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Discontinuous control systems
by

Atle Seierstad and Sigve D. Stabrun
University of Oslo

Abstract. By means of some simple examples from economics, we elucidate
certain solution tools for the solution of optimal control problems were the system
under study undergoes major changes when certain boundaries are crossed. The
"major changes" may be that the state gets a jump discontinuity when cross-
ing a boundary, or that the right hand side of the differential equation changes.
Some theoretical result are presented. Among the results presented, at least the
sufficient condition related to fields of extremals should be new.
.

Introduction In economic control problems, sometimes the underlying system
undergoes a major change when the state crosses a boundary. For example, a
firm may go bust, when its equity becomes negative. Mathematically speaking,
such changes introduce discontinuities in the differential equation that invalidate
the assumptions ordinarily required for the standard maximum principle to apply.
In other situations, when the state reaches a surface it gets a kick, (a jump dis-
continuity), a case also necessitating changes in the maximum principle. Below,
some simple economic examples are presented in which such features appear. The
main purpose of this paper it to show how the solution tools available work in
simple situations. These solution tools consist of the standard equations of the
maximum principle plus an additional condition involving a jump in the costate
variable when boundaries are crossed. There is no reference below for this jump
condition, but it must have been stated and used before, directly or indirectly,
and more than once, at least in more applied work. (It does appear in Nævdal
(2001), see also Nævdal (2003).) The following results pertain to both types of
discontinuities described above.
There are in general, of course, a number of results pertaining to jumps in the

state variables, including so-called impulse control problems, see e.g. chapter 3
in Seierstad and Sydsæter (1987) and Arutyunov, A. (2005) and papers referred
to there. Early economic examples include the works by Arrow and Kurz, and
K.Vind, as well as the control theory book by Kamien and Schwartz, all referenced
in Seierstad and Sydsæter (1987).
Let us, however, first state a standard "continuous" control problem, together

with the maximum principle.



1. Standard Control Problem

Consider the problem

max
u(.)
{
Z t1

t0

f0(t, x(t), u(t))dt+ h(x(t1))}, u(t) ∈ U ⊂ Rr (1.1)

subject to the vector differential equation

ẋ(t) = f(t, x(t), u(t)), x(t0) = x0, x0 ∈ Rn, x0 fixed, (1.2)

and the terminal conditions

xi(t1) = x1i , i = 1, ..., l, (1.3)

xi(t1) ≥ x1i , i = l + 1, ...,m, (1.4)

xi(t1) free, i = m+ 1, ..., n, (1.5)

(f = (f1, ..., fn), x = (x1, ..., xn), u = (u1, ..., ur). Here, h,f0, fi are given real—
valued functions on R1+n+r, U is a given subset, t0, t1, x0 and x1i are given enti-
ties, and u(t), the control function, is subject to choice. The control functions
are throughout (except for certain existence results), assumed to be piecewise
continuous. Let v.e. t (virtually every t) mean for all t except a finite (or
countable number) of points, sometimes v.e. is read as virtually everywhere,
having the same meaning. (In fact, (1.2) is required to hold v.e.) Assume that
h, hx,f0(t, x, u), f0x(t, x, u), f(t, x, u) and fx(t, x, u) are continuous functions. For
this problem the following necessary conditions hold. Let p = (p1, ..., pn), and
define H = p0f0 + pf = p0f0 +

P
pifi.
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Theorem 1 (Necessary conditions) Let (x∗(t), u∗(t)) be an optimal pair.
Then there exist a number p0 and a vector function p(t) = (p1(t), ..., pn(t)), where
p(t) is continuous and piecewise continuously differentiable, such that

(p0, p1(t), ..., pn(t)) 6= (0, 0, ..., 0) for all t ∈ [t0, t1], (1.6)

H(t, x∗(t), u∗(t), p(t)) ≥ H(t, x∗(t), u, p(t)) for all u ∈ U for v.e. t, (1.7)

ṗi(t) = −∂H(t, x∗(t), u∗(t), p(t))/∂xi, i = 1, ..., n, for v.e. t, (1.8)

p0 = 0 or p0 = 1, (1.9)

pi(t1) no conditions for i = 1, ..., l, (1.10)

pi(t1) ≥ p0hxi(x
∗(t1)), pi(t1) = p0hxi(x

∗(t1)) if x∗i (t1) > x1i , i = l + 1, ...,m,
(1.11)

pi(t1) = p0hxi(x
∗(t1)), i = m+ 1, ..., n. (1.12)

¤

2. Problems with discontinuities

Let φ1, ..., φk be given real-valuedC
1−functions on (t, x)−space. Let Γj := {(t, x) :

φj(t, x) = 0} and Γ = ∪jΓj. Assume that for each (t, x) ∈ Γ, at most one func-
tion φi equals zero at (t, x). Assume that the state jumps at points t such that
(t, x(t−)) ∈ Γj for some j, the jumps being governed by

xi(t+)− xi(t−) = gji ∈ R, gji fixed, (2.1)

(± indicates right and left limits).Write gj = (gj1, ..., g
j
n). If (t0, x

0) ∈ Γ, no
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jump occurs at t0. Moreover, by assumption, if for any solution x(.) with cor-
responding control u(.), (t, x(t−)) ∈ Γj for some j, so a jump occurs at t, then
x(t+) = x(t−) + gj does not belong to Γ.

By assumption, (s, x(s−)) ∈ Γ for only a finite number of points s.More generally
and more precisely, still by assumption, for any given control u(.), the following
construction of a solution works. Let x(.) be a continuous solution of (1.2) on
[t0, t1], with x(t0) = x0. Then x(s) /∈ Γ for s close to t0. Let t = τ 1 be the first
point for which (t, x(t)) ∈ Γ, i.e. (τ 1, x(τ 1)) ∈ Γj for some j = j1. Change the
definition of x(.) on [τ 1, t1] by letting x(.) be a continuous solution on [τ 1, t1] for
which x(τ 1) = x(τ 1−)+gj1 . Then x(s) /∈ Γ for s > τ 1, s close to τ 1. Let t = τ 2 be
the first point > τ 1 for which (t, x(t)) ∈ Γ, i.e. (τ 2, x(τ 2)) ∈ Γj for some j = j2.
Then, change the definition of x(.) on [τ 2, t1] by letting x(.) be a continuous solu-
tions on [τ 2, t1] for which x(τ 2) = x(τ 2−) + gj2 . This construction continuous in
the same manner, and only a finite number of τk ’s will be found, say τ 1, ..., τ k∗.
Then the continuous solution x(t), t ≥ τk∗, is used until t1 is reached. At the end,
redefine x(.) to be left continuous. (So, from now on all solutions x(.) are left
continuous.) If x(t1) satisfies the end conditions (1.3)-(1.5), the pair (x(.), u(.)) is
called admissible.

One can replace the assumption that the above construction works for any u(.)
(i.e., the assumptions in the last paragraph), by the convention that we only con-
sider pairs (x(.), u(.)), for which the above construction works. Such pairs are
called strongly admissible if also (1.3)-(1.5) hold. So in this case we only seek an
optimal pair (x∗(.), u∗(.)) in the set of strongly admissible pairs.

Theorem 2 (Necessary condition) Assume that the optimal solution x∗(t)
crosses or touches each surface Γj := {(t, x) : φj(t, x) = 0} in a nontangent man-
ner (made precise in condition (NT) below), and that the optimal pair (x∗(.), u∗(.))
is strongly admissible. Then, provided (t1, x∗(t1−)) /∈ Γ (t1 the fixed horizon), the
standard maximum principle holds even in the present case, except that p(.) has
a jump at any "fault point" τ ∈ (t0, t1), i.e. at any τ for which (τ , x∗(τ−)) ∈ Γ.
The jumps of p(.) are governed by

p(τ−)− p(τ+) = p0[f0(τ , x
∗(τ−), u∗(τ−))− f0(τ , x

∗(τ+), u∗(τ+))]μ (2.2)

+[p(τ+)f(τ , x∗(τ−), u∗(τ−))− p(τ+)f(τ , x∗(τ+), u∗(τ+))]μ.
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Here, the n-vector μ = (μ1, ..., μn) is determined by the relation

[φjt(τ , x
∗(τ−)) + φjx(τ, x

∗(τ−))f(τ, x∗(τ−), u∗(τ−))]μi + φjxi(τ , x
∗(τ−)) = 0,

(2.3)

where
φjx(τ , x

∗(τ−))f(τ , x∗(τ−), u∗(τ−)) =
P

i(∂φj(τ , x
∗(τ−))/∂xi)fi(τ , x∗(τ−), u∗(τ−)).

The nontangent condition on x∗(t), (NT), is that for any t ∈ (t0, t1),

φj(t, x
∗(t−)) = 0⇒

∂φj(t, x
∗(t−))/∂t +

X
i

(∂φj(t, x
∗(t−))/∂xi)fi(t, x∗(t−), u∗(t−)) 6= 0. (2.4)

¤

Since all solutions, including x∗(.), are assumed to be left continuous, x∗(τ−) =
x∗(τ), x∗(t−) = x∗(t) (i.e., above, minus signs inside x∗(.) can be dropped).

Two sketchy proofs of this condition is given in the Appendix.

Remark 1 (Changing dynamics) The above problem is called the jump prob-
lem, or the jump case. The present setup can also be used to treat the following
type of problem, called the discontinuous (f0, f)-problem, or simply the discon-
tinuous case. In this case, the right-hand side of the differential equation and/or
the integrand in the criterion change abruptly each time the solution crosses one
of the surfaces forming Γ, in other word, different differential equations/and or
different integrands exist in different parts of the (t, x)-space. On the other hand
only continuous solutions x(.) are considered.
Formally, then, for each set of the form Φ = ∩iΦi,Φi = {(t, x) : φi(t, x) < 0}

or Φi = {(t, x) : φi(t, x) > 0}, (the direction of the inequality sign may depend on
i), functions f0Φ(t, x, u) and fΦ(t, x, u) exist, defined on all R1+n+r and being C1

here, such that f0(t, x, u) = f0Φ(t, x, u) and f(t, x, u) = fΦ(t, x, u) for (t, x) in Φ.
Define a strongly admissible pair (x(.), u(.)) to be a pair such that x(t) belongs
to some set Φ except for a finite number of points, such that f0(t, x(t), u(t)) =
f0Φ(t, x, u(t)) and ẋ(t) = fΦ(t, x(t), u(t)) v.e. if x(t) ∈ Φ, and such that u(t) ∈ U,
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x(t0) = x0, and the terminal conditions (1.3)-(1.5) are satisfied. (For f0 and f so
determined, denote (1.1) and (1.2) by (1.1*) and (1.2*).) Finally, a strengthened
version of (NT) is needed, denoted (NT*), namely, for any t ∈ (t0, t1),

φj(t, x
∗(t)) = 0⇒

∂φj(t, x
∗(t))/∂t +

X
i

(∂φj(t, x
∗(t))/∂xi)fi(t, x

∗(t), u∗(t±)) 6= 0, (2.5)

where f = fΦ if (t, x∗(t)) ∈ Φ for t < τ, t close to τ , and f = fΦ0 if (t, x∗(t)) ∈ Φ0 for
t > τ, t close to τ .Moreover, in (2.3), f = fΦ if (t, x∗(t)) ∈ Φ for t < τ, t close to τ .

These versions of (2.3) and (NT) are denoted (2.3*) and (NT*), respectively.
Similarly, in H and ∂H/∂x in the necessary conditions (1.6) and (1.7),
(f0(t, x∗(t), u∗(t)), f(t, x∗(t), u∗(t))) = (f0Φ(t, x∗(t), u∗(t)), fΦ(t, x∗(t), u∗(t)))
when (t, x(t)) belongs to Φ.

Auxiliary state variables can be introduced that keep track of which region is
entered, and which makes it possible to reduces the problem to the jump case.
This is shown in the particular case considered below.

Let (x∗(t), u∗(t)) be a strongly admissible pair satisfying (NT*) and being op-
timal among all strongly admissible pairs. Then the following theorem holds:

Theorem 3 (Necessary condition). Assume that (NT*) holds. Then the
necessary conditions of Theorem 2 hold provided (2.3) is read as just stated (i.e.
(2.3*) holds), and (2.2) holds for the following definitions:
(f0(τ , x

∗(τ), u∗(τ−)), f(τ , x∗(τ), u∗(τ−)) = (f0Φ(τ , x∗(τ), u∗(τ−)), fΦ(τ , x∗(τ), u∗(τ−))
if x∗(t) ∈ Φ for t < τ, t close to t and
(f0(τ , x

∗(τ), u∗(τ+)), f(τ , x∗(τ), u∗(τ+)) = (f0Φ0(τ , x
∗(τ), u∗(τ+)), fΦ0(τ , x

∗(τ), u∗(τ+))
if x∗(t) ∈ Φ0 for t > τ, t close to τ .
(This version of (2.2) is called (2.2*)). ¤

A sketchy proof is given in the Appendix. Consider the following particular ex-
ample of the situation in this remark. Assume that ψi(t0, x0) < 0 for all i, and
that all admissible solutions first crosses the set Γ1 = {(t, x) : ψ1(t, x) = 0}, then
Γ2 = {(t, x) : ψ2(t, x) = 0}, and so on, such that for any i, before crossing Γi,
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the admissible solution stays in {(t, x) : ψi(t, x) < 0} and after crossing it stays
in {(t, x) : ψi(t, x) > 0}. Let y jump upwards one unit, when x(.) crosses Γi,
dy/dt = 0, y(t0) = 0. Define φi(t, x, y) = ψi(t, x)(i − y) + (max{0, y − (i − 1)})2.
Then, φi(t, x(t), y(t)) = ψi(t, x(t)) as long as y(t) ≤ i − 1 and φi(t, x(t), y(t)) ≥
ψi(t, x(t)) + 1 when y(t) ≥ i. Moreover, if y(τ−) ≤ i− 1, then ψi(τ , x(τ)) = 0⇔
φi(τ , x(τ), y(τ)) = 0.

Remark 2 (Does solutions exist?) For the type of discontinuities occurring
in Remark 1, it may not always be clear what constitutes a solution of the dif-
ferential equation. What are the admissible pairs x(.), u(.), do such ones exist
at all?. (E.g. has the equation ẋ = −x/|x|, x(0) = −1 a solution on [0, 2]?) If
for some i, φi(t, x(t)) = 0 in some interval (if at all this is possible), we have to
specify which differential equation ẋ = fΦ is assumed to holds; we are then at
the boundary of two sets Φ. We do not need to remove such ambiguities when
stating the necessary conditions, at least when they have the form of Theorem 3
(i.e. when we confine our interest to strongly admissible solutions, in which case
problems are assumed away). However, a sufficient condition for such ambiguities
not to arise is the following one. For all (t, x) ∈ Γ, either (NT*>), i.e. (2.5) holds
for all u ∈ U for the sign 6= replaced by > and x∗(.) replaced by any admissible
x(.), or (NT*<) (where 6= is changed to <) holds for all u ∈ U and x∗(.) replaced
by any admissible x(.). So in a given problem, one might want to test this last
property before venturing further in the solution of the problem. ¤

Example 1 (Jumps in a state variable)
Assume that a person runs a firm that earns no money and goes bust when the
equity, x, in the firm is zero. At time 0 the equity is x0 > 0. As long as the
firm exists, the person continuously draws an amount u ∈ (0,∞) out of the firm.
Thus the equity changes according to the equation dx/dt = −u. The horizon is
T . After going bust, he gets a certain minimum income γ > 0 from his parents
(or from the state). Assume that x0/4γ < T . Let α = γ1/2. The instantaneous
utility he gets out of an amount of money w is w1/2. Let y be a state equal to 1
before he has gone bust and equal to zero afterwards. (So ẏ = 0, y has a unit
downwards jump at a t such that x(t) = 0.) Then what he maximizes isZ T

0

[yu1/2 + (1− y)α]dt.

What is the optimal policy, i.e. the optimal time profile of u?

7



Solution
Let τ be the time x reaches 0 and let φ1 := x (k = 1). The costate (adjoint
variable) px corresponding to x is zero for t > τ (we have a free end). The two
component of μ = (μx, μy) satisfy μx = 1/u∗(τ−), and μy = 0, by (2.3). The
costate px satisfies

px(τ−) := q := (u∗(τ−)1/2 − α)/u∗(τ−) (2.6)

(p0 = 1). Write v := u∗(τ−) = u∗(t), t < τ ; because px(.) is constant for t <
τ, u∗(.) is constant here. We are not going to need the precise form of py(t). The
Hamiltonian is H := u1/2−qu for t < τ, and Hu = 0 gives v = (1/2q)2. From (2.6)
we then get v1/2/2= v1/2 − α, or v = (2α)2 = 4γ, which yields x0 − 4γτ = 0, or
τ = x0/4γ < T.We have obtained a proposal for the optimal control. The criterion
value of u ≡ 4γ should be compared with the criterion value for the "candidate"
control obtained for the end condition x(T ) = 0, which is constant equal to x0/T,
(for the latter case Theorem 2 does not work). (The control u ≡ x0/T gives a
lower criterion value.)
Another way to prove optimality of u ≡ 4γ is to use the next remark, (Remark

3), and let us do that. Define u∗∗(t) ≡ x0/T. Because p∗∗x (t) = 1, if u > u∗∗(t) =
x0/T, then α(t, u) = −(u−u∗∗(t))/(−u∗∗(t1−)) is > 0, and then we shall see that

√
u− qTu >

p
u∗∗(t)− qTu

∗∗(t) (2.7)

for u > x0/T, u close to x0/T,where qT := (u∗∗(T−)1/2−α)/u∗∗(T−) = (T/x0)1/2−
αT/x0 (= pvx(t) for t < T ). The inequality (2.7) should have been the opposite
(≤) if u∗∗(t) was optimal, hence it cannot be optimal. The strict inequality (2.7)
follows if we prove that β0(u∗∗(t)) > 0, where β(u) =

√
u− qTu. So let us do that:

β0(u∗∗(t)) = 1/2
p
u∗∗(t) − qT = 1/(2

p
x0/T ) − ((T/x0)1/2 − αT/x0) = αT/x0 −

(1/2)
p
T/x0 > (1/2)

p
x0/T (T/x0)− (1/2)

p
T/x0 = 0, because α > (1/2)

p
x0/T

(γ > x0/4T ).

Remark 3 (Fault point at t1) In the situation of Remark 1, it is convenient
to have necessary conditions even for the case where a fault point (touch point)
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occurs at t1.We restrict attention to the free end case. In this problem, introduce
the end condition φi(t1, x(t1)) = 0 and assume that we have found a candidate
(x∗(t), u∗(t)) satisfying the necessary conditions with φi(t1, x

∗(t1)) = 0 for some
given i for an adjoint function p∗(t) jumping at fault points strictly before t1 and
satisfying the end condition pi(t1) = p0hxi(x

∗(t1)) + λφixi(t1, x
∗(t1)), i = 1, ..., n,

for some (p0,λ) 6= 0. Assume that (NT∗) (i.e. (2.5)) is satisfied for the left limit
u∗(t1−). Let p∗∗(.) be the adjoint function arising from (2.1)-(2.3) for the above
pair (x∗(t), u∗(t)) when p0 = 0, p

∗∗(.) jumping at fault points < t1, when we re-
quire that p∗∗(t1) = φix(t1, x

∗(t1)). Assume that (t, x∗(t)) ∈ Φ00, for t < t1, t close
to t1, so that (f0, f) = (f0Φ00 , fΦ00) for (t, x) = (t, x∗(t)). Let t∗ be any given point
that is both a non-fault point and a continuity point of u∗(.), and assume that
(t, x∗(t)) ∈ Φ for all t near t∗. Define

α(t∗, u) :=
p∗∗(t∗)[fΦ(t

∗, x∗(t∗), u)− fΦ(t
∗, x∗(t∗), u∗(t∗))]

φit(t1, x
∗(t1−)) + φix(t1, x

∗(t1−))fΦ00(t1, x∗(t1−), u∗(t1−))

For any u ∈ U, if α(t∗, u) > 0, thenH(t∗, x∗(t∗), u, pv(t∗))−H(t∗, x∗(t∗), u∗(t∗), pv(t∗)) ≤
0, for p0 = 1, pv(t) being the adjoint function obtained when pv(t1+) = 0 and it
jumps at fault points before and including t1, (so pv(t) satisfied (2.2) in partic-
ular for τ = t1). Here v is any control in U such that (NT∗) holds for the right
limits at t1 for u∗(t1+) = v, (f0, f) = (f0Φ0 , fΦ0) if (t, x∗(t)) ∈ Φ0, for t > t1, t
close to t1, (u

∗(t) = v for such t). For any u ∈ U, if instead α(t∗, u) < 0, then
H(t∗, x∗(t∗), u, p(t∗))−H(t∗, x∗(t∗), u∗(t∗), p(t∗)) ≤ 0 for p0 = 1 and for a function
p(t) jumping only at fault points in (t0, t1), p(t1−) = 0.

We need to carry out the above procedure for each i. ¤

A sketchy proof is given in the Appendix.

Remark 4 (State- and time-dependent jumps) In this remark, let gji de-
pend on t and x, gji (t, x) being C1, so the jump condition is xi(t+) − xi(t−) =
gji (t, x(t−)). Let gj(t, x) := (g

j
1(t, x), ..., g

j
n(t, x)). Strongly admissible solutions are

defined as before, the only change is that jumps are determined as just described.
In the present case, Theorem 2 must be modified. When (τ , x∗(τ−)) ∈ Γj, the
second term on the right hand side of (2.2) must be replaced by
p(τ+)gjt (τ , x

∗(τ−))μ+ p(τ+)gjx(τ , x
∗(τ−))+
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p(τ+)[f(τ , x∗(τ−), u∗(τ−))(1 + gjx(τ , x
∗(τ−)))− p(τ+)f(τ , x∗(τ+), u∗(τ+))]μ. ¤

We call the just mentioned condition (2.2) modified. A sketchy proof is given
in the Appendix.

Remark 5 (Existence theorems) Assume that for some ε > 0, for all i, if
φi(t, x) = 0, then, for any Φ, φit(t, x)+ φix(t, x)fΦ(t, x, u) > ε for all u ∈ U or
φit(t, x)+ φix(t, x)fΦ(t, x, u) < −ε for all u ∈ U. (In the jump case, fΦ = f.)
Then conditions as in standard existence theorems, namely compactness of U,
convexity of {f0Φ(t, x, u) + γ, fΦ(t, x, u)) : u ∈ U, γ ≤ 0} for any Φ, and, for
some b, supt|x(t)| ≤ b for all admissible x(.), (see e.g. Sydsæter et al. (2005),
Theorem 10.4.1) yield existence even for the discontinuities appearing here. More
precisely, if a strongly admissible pair exists, the conditions imply the existence
of an optimal strongly admissible pair (x∗(.), u∗(.)), (u∗(.) measurable). (Note
that, by a compactness argument, for any compact set X ⊂ Rn, for some ε0 > 0,
|φi(t, x)| < ε0, (t, x) ∈ [t0, t1]×X ⇒ φit+ φixfΦ(t, x, u) > ε0 for all u ∈ U or φit+
φixfΦ(t, x, u) < −ε0 for all u ∈ U). ¤

The proof is an easy modification of proofs for the standard problem.

3. Sufficient conditions

Theorem 4 (Verification theorem, sufficient condition) Consider problem
(1.1)-(1.5), (2.1), and let (x∗(t), u∗(t)) be a strongly admissible pair. Assume that
(NT) (in the discontinuous case (NT*)) is satisfied for any admissible x(.). Suppose
given a subset Q of (t0, t1) × Rn, an open set Q0 containing Q, and a function
W (s, y) on Q0 such thatW is C1 in Q0\Z̃, Z̃ = {(t, x) ∈ Q0, ψi(t, x) = 0 for some
i = 1, ..., k∗}, for some given C1− functions ψi(s, y) on R1+n that includes the φi -
functions, more precisely, ψi(s, y) = φi(s, y) for i = 1, ..., k

0 ≤ k∗. In the jump case,
assume thatW (s, y) =W (s, y+gj) when (s, y) ∈ {(s, y) ∈ Q : φj(s, y) = 0} = Γj,

and that (s, y) ∈ Γj ⇒ ψi(s, y) for all i 6= j. Assume also that W satisfies

0 =Ws(s, x) + max
u∈U

{f0(s, x, s) +Wy(s, x)f(s, x, u)} (3.1)

for all (s, y) in Q0\Z̃, as well as
lim sup
t→t1

W (t, x(t)) ≥ h(x(t1)) (3.2)
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for all strongly admissible solutions x(.) contained in Q, (i.e. (t, x(t)) ∈ Q for all
t ∈ (t0, t1)). Assume that x∗(.) is contained in Q, and that

h(x∗(t1)) ≥ lim sup
t→t1

W (t, x∗(t)) (3.3)

Assume that W (, x(t)) is continuous on [t0, t1) for all strongly admissible x(.)
contained in Q. Moreover, assume that (t, x∗(t)) belongs to Q0\Z̃, except for a
finite number (or countable number) of points t, that W (s, y) is locally Lipschitz
continuous on Q0 (in the jump case only on Q0\{(s, y) ∈ Q0 : φj(s, y) = 0 for
some j}), and that

f0(s, x
∗(s), u∗(s)) +Wy(s, x

∗(s))f(s, x∗s), u∗(s)) (3.4)

= max
u∈U

{f0(s, x∗(s), u) +Wy(s, x
∗(s))f(s, x∗(s), u)} v.e.

For each function ψi(s, y), i = 1, . . . , k∗, the vector of derivatives (ψi
s, ψ

i
x) is

nonzero at all (s, y) such that ψi(s, y) = 0. Then (x∗(.), u∗(.)) is optimal in
the set of all strongly admissible pairs (x(.), u(.)) such that x(.) is contained in
Q. ¤

The words “strongly admissible” are used in two different senses, depending on
whether we consider the jump case, or discontinuous (f0, f) - case. The theorem
holds in both cases. (In the discontinuous case, note that (f0(t, x, u), f(t, x, u))
equals (f0Φ(t, x, u), fΦ(t, x, u)) when (t, x) belongs to Φ.)

Remark 6 (Continuity on clQ) In Theorem 4, in the discontinuous case, if
W is continuous on clQ, and

W (t1, y) ≥ h(y) for all (t1, y) ∈ clQ (3.5)

and
W (t1, x

∗(t1)) = h(x∗(t1)) (3.6)

then (3.2),and (3.3) can be dropped. ¤

Note that in many problems with jumps or discontinuities as above the opti-
mal value function is discontinuous. In the above theorem, essentiallyW (s, y) has
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to be the optimal value function, so frequently the conditions on W (s, y) cannot
be met. Yet, in other problems the optimal value function is after all (at least)
continuous, hence a W (s, y) satisfying the conditions in Theorem 4 may exist. In
particular this holds frequently when nontangent conditions like those in Remark
5 are satisfied in case of Remark 1.

Proof. For simplicity, assume f0 = 0. Assume first that the set of functions {ψi}i
coincides with {φi}i. Along any strongly admissible trajectory x(t) contained inQ,
corresponding to some u(t), the function s→W (s, x(s)) is continuous, and,except
perhaps for a finite number of points, locally Lipschitz continuous. It is then
also nonincreasing in s, because strong admissibility imply v.e. that (t, x(t)) ∈
Q0\{(s, y) ∈ Q0 : φj(s, y) = 0 for some j} and (3.1) implies

(d/ds)W (s, x(s)) =Ws(s, x(s)) +Wy(s, x(s))f(s, x(s), u(s)) ≤ 0 v.e. (3.7)

Moreover, by (3.4) there is equality if u(s) = u∗(s), x(s) = x∗(s), implying con-
stancy of W (s, x∗(s)). Thus, W (T 0, x∗(T 0)) = W (0, x0) ≥ W (T 0, x(T 0)), for any
T 0 < t1, the last inequality by (3.7). By (3.2), (3.3), taking lim sup as T 0 → t1,
gives h(x∗(t1)) ≥ h(x(t1)), so (x∗(t), u∗(t)) is optimal. For the general case ({ψi}i
larger than {φi}i) see Chapter 2 in Seierstad (2008). ¤

We shall next present a sufficient condition in terms of what is called charac-
teristic solutions. We need the following definitions and preconditions.
Assume that there exists an open set Q0 in (t0, t1) × Rn, such that for any

(s, y) ∈ Q0 ∪ {(t0, x0)}, for t in [s, t1], there exist solutions p(t; s, y) and x(t; s, y),
piecewise and left continuous in t ∈ (s, t1], with x(s+; s, y) = y, of the necessary
conditions (maximum principle) (1.6)-(1.12), (2.2)-(2.3) for p0 = 1 with corre-
sponding control u(t; s, y), for which the differential equation (1.2), the terminal
conditions (1.3)-(1.5) and the following transversality conditions are satisfied.

pi(t1; s, y) ≥ (∂/∂xi)h(x(t1; s, y)), i = l + 1, . . . ,m (3.8)

with equality holding if xi(t1; s, y) > x1i ,

pi(t1; s, y) = (∂/∂xi)h(x(t1; s, y)), i = m+ 1, . . . , n . (3.9)
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In the jump case, for any (s, y) ∈ Q0 ∪ {(t0, x0)} it is assumed that (t, x(t; s, y))
belongs to Γ := {(t, y0) : φi(t, y0) = 0 for some i} for only a finite number points
t ∈ (s, t1), with (t, x(t+; s, y)) /∈ Γ if (t, x(t; s, y)) belongs to Γ. In the discontinu-
ous (f0, f) - case, for any (s, y) ∈ Q0 ∪ {(t0, x0)}, it is assume that for all t except
a finite number, (t, x(t; s, y)) belongs to some set Φ. (As before, (f0, f) = f0Φ, fΦ)
if (t, x) ∈ Φ.) There is given a subset Q of Q0, and we shall seek optimality among
strongly admissible solutions belonging toQ.Assume that (t, x(t; t0, x0)) ∈ Q ⊂ Q0

for all t ∈ (t0, t1), (this is the candidate for which optimality will be claimed).
The solutions x(t; s, y) are called characteristic solutions (sometimes the name
extremals are used.)

Define x0(t; s, y) by

ẋ0(t; s, y) = f0(t, x(t; s, y), u(t; s, y)), x0(s; s, y) = 0. (3.10)

The function x0(t; s, y) exists on [s, t1] for (s, y) ∈ {(0, x0)} ∪Q0.

Theorem 5. (Sufficient condition involving characteristic solutions) As-
sume that W (s, y) := x0(t1; s, y) + h(x(t1; s, y)) is locally Lipschitz continuous
on Q0 (in the jump case only on Q0\{(s, y) ∈ Q0 : φj(s, y) = 0 for some j}, in
this case, we assume that W (s, y) = W (s, y + gj) when (s, y) ∈ {(s, y) ∈ Q :
φj(s, y) = 0}). Assume that W (, x(t)) is continuous on [t0, t1) for all strongly ad-
missible x(.) contained in Q.Let Q∗ be an open set in R1+2n, and assume that
(t, x(t; s, y), p(t; s, y)) ∈ Q∗ for all t ∈ (t0, t1), all (s, y) ∈ Q0. Assume that there
exist C1 -functions φk(t, x, p), k = 1, ..., k∗ on an open set containing clQ∗, such
that, for any point (t, x, p) in clQ∗, φk(t, x, p) = 0 for at most one k, such that
Ĥ(t, x, p) := maxu∈U [f0(t, x, u) + pf(t, x, u)], as well as it first and second deriva-
tives with respect to x and p are C0 in Q∗ \Z,Z := {(t, x, p) ∈ Q∗ : φk(t, x, p) = 0
for some k}. (The maximum is assumed to exist for all (t, x, p) in Q∗). We as-
sume that the functions φi(t, x) are included in the set of functions φ

k(t, x, p) and
that, for any (t, x, p) ∈ Q∗, φk(t, x, p) = 0 for at most one k. Assume also that
Ĥx(t, x, p)|A and Ĥp(t, x, p)|A, (|A means restricted to A), have C1− extensions
to an open set containing clA for any set A of the form ∩iΦi, Φi = {(t, x, p) ∈
Q∗ : φi(t, x, p) > 0}, or Φi = {(t, x, p) ∈ Q∗ : φi(t, x, p) < 0} (the direction of the
inequality sign may depend on i).
Let

Ẑ := {(s, y) ∈ Q0 : φi(s, y, p(s; s, y)) = 0 for some i}. (3.11)
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Assume that Ẑ ⊂ Ž := {(t, x) : ψi(t, x) = 0 for some i} for some given set
of ψi -functions with properties as in the preceding theorem that includes the
φj− functions, (in the jump case φj(s, y) = 0 ⇒ ψi(s, y) 6= 0 for all other
functions ψi). Define Qs,y := {t ∈ (s, t1) : φ

k(t, x(t; s, y), p(t; s, y)) = 0 for
some k}. Assume for any (s, y) ∈ Q0 \ Ž, t ∈ (s, t1), t /∈ Qs,y, that (s0, y0) →
(x0(t; s

0, y0), x(t; s0, y0), p(t; s0, y0)) is C1 in a neighborhood of (s, y). Moreover, for
(s, y) ∈ Q0 \ Ž, t ∈ (s, t1), assume that

φk(t, x(t; s, y), p(t; s, y)) = 0⇒ (3.12)

0 < (d±/dt)φk(t, x(t; s, y), p(t; s, y))

or 0 > (d±/dt)φk(t, x(t; s, y), p(t; s, y))

(i.e. both the right derivative and the left derivative (d+/dt)φk and (d−/dt)φk are
positive or both are negative, ((d±/dt)φk =φkt (t, x(t; s, y), p(t; s, y))+
φkx(t, x(t; s, y), p(t; s, y))ẋ(t

±; s, y)+φkp(t, x(t; s, y), p(t; s, y))ṗ(t
±; s, y)). In the jump

case, when φk = φk, (3.12) need only hold for the left limit. We assume also that
the nontangent condition (3.12) holds at t = t1, for t± replaced by t1 − . Assume
finally that limt→t1[x0(t1; t, x̂(t)) + h(x(t1; t, x̂(t)))] = h(x̂(t1)) for all strongly ad-
missible x̂(.) for which (t, x̂(t)) ∈ Q0, t ∈ (t0, t1). Then (x(t; t0, x0), u(t; t0, x0))
is optimal among all pairs (x̂(t), û(t)) for which x̂(.) is strongly admissible and
(t, x̂(t)) ∈ Q0, t ∈ (t0, t1). ¤

Usually, the triples x(t; s, y), p(t, s, y), u(t; s, y) are found by first finding a con-
trol û(t, x, p) maximizing H(t, x, u, p), (p0 = 1). Next, one solves the equations

ẋ = f(t, x, û(t, x, p)), ṗ = −Hx(t, x, û(t, x, p), p)

together with (2.1), (2.2), (2.3), with initial condition x(s+) = y, and terminal
conditions (1.3)-(1.5), (3.8), (3.9), and we then let u(t; s, y) = ũ(t, x(t, s, y), p(t, s, y)).
The two differential equations are one variant of what is called the characteristic
equations of the HJB equation, and we call x(t; s, y), p(t; s, y), u(t; s, y) a charac-
teristic triple.

Proof. It suffices to prove the above theorem for the particular case where the
criterion is ax(t1).We shall refer to the proof of Remark 2.23 in Seierstad (2008).
Write v = (s, y). We want to prove that p(τ+)xv(τ+, v̂) = p(τ−)xv(τ−, v̂) at
any point τ ∈ (ŝ, t1) at which φj(τ , x(τ−; v̂)) = 0 for some j, where v̂ = (ŝ, ŷ) is
any given point in Q0\Ž. (Of course, x(τ−; v̂) = x(τ ; v̂), still we continue writing
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x(τ−; v̂).) Note that p(.) may be discontinuous at τ , so the just mentioned proof
does not work for such crossing points. Below, a dot, (·), means scalar product.
For the function T̂ (v) that satisfies φj(T̂ (v), x(T̂ (v)−, v)) = 0 for v close to v̂,

T̂ (v̂) = τ , when calculating derivatives with respect to vi, at v = v̂ we get

φjt(τ , x(τ−, v̂))T̂ 0vi + φjx(τ , x(τ−, v̂)) · (ẋ(τ−, v̂)T̂ 0vi + xvi(τ−, v̂)) = 0. (3.13)

Moreover,

xvi(τ+, v̂) = −ẋ(τ+, v̂)T̂ 0vi + ẋ(τ−, v̂)T̂ 0vi + xvi(τ−, v̂), (3.14)

If φjx(τ , x(τ−; v̂)) = 0, then μ = 0 by (2.3), p is continuous at τ by (2.2), and as
then φjt(t, x(τ−; v̂)) 6= 0 by (NT) (or NT*)), (3.13) implies that T̂ 0vi = 0, and hence
by (3.14) that xvi(., v̂) is continuous at τ , so p(τ+)xv(τ+, v̂) = p(τ−)xv(τ−, v̂).
So assume φjx(τ , x(τ−; v̂)) 6= 0 (⇒ μ 6= 0). Combining (2.2) and (2.3), we get

p(τ−)− p(τ+) = αφjx(τ , x(τ−, v̂)), for some number α (3.15)

(recall that (NT), respectively (NT*), hold). For simplicity, write T̂vi = T 0,
φjx = φjx(τ , x(τ−, v̂)), φjt = φjt(τ , x(τ−, v̂)). Now,
[p(τ+) · xvi(τ+, v̂)− p(τ−) · xvi(τ−, v̂)]μ
= [p(τ+) · (−ẋ(τ+, v̂)T 0 + ẋ(τ−, v̂)T 0)]μ+
(p(τ+) · xvi(τ−, v̂))μ− (p(τ−) · xvi(τ−, v̂))μ
= (p(τ−)− p(τ+))T 0 + (p(τ+) · xvi(τ−, v̂))μ− (p(τ−) · xvi(τ−, v̂))μ
= (p(τ−)− p(τ+))(T 0 − {(p(τ−)− p(τ+)) · xv(τ−, v̂)}μ
= α[φjxT

0 − {φjx · xv(τ−, v̂)}μ]
= α[φjx + {φjt + φjx · ẋ(τ−, v̂)}μ]T 0
= 0,

the various equalities by (3.14), (2.2), rearrangement, (3.15), (3.13) and (2.3).
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Since μ 6= 0, [p(τ+) · xvi(τ+, v̂)− p(τ−) · xvi(τ−, v̂)] = 0.

In the proof of Remark 2.23 in Seierstad (2007), this property was show to hold
also for points τ at which φi(τ , x(τ , v̂), p(τ−, v̂)) = 0, for functions φi /∈ {φi}i.
In fact, the remaining proof of Remark 2.23 in Seierstad (2007) can be kept un-
changed and yields optimality of (x∗(t), u∗(t)). ¤

Example 2 (Oil production)
An oil field consists of two reservoirs, reservoir I and reservoir II, containing K1

and K2 barrels of oil, respectively. The instantaneous profit rate equals qu− au2,
where q is the given constant oil price, u is the rate of oil production (the control
variable) and au2 is the cost of production. The parameter a takes two values 1
and 2, 1 for reservoir I, and 2 for reservoir II. The oil in reservoir I will be produced
first. The number x(t) denotes the amount of oil remaining in the field at time t,
and x(0) = K = K1 +K2. The rate of change of the oil volume is ẋ = −u.
The cost function is as follows:

C(t, x, u) = au2 =

½
u2 if x(t) ≥ K2

2u2 if x(t) < K2

There is a given horizon T, and the oil field owner wants to solve the following
problem.

max
TR
0

qu− au2dt

ẋ = −u, x(0) = K,x(T ) ≥ 0, u ≥ 0, a =
½
1, x(t) ≥ K2

2, x(t) < K2
, φ(t, x) := x−K2,

where q,K1, K2 and T are given constants.

Solution
We will apply Theorem 3. The Hamilton function is H = qu − au2 − pu, and a
solution u(t) = u∗(t) > 0 must satisfy Hu = 0 and

Hu = 0⇒ q − 2au− p = 0⇒ u =
q − p

2a

Moreover, ṗ = 0, and the transversality conditions are p(T ) ≥ 0, (p(T ) = 0 if
x(T ) > 0). Finally, ẋ = p−q

2a
.
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Four different candidates (i.e. solutions of necessary conditions) will be described.
A possible candidate is one where only reservoir I is exploited, (case 1. and 2.
below). This is considered first.

1. The case x(T ) > K2 gives p(t) ≡ 0, ẋ = −q/2, x(t) = − q
2
t+K, t ∈ [0, T ] , which

works only if x(T ) > K2, i.e. in the case T < 2K1

q
this is a candidate for optimality.

2. The case x(T ) = K2. For this case Theorem 3 does not give any necessary
conditions (and we disregard Remark 3), so we are without necessary conditions.
Necessary conditions for continuous problems can, however, be put to work by
replacing the free end assumption by the requirement x(T ) ≥ K2, in which case
we know that x(t) ≥ K2 for all t, and p(T ) ≥ 0. We now look only at the case
x(T ) = K2, (the case x(T ) > K2 was treated above.) This gives

ṗ = 0⇒ p(t) = C for some integration constant C
⇒ u(t) = q−C

2
⇒ ẋ = C−q

2
⇒ x(t) = C−q

2
t+D,x(0) = K ⇒ x(t) = C−q

2
t+K

x(T ) = K2 ⇒ C−q
2
T +K = K2 ⇒ C = q − 2K1

T

⇒ x(t) = K − K1

T
t, u(t) = K1

T
, p(t) = q − 2K1

T
.

Now, p(T ) ≥ 0 ⇒ q − 2K1

T
≥ 0 ⇒ T ≥ 2K1

q
. In the case T ≥ 2K1

q
, where

x(T ) = K2, we get the candidate

x(t) = K − K1

T
t, u(t) =

K1

T
,

with p(t) = q − 2K1/T. (Formally, we should at this point have considered also
the case p0 = 0, which however does not given any candidate.)

It may be that the owner exploits both reservoirs. In that case, how do the
candidates look like? If x(.) = x∗(.) reaches K2 at τ before T, then an optimal
behavior between 0 and the fixed τ , with x(0) = K and x(τ) = K2 fixed, implies
u̇ = constant > 0 in (0, τ), compare the second case above, hence at least one of
the inequalities of (NT∗) is satisfied at τ .

3. Again, let us first consider the possibility x(T ) > 0, p(T ) = 0. We then
have

ṗ = 0⇒
½

p(t) = C, t ∈ [0, τ)
p(t) = 0, t ∈ (τ , T ]

17



⇒ u =

½
q−C
2
, t ∈ [0, τ)

q
4
, t ∈ (τ , T ] ⇒ ẋ =

½
C−q
2
, t ∈ [0, τ)

− q
4
, t ∈ (τ , T ] ⇒ x(t) =

½
C−q
2
t+D, t ∈ [0, τ)

− q
4
t+E, t ∈ (τ , T ]

Moreover,

x(0) = K ⇒ D = K ⇒ x(t) =
C − q

2
t+K, t ∈ [0, τ)

x(τ−) = K2 ⇒ C−q
2
τ +K = K2 ⇒ (C − q)τ = −2K1

⇒ C = q − 2K1

τ
⇒ x(t) = K − K1

τ
t, t ∈ [0, τ)

This gives

a =

½
1, t ∈ [0, τ)
2, t ∈ (τ , T ] , u =

½
K1

τ
, t ∈ [0, τ)

q
4
, t ∈ (τ , T ]

x(t) =

½
K − K1

τ
t, t ∈ [0, τ)

q
4
(τ − t) +K2, t ∈ (τ , T ]

, p(t) =

½
q − 2K1

τ
, t ∈ [0, τ)

0, t ∈ (τ , T ]

To find μ, (2.3) is used, (φ = φ1 = x−K2):£
0 + 1(−K1

τ
)
¤
μ+ 1 = 0⇒ μ = τ

K1

Then the jump condition (2.2) on p(t) yields

(q − 2K1

τ
)− 0 =

h
qK1

τ
− K2

1

τ2
− q q

4
+ 2 q

2

16

i
τ
K1
+ 0

⇒ q − 2K1

τ
= q − K1

τ
− q2τ

4K1
+ q2τ

8K1
⇒ −K1

τ
= − q2τ

8K1
⇒ 8K2

1 = q2τ 2

⇒ τ 2 =
8K2

1

q2
⇒ τ = 2

√
2K1

q
.

So

a =

½
1, t ∈ [0, τ)
2, t ∈ (τ , T ] , u =

½
q/2
√
2, t ∈ [0, τ)

q
4
, t ∈ (τ , T ]

x(t) =

½
K − (q/2

√
2)t, t ∈ [0, τ)

q
4
(τ − t) +K2, t ∈ (τ , T ]

, p(t) =

½
q − q/

√
2, t ∈ [0, τ)

0, t ∈ (τ , T ]

In case T belongs to (2
√
2K1

q
,(1/q)[4K2 + 2

√
2K1]), for τ = 2

√
2K1

q
, the above

solution is a candidate, (x(T ) > 0 ⇒ 0 < q
4
(2
√
2K1

q
− T ) + K2, i.e. T <
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(1/q)[4K2 + 2
√
2K1]).

4. Let us now consider the alternative x(T ) = 0 and p(T ) ≥ 0. We have that

ṗ = 0⇒
½

p(t) = C1, t ∈ [0, τ ]
p(t) = C2, t ∈ (τ , T ]

⇒ u =

½
q−C1
2

, t ∈ [0, τ ]
q−C2
4

, t ∈ (τ , T ]

⇒ ẋ =

½
C1−q
2

, t ∈ [0, τ ]
C2−q
4

, t ∈ (τ , T ] ⇒ x(t) =

½
C1−q
2

t+D, t ∈ [0, τ ]
C2−q
4

t+E, t ∈ (τ , T ]
Using boundary conditions gives:

x(0) = K ⇒ D = K ⇒ x(t) =
C1 − q

2
t+K, t ∈ [0, τ) , x(T ) = 0⇒

C2 − q

4
T +E = 0⇒ E = −C2 − q

4
T ⇒ x(t) =

C2 − q

4
(t− T ), t ∈ (τ , T ] .

Furthermore,

x(τ−) = x(τ+) = K2

x(τ−) = K2 ⇒ C1−q
2

τ +K = K2 ⇒ (C1 − q)τ = −2K1

⇒ C1 = q − 2K1

τ
⇒ x(t) = K − K1

τ
t, t ∈ [0, τ) ,

and

x(τ+) = K2 ⇒ C2−q
4
(τ − T ) = K2 ⇒ (C2 − q)(τ − T ) = 4K2 ⇒ C2 = q + 4K2

τ−T
⇒ x(t) = K2(t−T )

τ−T , t ∈ (τ , T ] .
Insertion of C1and C2 in u and p leads to

a =

½
1, t ∈ [0, τ ]
2, t ∈ (τ , T ] , u =

½
K1

τ
, t ∈ [0, τ ]

K2

T−τ , t ∈ (τ , T ]

x(t) =

½
K1 − K1

τ
t, t ∈ [0, τ ]

K2(t−T )
τ−T , t ∈ (τ , T ] , p(t) =

½
q − 2K1

τ
, t ∈ [0, τ ]

q + 4K2

τ−T , t ∈ (τ , T ]

Again, (2.3) gives μ = τ/K1, and the jump condition (2.2) on p(.) then gives

= (q − 2K1

τ
)− (q + 4K2

τ−T ) =
h
qK1

τ
− K2

1

τ2
− q K2

T−τ + 2
K2
2

(T−τ)2

i
τ
K1
+£

(q + 4K2

τ−T )(−
K1

τ
)− (q + 4K2

τ−T )(−
K2

T−τ )
¤

τ
K1

⇒ −2K1

τ
+ 4K2

T−τ = q − K1

τ
− qτK2

(T−τ)K1
+

2K2
2τ

(T−τ)2K1
− q + 4K2

T−τ +
qτK2

(T−τ)K1
− 4K2

2τ

(T−τ)2K1

⇒ −2K1(T − τ)2 = −K1(T − τ)2 − 2K2
2τ
2/K1

⇒ −K1T
2 + 2K1Tτ − (K1 − 2K2

2/K1)τ
2 = 0

⇒ −T 2 + 2Tτ − (1− 2α2)τ 2 = 0, where α = K2/K1.
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Hence, τ = T{−2 + [22 − 4(1− 2α2)]1/2}/2(2α2 − 1) = T (
√
2α− 1))/(2α2 − 1) =

T/(
√
2α+ 1).

This works only if p(T ) = q+ 4K2/(τ − T ) ≥ 0, i.e. T ≥ τ + 4K2/q = T/(
√
2α+

1)+4K2/q, or T ≥ (4K2/q)[1− (
√
2α+1)−1]−1 = (4K2/q){

√
2α/(
√
2α+1)}−1 =

(4K2/q)[1+
√
2/2α] = (1/q)[4K2+2

√
2K1]. Thus in case T ≥ (1/q)[4K2+2

√
2K1],

the above solution is a candidate in the problem. Here u = K1/τ = (K1/T )(
√
2α+

1) for t < τ = T/(
√
2α+ 1) and u = K2/(T − τ) for t > τ.

The criterion values for the four alternative candidates are as follows:

(1)

V 1 =
TR
0

qu− u2dt =
TR
0

q2

2
− q2

4
dt =

TR
0

q2

4
dt =

q2

4
T

(2)

V 2 =
TR
0

qu− u2dt =
TR
0

q
K1

T
− K2

1

T 2
dt =K1

µ
q − K1

T

¶
(3)

V 3 =
TR
0

qu− au2dt =

2
√
2K1
qR
0

q
q

2
√
2
− q2

8
dt+

TR
2
√
2K1
q

q
q

4
− 2 q

2

16
dt

= (q
q

2
√
2
− q2

8
)
2
√
2K1

q
+

q2

8
(T − 2

√
2K1

q
) =q2T/8+qK1 − q2

√
2K1/2.

(4)

V 4 =
TR
0

qu− au2dt =
τR
0

qK1/τ −K2
1/τ

2
dt+

TR
τ

qK2/(T − τ)−2K2
2/(T − τ)

2
dt

= qK1 −K2
1/τ + qK2 − 2K2

2/(T − τ)

= qK1 − (
√
2α+ 1)K2

1/T + qK2 − 2K2
2(1 + 1/

√
2α)/T.

For T in (2
√
2K1

q
, 4K2+2

√
2K1

q
), we have obtained two candidates, no. 2 and no.

3, and for T = (4K2+2
√
2K1

q
,∞), we have obtained two candidates, no. 2 and
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no. 4. Comparing criterion values, we get that no. 3 and no. 4 are the best
ones, respectively. (To compare no. 2 and no. 3, note that V 2(T ) = V 3(T ) for
T = 2

√
2K1

q
as the solutions are the same, and dV 3(T )/dT > dV 2/dT for T ∈

[2
√
2K1

q
, (4K2+2

√
2)K1

q
). Similarly, as

√
2α + 1 > 1, then dV 4(T )/dT > dV 2/dT for

T > (4K2+2
√
2)K

q
) and V 4( (4K2+2

√
2)K1

q
) = V 3( (4K2+2

√
2)K1

q
) > V 2( (4K2+2

√
2)K1

q
), the

last inequality we have already proved ).

To sum up, if T < 2K1/q, candidate no. 1 is optimal, if T ∈ (2K1/q,
2
√
2K1

q
]

candidate no. 2 is optimal, if T in (2
√
2K1

q
, (4K2+2

√
2)K1

q
], candidate no. 3 is opti-

mal, and if T > (4K2+2
√
2)K1

q
candidate no. 4 is optimal. In fact optimality is only

known by carrying out the arguments as below.

Optimality can be proved by means of Theorem 5 and Remark 6. Let us only
consider the case of a fixed T > (4K2+2

√
2)K1

q
. Write x∗(t;T,K,K2), p(t;T,K,K2),

K = K1 +K2 for the above proposal. Write also V i = V i(T,K,K2), i = 1, ..., 4.
When t = 0 is replaced by s and K is replaced by y > K2 , then define
x(t; s, y) = x∗(t− s;T − s, y,K2), p(t; s, y) = p(t;T − s, y,K2), while for y ≤ K2,
we define x(t; s, y) = x∗(t − s;T − s,K2, y), p(t; s, y) = p(t − s;T − s,K2, y),
(K = K2 ⇒ K1 = 0, τ = 0). Let us write out in detail the function x(t; s, y).

(a) Consider first the case y > K2. Then if T−s ≤ 2y−K2

q
, x(t; s, y) = y−q(t−s)/2,

t ∈ [s, T ]. If 2
√
2(y − K2)/q ≥ T − s > 2y−K2

q
, x(t; s, y) = y − y−K2

T−s (t − s),

t ∈ [s, T ]. If 2
√
2(y − K2)/q < T − s ≤ (1/q)[4K2 + 2

√
2(y − K2)], x(t; s, y) =

y − q

2
√
2
(t − s) for t − s ∈ [0, 2

√
2(y − K2)/q] (i.e. for x(t; s, y) ≥ K2) and

x(t, s, y) = q
4
(2
p
2(y −K2)/q − t + s) +K2 for t − s ∈

¡
2
√
2(y −K2)/q, T

¤
(i.e.

for x(t; s, y) < K2). Finally, if T − s > (1/q)[4K2 + 2
√
2(y − K2)], x(t; s, y) =

y−K2− y−K2

(T−s)/(
√
2α+1)

(t− s), t− s ∈ [0, (T − s)/(
√
2α+1)], α = K2/(y−K2) (i.e.

for x(t; s, y) > K2), x(t; s, y) =
K2(t−T )

(T−s)/(
√
2α+1)−(T−s) for t−s ∈ ((T−s)/(

√
2α+1), T ]

(i.e. for x(t; s, y) < K2).

Consider next the case (b) y ≤ K2. Then if T−s ≤ 4y/q, x(t; s, y) = y−q(t−s)/4,
and if T − s > 4y/q, x(t; s, y) = y(T − t)/(T − s).

We drop writing out the formulas for p(t; s, y) in the corresponding cases. De-
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fine Q0 = (0, T ) × (0, 2K), Q∗ = R3, φ = K2 − y = ψ1(s, y), ψ2(s, y) =
T − s − (1/q)[4K2 + 2

√
2(y − K2)], ψ

3(s, y) = T − s − 2(y − K2)/q, ψ
4(s, y) =

T − s− 2
√
2(y −K2)/q, ψ

5(s, y) = T − s− 4y/q. Note that the nontangent con-
dition (3.12) holds. Moreover, x(t; s, y) is continuously differentiable at all (s, y),
t /∈ {t : x(t; s, y) = K2}, for which ψi(s, y) 6= 0, i > 1, y 6= K2, and the same holds
for p(t; s, y).Moreover, in this example the x0(t; s, y)-function has the same differ-
entiability properties. In case y ≤ K2, x0(T ; s, y) = q2(T − s)/8 for T − s ≤ 4y/q,
x0(T ; s, y) = qy − 2y2/(T − s) for T − s > 4y/q > 0. For y > K2, x0(T ; s, y)
= V 1(T − s, y,K2) for T − s ≤ 2(y − K2)/q, x0(T ; s, y) = V 2(T − s, y,K2)
for 2

√
2(y − K2)/q ≥ T − s > 2(y − K2)/q, x0(T ; s, y) = V 3(T − s, y,K2) for

2
√
2(y−K2)/q < T−s ≤ (4K2+2

√
2(y−K2))/q, and x0(T ; s, y) = V 4(T−s, y,K2)

for (4K2 + 2
√
2(y −K2))/q < T − s.

Formally, Theorem 5, with Remark 6, gives optimality only among strongly admis-
sible pairs, but in this example admissible pairs can be approximated by strongly
admissible pairs, so optimality holds among all admissible pairs.

Example 3 (Growth)
A farmer grows only oat and his production of oat is proportionate to his cultivable
land. This land he all the time extends by the use of a horse to clear new land. The
farmer first clears land on a terrain well suited for cultivation, the size of which is
x1. Afterwords he has to turn to terrain that is more difficult to clear, but which
is of very large ("unlimited") size. Per unit of time, on the best terrain, the horse
clears two acres per unit of oat given to it as fodder, on the difficult land it only
clears 1 acre per unit of oat. The amount of oat given per unit of time to the horse
is ux(t), and x(t) is the present production, which equals the present size of the
cultivable land, (for simplicity, the proportionality factor has been put equal to 1).

The farmer wants to maximize income from oat production, more precisely he
sells (1− u)x(t), for a price equal to 1, so he wants to solve the problem :

max
TR
0

(1− u)xdt

ẋ = uax, x(0) = x0 > 0, x(T ) free, u ∈ [0, 1] , a =
½
1 if x > x1
2 if x ≤ x1

, φ(t, x) = x− x1

The farmer starts with a initial size of land equal to x0, situated at the best ter-
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rain. We assume x1/x0 = e and T > 3/2.

Solution
The Hamiltonian is

H = p0(1− u)x+ puax

Since x(T ) is free, p0 = 1, and the maximizing value of u satisfies

u =

½
1 if p(t) > 1/a
0 if p(t) < 1/a

ṗ = −H 0
x = −1 + u− pua = −max{1, pa}

Let (x(t), u(t)) = (x∗(t), u∗(t)) be an optimal solution and let τ = min{t : x(t) =
x1} (defined if the last set is nonempty).

A. We first look at the possibility that x(T ) > x1, in which case x(τ) = x1
for some τ ∈ (0, T ). The condition (NT∗) will surely be satisfied if u(τ±) > 0,
which we here assume. Now, p(t) is strictly decreasing on all intervals at which it
is continuous. If p(t0) ≤ 1/2 for a t0 < τ, this would lead to p(t) < 1/2, u(t) = 0
and x(t) = x(t0) > x1 on (t0, τ), a contradiction. So p(t0) > 1/2 for t0 < τ, and
ẋ = 2x here. Hence, x(t) = x0e

2t in [0, τ). This gives τ = 1/2 by using x0e
2τ

= x1 and x1/x0 = e. Next, close to T, p(t) is close to zero and u = 0 is used, let
[t∗, T ] be the maximal interval on which u(t) is identically zero. Then ṗ = −1, so
p(t) = T − t here, and p(t) < 1, consistent with u(t) = 0 on [t∗, T ] provided t∗ is
determined by T − t∗ = 1, i.e. t∗ = T −1 > 1/2. Thus, for t ∈ (τ , t∗), p(t) > 1 and
u(t) = 1 here. Furthermore, μ = −1/2u(τ−)x1 = −1/2x1, and p(τ−)− p(τ+) =
p(τ+)[2u(τ−)− u(τ+)]μ = −p(τ+)[1− 1

2
u(τ+)/u(τ−)] = −1

2
p(τ+). Then as we

shall see, for t∗ = T − 1, τ = 1/2, we have got the following entities satisfying all
necessary conditions in Theorem 3:

u(t) =

½
1, t ∈ [0, t∗)
0, t ∈ t∗, T ]

,

x(t) =

⎧⎨⎩ x0e
2t, t ∈ [0, τ)

x1e
t−τ , t ∈ [τ , t∗)

x1e
t∗−τ , t ∈ (t∗, T ]

, p(t) =

⎧⎨⎩
1
2
eτ+t

∗−2t > 1
2
, t ∈ [0, τ)

e−(t−t
∗) > 1, t ∈ [τ , t∗)

T − t < 1, t ∈ (t∗, T ]
,
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To find these solutions, note that x(τ) = x1 and x(t∗) = x1e
t∗−τ were used to deter-

mine integration constants for the solution x(t) on [τ , t∗) and [t∗, T ], respectively.
Moreover, ṗ = −p, ṗ = −2p, together with p(t∗) = 1 and p(τ−) = (1/2)p(τ+) =
(1/2)e−(τ−t

∗) (i.e. the jump condition) were used to determine integration con-
stants for the solution p(t) on [τ ,t∗) and [0, τ), respectively. (We may check that
for this solution u(τ±) > 0). Can it be that there exist candidates for which
u(τ±) > 0 fails?

B. Consider the following fixed end problem:

max
T 0R
0

(1− u)xdt, T 0 > 0, T 0 fixed,

ẋ = 2ux, x(0) = x0 > 0, x(T
0) = x1 = ex0, u ∈ [0, 1] .

In this problem p(t) is continuous and strictly decreasing, and for some t∗∗,
p(t∗∗) = 1, p(t) > 1 and u = 1 for t < t∗∗, p(t) < 1 and u = 0 for t > t∗∗.
Then t∗∗ is evidently equal to τ = 1/2, (x(t) = x0e

2t for t ≤ t∗∗). If T 0 = τ ,
x(t) < x1 for all t < τ, hence u(t) > 0 at least at certain points t < τ, t close to
τ , hence p(t) ≥ 1/2 at such points. This in fact implies that p(t) > 1/2 for all t
< τ, so u(t) = 1 here, implying u∗(τ−) = 1. If T 0 > τ = 1/2, then p(t) < 1/2 for
t > τ, so u(t) = 0, here and x(t) = x1, t ∈ [τ , T ]. Next, let us look at the problem
where we start at τ = 1/2, with state x1, and with free end, with ẋ = ux, and
where, in the criterion we integrate over [τ , T ]. For this problem, we have already
found the solution; x(t) is as in A. on [τ , T ] and u(τ+) = 1. So u(τ±) is > 0.(For
the last two problems, actually, the standard maximum principle for "continuous"
problems have been used.) Note that p0 = 0 does not give any further candidates.

C. The case x(T ) = x1 cannot occur in the original problem, because we saw
in B. that x1 is reached already at time τ = 1/2, but the optimal behavior in the
free end problem where we start at (τ , x1) was seen to be not to have x(t) = x1
for all t ≥ τ , but to strictly increase x(t). Let us finally, in the original problem,
consider the possibility x(T ) < x1 . This case is close to the case discussed in A,
except that we have ẋ = 2ux all the time. Again ṗ = −1 on (t∗, T ], p(t) = T − t
here, and now t∗ is determined by p(t∗) = 1/2, i.e. 1/2 = T − t∗, so t∗ = T − 1/2,
moreover, before t∗, p(t) > 1/2, so u∗ = 1 here and x(t) = x0e

2t for such t. But
x0e

2t satisfies x(T − 1/2) > x1, a contradiction. The only candidate remaining in
the problem is the one found in A.
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D. Does an optimal solution exist? Standard existence theorems essentially give
existence, because the two right hand sides 2ux and ux in the differential equa-
tion coincide when u = 0. But let us argue a little more carefully. Imagine that
xn(.), un(.) is a sequence having criterion values converging to the supremum of
the criterion. Let tn = max {t : xn(t) ≤ x1}, let t0 = limsup tn, and, by considering
subsequences if necessary, assume tn −→ t0. By standard existence arguments (see
e.g. the arguments in the proof of Theorem 9.2.i, in Cesari (1983)), using compact-
ness of U and convexity of {(f0(t, x, u)+γ, f(t, x, u)) : u ∈ [0, 1], γ ≤ 0} for x ≤ x1,

there is a pair x00(.), u00(.) such that
R tn
0

f0(t, xn(t), un(t))dt→
R t0
0
f0(x

00(t), u00t))dt,
x00(t) ≤ x1 for all t ≤ t0, x00(t0) = x1, x

00(0) = x0, and satisfying the differ-
ential equation ẋ = 2ux on [0, t0]. Using compactness of U and convexity of
{(f0(t, x, u) + γ, f(t, x, u)) : u ∈ [0, 1], γ ≤ 0} for x ≥ x1, there is also a pair
x0(.), u0(.) such that

R T
tn
f0(t, xn(t), un(t))dt →

R T
t0 f0(x

0(t), u0(t))dt, x0(t0) = x1,
x0(t) ≥ x1 for all t > t0, x(t0) = x1, and satisfying the differential equation ẋ = ux
on [t0, T ]. If x0(t) = x1 in some interval (which then must be of the form (t0, t00)),
then ẋ0 =ux = 2ux, since u = 0 a.e. here. Thus, x(.) = x00|[0,t0] + x0|(t0,T ],
u = u00|[0,t0]+u0|(t0,T ], is an admissible pair in the problem, and it yields maximum
of the criterion. (Note that in the original problem, formally, an admissible pair is
defined as any pair (x(t), u(t)), u(t) measurable, such that, a.e., ẋ(t) = 2u(t)x(t),
if x(t) ≤ x1, ẋ(t) = u(t)x(t) if x(t) > x1, x(0) = x0. In this example an admissible
solution x(t) may stay at the level x1 for some time, there is no problem connected
with the differential equation in this case.) It follows that we have got optimality
in the set of admissible pairs.

E. The observant reader will have noted that in this problem, a unique candidate
can be obtained by applying the standard maximum principle for "continuous"
problems on "pieces" of the solution sought for. This is not so in the next prob-
lem, which is also of the bang-bang type.

For the two next problems, only the final solutions are presented; the problems
were solved in the Master thesis of Stabrun (Stabrun 2007), (as were the problems
2 and 3).

Example 4 (Growth causing pollution with negative effects)
Consider a company producing, say, mineral water. Its production function is
x, where x is real capital. A fraction ux is put aside for investment purposes,

25



while (1− u)x is sold for a price equal to unity. The production causes pollution.
The stock of pollution is z, and the increase in pollution ż equals x. When the
accumulated pollution reaches a certain level, the transformation of output into
increases in real capital becomes more difficult. (Perhaps a tax on investments
sets in, or construction workers must wear burdensome masks or whatever.) The
control problem to be solved is then

max
TR
0

(1− u)xdt, T fixed,

ẋ = uax, x(0) = x0 > 0, u ∈ [0, 1] , a =
½
1 if z > z1
2 if z ≤ z1

, φ = z − z1,

ż = x, z(0) = 0, x(T ) and z(T ) free, x0, z1 given.

If at all z(t) crosses z1, define τ as the single point satisfying z(τ) = z1, and assume
that x0 = 1, z1 + x0/2 = e4. We shall here present solutions for different values of
T. In all cases, u = 1 for t < t∗, u = 0 for t > t∗. For T ∈ (1/2, 5/2), t∗ = T − 1/2
and z(t) < z1 for all t. For T ∈ (5/2, 5/2+ 1

2
ln 2), T − 1

2
= t∗ < τ = T −1+e5−2T .

For T ∈ (5/2 + 1
2
ln 2, 3 + 1

2
ln 2), t∗ = τ = 2 + 1

2
ln 2. For T ∈ (3 + 1

2
ln 2,∞),

t∗ = T − 1, τ = 2 + 1
2
ln 2. Here, having recourse to the necessary conditions of

Theorem 2 reduces the number of candidates needing consideration as compared
to the number of candidates arising when using only the standard necessary con-
ditions for continuous problems on "pieces" of the solution sought for, (see the
previous example for such an application in discontinuous problems).
Note that here, as x(t) ≥ x0 > 0, then the existence result in Remark 5 auto-

matically yields existence of an optimal control.

Example 5 (Capital-dependent income tax )
A firm has production function 2x, x being real capital. The owner saves an amount
u2x, u ∈ [0, 1], so the capital in the firm increases according to ẋ = 2ux− x, the
term −x representing depreciation. If x > e, the income taken out of the firm is
taxed according to the rate 1/4, while if x ≤ e, there is no income tax. Hence,
the owner wants to maximize

max
R T
0
2α(1− u)xdt, α = 3/4 if x > e, α = 1 if x ≤ e, T fixed > ln 2,
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ẋ = 2ux− x, x(0) = 1, u ∈ [0, 1], x(T ) free, φ(t, x) = x− e.

Solution
Let β be the solution of (β − ln 2)e = e/2 + 9eβ/32, β ' 2.63317, 1 + ln 2 < β <
1+ln 16

3
. If T ∈ (ln 2, 1+ln 2), u = 1 in (0, T− ln 2), u = 0 in (T−ln 2, T ), x(t) < e

for all t in both cases. If T ∈ (1+ ln 2, β), x(t) = e in (1, T − ln 2), u = 1 in (0, 1),
u = 1/2 in (1, T − ln 2), u = 0 in [T − ln 2, T ), x(t) < e for t /∈ (1, T − ln 2). If
T ∈ (β, 1 + ln 16

3
) two crossing points exist, τ 1 = 1, and τ 2 = 2T + 2 ln

3
8
− 1, (i.e.

x(τ i) = e, i = 1, 2), u = 1 in [0, T + ln 3
8
), u = 0 in (T + ln 3

8
, T ), x(t) < e for

t /∈ [τ 1, τ 2], x(t) > e for t ∈ (τ 1, τ 2). If T ∈ (1 + ln 163 ,∞), a single crossing point
τ = 1 exists (i.e. x(τ) = e for τ = 1), u = 1 in [0, T − ln 2), u = 0 in (T − ln 2, T ),
x(t) < e for t < 1, x(t) > e for t > 1.

Appendix

Sketch of proof of Theorem 2 in the free end case.
To sketchy proofs will be given, the first one (A) assuming continuous differen-
tiability of a certain value function, the second one (B) not relying on such an
assumption. (The latter proof can be written out to to yield a rigorous proof.)

(A) For simplicity, assume a single φ− function and as single fault point τ . Let
S(τ , x) be the value function of the problem Pτ : max

R t1
τ
f0(t, x(t), u(t))dt, with

end conditions as before, when solutions start at any given (τ , x). Then the orig-
inal problem can be written as maxu,τ{

R τ
t0
f0(t, x(t), u(t))dt + S(τ , x(τ))}, with

end condition φ(τ , x(τ)) = 0. The necessary conditions for the last problem is
ṗ = −Hx, the maximum condition, and the transversality condition H(τ−) +
St(τ , x

∗(τ)) + γφt(τ , x
∗(τ)) = 0 ( an obvious shorthand notation) with p(τ−) =

Sx(τ , x
∗(τ)) + γφx(τ , x

∗(τ)), γ some multiplier, see e.g. Theorem 16, p. 398 in
Seierstad and Sydsæter, (1987). By standard result concerning derivatives of the
value function, see e.g. Theorem 9, p. 219 in Seierstad and Sydsæter (1987),
Sx(τ , x

∗(τ)) = p(τ+) and St(τ , x
∗(τ)) = −H(τ+). Now, H(τ−) + St(τ , x

∗(τ)) +
γφt(τ , x

∗(τ)) = p0f0(τ−)−p0f0(τ+)+(p(τ+)+γφx)f(τ−)−p(τ+)f(τ+)+γφt = 0,
so γ = −{p0f0(τ−) − p0f0(τ+) + p(τ+)f(τ−) − p(τ+)f(τ+))}/(φxf(τ−) + φt),
and then p(τ−) − p(τ+) = Sx + γφx − Sx = γφx = {p0f0(τ−) − p0f0(τ+) +
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p(τ+)f(τ−)− p(τ+)f(τ+)}φx/(φxf(τ−) + φt)). (Compare (2.2) and 2.3.)

Digression. Presumably, a sufficient condition can be obtained by studying
the behavior of F (τ) := H(pτ(τ−)) − H(pτ(τ+) + γτφt(τ , x

τ (t)), where xτ , pτ ,
γτ are solutions and multipliers of the necessary conditions (for p0 = 1) of the
problem maxu

R τ
t0
f0(t, x(t), u(t))dt + S(τ , x(τ)), φ(τ , x(τ)) = 0, τ fixed in [t0, t1].

If the maximized Hamiltonian is concave both in the last problem and in problem
P τ and if the exists a τ ∗ in [t0, t1] such that F (τ) ≥ 0 for τ ≤ τ ∗ and F (τ) ≤ 0
for τ ≥ τ ∗ , then (presumably) optimality follows.

(B) In the free end case, let us prove the necessary conditions in the case of one
function φ1 = φ (g1 = g),one crossing point τ ∈ (t0, t1), and a free end, and in the
case where ax(t1) is maximized, a a given vector. (A problem where the criterion
is an integral can be rewritten so that it has the just mentioned format, by using
an auxiliary state variable, the generalization to a nonlinear scrap value h(x) can
be similarly treated). Let C(t, s) be the resolvent of dq/dt = fx(t, x

∗(t), u∗(t))q.
Let a perturbation u be carried out at t∗, t∗ < τ, i.e., let u∗(.) be replaced by the
constant u ∈ U on a short interval [t∗ − δ, t∗]. Let x̌(., δ) be the corresponding
solution on [t0, τ ], and let b = ∂x̌(t∗, δ)/∂δ. When such a perturbation is carried
out, it is most convenient for establishing necessary conditions to replace u∗(.) by
a function that differs from u∗ near the point τ at which x∗(.) enters Γ: Assume
first that x̌(t, δ) enters Γ at a time s(δ) before τ , (s(δ) < τ).We then replace u∗(.)
on (s(δ), τ) by the function u∗∗(t) = u∗(τ+), t ∈ (s(δ), τ). The solution on [t0, t1]
corresponding to u(t) = u1[t∗−δ,t∗] + u∗(τ+)1(s(δ),τ) + u∗(t)(1− 1[t∗−δ,t∗] − 1(s(δ),τ))
is denoted x(t, δ), (x(t0, δ) = x0). If x̌(t, δ) has not reached Γ even when t = τ ,
then let us use the function u∗∗(t) = u∗(τ−) to the right of τ , as long as Γ is
not entered. Define now s(δ) to be the first time Γ is entered, and from then
on let us use u∗(.). The solution on [t0, t1] corresponding to u(t) = u1[t∗−δ,t∗] +
u∗(τ−)1(τ,s(δ)) + u∗(t)(1− 1[t∗−δ,t∗] − 1(τ,s(δ)) is denoted x(t, δ), (x(t0, δ) = x0).
Assume first s(δ) < τ. At time s(δ)−, the change in the state due to the

perturbation (i.e. x(s(δ)−, δ) − x∗(s(δ)−))) is approximately C(s(δ), t∗)bδ, (δ is
small.) As δ is small, with s := s(δ) we have 0 = φ(s, x(s−, δ)) ' φ(s, x∗(s) +
C(s, t∗)bδ)) ' φ(s, x∗(τ−)+f(τ , x∗(τ−), u∗(τ−))(s−τ)+C(s, t∗)bδ) ' φt(τ , x

∗(τ−))(s−
τ)+φx(τ , x

∗(τ−))f(τ , x∗(τ−), u∗(τ−))(s−τ)+φx(τ , x∗(τ−))C(τ , t∗)bδ+φ(τ , x∗(τ−)) =:
Ψ(s), where of course φ(τ , x∗(τ−)) = 0. Whether s − τ < 0 or ≥ 0, Ψs) = 0
determines s = s(δ), because we obtain the same equation also in the case
s− τ ≥ 0, a case we shall now discuss. In this case we have 0 = φ(s, x(s−, δ)) '
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φ(s, x(τ−, δ) + ẋ(τ−)(s − τ)) ' φ(s, x(τ−, δ) + f(τ , x∗(τ−), u∗(τ−))(s − τ)) '
φ(s, x∗(τ−, δ) + C(τ , t∗)bδ) + f(τ , x∗(τ−), u∗(τ−))(s− τ)) ' Ψ(s).
Define t0 = max{τ , s(δ)}. At time t0+ both x∗(t0+) and x(t0+,δ) have been af-

fected by a jump of size g, when considering their difference, i.e. the change in the
state, g drops out. The effect of using the controls specified instead of u∗(.) near τ
adds approximately a change (−f(τ , x∗(τ+), u∗(τ+))+f(τ , x∗(τ−), u∗(τ−)))(s−
τ) to the change C(t0, t∗)bδ in the state at time t0+ caused by the perturbation.
It can be checked that this term is the same whether s− τ is positive or negative.
The total change in the state (i.e. x(t0+, δ) − x∗(t0+), is approximately h(t0) :=
C(t0, t∗)bδ+(f(τ−)−f(τ+))(s−τ) ' C(τ , t∗)bδ+(f(τ−)−f(τ+))(s−τ) = h(τ) (a
self-explaining shorthand notation). At time t1, the change x(t1, δ)−x∗(t1) equals
approximately C(t1, τ)h(τ), and the change in criterion value is aC(t1,τ)h(τ).
Note that it follows from the equation Ψ(s) = 0 that s− τ = μC(τ , t∗)bδ, where
μ is determined as above, see (2.3). Define p(t) = aC(t1, t) for t > τ, and define,
for t < τ, p(t) = aC(t1, τ)C(τ , t) + [aC(t1, τ)(f(τ−) − f(τ+))]μC(τ , t). Then
p(τ−) = p(τ+)+ (p(τ+)(f(τ−)− f(τ+))μ, which is (2.2). It is well-known that,
for any constants σ and c ∈ Rn, (d/dt)cC(σ, t) = −cC(σ, t)fx(t, x∗(t), u∗(t)), from
which (1.8) follows. Observe finally that aC(t1, τ)h(τ) = p(t∗)bδ. Now, by opti-
mality, p(t∗)bδ ≤ 0. Note that ∂x(t∗, δ)/∂δ = f(t∗, x∗(t∗), u)− f(t∗, x∗(t∗), u∗(t∗)),
so

p(t∗)bδ = p(t∗)[f(t∗, x∗(t∗), u)− f(t∗, x∗(t∗), u∗(t∗))]δ ≤ 0

by optimality, which is the maximum condition for the present type of criterion
for t∗ < τ . For t∗ > τ, the change in the criterion is approximately aC(t1,t∗)bδ =
p(t∗)bδ = p(t∗)[f(t∗, x∗(t∗), u) − f(t∗, x∗(t∗), u∗(t∗))], which again has to be ≤ 0,
by optimality. Hence, the necessary conditions follow in the present case. ¤

Comment on the proof in the nonfree end case. Consider the proof in (B).
In the case of all fault points are crossing points, Ekeland’s theorem together with
replacing the end constraints by penalty functions can be used to obtain necessary
conditions, in a tradition stemming from Clarke (1983). If some touch points also
appear, it is better to use the old-fashion methods of Brouwer’s fixed point theo-
rem, and a separation argument, (for this tradition see, e.g., Fleming and Rishel
(1975)). Let us given some ideas pertaining to the last type of proof, assuming a
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single fault points and the maximization of x1(t1), (i.e. a = (1, ..., 0)), and where
xi(ti) are fixed, i > 1. (Again a single function φ, and a single fault point τ is con-
sidered.) Let K be the set of all convex combinations c :=

P
m λmh

∗
m, where h

∗
m =

C(t1, τ){C(τ , t∗m)(f(t∗m, x∗(t∗m), um)− f(t∗m, x
∗(t∗m), u

∗(t∗m))
+(f(τ ,−)− f(τ ,+))[μC(τ , t∗m)(f(t

∗
m, x

∗(t∗m), um)− f(t∗m, x
∗(t∗m), u

∗(t∗m)))]}

in case t∗m < τ, and h∗m = C(t1, t
∗
m)[f(t

∗
m, x

∗(t∗m), um) − f(t∗m, x
∗(t∗m), u

∗(t∗m))]
in case t∗m > τ, t∗m arbitrary continuity points of u∗(.), um arbitrary points in
U. If intK 6= ∅, then L = {δ01̃ : δ0 > 0}, 1̃ := (1, 0, ..., 0) has to be dis-
joint from intK, otherwise for some δ0 > 0, δ01̃ is interior in the convex hull
K 0 := {

P
j λ
∗
jcj :

P
j λ
∗
j = 1, λ

∗
j ≥ 0} of a finite collection of c0s , say c1, ..., cj́∗,

which leads to a contradiction as we shall see. Let x(t1, λ
∗), λ∗ = (λ∗1, ..., λ

∗
j∗),

be the exact solution correspond to perturbations ujm used on intervals [t∗m,j −
λ∗jλ

j
m, t

∗
m,j], u

j
m, t

∗
m,j and λjm being the entities occurring in c = cj. (Again near

τ , u∗(.) is modified as in the above free end proof on an interval of length |s −
τ | = |

P
j,t∗m<τ λ

∗
jλ

i
mμC(τ , t

∗
m)(f(t

∗
m, x

∗(t∗m), um) − f(t∗m, x
∗(t∗m), u

∗(t∗m)))|.) Then
x(t1, λ

∗) − x∗(t1) −
P

j λ
∗
jcj is of the first order in δ∗ :=

P
j λ
∗
j , similar to what

we have in proofs for the standard control problem. Then, by this first order
approximation and a standard use of Brouwer’s fixed point theorem, for δ > 0,
small enough, x(t1, λ

∗) − x∗(t1) = δδ01̃, for some λ∗, for which
P

i λ
∗
j < 2δ. The

last equality contradicts optimality. So L and intK are disjoint. The separation
of intK and L by a hyperplane implies the maximum condition. If intK = ∅, this
separation is trivial.

Sketch of proof of Theorem 3 in the free end case. Consider the proof
in (B). As noted above, dummy variables can be used to transform the problem in
Remark 1 to one with jumps in state variables. However, the above proof sketch
also works in the discontinuous (f0, f) - case, just using that the definition of
(f0, f) varies according to which set Φ the state belongs to, and noting that for
the solutions x(t, δ) the condition (NT*) secures that x(t, δ) is strongly admissi-
ble. The crossing point becomes slightly perturbed, however x(t, δ) belongs to Φ
whenever x∗(t) belongs to Φ, except for t very close to τ .

Sketch of proof of Remark 3 in the free end case. To show the two as-
serted inequalities related to Hamiltonian, note that s(δ)− τ < 0⇔ α(t∗, u) > 0.
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If these inequalities hold, for any v, letting u∗ (t1+) being equal to v, the ar-
guments in the proof of Theorem 2 can be copied and they yield the condi-
tion H(t∗, x∗(t∗), u, pv(t∗)) − H(t∗, x∗(t∗), u∗(t∗), pv(t∗)) ≤ 0, for a function pv(t)
that jumps even at t1. If s(δ) − τ > 0, then we are in a case where we can
disregard the fault point t1, and we get the condition H(t∗, x∗(t∗), u, p(t∗)) −
H(t∗, x∗(t∗), u∗(t∗), p(t∗)) ≤ 0 for a p(t)-function not jumping at t1, only at fault
points before t1.

Sketch of proof of Remark 4 in the free end case. To show the result
in Remark 4, assume that we have a free end, a single function φ = φ1 (with
g = g1) is given, and that a single crossing point τ exists. We shall use the
arguments of the proof of Theorem 2. Let x(.) be the solution resulting from
the perturbation near t∗ and let ĝ = I + g. Note that the jump point s as be-
fore is determined approximately by s − τ = μC(τ , t)bδ, where μ is determined
as above, see (2.3). If s − τ = s(δ) − τ > 0, then x(s+) = ĝ(s, x(s−)) '
ĝ(s, x∗(τ−) +C(τ, t∗)bδ+ f(τ ,−)(s− τ)) ' ĝ(τ , x∗(τ−)) + ĝt(τ , x

∗(τ−))(s− τ) +
ĝx(τ , x

∗(τ−))[C(τ , t∗)bδ+f(τ ,−)(s−τ)], and x∗(s) = ĝ(τ , x∗(τ−))+f(τ ,+)(s−τ),
so x(s+)− x∗(s) ' ĝt(τ , x

∗(τ−))(s− τ) + ĝx(τ , x
∗(τ−))[C(τ , t∗)bδ + f(τ ,−)(s−

τ)]−f(τ ,+)(s−τ) =: α(δ), and x(t1)−x∗(t1) ' C(t1, s)α(δ) ' C(t1, τ)α(δ). From
this (2.2) modified follows in case s(δ) > τ . Next, if s(δ) < τ, x(τ) ' ĝ(s, x(s−))+
f(τ ,+)(s−τ) ' ĝ(s, x∗(s)+C(s, t∗)bδ)+f(τ ,+)(s−τ) ' ĝ(s, x∗(τ−)+f(τ ,−)(s−
τ) + C(s, t∗)bδ) + f(τ ,+)(s− τ) ' ĝ(τ , x∗(τ−)) + α(δ), so x(τ)− x∗(τ+) ' α(δ)
and x(t1)−x∗(t1) ' C(t1, τ)α(δ). From this (2.2) modified follows in case s(δ) < τ.
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