

Empirical econometric modelling of Covid-19 effects in Norway

Ragnar Nymoen

22 March, 2022

Contents

- **1** Modelling background: Trends, interventions and structural breaks in models of the macro economy
- 2 Covid-19 indicators in NAM
- **3** Comparison with empirical final form equations

4 Final remarks and suggestion for research

Modelling background: Trends, interventions and structural breaks in models of the macro economy

Consider a model with 1st order dynamics and two time series Y_t and X_t :

$$Y_t = Y_{t-1} + c_{10} + c_{1d} D_{1t} + \alpha_{11} (Y_{t-1} + \beta_{12} X_{t-1}) + \varepsilon_{1t}$$
(1)

$$X_{t} = X_{t-1} + c_{20} + c_{2d}D_{2t} + \alpha_{21}(Y_{t-1} + \beta_{12}X_{t-1}) + \varepsilon_{2t}$$
(2)

- Can be the reduced form of a SEM
- \square β_{12} is the cointegration parameter.
- Equilibrium correction coefficients: $\alpha_{11} < 0$ and $\alpha_{21} \ge 0$.
- **D_{1t}** and D_{2t} are dummies: Impulse indicators or step-dummies.
- The properties of the solutions for Y_t and X_t can be studied through the final form equations.

For the case of $\alpha_{11} < 0, \alpha_{21} > 0$, the system with final form equations becomes:

$$\begin{aligned} \Delta Y_t &= \gamma_{10} - \gamma_2 \Delta Y_{t-1} + c_{1d} D_{1t} - (\alpha_{21} \beta_{12} + 1) c_{1d} D_{1t-1} & (3) \\ &+ \alpha_{11} \beta_{12} c_{2d} D_{2t-1} + \epsilon_{1t}, \\ Y_t &= \Delta Y_t + Y_{t-1}, & (4) \\ \Delta X_t &= \gamma_{20} - \gamma_2 \Delta X_{t-1} + c_{2d} D_{2t} - (1 + \alpha_{11}) c_{2d} D_{2t-1} & (5) \\ &+ \alpha_{21} c_{1d} D_{1t-1} + \epsilon_{2t}, \\ X_t &= \Delta X_t + X_{t-1}, & (6) \end{aligned}$$

- Hence, shocks captured by D_1 and D_2 will have permanent effects on the solutions for Y_t and X_t .
- Illustration next page for:

$$D_{1t} = D_{2t} = \begin{cases} 1 & \text{, if } t = 11 \\ 0 & \text{ for all other } t \end{cases}$$
(7)

Figure: Simulation of a cointegrated two-variable system subject to impulse indicators in period 11. The cointegration parameter $\beta_{12} = -1$, and $\alpha_{11} = -0.12$, $\alpha_{21} = 0.1$ are assumed to be invariant to the shock.

Ragnar Nymoen

- Figure 1 illustrates that in general for cointegrated systems, temporary shocks have permanent effects on the solution paths of the endogenous variables.
- The effects of a negative shock do not in general "go away" unless there are counteracting shocks, simultaneously or later in the solution period.
- If structural breaks in β_{12}, α_{11} or α_{21} after t = 11, shifts in γ_{10} , γ_{20} , and γ_2 will affect the solutions for ΔY_t and ΔX_t .
- Another special case may be that cointegration is lost: Y_t and X_t then change from I(1) to I(2).

As a first exercise: Investigate effects of Covid-19 indicator variables in empirical models of the Norwegian economy.

Covid-19 indicators in NAM

- Norwegian Aggregate Model (NAM) is an quarterly empirical econometric model.
- Indicator variables for the eight quarters from 2020q1 to 2021q4 were included in all the empirical equations. Retained if the t-values were significant at the 5 % level.

Quarter	Impulse Indicator	Model version		
		Standard	Extended	
		133 eqs	145 eqs	
2020q1	I _{Covid,t}	12	23	
2020q2	$I_{\text{Covid},t-1}$	26	38	
2020q3	I _{Covid,t-2}	16	27	
2020q4	I _{Covid,t-3}	12	23	
2021q1	$I_{\text{Covid},t-4}$	10	20	
2021q2	I _{Covid,t-5}	14	23	
2021q3	I _{Covid,t-6}	12	22	
2021q4	I _{Covid,t-7}	3	5	

Table: Number of equations where Covid-19 impulse indicators are included

Examples of NAM model equations with or without Covid-19 impulse indicators

With	Without
Value added, service production	Value added, Manufacturing
	Value added, Other products
Private consumption	Capital formation private business
Imports	
Export of services	Exports of products (non-oil)
Foreign export markets	
	Wage formation
Foreign producer prices	Value added deflators
Foreign short interest rate	
Policy interest rate	

GDP for Mainland-Norway. Simulated joint effects of the Covid-19 impulse indicators in NAM

Figure: Percentage deviation between baseline and "No-Covid".

Table: Cumulated effects of Covid-19 impulse indicators, in percent of annual level in 2019

	2020q4	2021q4	2022q4	2023q4
GDP Mainland-Norway	-4.7	-8.9	-11.6	-13.1
Value added, Manufacturing	-4.0	-6.5	-7.5	-7.6
Value added, Other products	-2.9	-7.8	-10.9	-12.4
Value added, Service	-6.7	-13.0	-17.2	-19.6
Value added, Government	-0.9	-0.7	-0.3	0.0

Comparison with empirical final form equations

By using automatic variable selection (Autometrics in PcGive) we can estimate a final form equation for GDP Mainland-Norway.

- Start from a general unrestricted model (GUM) with twelve autoregressive terms. An AR model with long lags can approximate an ARMA model (with fewer parameters).
- Use impulse indicator saturation (IIS) in Autometrics to simplify lag-structure, and to retain significant impulse indicators.
- The final model equation can be simulated, and the deviation between baseline and 'No-covid scenario' can be compared with the simulation results for NAM.
- Tried target rate 1% and the more liberal 3.5%.
- The 3.5% rate keeps more of the "known history" of shocks (eg. banking crisis).
- A single Covid-dummy is retained with 1% rate. Two with 3.5%.

Figure: GDP for Mainland-Norway. Simulated effects of the Covid-19 impulse indicators in NAM, and in two empirical final form models. Percentage deviation between baseline and the No-Covid scenario.

Ragnar Nymoen

Suggestions for research

- In this talk, simulated effects have assumed invariance in other parameters than in the intercepts of model equations.
- Have not addressed the question about changes in "normal economic behaviour" as a consequence result of the pandemic.
- Note as interesting that simulated GDP effects in NAM are reproduced in the empirical final form models.
- They are automatized, rest on only a few decisions, and are fully transferable between researchers
- But the economic interpretability is richer in NAM, and in other multiple equation models
- Suggests that "transferable" multiple equation models can represent a common ground for:
 - Objective empirical decisions on impulse indicators
 - Testing of the degree of invariance in cointegration parameters and adjustment coefficients.
 - Partial integration of health policy indicators in macro models.