economies
- Likely that constant-parameter models will fail.
- An approach with exogenous shocks/breaks and effects of corresponding policy responses might be a useful complementary addition to the toolbox.

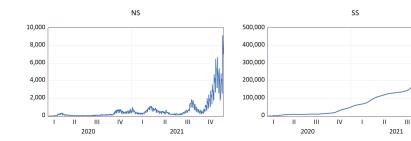
The model

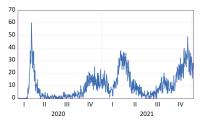
- Builds on Nymoen (2022).
- The model contains four endogenous variables:
 - NS_t , number of new infected with Covid-19, day t.
 - ▶ SS_t , accumulated number of new infected with Covid-19, day t.
 - NINL_t, number of new hospitalisations wih Covid-19, day t.¹
 - INL_t, number of hospitalisations with Covid-19, day t.²
- The model belongs within the class of autoregressive systems. It has a recursive solution: First NS_t and SS_t are decided. Conditional upon these outcomes, $NINL_t$ is determined and finally INL_t is solved for.

//www.fhi.no/sv/smittsomme-sykdommer/corona/dags--og-ukerapporter ²https://www.helsedirektoratet.no/statistikk/ antall-innlagte-med-pavist-covid-19-for-nedlasting

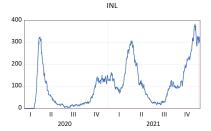
¹https:

The data





NINL



IV

Use two standard models of breaks

Dummy model and smooth transition model

• Model:

$$y_t = \beta_0 + \beta_1 x_t + \beta_2 x_t D_t + \beta_3 x_t G_t + u_t$$

- Exogenous event makes binary variable D_t change effect of x_t on y_t .
- Smooth transition model³ part G (s_{t-k}; γ, r) that changes smoothly from 0 to 1 with increasing policy target variable s_{t-k}.
- Hospitalisations *INL* used as policy target variable.
- The transition function $G(INL_{t-k}; \gamma, r)$ is the logistic specification

$$G(INL_{t-k};\gamma,r) = \frac{1}{1 + \exp\left[-\gamma\left(INL_{t-k}-r\right)\right]}.$$

- the threshold r is estimated.
- The parameter γ decides the steepness of the transition function.

Use two standard models of breaks (cont.)

Dummy model and smooth transition model

• If $INL_{t-k} = r$, then

$$G(INL_{t-k};\gamma,r)=0.5.$$

• with
$$(\mathit{INL}_{t-k} - r)
ightarrow -\infty$$

$$G(INL_{t-k};\gamma,r) \rightarrow 0$$

• with
$$(\mathit{INL}_{t-k} - r)
ightarrow \infty$$

$$G(INL_{t-k}; \gamma, r) \rightarrow 1.$$

³See f. ex. van Dijk, Teräsvirta, and Franses (2002).

Time series estimation and forecasting of Covid in Norway

Breaks and regime shifts with policy response

- Model abrupt exogenous events with D.
- Model *effects* of policy response with G.
- Covid:
 - Abrupt exogenous events, like mutations (D).
 - *Effects of* policy response as target variable increases (*G*).
 - Development of pandemic modeled and forecasted as
 - Breaks in dynamic time series model.
 - 2 Use INL_{t-5} as target variable.
 - Selfects of policy response when hospitalisations approach threshold level *r*.

The NS equation

The equation for NS_t is estimated as:

$$\begin{split} NS_t &= \underset{(0.003)}{0.003} (SS_{t-1} - SS_{t-14}) \\ &+ \underset{(0.0009)}{0.0009} (SS_{t-1} - SS_{t-14}) D_t \\ &- \underset{(0.003)}{0.007} (SS_{t-1} - SS_{t-14}) G_t \\ &+ \text{lagged} (\Delta NS_{t-j}) + \text{ residual} \\ T &= 15.2.2020 - 5.1.2022, \ 691 \text{ obs.} \end{split}$$

where

$$D_t = f(Tyrol, Alpha, Delta, Omicron)$$

 $G_t = rac{1}{1 + \exp\left[-0.038 \left(INL_{t-5} - rac{294}{(22.58)}
ight)
ight]}.$

(1)

The NS equation (cont.)

By definition the equation for SS_t is:

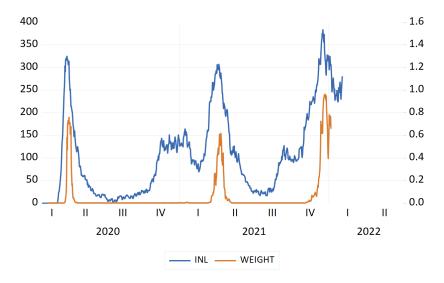
$$SS_t = NS_t + SS_{t-1}$$
 ,

The scale of incidence will be a function of the infection level in the population, which is unobservable. In equation (1) the change in the accumulated level of cases over a two-week period, $(SS_{t-1} - SS_{t-14})$ is used as a an indicator of the the infection level. Note that

$$(SS_{t-1} - SS_{t-14}) = \sum_{j=1}^{14} NS_{t-j}, \qquad (2)$$

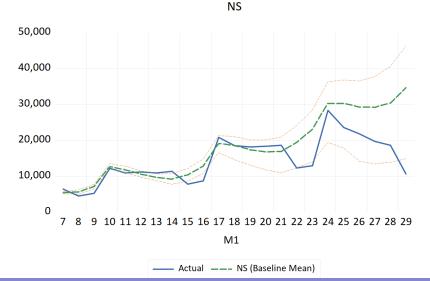
so (1) is an autoregressive model.

Hospitalisations INL_t and smooth transition function



The forecasts and realizations of NS

Forecast intervals including parameter uncertainty



Time series estimation and forecasting of Covid in Norway

The NINL and INL equations

$$\begin{split} \textit{NINL}_t &= -0.0006 \left(\textit{SS}_{t-3} - \textit{SS}_{t-9} \right) \textit{Omicron}_{t-6} \\ &+ 0.012 \textit{NS}_t \\ &- 0.007 \textit{NS}_t \times \textit{NINLDN}_t \\ &- 0.002 \textit{NS}_t \times \textit{NINLDNnov21}_t \\ &+ \textit{lagged}(\textit{NINL}_{t-j}) + \textit{residual} \\ \textit{INL}_t &= 0.901 \textit{INL}_{t-1} + \textit{INL}_t \\ &T = 14.7.2020 - 5.1.2022, 541 \textit{ obs.} \end{split}$$

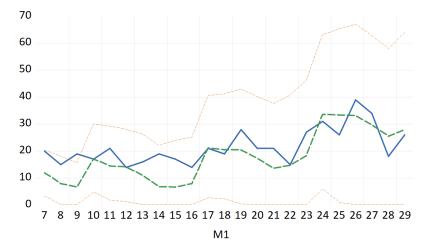
(3)

(4)

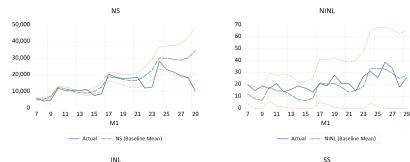
The forecasts and realizations of NINL

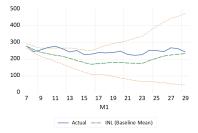
Forecast intervals including parameter uncertainty

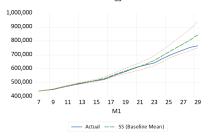
NINL



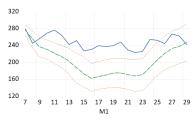
The forecasts and realizations with parameter uncertainty

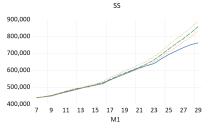






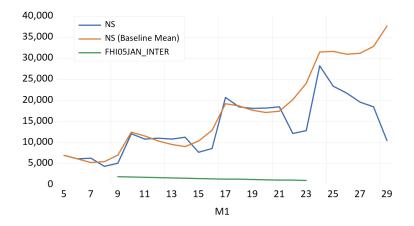
The forecasts and realizations without parameter uncertainty





Time series estimation and forecasting of Covid in Norway

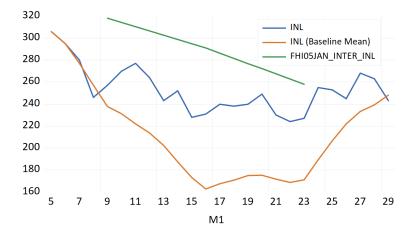
Comparisons with NIPH (FHI) $Incidents^4$



⁴ "Situational awareness and forecasting for Norway".FHI COVID-19 modelling team Week 1, 5 January 2022. Table 2. Linear interpolation between 7, 14 and 21 days ahead forecasts from forecast origin date.

Time series estimation and forecasting of Covid in Norway

Comparisons with NIPH (FHI) Hospitalisations⁵



⁵ "Situational awareness and forecasting for Norway".FHI COVID-19 modelling team Week 1, 5 January 2022. Table 2 and Figure 5. Linear interpolation between 7, 14 and 21 days ahead forecasts from forecast origin date.

Time series estimation and forecasting of Covid in Norway

Conclusions

- Covid time series are typical examples of changing data-generating processes,
 - both because of mutations and policy responses
 - both over time and across economies
- Likely that constant-parameter models will fail.
- Time series models with exogenous shifts/breaks and corresponding effects of policy response might be a useful complementary addition to the toolbox.

References

Nymoen, R. (2022).

Dynamisk modellering og framskrivning av nye smittede og innlagte med Covid-19 i Norge.

Samfunnsøkonomen (1), 5–13.

van Dijk, D., T. Teräsvirta, and P. H. Franses (2002).
 Smooth transition autoregressive models — a survey of recent developments.

Econometric Reviews 21(1), 1–47.