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Dynamic programming model of health and retirement 

Fedor Iskhakova 

 

 

Abstract: A structural dynamic programming model is applied for modeling labour market 

transitions among older age workers in Norway in 1992-2003.  Special attention is given to early 

retirement pension and disability pension as two major exit routes from the labour force. Health 

status is represented by a latent variable reflecting the eligibility for participating in disability 

programs.  Incomplete information maximum likelihood method is used in several stages to 

facilitate the estimation. 

The model is used to investigate the degree of potential substitution of the early retirement and 

retirement through the disability insurance scheme.  Estimates of the structural parameters of the 

concealed health process allow for forecasting the individual “eligibility” for the disability and thus 

facilitate the assessment of the potential substitution between the two exit routes from the labour 

force.  Performed policy simulation of the complete elimination of the early retirement program 

indicates nearly complete return of the otherwise early pensioners back to the labour market. 

 

Keywords: Retirement, health, early retirement, disability, labour market transitions, structural 

dynamic model, dynamic programming. 
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1.  Introduction and review of the literature 

Recent trend of increasing life expectancy and earlier withdrawal from the labour market has been 

witnessed in many European countries including Norway.  This trend has been threatening the 

financial stability of the social security systems of the PAYGO type.  Forecasts suggest that in the 

absence of major structural change in the National Insurance System in Norway (NIS) expenditure 

on old age pension will increase from 6 to about 15 percent of Mainland Norwegian GDP before 

year 2050 (Summary of report to Storting nr. 12, 2005).  Although the retirement age in Norway is 

relatively high, there is a generous access to disability benefit, which has been playing an important 

role in lowering labour force participation among older persons (both in Norway (Røed and 

Haugen, 2003) and other countries (Bound and Waidmann, 1992)).  Introduction of an early 

retirement program (AFP) in 1989 has contributed further to the reduction of labour force 

participation by providing strong incentives to stop working when the AFP retirement option is 

available (Bratberg et al., 2004).  Hence, policy changes designed to induce higher labour force 

participation or at least to slow down the decline should be considered with a particular attention to 

both the AFP retirement process and the disability retirement as they are the most frequently taken 

exit routes from the labour market. 

The current paper develops a structural dynamic model – the tool best suited for comprehensive 

policy design – which primarily focuses on these two major exit routes from the labour market.  The 

model is formulated on the individual level and keeps track of individual differences with respect to 

the retirement alternatives available for each decision maker.  Whereas the AFP pension eligibility 

rules are well established and documented (for description see Appendix, p. 92), eligibility for 

disability pension is unobserved by the econometrician.  Special method is developed to represent 

the unobservable doctoral screening process which has to recognize the inability of an individual to 

continue working due to health conditions and is the basis of the disability retirement.  Thus, health 

becomes one of the most important notions and its modeling (described below) appears as the 

central innovation in the current paper. 

The existing literature on retirement is generally in consensus about the important role of health in 

the retirement process.  Many of the retirement studies which have established a strong influence of 

the economic incentives to the retirement decision neglect the health effects, although do 

acknowledge the need to take them into account (Gordon and Blinder, 1980; Blau, 1994; Hernæs et 

al., 2000; Borsch-Supan and Schmidt, 2000; Hernæs and Strom, 2000; Powers et al., 2001; Krueger 

et al., 2002; Chan et al., 2003; Conti et al., 2006).  (Bloom et al., 2004) shows in a theoretical model 

how dropping out of labour market may be induced by worsening health.  (Bound, 1998) takes this 

approach to the data and finds empirical evidence of health effects which are especially strong when 
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measured on the relative rather than absolute scale.  (Bound et al., 1995, 1996) show that 

controlling for health in a static model accounts for most of the racial gap in the labour force 

attachment and disability status of older American men and women in the 1990s.  (Disney et al., 

2006) use British household panel survey (1991-1998) to find that both current and lagged health 

shocks are positively correlated with a decision to drop out of labour force.  (Au et al., 2005) also 

find evidence of the influence of health on the retirement behavior when they use Canadian data.  

After (Henretta, 1983; Hurd, 1989; Bourguignon and Chiappori, 1992a; Bourguignon and 

Chiappori, 1992b; Blau, 1997) showed the influence of a spouse to the individual retirement 

decision and the household approach was widely taken into the retirement researchb, (Coile, 2004) 

examines the “added worker effect” which suggests an increase of labour force participation of an 

individual after a negative health shock to the spouse.  (Olson, 1998) studies American households 

and shows that wives without spousal health benefits are more likely to work full-time than those 

who are covered by the spousal health insurance.  Health insurance is also shown by (Rogowski and 

Karoly, 2000) to be important for the retirement decisions, in particular, access to post-retirement 

health insurance has a large effect on retirementc. 

Once the significance of the health status on retirement behavior has been recognized, the issue of 

establishing a plausible and practical model that is capable of providing reliable simulations of the 

key policy measures becomes a major concern.  (Gruber, 2000) studies the elasticity of labour force 

participation with respect to disability benefit generosity using a difference-in-difference approach 

and finds sizable labour supply response to possible changes in disability benefits.  Studies based on 

the reduced from models, however, can not be applied to simulate the effects of central policy 

reforms.  The goal of efficient policy development is best achieved with a structural approach to 

modeling labour market transitions which captures the existing state of nature not simply by 

establishing certain relationships among observed values, but instead through estimating more 

substantial stationary parameters of the processes driving the observed behavior.  Therefore 

structural models are able to represent the responses of the labour market to a given policy and have 

been widely used in the retirement studies within different frameworks: static discrete choice 

(Dagsvik and Strøm, 1997; Dagsvik, 2002; Bratberg et al., 2004; Dagsvik and Strøm, 2006; 

Dagsvik and Jia, 2006), quasi-dynamic approach (Jia, 2000; Hernæs and Strom, 2001; Iskhakov, 

2003), lifecycle approach (French, 1999; Gustman et al., 2004a, 2004b; Gustman and Steinmeier, 

2005) and other (Hurd, 1989; Blau, 1997; Michaud and Vermeulen, 2004). 

                                                 

b See, for example, Gustman and Steinmeier (2000), Vermeulen (2002), Coile (2003), Jia (2003), Gustman and 
Steinmeier (2004), Hernæs, Jia and Strøm (2006). 
c For the survey of the literature on the effects of health insurance see Gruber and Madrian (2002). 
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However, the occurrences of structural modeling of disability are quite rare in the existing literature.  

This is mainly because of the mentioned difficulty of modeling eligibility for disability pension 

which could in principle be overcome if reliable and transparent measures of health were available.  

Unfortunately, absence of essential data makes it impossible to incorporate the process of health 

screening into the structural model. Moreover, not only health data is hardly reliable and seldom 

available, but it also bears internal inconsistencies which are given a lot of attention in the literature. 

Health can be measured in many different ways.  The first and the most straightforward way is to 

ask respondents health-related questions in a survey and to use the answers for constructing either 

multidimensional or scalar measures usually on a simple ordinal scale (Bound et al., 1996; Dwyer 

and Mitchell, 1999; Kreider and Riphahn, 2000; McGarry, 2002; Heiss et al., 2003).  These 

measures may suffer from multidimensionality and incomparability, scale simplicity (as pointed out 

by (Allison and Foster, 2004)) and other problems, but most of all they may suffer from 

endogeneity concerns described, for example, in (Bound, 1991).  Together with other authors they 

raise the suspicion that answering questions about health status the respondents, especially those 

unemployed, may be rationalizing their labour market state or work preferences, which leads to 

overestimation of the influence of health in comparison with economic factors (known as 

“justification bias”).  This suspicion is to some extend neutralized when the survey questions are 

less direct and address simple activities of daily living (ADL)d – health measures based on such 

questions are considered more “objective” (Heiss et al., 2003; Coile, 2004).  Another possibility to 

eliminate the justification bias comes from introducing additional explanatory variables to 

instrument health.  As pointed out by (Bound, 1991) in some circumstances, this gives even worse 

results, and therefore health indexes incorporating both subjective and objective information 

(possibly in different proportions) together with some individual characteristics may serve as “best” 

health measure (Bound, 1998; Dwyer and Mitchell, 1999).  (Disney et al., 2006) call a version of 

such index a “health stock” and use it as one of the explanatory variables in a bigger labour market 

behavior model.  The most serious drawback of a health index approach is its failure to provide a 

general theory of index construction – health indexes are task and project specific.  Further, 

(Kreider, 1999) uncovers deeply imbedded inconsistency of health measurement which follows 

from the fact that health in medical sense is very different from work limitation measures important 

for labour market studies.  The two concepts are very much related but when measurement is not 

perfect, the implied errors may be large.  This is especially vivid when the health indexes are aimed 

at specific applications.  Thus, for example, body mass index (BMI) or health utility index mark 3 

                                                 

d “Do you have problems walking up the stairs?” rather then “Is your health limiting your ability to work?” 
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(HUI3) used in the labour market analysis in (Rogowski and Karoly, 2000; Au et al., 2005) seem 

mostly medically oriented while (Benitez-Silva et al., 2004) give an excellent example of 

constructing a health index that outperforms the procedure used by Social Security Administration 

in the US for evaluating the disability applications.  The last index is based on both the subjective 

measures (health related questions) and objective measures (ADL questions and individual 

characteristics) and is optimized for a narrow job.  It is possible to come up with yet more 

“objective” measures for health as, for example, diagnosis (Gjesdal and Bratberg, 2003) or 

utilization of medical services (Currie et al., 1995).  While the latter measure is definitely more 

appropriate for medical rather than labour market study, the former is used in a simplified form 

when health is measured by different health related events as stroke, cancer diagnosed, etc. (Heiss et 

al., 2003; Coile, 2004).  Finally, mortality appears as the most objective but too aggregate measure 

of health and is therefore not used very often in microeconomic research (McGarry, 2002; Autor 

and Duggan, 2006).  In the same time, self-assessed life expectancy is shown to be well-behaved 

measure (Hurd and McGarry, 2002) which also can be used in labour economic research (Coile, 

2004). 

Most of the different approaches for measuring health listed above originate in the corresponding 

survey questions.  When instead it is a register data collected by the authorities which is used for 

estimation, the choice of health measures is very much reduced.  The only available from the above 

options are mortality, medical services utilization and medical records.  When neither of these is 

suitable or available, sick leave data from the employer registers may be the only option to serve as 

a health proxy in spite of unclear biases it may have in measuring work limitations (Gjesdal and 

Bratberg, 2003)e. 

The described controversies about the health measures are only magnified when it comes to 

modeling health dynamics.  Increasing data requirements and multiplied measurement errors limit 

the available options and force the researches to simplify health related aspects of the models up to 

their complete elimination as in (Jia, 2005).  (Bound, 1998; Au et al., 2005; Disney et al., 2006) 

reflect the dynamic aspects of health by using lagged health measures among the current period 

explanatory variables.  (Gustman et al., 2002; Heyma, 2004) estimate complicated structural 

dynamic models but don’t include health into the set of stationary variables and use health measures 

as exogenous.  When health is allowed to vary over time, the movements may be very much 

restricted with the restrictions not necessarily implied by the theoretical setup but rather by the 

tractability considerations (Berkovec and Stern, 1991; Heiss et al., 2003).  In those rare occasions 
                                                 

e In Gjesdal and Bratberg (2003) the number of days on sick leave is shown to be a significant predictor of the disability 
condition with the overall pseudo-R2 in the model at about 30%. 
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when health is true endogenous state variable, it is usually measured on a simple dichotomous scale 

and is assumed to follow a Markovian motion rule (Rust and Phelan, 1997; French, 1999). 

Bearing in mind the described drawbacks of different health measures and missing the essential 

health data of the necessary quality, I base the model on the new interpretation for health variable 

and use different approach to incorporate health into the structural model with disability retirement 

option.  Let h denote the very eligibility for disability pension, so when 1h =  the option to take up 

disability pension appears in the individual choice set whereas when 0h = , there is no such optionf.  

This definition completely eliminates the controversy of distinguishing medical aspects of health 

from labour market effects and allows me to assess the hidden medical screening process in the 

model.  The variables although becomes unobservable in the data and is therefore treated as latent, 

in other words kept as a parameter while developing the model and integrated out on the estimation 

stage.  Thus, health (equivalent to eligibility for disability) variable simply accounts for implied 

unobserved heterogeneity among the decision makers about their choice sets.  State variable h is 

assumed to follow a simple Markov process which parameters are estimated within the general 

incomplete information maximum likelihood estimation procedureg.  This approach makes the 

model numerically more complicated but still tractable and yields sensitive results. 

In other respects the developed model estimated using the nested fixed point algorithm by (Rust, 

1994) follows the tradition of structural stochastic dynamic programming originating in (Rust, 

1987) and broadened for labour market analysis in (Rust, 1990; Rust and Phelan, 1997).  The 

individuals are assumed to rationally maximize their expected discounted lifetime utility choosing 

at each period the best response to the evolving stochastic environment surrounding them.  This 

environment is represented by the state vector sufficient to define at each period an individual 

choice set and feasible utility level dependent on the chosen alternative.  Besides health, the state 

vector contains records of previous labour market state, current period job match, individual 

eligibility for the early retirement program, existence of a spouse indicator and two income proxies 

representing short and long term trends in the individual earnings.  Preferences are represented with 

an indirect utility function which also counts for some heterogeneity contained in the state vector.  

Altogether the model contains 31 structural parameter some of which are related to the transition 

probabilities of the state variables and some of which enter the specification of the utility function. 

                                                 

f Later in the paper the health variable is defined more accurately and slightly differently. 
g I could have used the EM algorithm (developed by Dempster, Laird and Rubin (1977) and reviewed in Ruud (1991)), 
but simple distributional specification of the latent processes facilitates estimation in one step using overall likelihood. 
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Once the structural parameters of the model have been estimated, it is straightforward to utilize 

them in policy simulations.  Capability for revealing behavioral responses to a given policy not only 

in the period when it is implemented (as in static models) but also in other periods before and after 

the implementation constitutes the irrefutable advantage of the current dynamic model.  In this 

paper I illustrate the application by investigation of the extent to which the AFP and disability exits 

can be viewed as substitutes.  Potential substitution effect between the two retirement possibilities 

could to the great extent alter the effects of any particular policy aimed on either of them.  Early 

retirement rules in Norway leave quite a lot of room for such interaction – as reported by (NOU 

2004:1, 2004) about two thirds of the labour force has an option to take up AFP option up to five 

years earlier than usual retirement.  This questions was addressed before in two separate papers and 

reflected some controversy.  (Bratberg et al., 2004) adopt a non-parametric comparison along with a 

discrete choice model to investigate the question of interdependence of AFP and disability 

retirement and find clear signs for substitution effect of the magnitude between 8.6% and 22.4%.  

At the same time (Røed and Haugen, 2003) using a quasi-natural experiment of lowering the early 

retirement age find practically no substitution between the two exit routes which is line with a 

previous study on American data by (Bound, 1989).  Neither of the two papers assessed underlying 

changes in the health status and concealed eligibility for disability pension – the factors that come 

into play exactly when one of the retirement options becomes unavailable.  Therefore the current 

paper allows me to shed some more light of this issue and trace the dynamic consequences of 

elimination of the early retirement. 

The rest of the paper is organized as follows.  The second section describes the theoretical model 

and the estimation technique, section three is devoted to the data description, section four – to the 

final empirical specifications for the model.  Sections five and six present calibration and estimation 

results respectively.  Last section presents policy simulation and is followed by the concluding 

remarks. 
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2.  The model 

The paper develops a discrete time structural dynamic programming model built on the assumption 

that individuals maximize expected discounted lifetime utility in order to find the optimal path of 

transition from work to retirement.  Health status is modeled as underlying latent stochastic Markov 

process which alters the set of alternatives available to decision makers at each period.  This section 

starts with formulating individual agent problem and ends with the expressions for the choice 

probabilities and the likelihood function. 

2.1.  The agent problem 

The main purpose of the model I develop is to represent the process of making the retirement 

decision and to answer the question when old-age individuals withdraw from the labour force.  I 

start with defining a single agent decision rule which subsequently leads to the choice probabilities. 

Let vector ts S∈  contain the values of the state variables corresponding to the full set of social and 

economic factors effecting the agent’s decision making at period t where S  is the corresponding 

state space.  Some of these variables evolve over time in a random fashion forming a stochastic 

process { }ts�  which can be at least partially controlled by a decision variable td , representing 

agents actions in response to the unrolling realization of the state process { }ts� .  Assume that the 

agent acts rationally trying to maximize a time separable discounted objective function 

0

0

( , )
T

t T
t t

t T

U U d sβ −

=

= ∑
�

�� � ,  (1)

where ( , )t tU d s  is an instantaneous indirect utility at period t  and β  is an intertemporal utility 

discount factor.  The tildes emphasize the fact that corresponding variables are stochastic: the 

decision variable is a function of the uncertain state history 1 2( , , ,..)t t t t td s s sδ − −=� � � � , that is the best 

response to the current and possibly previous states.  A set of these functions forms a decision rule 

( )0
,...,T Tδ δ δ=  describing agents decision making at each time period and thus inducing stochastic 

process { },t td s
δ

� �  which starts in the initial point 
0 01 1( , )T Td s− − . 

For convenience the time index in the model serves as indicator of age, thus random T�  in (1) 

indicates the age of death.  In the dynamic programming specification which follows it is 

substituted in a standard way with the survival probabilities, and for the empirical implementation 

of the model I fix the limits 0T  and T  such that the most important life span for retirement behavior 

study is covered: 0 1 50T − =  to include sufficient number of years before possible retirement in 
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order to capture planning and health dynamics and 70T =  due to the compulsory retirement age 

after which no transfers occur and no decisions are made.  Other dynamic programming studies 

include later ages into the model to make it more realistic in a sense that each individual is tracked 

up until certain death – then the time horizon is set so that all agents surely die within the modeling 

period.  The associated calculation burden can be escaped by limiting the modeled period with the 

necessity to estimate additional termination function ( )TsΛ �  which captures the remaining lifetime 

utility.  Thus the latter approach does have its computational downside as additional parameters are 

introduced, but this complication seems to be of the smaller scale compared to setting a large time 

horizon, and therefore is adopted in the paper. 

An important assumption that has to be made concerns agents preferences over uncertainty.  I 

assume the decision maker to be an expected utility maximizer.  This assumption is in a sense 

inevitable because as (Rust, 2006) discusses the expected utility concept is quite deeply imbedded 

into the dynamic programming methodology itself.  I assume that when taking decisions regarding 

their labour market state individuals solve the following sequential decision problem: 

( )0

0 0

( , ) max
T t

t T
t t T

t T T

E U d s sτ δτ

ρ β −

∈
= =

⎧ ⎫⎛ ⎞⎪ ⎪+ Λ →⎜ ⎟⎨ ⎬
⎪ ⎪⎝ ⎠⎩ ⎭
∑ ∏

F

h,  (2)

where expectation is taken over the survival probabilities τρ  (corresponding to survival from period 

1τ −  to period τ ) and the set of subjective transition probabilities { }1 1( | , )t t tp s s d− −  that govern the 

stochastic process { },t td s
δ

� �  induced by the given decision rule δ ∈F .  I deliberately restrict the 

model to express Markovian property by limiting the influence of history of states in the subjective 

transition probabilities – this common simplifying assumption allows for drastic reduction of the 

computational burden on the estimation stage.  In the same time this approach has been considered 

plausible in socio-economic studies as there are reasons to believe that human behavior is 

conditioned on the current life situation to much greater extent compared to the events in the past.  

Along with the assumption that decisions are made within each period after the realization of the 

state variables, the state history in the expression for decision rules can be dropped apart from the 

first component denoting the current state.  Note also that some of the transition probabilities may 

be degenerate if a state variable evaluates according to some deterministic low of motion. 

Agent problem (2) restricts the choice of decision rule in the maximization procedure to class F  

which in the case of Markov decision problem in the finite time horizon can be limited according to 

                                                 

h Notation introduced by Nobel prize winner L.V. Kantorovich (see, for example, Kantorovich (1976)). 
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the theorem 2.1 in (Rust, 1994) to the class of feasible Markovian decision rules of the form 

( )0 0
( ),..., ( )T T T Ts sδ δ δ= � � .  Under the weak regularity conditions the theorem guarantees the existence 

of Markovian non-randomized optimal decision rule *δ  that solves the agent problem (2). 

Even though the optimal decision rule *δ  is a deterministic function of the state, the agent is not 

pre-committed to any set of fixed actions designed ax ante (as he would be in a life cycle model), 

instead in each period the agent makes an optimal decision using the new information emerging 

over time.  Still, the commitment to the optimal decision rule requires the agent to act in a time-

consistent fashion, in other words, all the decisions taken in the past are perceived by the agent as 

optimal and thus there are no incentives to change the part behavior ex post.  This coincides with 

the assumption of expected utility maximization, in fact (Hammond, 1988) shows that under the 

time consistency assumption (along with some technicalities) expected utility concept is the only 

feasible representation of preferences. 

Feasibility conditions that define the class F  are expressed in a family of choice sets 1( , )t t tD s d −  

that represent the available to the agent options at period t.  Decision rule ( )0
,...,T Tδ δ δ=  is said to 

be feasible if and only if for each 0{ ,..., }t T T∈  1( ) ( , )t t t t ts D s dδ −∈ .  In other words, the class F  can 

be represented by a Cartesian product of the choice sets 
0 1( , )T

t T t t tD s d= −⊗F = .  Definitions of the 

family of choice sets 
01 { ,.., }{ ( , )}t t t t T TD s d − ∈  and transition probabilities { }1 1( | , )t t tp s s d− −  conclude the 

agent sequential decision problem setup. 

The family of the choice sets will be defined shortly, while the set of transition probabilities is fully 

defined only in the third section of the paper since it is deeply connected to the empirical 

specification of the model.  For some state variables however the evolution rules are simple and can 

be presented sooner apart from the data. 

2.2.  Solution technique for the agent problem 

The sequential decision problem (2) falls into the mathematical category of stochastic optimal 

control in discrete time.  The problems of this type rarely have analytical solutions.  Instead a much 

more common technique may be applied, namely the numerical method of calculating optimal 

decision rule through backward induction.  In order to proceed, define a value function ( )t tV s  by 

( )
1

1
1

( , )

1 1 1 1( , )

max ( , ) , ,

( )
max ( , ) ( ) ( | , ) , ,

T T T T

t t t t
t

T T Td D s d

t t

t t t t t t t td D s d s S

U d s s t T

V s
U d s V s p s s d t Tρ β

−

−
+

∈

+ + + +∈
∈

⎧ ⎡ ⎤+ Λ =⎣ ⎦⎪⎪= ⎨ ⎡ ⎤
+ <⎪ ⎢ ⎥

⎪ ⎣ ⎦⎩
∑

 (3)
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and derive recursive expression for the optimal decision rule ( )0
,...,T Tδ δ δ∗ ∗ ∗=  

( )
1

1 1

( , )

1 1 1 1
( , )

arg max ( , ) , ,

( )
arg max ( , ) ( ) ( | , ) , .

T T T T

t t t t t

T T T
d D s d

t t

t t t t t t t t
d D s d s S

U d s s t T

s
U d s V s p s s d t T

δ
ρ β

−

− +

∈
∗

+ + + +
∈ ∈

⎧ ⎡ ⎤+ Λ =⎣ ⎦⎪⎪= ⎨ ⎡ ⎤
⎪ + <⎢ ⎥
⎪ ⎣ ⎦⎩

∑
 (4)

Expressions (3) and (4) allow for the computation of the optimal decision rule explicitly starting 

from the last period (first cases in the expressions) and continuing backwards step by step using 

already calculated values of the value function in the next consecutive period.  Proceeding this way 

ensures that the optimality principal that characterizes solutions of the optimal control problems is 

satisfied.  The optimality principle states that at each step the optimal control solves the 

corresponding sub-problem which starts at the current step and reproduces the original one up to the 

period T.  In other words, the optimality principle states that decision rule ( )0
,...,T Tδ δ δ∗ ∗ ∗=  is 

optimal if for every 0{ ,.., }T Tτ ∈  

( ) ( ) ( )
1 0( ,.., ) ( , )

,..., arg max ( ),
T

T s s s s

T t
t

T s t t t T
D s d t s T

E U s s s
τ τ

τ
τ

δ δ τ

δ δ ρ β δ
= −

∗ ∗ −

∈⊗ = =

⎧ ⎫⎛ ⎞⎪ ⎪= +Λ⎜ ⎟⎨ ⎬
⎪ ⎪⎝ ⎠⎩ ⎭
∑ ∏ � � � .  (5)

It is straightforward to verify that a backward induction algorithm indeed produces the sequence of 

optimal controls that altogether constitute a numerical representation of the optimal decision rule 

for a particular realization of the { }ts�  process corresponding to a given agent.  It is also obvious 

that the value function ( )t tV s  takes the values of the optimized objective function in each of the 

sub-problems given by (5), and when 0Tτ =  

( ) ( )0

0
0 0 0

( ,.., )
( ) max ( ),

T T

T t
t T

T s t t t T
t T s T

V s E U s s s
δ δ
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∈
= =

⎧ ⎫⎛ ⎞⎪ ⎪= +Λ⎜ ⎟⎨ ⎬
⎪ ⎪⎝ ⎠⎩ ⎭
∑ ∏ � � �

F
,  (6)

( ) ( )0

0 0 0

*

( ,.., )
arg max ( ),

T T

T t
t T

s t t t T
t T s T

E U s s s
δ δ

δ ρ β δ−

∈ = =

⎧ ⎫⎛ ⎞⎪ ⎪= +Λ⎜ ⎟⎨ ⎬
⎪ ⎪⎝ ⎠⎩ ⎭
∑ ∏ � � �

F

.  (7)

Thus, the optimal decision rule *δ  indeed constitutes the solution to the agent sequential decision 

problem. 

2.3.  Decision and state variables 

The next several sections describe the essential parts of the agent sequential decision problem in 

greater details.  First, the state variable vector ts  is populated with meaningful content and then the 

family of choice sets 
01 { ,.., }{ ( , )}t t t t T TD s d − ∈  and the transition probabilities { }1 1( | , )t t tp s s d− − . 
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Constructing the set of state and decision variables is not a simple process and is heavily effected by 

the following two considerations.  First, the model must be adequate in describing the real empirical 

processes which are the subject of the study.  This is crucial for getting a reasonable goodness of fit 

and respectively gaining the explaining and forecasting power of the model.  Policy simulations 

which is one of the main objectives in the work, would be impossible with poor correspondence 

between the model and the reality.  These considerations drive the desire to make the model design 

as close to the reality as possible, taking into account many personal characteristics of the agents 

and those of the states on the labour market.  On the other hand the model must be realistic in 

computational sense.  Well studied problem of exponential grows of the amount of calculations 

required to solve the agents problem with the dimensions of the state and decision space named by 

(Bellman, 1962) “the curse of dimensionality” prevents use of too realistic setups even with the 

drastic development of computing technology after the curse was first encountered.  In the current 

paper I adopt a compromise which is based on the fact that bounded discrete variables add much 

less to the dimensions of the problem (when it is expressed in the total number of grid points of the 

state space) than the continuous ones.  Indeed, any continuous state variable must be represented by 

a grid vector (random or regular) which most likely contains much more points than any bounded 

discrete variable represented by finite number of its values.  This is specially true when the discrete 

variables are defined with small number of values.  Under this logic I mostly use discrete variables 

to represent different systematic and stochastic aspects of an individual working life between ages 

50 and 70 which were mentioned in the introduction. 

The constructed set of state variables naturally separates into several categories.  The age of the 

agent is worth mentioning in the first category.  This is an essential variable for most economic 

processes cointegrated with labour market transitions, but is omitted from the state variables vector 

because as mentioned above it is identical to time index.  This became possible by fixing specific 

age window so that at the first period in the model corresponds to 50 years of age. 

The second category is the subset of state variables that could by convention be called constants.  

These are the agent specific characteristics which are constant throughout the modeling period but 

have to be kept in mind when calculating the likelihood function.  The most important (and the only 

two used in the empirical specification of the model) are individual specific AFP age that is the 

earliest age of possible retirement through the early retirement programi and gender of the decision 

maker.  To simplify the notation I omit these variables for the rest of the paper except for after the 

empirical part, but it should be kept in mind that the agents are differentiated in accordance to them. 
                                                 

i This variable would also serve as an indicator for the population cohort because birth year of the agent is not controlled 
for and timeline is synchronized with age. 



 13

The third category is defined as the variables effecting the choice set in the current period.  These 

are previous labour market state, health, job match and eligibility for early retirement.  The fourth 

and final category contains the variables that together with current decision determine the economic 

situation in the current period and thus effect current period utility.  These variables are spouse 

existence, number of last consecutive years with high incomes and aggregate wagej.  Before 

describing the variables from the last two categories in details consider the timing assumption 

adopted in the paper. 

I assume that the state process { }ts�  is evaluated in the beginning of each period followed by the 

reaction on the decision maker’s side, so that the values of the current period state variables are 

realized before the decision is chosen.  Decision made afterwards is only capable of influencing the 

utility level for the current period and alter somewhat the evaluation of the state process in the next 

period.  Note that this very assumption was implied above in the sequential decision problem 

description.  The purpose of this setup is to emphasize that the state process is in a sense underlying 

and superior to the agents behavior.  The agent is only forced to react to the changes in his or her 

current situation trying to obtain the highest possible level of utility from the realized conditions.  

This seems to be a more reasonable description of the average later working life than the opposite 

one.  Aged workers are more likely to be pursuing their retirement plans suffering from sudden 

labour market moves or health problems rather than pursuing their carrier ambitions.  Besides, the 

state variables describing the economic situation of an individual by age 50 have already gained 

certain momentum making them harder to control, for example the underlying aggregate wage 

profile already at the initial period contains most of the working history of the individual and can 

only be corrected other than shaped from scratch. 

Consider first the variables constituting the choice set in the current period.  These are: 

 Previous period labour market state {0,..,7}tps ∈  is the main choice set defining variable that 

indicates what labour market states are available in the current period under the important 

absorbing assumptions explained shortly.  To facilitate the chosen timing structure it is 

essential to include lagged labour market state variable into the state vector.  Note however 

that this trick does not compromise the Markovian structure of the decision problem.  For the 

purpose of the current study the following labour market states are introducedk: 

 0tps =  – out of labour market (OLM), 

                                                 

j Exact definition for the aggregate wage is given in the later sections. 
k The chosen labour market states, and specifically combination of work and disability, are suggested by the preliminary 
data analysis. 



 14

 1tps =  – full time early or regular pension, 

 2tps =  – full time disability, 

 3tps =  – unemployment (including partial unemployment), 

 4tps =  – employment in non-AFP companyl, 

 5tps =  – partial employment in non-AFP company, partial disability, 

 6tps =  – employment in AFP company, 

 7tps =  – partial employment in AFP company, partial disability. 

The first three labor market statesm constitute the out of labour market group while the last 

five correspond to active labour market positions.  In order to keep track of availability of 

early retirement option I distinguish AFP from non-AFP labour market participation.  Partial 

disability is the only considered form of partial retirement, other types of phased retirement 

are assumed away.  OLM state allows building exhaustive set of labour market states which is 

required in the discrete choice models of many sorts.  Economic interpretation of this labour 

market state is not working at all (house wife) or self-employment.  Mutual independence of 

the introduced labour market states as well as strict definitions for them are given in section 3 

of the paper, while the absorption assumptions are explained below within the definitions of 

choice sets. 

 Health status {0,1, 2}th ∈  is the first and the main latent variables in the model.  As it was 

described in the introduction existing literature rarely addressed health directly because this 

very important state variable is extremely hard to measure.  Given considerations drove me to 

introduce health as a latent variable and give it a special definition.  Health is thought of 

specifically as eligibility for disability pension.  This way, 0th =  is good health with no 

option to retire through disability, 1th =  gives an option to become partially disabled with 

reduced labour market opportunities while 2th =  implies full time disability.  Thus, some of 

the health status should be recoverable from the data on occupied labour market states, but the 

hypothesis that bad health could be in some sense concealed until a convenient retirement 

opportunity comes around makes the health variable unrecoverable completely from the data 

                                                 

l AFP and non-AFP companies differ in their participation in the early retirement agreement, see Appendix A.1, p. 92. 
m I decided to distinguish “state” in the dynamic programming sense from “labour market state” by keeping the latter as 
definitive expression even though some labour market states actually indicate the absence from the labour market. 
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and gives rise to the question of possible substitution of disability with other forms of 

retirement. 

 The need to explain transitions between AFP and non-AFP employment when the former for 

any preferences specification dominates the latter (because of the retained option to retire 

early) as well as the need to explain transitions to unemployment facilitates the use of separate 

labour market matching process {0,1, 2}tm ∈  with the following interpretation.  If 0tm >  

there is a job opening in the current period ( 1tm =  – in non-AFP, 2tm =  – in AFP company), 

otherwise an individual is forced to unemployment and possibly to full time disability.  This is 

the second latent variable which is however fully recoverable from the data on occupied 

labour market states. 

 Adequate representation of the complicated early retirement process in Norway (see section 

A.1 in the Appendix, p. 92) requires a special variable {0,1}te ∈  to keep track of the 

eligibility conditions not directly verifiable within the model.  Since affiliation to a AFP 

company is directly verifiable by the labour market state, this variable mainly reflects 

individual AFP eligibility criteria.  Thus, 1te =  is necessary but not sufficient for the early 

retirement option to be included in the choice set in the current period.  More detailed 

description of how the verification of the AFP rules is performed within the state vector is 

given in section 4 when the motion rules of variable te  are defined. 

The way these four state variables determine the current period choice set is described in the next 

section after the definitions of state and control variables is completed.  The final category of state 

variables contains variables essential for current period utility calculation which are: 

 Spouse existence indicator {0,1}tsp ∈ : if 1tsp =  the agent under consideration is not a single 

individual but a household which by the simplified construction of the model differs from a 

singe person household (individual) only by possible existence of additional income source 

from a spouse.  I assume that full households are governed by the same preferences as single 

households which is justified by the unitary or Stackelberg equilibrium approaches to 

household preference modeling (Hiedemann, 1998; Jia, 2003; Hernæs et al., 2006).  I also 

assume away the events of new marriages but allow full households to become single in case 

of divorce or death of the spouse (which is more probable is the considered age group).  

Further discussion is given in section 3 dealing with data issues. 

 Finally, the aggregate wage taw +∈\  represents the lifetime trend in the wage income flow 

for the agent.  This is the only continuous state variable in the model and bears most of the 
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burden of explaining household income in a particular time period.  Section 3 considers 

several candidates for this variable available in the data and discusses related issues. 

 In addition, bearing in mind that the rules for social benefits (pensions, disability) include 

conditions on the number of consequent years with high income (where “high” is defined by 

the level of basic pension G) I decided to include in the state vector additional discrete 

variable indicating the number of last consecutive years with wage over the basic pension 

amount {0,1...10}tnw ∈ .  This number is truncated at 10 in accordance with the mentioned 

principle of keeping the problem dimensions possibly lower and under assumption that 

additional values for this variable do not bear considerable additional information.  This 

variable will however be able to improve the information fullness of the state vector 

indicating the short term trend in the household income flow. 

This concludes the description of the state variables defining the state vector ts  as 

( , , , , , , )t t t t t t t ts ps h m e sp nw aw= .  (8)

In contrast to the state vector, the decision variable in the current model is unitary.  Define the set of 

all possible decisions (decision space) {0,.., 4}D =  with the following interpretation. 

 0td =  – the agent remains on the labour market, does not apply for any pension, 

 1td =  – the agent applies for disability benefits, but remains on the labour market, 

 2td =  – the agent retires, applies for disability benefits, 

 3td =  – the agent retires, applies for old age or AFP pension, 

 4td =  – the agent leaves labour market, but does not apply for any pension. 

Thus, the decision variable indicates the intentions of the agent to acquire a certain position on the 

labour market, which is matched against current state to determine actual outcome (which becomes 

the current labour market state and is recorded and next period 1tps +  variable).  Decision is made in 

two dimensions: whether to stay on the labour market or leave it, and whether to apply for pension 

or disability benefit.  One combination of the answers (namely, staying on the labour market and 

simultaneously receiving pension or phased retirement) is ruled out, which leaves 5 possible values 

for the decision variable.  Clearly, some intentions are also useless in particular situations, for 

example intention to go on pension before the early retirement age, such cases are regulated in the 

model by the definitions of the choice sets discussed in section 3. 

According to the introduced categories of the state variables the expression 1( , )t t tD s d −  may be 

concretized as 1 1( , ) ( , , , , )t t t t t t t t tD s d D ps h m e d− −=  and further as 
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1( , ) ( , , , )t t t t t t t tD s d D ps h m e− = ,  (9)

because the influence of the previous period decision 1td −  to the choice set is recorded in the current 

period state variable tps .  By construction, tD D⊂  for any 0{ ,.., }t T T∈ . 

2.4.  Decision tree 

Definitions of the choice sets from the family 
0{ ,.., }{ ( , , , )}t t t t t t T TD ps h m e ∈  are very much related to the 

motion rules of the tps  state variable.  Given the current period state vector ts , a feasible decision 

t td D∈  is chosen to determine the current period labour market state that is recorder in the 1tps +  

variable.  Thus, defining the family 
0{ ,.., }{ ( , , , )}t t t t t t T TD ps h m e ∈  is equivalent to setting restrictions on 

the evolution of labour market state.  The following considerations then shape the choice sets. 

 Mandatory retirement age in Norway is 70, hence only retirement is available among all the 

labour market states at this age. 

 Before the usual retirement age of 67 the only possible form of retirement is early retirement 

(AFP), after the usual retirement age of 67 any individual can go on pension (in particular, 

full time disabled are forced into pension). 

 Early retirement through AFP program is only available for the eligible individuals.  As 

described in the Appendix (p. 92), both company and individual criteria have to be met.  

Employment in the AFP-affiliated company and some other directly verifiable requirements 

can be checked with the means of the state variables (first of all tps  and tnw ) while non-

directly verifiable requirements as individual eligibility is tracked with state variable te . 

 Full time and partial disability can only be attained when the health variable th  takes 

correspondingly values of 2 and 1.  This obvious feature of choice set expansion with bad 

health is the central feature of the model.  Note however, that the matching process { }tm�  does 

not modify the choice sets, instead it separates intentions of an individual from the actual 

labour market state attained in the outcomen.  Also “very bad” health 2th =  contracts the 

choice set to a singe point (up to retirement age) 2td =  instead of expanding it. 

Finally, the following absorption assumptions are made. 

 Pension is completely absorbing, once a person is retired, he or she neither may go back to 

work nor has incentive to transfer to any other state other then pension. 

                                                 

n Except for the situation of bad health and no job match – then the individual is forced into the full time disability. 
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 Full time disability is equivalent to completely absorbing, as the only transfer from this state 

is inevitable transfer to pension at age 67. 

 Once in OLM state an individual is not allowed to return to the labour market neither as an 

employee nor as a registered unemployedo. 

Absorption assumptions are rather strict – they completely separate the active area among the 

labour market states so that once an agents takes a decision to leave active labour force (states on 

the labour market from 3 and up), no return is possible.  I impose these restrictions to emphasize the 

directional nature of the retirement decision.  Independent of the chosen form of retirement this very 

decision significantly reduces the choice set of an agent for the rest of his or her life.  For elderly 

workers over 60 this is completely substantiated in the data, in the younger group such trend is well 

pronounced.  These assumptions have also been used in the previous studies, for instance (Stock 

and Wise, 1990b; Stock and Wise, 1990a; Hernæs and Strom, 2001). 

In order to force these restrictions and form the decision tree, it is necessary to introduce the motion 

rule for the labour market state variable.  It is best described in a table (see Table 1).  Here the 

correspondence between decision variable td  and the resulting labour market state in the current 

period 1tps +  is separated with a “filter” of state variables representing all the conditions described 

above. 

Table 1.  Evaluation of current labour market statep. 
Control Filter 

td  Remain 
on LM? 

Apply for 
pension? tps  th  tm  te  Age 

Resulting labour market state 
1tps +  

0 0 3 Unemployment 
1 4 Non-AFP employment 0 yes no 3≥  

2≠  
2 

- 70<  
6 AFP employment 

1≠  1 0 2 Full time disability 
1 1 5 Partial disability (non-AFP) 1 yes disability 

3≥  
1 2 

- 70<  
7 Partial disability (AFP) 

2 no disability 1≠  0>    70<  2 Full time disability 
6≥  1 afp≥  
1=  afp≥  3 no AFP/NIS 

- 
- - 

- 
67≥  

1 Pension 

4 no no 1, 2≠  2≠  - - 70<  0 OLM 
 

                                                 

o This limitation is suggested by the preliminary analysis of the data and allows for considerable simplification of the 
likelihood function and the backward induction calculation. 
p In the forth row the age is compared against the individual early retirement age. 
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Intuitive definitions of the choice sets are then very simple.  A given value of td  is included in the 

choice set if and only if it passes through the “filter”, or in other words leads to a certain current 

period labour market state when the state vector is fixed at its current value.  Expressions (10-14) 

give strict definition of the family 
0{ ,.., }{ ( , , , )}t t t t t t T TD ps h m e ∈ . 

3,
0 ( , , , ) 2,

70,

t

t t t t t t t

ps
d D ps h m e h

t

≥⎧
⎪= ∈ ⇔ ≠⎨
⎪ <⎩

 (10)

1,
70,

1 ( , , , )
1, if 0,
3, if {1, 2},

t

t t t t t t
t t

t t

h
t

d D ps h m e
ps m
ps m

=⎧
⎪ <⎪= ∈ ⇔ ⎨ ≠ =⎪
⎪ ≥ ∈⎩

 (11)

1

1,
2 ( , , , ) {1, 2},

70,

t

t t t t t t t

ps
d D h m e s h

t
−

≠⎧
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⎪ <⎩
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1
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1,

3 ( , , , ) 1, 67,
,

,

t
t

t t t t t t t
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ps
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−
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1

{0,3, 4,5,6,7},
4 ( , , , ) 2,

70,

t

t t t t t t t

ps
d D h m e s h

t
−

∈⎧
⎪= ∈ ⇔ ≠⎨
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where afp marks the individual AFP retirement age. 

It is easy to see that the family 
0{ ,.., }{ ( , , , )}t t t t t t T TD ps h m e ∈  is defined in such a way that for some 

combinations of state variables a corresponding choice set is empty.  This may present a 

considerable problem for the calculation procedure implementing the backward induction algorithm 

which finds an optimal response for each combination of state variables at each period.  The 

problem can be solved by assigning zero probabilities to the useless combinations of state variables.  

How this is done in the model and what advantages follow from this complication is described in 

the next section. 

2.5.  Motion rules 

In this section I start defining the set of transitional probabilities { }1 1( | , )t t tp s s d− −  with the 

discussion of general assumptions about its structure and present simple motion rules.  Definition is 

completed when the empirical specification of the model is given later in the paper due to the fact 
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that many of the transition probabilities will be defined through statistical models estimated on the 

available data. 

Generally speaking, transition probabilities { }1 1( | , )t t tp s s d− −  governing the Markov stochastic 

process { },t td s
δ

� �  constitute a square matrix (of the dimensions equal to the number of elements in 

the state space) which can be altered by the previous period decision 1td − .  This matrix is quite 

extensive.  The defined value sets for the state variables result in the number of elements equal to 

19 0082 times the squared number of grid points for taw .  This makes it practically impossible to 

estimate individual probabilities from the data.  One solution to the problem suggested by (Rust, 

1990) is decomposition of the full matrix to smaller blocks by assuming some specific dependence 

structure on the stochastic elements included into the model. 

I make the following major assumptions with regard to the dependence structure.  First of all, health 

is thought of as fundamental underlying Markov process, which evolves completely independently 

with the transition probability matrix 

00 01 02
( )

, {0,1,2}{ } 0.0 1.0 0.0
0.0 0.0 1.0

h h h

h
ij i j

π π π
π ∈

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

,  (15)

where unspecified matrix elements are parameters.  Health transition probability matrix is uniform 

for all individuals.  Bad health statuses are completely absorbing.  This is very natural in light of 

health definition as eligibility for disability benefits, and also substantiated by the dataq. 

I assume matching process to depend on the health in a way that would reflect limited labour 

market opportunities for the partial disabled.  Consider transition probability matrix for { }tm�  of the 

form 

00 01 02 01 02
( )

, {0,1,2} 10 11 12 11 12

20 21 22 21 22

( ) (1 )
{ } ( ) (1 )

( ) (1 )

m m m bhm m bhm m bhm

m m m m bhm m bhm m bhm
ij i j

m m m bhm m bhm m bhm

π π π θ π θ π θ
π π π π θ π θ π θ

π π π θ π θ π θ
∈

⎡ ⎤+ + ⋅ − ⋅ ⋅
⎢ ⎥= + + ⋅ − ⋅ ⋅⎢ ⎥
⎢ ⎥+ + ⋅ − ⋅ ⋅⎣ ⎦

,  

1 if 0,

0 1if 1,

0 if 2.

bhm
t

bhm
t

bhm
t

h

h

h

θ

θ

θ

⎧ = =
⎪

≤ ≤ =⎨
⎪ = =⎩

 (16)

Parameter bhmθ  redistributes the probability mass away from the second two columns 

corresponding to the job openings independently from the previous value 1tm − .  This insures that 

                                                 

q In fact, the transition probability from “bad” to “very bad” health 12
hπ  was assigned zero value in a preliminary 

calibration.  This is due to the fact that both of these health statuses present a path to the same labour market outcome of 
full time disability (according to Table 1) and thus 12 0hπ =  does not compromise the flexibility of the model. 
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once agent’s health is deteriorated the labour market opportunities can be immediately reduced.  

Note though, that the matching process transition probabilities are only dependent on health status.  

Other sources of heterogeneity (including individual heterogeneity) is not controlled for similar to 

the health status evolvement.  When 2th =  variable tm  becomes zero with probability one. 

The rest of the motion rules are less obvious.  State variables te , tnw  and taw  have more 

complicated dependence patterns which will be uncovered later in the paper.  Spouse existence 

indicator tsp  is a Markov process with the fixed exogenous transition probabilities described in 

section 3.  Evaluation of labour market state (which is recorded with lag one in the variable 1tps + ) is 

deterministic and has been described in the previous section with the means of Table 1. 

As it was noted in the end of the last section some combinations of the state variables are useless in 

a sense that they are accompanied with empty choice sets and must be assigned zero probabilities in 

the transition probability matrix { }1 1( | , )t t tp s s d− − .  The other possible source of zeros in the matrix 

are deterministic or limited motions of the state variables, for example evolvement of health 

variable constrained by absorption (with zeros in (15)) or limited evolvement of tnw  which can in 

one period be either incremented by one or nullified (probabilities corresponding to the rest of the 

transitions are zeros).  In general occurrence of zero elements and their distribution in the matrix 

{ }1 1( | , )t t tp s s d− −  should be carefully studied and may be used to speed up solution algorithm since 

skipping the calculations associated with the zero-probability states spares calculation time. 

This is especially relevant if the transition probability matrix { }1 1( | , )t t tp s s d− −  contains complete 

rows and column of zero elements associated with improbable combinations of state variables.  The 

following considerations should be utilized. 

 The first time retirement possible in principle is at AFP retirement age.  Therefore 

Pr{ 1, } 0tps t afp= ≤ = . 

 Without loss of generality it is possible to enforce Pr{ 1, } 0te t afp= < =  and 

Pr{ 1, 67} 0te t= ≥ =  because individual AFP eligibility indicator is essential in the model 

only between AFP eligibility age and normal retirement age. 

 Moreover, Pr{ 0, 1, 67} 0t te ps t= = < =  because AFP retirees are automatically AFP eligible.  

This is a limitation similar to the pension absorption, but expressed in a slightly different way. 

 { }Pr 1, {1,6,7} 0t te ps= ∉ =  because the AFP eligibility rules require AFP employment for the 

possible early pensioners in the last years prior to retirement which makes it impractical to 
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keep track of other AFP eligibility criteria (see Appendix for AFP rules).  The only exception 

is absorbing retirement state itself. 

 Without loss of generality { }Pr 0, {0,1, 2} 0t tm ps≠ ∈ =  since matching is only essential for 

the active labour market states and in the same time out of labour market states are jointly 

absorbing (if this was not the case, the initial match could be reset which would result in the 

loss of information). 

 Similarly Pr{ 0, 2} 0t tm h≠ = =  because match is not relevant for fully disabled and this 

labour market state is absorbing. 

 { }Pr 0, {2,5,7} 0t th ps= ∈ =  combines the logic from health transition probability matrix (15) 

and Table 1 to express explicitly that once on partial or full-time disability an individual can 

not happen to be in good health again. 

Investigated improbable states constitute complete columns and rows of zero values in the transition 

probability matrix { }1 1( | , )t t tp s s d− −  which implies that these combinations of state variables can 

never be occupied by the modeled stochastic process { },t td s
δ

� �  and therefore can be completely 

eliminated from the calculation procedures. 

Achieved reduction of state space is graphically shown in Figure 11 in the Appendix (p. 101).  It 

displays the map of essential state variables, where the vertical axes corresponds to all possible 

values of the partial state vector ( , , , )t t t tps h m e  and the horizontal axes represents age.  Black areas 

are the only combinations with positive probabilities of occurrence.  Exclusion of some state 

variables combinations allows for the reduction of the effective number of points for the value 

function calculation from 66 528 (times the number of grid points for taw ) to 17 446, thus giving a 

73,8% reduction in the dimensions of the problem! 

The drawback of the state elimination technique is the need to very carefully implement the 

probability calculation procedure to ensure that eliminated states are indeed associated with zero 

probabilities.  I will come back to Figure 11 and the complications related to it when the discussion 

of transition probabilities family { }1 1( | , )t t tp s s d− − is continued later in the paper. 

2.6.  Likelihood function 

To conclude the description of the model I follow (Rust, 1994) to present briefly the model 

estimation method. 
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To be able to rationalize inevitable discrepancies between the theoretical model and the observed 

data a standard approach is to suppose that an observed state vector is not complete, so that there 

are some additional state variables which effect the choices made by the agent but are not seen by 

the econometrician.  In particular assume there exist five additional unobserved state variables 

combined in a vector | |D
t Rε ∈  which alter the instantaneous utility function ( , )t tU d s  in the agent 

problem (2) so that 

( , ) ( , ) [ ]t t t t t tU d s u d s dε= + ,  (17)

where ( , )t tu d s  is non-stochastic component of the utility that will be given particular functional 

form later on and [ ]t tdε  is the component of vector tε  corresponding to the decision td .  Important 

conditional independence assumption on the transition probabilities of the new state vector has to be 

made. 

1 1 1 1 1( , | , , ) ( | ) ( | , )t t t t t t t t t tp s s d q s p s s dε ε ε− − − − −= ⋅ .  (18)

Condition (18) extends dependence structure imposed above on the transition probabilities 

{ }1 1( | , )t t tp s s d− −  to include the newly introduced unobserved variables.  They are assumed to 

depend on their previous values only through the observed state variables and moreover constructed 

earlier transition probabilities for the observed state variables are completely independent of the 

newly introduced unobserved variables (although the decision may as well be dependent on them). 

Necessary assumptions (17) and (18) on the additional unobserved state variables are not satisfied 

for already existing latent variables th  and tm  introducing second type of unobserved variables in 

the model.  Indeed, conditional independence assumption is violated, first, by the fact that health 

process evaluates conditional on the previous own value which are not recovered from the 

observations, besides, evaluation of the observable state variables (for example, labour market 

position) does in fact depend on the realization of both health and matching processes. 

For careful implanting additional unobserved variables into the general model setup, state space 

must be expanded by Cartesian multiplication with | |DR , choice sets redefined so that 

( , , , , ) ( , , , )t t t t t t t t t t tD ps h m e D ps h m eε = , probability distribution function ( | )t tq sε  defined so that 

{ }Pr ( [ ] | ) 0 1t t tq d sε = =  for all ( )t t td D s∉ , instantaneous utility redefined according to (17) and 

transition probabilities redefined according to (18).  Once this is done, theorems 3.1, 3.2 and 3.3 

from (Rust, 1994) can be applied to state under minor additional technical requirements on the 

density ( | )t tq sε , utility function ( , )t tu d s  and probabilities { }1 1( | , )t t tp s s d− −  the following result. 

There exists a “social surplus” function 
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{ }( ) [ ]
| |

( )
( , ), ( ) | max ( , ) [ ] (d | )

t tD
t t t t t t t t t t t t td D s

R

G u d s d D s s u d s d q sε ε
∈

∈ = +∫ ,  (19)

which is concave in { }( , ), ( )t t t t tu d s d D s∈  and has useful additivity property 

{ }( ) { }( )( , ) , ( ) | ( , ), ( ) |t t t t t t t t t t t t t tG u d s d D s s G u d s d D s sα α+ ∈ = + ∈ .  (20)

In the expanded sequential decision problem the optimal decision rule 

( )0 0 0
( , ),.., ( , )T T T T T Ts sδ δ ε δ ε∗ ∗ ∗=  is given by 

{ } 0
( )

( , ) arg max ( , ) [ ] , { ,.., }
t t t

t t t t t t t t
d D s

s v d s d t T Tδ ε ε∗

∈
= + ∈ ,  (21)

where ( , )t t tv s d  is defined as (recall that S denotes the state space) 

( )
{ }( )

1

1 1 1 1 1 1 1 1

( , )

( , ) , ,

( , ) ( , ), ( ) | ( | , ), .
t

t t t

T T T

t t t t t t t t t t t t t t
s S

v s d

u d s s t T

u d s G v d s d D s s p s s d t Tρ β
+

+ + + + + + + +
∈

=

+ Λ =⎧
⎪= ⎨ + ∈ <
⎪⎩

∑
 (22)

Observed partial stochastic process { },t td s
δ ∗

� �  induced by the optimal decision rule δ ∗  within the 

expanded sequential decision problem is Markovian with non-stationary transition probabilities 

1 1 1 1( , | , ) ( | ) ( | , )t t t t t t t t t t tp s d s d P d s p s s d− − − −= ⋅ ,  (23)

where ( | )t t tP d s  is a well-defined (due to (20)) probability distribution 

{ }( )( , ), ( ) |
( | )

( , )
t t t t t t t t

t t t
t t

G v d s d D s s
P d s

v d s
∂ ∈

=
∂

.  (24)

Combining (23) with (24) gives probabilities that can be used for likelihood function construction.  

Namely, under assumption that ( | )t tq sε  takes a particular form of multivariate extreme value 

distribution, when the components of the vector tε  are independent and distributed identically with 

extreme value (Gumbel Type I) distribution, 

{ } ( ){ }
( )

( | ) exp [ ] exp exp [ ] , 0.577
t

t t t t
d D s

q s d dε ε γ ε γ γ
∈

= − + ⋅ − − + =∏ ,  (25)

(24) has an analytical solution and ( | )t t tP d s  is very conveniently given by 

{ }
{ }

( )

exp ( , )
( | )

exp ( , )
t

t t t
t t t

t t
d D s

v d s
P d s

v d s
′∈

=
′∑

,  (26)

where ( , )t t tv s d  in this case is defined by 
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( )

{ }
1 1 1

1 1 1 1
( )

( , )

( , ) , ,

( , ) log exp ( , ) ( | , ), .
t t t

t t t

T T T

t t t t t t t t t
s S d D s

v s d

u d s s t T

u d s v d s p s s d t Tρ β
+ + +

+ + + +
∈ ∈

=

+ Λ =⎧
⎪

= ⎛ ⎞⎨
+ <⎜ ⎟⎪

⎝ ⎠⎩
∑ ∑

 (27)

Applying backward induction mechanism to formulas (27) and (26) allows successive calculation of 

( , )t t tv s d  and probabilities ( | )t t tP d s , which can be plugged into (23) to give transition probabilities 

for the observed realizations of stochastic process { },t td s
δ ∗

� � .  Given the panel of observations 

{ }
0{ 1,.., }, {1,.., }

,a a
t t t T T a A

d s
∈ − ∈

 where A agents are indexed with index a (Rust, 1994) constructs the 

likelihood function 

0

1 1
1

( ) ( | , ) ( | , , )
A T

a a a a a
t t t t t t

a t T

L P d s p s s dθ θ θ− −
= =

′ = ⋅∏∏ .  (28)

Thus, the overall logic of the presented approach is to introduce additional random state variables 

which enter the optimal decision rule δ ∗  in (21) shifting the maximum point around the choice set 

so that the observed variables can not perfectly predict it, and then to integrate them out with the 

means of (19) deriving expressions (22-24) that characterize the observed partial state-decision 

process { },t td s
δ ∗

� � .  Assuming a particular form of multivariate extreme value distribution (25) for 

the introduced noise gives simple analytic expressions (26) for probabilities ( | )t t tP d s  allowing to 

avoid numerical integration in the computational procedures when calculating the likelihood 

function with the means of backward induction based on the formulas (26) and (27). 

In the current model, however, there is a second group of unobservable state variables, namely th  

and tm , which makes it impossible to implement the described procedure in a straightforward 

matter because of the lack of the data for calculation of (28).  To deal with this I use the described 

approach once again and integrate these unobservables out of the likelihood function as well.  This 

appears to be feasible because variables th  and tm  constitute stochastic Markov process { , }t th m� �  

that evaluates independently of all the rest of the state and decision variables and has simply 

parameterized transition probability matrix composed of (15) and (16). 

Denote ( , , ) {0,1,2} {0,1,2}t t t tHM ps e d ⊂ ⊗  a set of pairs ( , )t th m  consistent with the other state 

variables and the decision in a given period.  Consistency simply implies 

{ }1( , ) , , , , , , , | 0t t t t t t t th m HM p ps h m e sp nw aw d s −∀ ∈ > .  (29)



 26

In other words, set ( , , )t t t tHM ps e d  contains all possible values of th  and tm variables that could be 

seen on the realizations of { },t td s
δ

� �  process.  By the model setup health and match variables are not 

completely recoverable from the observations, but may be to some extent revealed by the labour 

market state as follows from Table 1.  To see this, the table should be followed from left to right.  

For example, if the current labour market state is partial disability with employment in the non-AFP 

company ( 1 5tps + = ), it can be seen that the only consistent health is 1th = .  Then likelihood 

function (28) should be modified so that the probability mass from all realizations 

{ }
0{ ,.., }

( , ) ( , , )t t t t t t t T T
h m HM ps e d

∈
∈  of the { , }t th m� �  process consistent with the observations of the rest 

of the state variables should be included. 

Another adjustment of the formula (28) is needed due to the fact that, as it will be discussed in 

section 3, the panel used for estimating the model is unbalanced, so observations of different 

individuals cover different time periods.  This small adjustment is achieved by introducing agent 

specific time indexes 0 0{ ,.., }aT T T∈  and 0{ ,.., }aT T T∈ .  When 0
a aT T= , only single observation 

besides the initial one is available for a given household.  Since the latent variables th  and tm  are 

not observed in the initial observation, I make the following unified assumption. 

First, 49 0h = , thus forcing all the agents be healthy one period prior to the 0 1T −  when initial 

conditions begin to be recorded.  This assumption is driven by two considerations.  Initial condition 

may be somewhat related to the birth of an agent when it is reasonable to assume good health.  

Besides, as it will be discussed in section 3, I concentrate on the sample of agents who are active on 

the labour market at age 50, thus reducing their chances to be unhealthy at this age.  However, there 

are some unhealthy people in the sample combining job and disability already at age 50 as their 

exclusion would bias the estimates of the transition probability matrix for th .  Therefore it is 

important to allow for some health deterioration between the healthy age and 50.  Thus, the initial 

condition for health at the initial period 0 1T −  is random with a given probability distribution.  

When the agent specific initial period is different from 50, 0 0
aT T> , the corresponding distribution 

of 
0 1aT

h
−

 can be calculated in a standard procedure for Markov chains.  Denote [ , ]i j•  an element of 

a matrix in the row i and column j.  Then since the health process is completely independent, the 

probability distribution for 
0
aT

h  is given by 

( ) 0 0

0 0

1( )
0 ( ) [0, ]

a

a a

T Th
T T

p h hπ
− +

= .  (30)

Formula (30) also includes the case when 0 0 50aT T= = . 



 27

Similarly, the initial condition for matching process { }tm�  is also random.  Calculation of the 

conditional probability distribution  
0 0

0 1 1
( | )a aT T

p m h
− −

 for given 
0 1aT

h
−

 and the joint distribution of 

0 01 1
( , )a aT T
h m

− −
 is a little more complicated due to the fact that matching depends on health as it 

follows from (16).  Three cases must be considered: for 
0 1

0aT
h

−
=  the distribution for 

0
aT

m  is defined 

similarly to (30), for 
0 1

1aT
h

−
=  all possible times when health could have shifted from 0 to 1 have to 

be considered and the full probability calculated, and for 
0 1

2aT
h

−
=  

0
0aT

m =  by the assumption made 

previously.  Similarly to health some value of match variable has to be fixed at early age (maybe 

0tm =  just before the start of career). 

However, the following considerations allow me to avoid these complicated calculations.  As 

mentioned before, the sample of agents to be defined in section 3 includes individuals who are 

active on the labour market at the initial age (at 0
aT ).  From Table 1 it can be seen that tm  is 

recoverable for all these states implying that corresponding 
0
aT

HM  set will only allow for one value 

of 
0
aT

m  making the calculation of the corresponding probability distribution unnecessary.  Therefore 

the initial probability distribution for matching is degenerate and 

0 0
0 1 1
( | ) 1.a aT T

p m h
− −

=  (31)

Finally, if { }
0{ 1,.., }, {1,.., }

, , , , , a a

a a a a a a
t t t t t t t T T a A

d ps e sp nw aw
∈ − ∈

 is available data, denote aHM the induced set 

of consistent trajectories { }
0{ ,.., }

( , ) ( , ) a a
a

t t t T T
h m h m

∈
=  of the health-match process { , }t th m� �  so that 

0
( , ) ( , , )

a

a
a a T a a a

t t t tt T
h m HM HM ps e d

=
∈ = ⊗ .  (32)

In other words aHM  is a set that contains all trajectories of the health-matching process denoted 

( , )ah m  consistent with the observed evaluation of the state variables for a given agent.  Note that 

the notion of the consistent set ( , , )a a a
t t t tHM ps e d  defined in (29) is used here 0 1a aT T− +  times to 

create a “corridor” which contains all possible values of health and match that could be met on the 

realizations of the health-match process consistent with the observed data. 

The likelihood function for the model then takes the form 
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0 0
0

0 1 11 1
1 ( , )

( ) ( , , ) ( | , ) ( | , , )
a

a a
a a

A T
a a a a a

t t t t t tT T
a h m HM t T

L p h m P d s p s s dθ θ θ θ− −− −
= ∈ =

⎡ ⎤
= ⋅⎢ ⎥

⎢ ⎥⎣ ⎦
∏ ∑ ∏  

0 0 0 0 0
0 0 01 1 1 1 1
( , , ) ( ) ( | )a a a a aT T T T T

p m h p h p m hθ
− − − − −

= ⋅ ,  

( ), , , , , ,a a a a a a
t t t t t t t ts ps h m e sp nw aw= ,  

(33)

where the parameter vector θ  includes already mentioned parameters ( ) ( )( , , , )h m bhmβ π π θ  and some 

other defined later when empirical specification of the model is complete. 

The constructed likelihood function (33) differs from (28) in additional summation over all 

trajectories of the latent health-match process ( , )ah m  from the set aHM  of all such trajectories 

consistent with the observed data.  Summation is weighted with the initial condition probabilities 

0 0
0 1 1
( , , )a aT T

p m h θ
− −

 defined in (30-31).  Note that the values of th  and tm  in the observed state vector 

a
ts  come from these consistent trajectories and not from the observations as in (28).  In other words 

the likelihood function is accounting for the probability mass from all possible realizations of the 

latent process, and thus integrating over the unobservables. 

This approach could be regarded as incomplete information likelihood and corresponds well to the 

simulated likelihood which uses simulated sequences of unobservables to establish the likelihood 

calculation.  Simple structure of the unobserved process allowed me to take into account all its 

possible realizations instead of limited number of simulated ones.  (Rhenius, 1974) provides 

theoretical foundation for this approach showing the equivalence of incomplete information Markov 

decision models to their counterparts reformulated in terms of probabilistic distributions of 

unobservables.  At the same time, this method is related to the well established EM algorithm 

(Dempster et al., 1977), which suggests iterating the expectation step when the latent variables are 

integrated out of the likelihood function conditional on the parameters of their distribution, and the 

maximization step when the optimal parameter values are found.  In the current model, the 

algorithm collapses to just one joint step because of the simple distributional assumptions of the 

latent variables which appear to be dependent on the separable parameters. 

Expression (33) concludes the description of the model and I move on to discussing the issues 

related to the data collection. 
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3.  Analysis of the data 

This section focuses on construction of the panel dataset { }
0{ 1,.., }, {1,.., }

, , , , , a a

a a a a a a
t t t t t t t T T a A

d ps e sp nw aw
∈ − ∈

 

used in calibration and estimation of the model.  It summarizes variable collection techniques and 

presents adopted mechanisms for generating aggregated and stratified values.  Most important of 

these are the definitions of labour market states which will be in focus throughout the paper.  This 

section is started with strict sample description and goes through all observed variables giving 

references to some descriptive statistics in the Appendix. 

3.1.  Sample definition and data sources 

The primary data source in the paper is the data collection at the Ragnar Frisch Center for 

Economic Research at the University of Oslo.  This data sets are based on the administrative 

register files processed by Statistics Norway.  The data sets give socio-economic information on the 

full Norwegian adult population mainly between 1992 and 2003 with wage histories traced back to 

1967.  Variables from different files and time periods may be directly linked on the individual level 

via an encrypted identification number.  The whole panel thus covers demographic and family 

characteristics, annual employment data with recorded salaries and unified employer identification, 

data on social benefits including disability and old age pensions, unemployment registers 

constructed on monthly bases, etc.  A broad description of the Frisch Center data collection can be 

found in (Hernæs et al., 2000). 

With this rich data available I have to focus on a certain sample of households to be used.  I adopt 

the following sample definition. 

Given the observation window of 1992 to 2003 and the modeling period of ages 50 to 70, and trying 

to include in the sample longest possible observation sequences, I construct the sample from 

individuals born between years 1933 and 1942.  Thus, the shorter observation windows is ensured 

to be contained in the longer modeling period leading to the unbalanced panel where the individuals 

are observed in 12 consecutive years and the middle part of the modeling period has highest 

numbers of observations (See Figure 12 in the Appendix, p. 102). 

Although some data in the registers are recorded and updated monthly, the essential employment 

affiliation is only available on an annual basis, namely for calendar years.  The absence of more 

precise records of timing drives the rather imprecise but inevitable authentication of calendar years 

with the years of particular age.  Given this assumption, I disregard events within a year and “mark” 

time periods (calendar years) with the age a particular individual turns in a given calendar year 

regardless on the exact birthday date.  Herefrom the age is the only time index. 



 30

To construct households the defined individuals are accompanied with the spouses who unlike the 

initial sample need not be born in the fixed time interval and therefore may not have as rich 

information from the available data.  The families are constructed on the bases of the family register 

which contains both registered marriages and unregistered cohabitations when the couple has at 

least one common child.  Some individuals turn out to be single, thus giving rise to two types of 

households in the model.  In the first type, single households, the only person is a decision maker 

whose labour market behavior is modeled.  In the second type, full households, the decision maker 

is assumed to be the initially selected spouse (born within given time limits) or if both spouses 

qualify, the main earner in the family (in the improbable case of exactly equal earnings, the male).  

For the rest of the paper the assumed decision maker will be referred to as the individual, the agent 

or the primary spouse and the second member of the family in case he or she exists will be referred 

to as the spouse or the secondary spouse.  Existence of the spouse is marked with a
tsp  variable and 

it’s motion will be discussed shortly.  Gender of the primary spouse (also in single households) is 

one of the constants and will be referred to as gender of the household. 

On the bases of demographic and family registers from 1993 the initial sample conditions define 

106 452 single households and 200 162 full households with 71 327 primary wives and 128 835 

primary husbands, altogether 306 614 households (see Table 18 in the Appendix, p. 94). 

Further definition of the sample is due to initial conditions.  To concentrate solely on transitions out 

of the labour market I require an active labour market position in the first year of observation for 

every individual.  The notion of active labour market state will be described thoroughly in the next 

section, but in general it implies either working at least part time or looking for job as a registered 

unemployed.r 

Finally, to take care of the outliers (whose labour market behavior is not likely to be governed by 

the economic model developed in the paper) I also introduce a simple earnings test for the before 

tax household income which should lie within the limits of 40 thousand and 1 million Norwegian 

crones (NOK) in 1992 prices. 

The latter requirements reduce the number of households in the sample by 34.47% to 200 921 

households mainly due to initial state requirement (69.98% of the reduction).  The full report of the 

reasons for sample reduction is given in Table 19 in the Appendix (p. 94). 

                                                 

r For precision it should be noted that the initial condition is constructed from not one, but two first observations, 
because the previous labour market state is recordered with lag 1.  Thus, only the sequences of three consecutive annual 
observations and more are taken into the sample (the former providing just one data point to be used in the estimation). 
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With the given definition the sample naturally combines several major household types which will 

have slightly different intentions for the labour market transitions.  For the full households these are 

families with older primary husband who will be approaching retirement earlier than the spouse and 

whose decision to exit labour force will be captured by the model, and families with the younger 

primary wife whose older husband is simply unobserved within the available data.  In addition these 

two groups each contain families of same age spouses among which the focus of the model is on the 

career oriented one (family earner).  Single households contain both never married men and women 

and widows and widowers.  The sample is thus characterized by considerable degree of 

heterogeneity which is hard to eliminate without considerable reduction of the general scope of the 

model or complicating the computational part by introducing additional control variables. 

3.2.  Labour market states 

This section deals with labour market states construction which is the central challenge in the data 

analysis section.  The general theoretical requirement is for the set of labour market states to be an 

exhaustive set of mutually exclusive alternatives, so that at all points in time all the agents have to 

be distributed across labour market states and no agent is allowed to occupy more than one state at a 

time.  Even this simple requirement may be hard to satisfy with the real data. 

Labour market states are constructed on the individual level by looking for the relevant records in a 

number of registers containing information of social security payments such as early and normal 

retirement pension, disability and unemployment benefits, etc.  Such procedure is justified by the 

strong logical tie between a given labour market state and the main corresponding source of income.  

A slightly different definition is adopted for employment states because the mentioned link to wage 

income is much weaker as a consequence of greater heterogeneity among the employed.  The link 

to time allocation and the trade-off between work and leisure seems to be another important 

identification source for employment and therefore should be utilized. 

The main source of employment data is the employers register (AT) which holds annual records of 

worked hours and earned wages on the individual level.  Statistics Norway links this register with 

the tax office database (LTO) to create a correspondence between the annual wage reported by the 

employer and those reported to the tax authorities by the individual.  This joint file (ATmLTO) 

presents much cleaner data and is therefore used instead of AT register.  Due to the way it is 

constructed, the joint file contains employment affiliation variables both as recorded by the 

employer and as recorded by the tax authority.  Besides the wage data both of the agencies construct 

several time variables: first and last dates of the employment spells within a year, total number of 
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days worked, an aggregated indicator for full time and part time employments.  Such large number 

of variables reflecting the same practical issue requires careful interpretation for each of them and 

gives rise to certain concerns whether the relevant interpretations were kept in mind by all the 

people maintaining the register.  In particular, the great number of workers only registered with a 

particular job for one day in a year (mostly 1st of January or the 31st of December) suggests some 

“book keeping” when filling out these data base fields. 

Simple analysis indeed shows that different variables on time of employment are poorly 

coordinated.  For example, while the employment duration calculated from the start and finish dates 

from the AT register slightly overestimates the corresponding total days worked variable from the 

same register (with the R2 in the corresponding regression at 96.22%), just the opposite is true for 

the LTO register (also with lower R2 – 91.33%).  The fraction of full time workers in the AT 

register (64.29%) is way lower than that of LTO register (76.40%).  Finally, the correlation 

coefficient between the time of employment calculated from the two registers is only 0.3642.  The 

overall impression is that AT data is more organized and seems to have less artifacts from the dates 

being filled out normatively. 

Given unreliable data on the employment durations I decided to use multiple criteria to identify 

employment.  One criterion is set to be a sufficient wage (over the basic pension G) in a given year, 

the other criterion is a sufficient (more than a month) duration of employment as measured by the 

AT register, and there is the third criterion that comes from a different register dealing with pension 

point accumulation.  This last register recalculates annual wages in terms of pension points with 

some truncation and thus presents enough information to recheck the first criterion from the 

independent information source.  This complex procedure allows construction of employment 

labour market state with more precision whereas low thresholds allow capturing partial employment 

as well as full time employment as intended by the model. 

Technically, the labour market states are constructed from the results of the following four tests 

applied to each individual in every year when observation exists. 

1. Test for employment: being listed on the employment register and either having more than 30 

registered working days, having registered pension point greater than one (e.g. having annual 

earnings greater than one minimal pension in the corresponding year) or having annual wage 

greater than 36 000 NOK (in 1992 prices). 

                                                 

s Correspondingly ST_REG, SP_REG, AT_TOT, FORV_ARB and FRAMMDD, TILMMDD, ANT_DAG, 
ANS_KODE for employer and tax authority registers. 
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2. Test for unemployment: being listed on the unemployment register for more than 6 months 

within a particular year. 

3. Test for disability: being listed among the receivers of the disability pension. 

4. Test for pension: being listed among the pensioners on either old age or early retirement 

pension registries. 

The fractions of all observed combinations of the individual test scores (either 1 or 0 for passing or 

not passing) represented by the four digits binary numbers are plotted against time on Figure 13 in 

the Appendix (p. 102).  Clearly, the data displays much richer collection of combinations of the test 

scores than is desirable for clean definition of the 8 values of the state variable a
tps  as introduced in 

section 2.3.  In other words, it is clear that the tests are many times passed together indicating that 

the corresponding labour market states do not express the mutual exclusion property.  Moreover, 

some of the observations have no scores which violates also the exhaustive property. 

The latter problem is due to the absence of some individuals in the considered registers.  These may 

be housewives or self-employed or other individuals not active on the labour market.  To deal with 

the problem I introduced a residual out of labour market state (OLM) which consolidates the 

individuals with no scores on the given four tests and corresponds to 0a
tps = .  Introduction of such 

a labour market state may be quite troublesome because the heterogeneity is high among the agents 

in this state, but as it will be seen below this can be dealt with. 

The former problem is mostly due to the assumed annual timing structure of the model while in 

reality the labour market state may change within a year.  There may also be errors and 

misinterpretations in the registers.  It can be noted from Figure 13 however that the unreasonable 

combinations of the test scores are rather uncommon.  In these circumstances I have decided to 

pursue the labour market definitions suggested by the data without trying to clean things up with a 

prioritizing rules that would allow identifying the “main” state on the labour market for each 

individualt.  This approach identifies the most common labour market states and merges smaller 

groups into the main ones.  The number of the identified states is determined by the degree of 

computational complexity the model can bear. 

The main identified labour market states were already presented in the description of the state 

variables in the section 2.3, while the aggregation principles used in the definitions are spelled out 

below. 

                                                 

t One example of such rule would be the source of maximum income identifying a labour market state. 
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 All individuals are forced to pension at age 70.  This is justified by the institutional rules and 

deviations may be regarded as errors in the registers. 

 Test 4 is disregarded before the earliest retirement age of 62u.  However, the pension record is 

given strict priority over the rest of the records after age 62. 

 Unemployment may include partial employment lasting for less than a half of a year (as 

follows from test 2). 

 Probable spells of unemployment for those partially disabled and working are disregarded. 

 Disabled may look for a job and when finding one are classified into the corresponding labour 

market state.  However, when not successful they are occupying disability labour market state 

instead of unemployment. 

Table 2 reflects enumerated principles and summarizes the definitions of the labour market states by 

presenting correspondence of 4 digit binary codes for test scores to the values of the tps  variable. 

Table 2.  Definitions for the labour market states (“•” denotes either 0 or 1). 
Labour market state Test scores 

a
tps  Name 1 2 3 4 

Additional 
conditions 

0 OLM 0 0 0 0 age < 70 

0 0 0 1 - 

• • • 1 age > 61 

0 0 1 0 age > 66 

1 0 1 0 age > 66 

0 1 0 0 age > 66 

0 1 1 0 age > 66 

1 Pension 

• • • • age = 70 

0 0 1 0 age < 67 

0 • 1 1 age < 62 2 Disability 

0 1 1 0 50 < age < 67 

• 1 0 0 age < 67 

• 1 0 1 age < 62 3 Unemployment 

0 1 1 0 age = 50 

1 0 0 0 age < 70 
4, 6 Employment 

1 0 0 1 age < 62 

1 • 1 0 age < 67 
5, 7 Employment with 

partial disability 1 • 1 1 age < 62 

                                                 

u Pension register however does list a small number of people retired earlier than that on some special conditions 
(firefighters, dangerous working conditions, etc.) 
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The additional distinction of AFP employment is performed on the bases of the dynamic list of AFP 

companies which construction is based on tracking the last place of employment for the actual early 

retirees listed in the corresponding AFP register.  Tracked company is assume to have joined the 

AFP program one year prior to the first observed early retirement of it’s staff (details can be found 

in (Iskhakov and Kalvarskaia, 2003)). 

The described procedure ensures that the resulting set of labour market states satisfies requirements 

of the well defined set of alternatives in every time period.  Observed fractions of individuals in 

each of the labour market states are presented by age in Figure 14 in the Appendix (p. 103).  The 

plot illustrates the processes taking place among the elderly workers on the labour market.  

Employment is the most occupied state up to early 60s ages, and is then overtaken by the two major 

causes of leaving the labour force – disability and early retirement (which increase from 62 is 

accompanied with the sharp decrease in AFP employment).  Unemployment which is allowed by 

the initial conditions and has second biggest portion of the sample at age 50 also gradually 

decreases up until 67 when the unemployed are forced into old age pension.  Full time disability 

increases in a concave formation which is also observed in the partial disability-employment states.  

The OLM state has increasing share of the sample up to age 67 and then sharply decreases.  Overall 

the behavior of the elderly workers matches the expectations and the logic that drove the 

development of the structural dynamic model. 

Contrary to the aggregated view of fractions of the sample in particular labour market states and 

their dynamics Figure 15 to Figure 19 (pp. 103-105) present the revealed patterns of transitions 

among the labour market states on the individual level.  The figures present 20 transition matrices 

between every pair of ages from 50 to 70.  Labour market states are coded with the values of tps  

variable introduced in the previous section with additional value 8 indicating death.  The dots set on 

the crossings of the gridlines indicate transitions between the corresponding states at given ages, 

sizes of the dots are proportional to the number of agents making corresponding transition.  The 

graphs visualize the process of transition of the elderly workers out of the labour market which can 

be presented as the box combining labour market states 3 to 7 on every axes.  By age 67 most of the 

individuals are retired whereas by age 70 the only occupied columns are pension and death.  

Absence of transfers in the upper-right region of the matrices justifies both the absorption 

assumptions made earlier for the passive labour market states (0 to 2) as a group and strict 

absorption of pension state. 

Thus, the labour market states constructed from the register data satisfy all the requirements and 

provide the necessary observations of tps  variable. 
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3.3.  Demographic dynamics 

There are three processes of demographic dynamics embedded into the model: death of the primary 

spouse (in both single and full households), death of secondary spouse (in full households only) and 

the break up of the full household not due to the death of a spouse, apparently divorce.  The first 

process is easily modeled with standard survival probabilities.  The second process is much harder 

to model within the current set up because the only time index used in the model for practical 

purposes is the age of the primary spouse and therefore standard survival probabilities can not be 

used for the spouse.  I go around this by constructing spouse survival probabilities on the available 

sample using the only available time index.  The third process is the most difficult to embed into the 

model and requires special investigation. 

Table 3  Family dynamics: starting and finishing years of the observation spells and corresponding 
numbers of families observed. 

Frequency 
Percent 1993 1995 1996 1998 1999 2000 2001 2002 2003 Total 

1993 7282
3.42 

7271 
3.42 

3585 
1.69 

3575
1.68 

3739
1.76 

3984
1.87 

3957
1.86 

4233
1.99 

163206 
76.72 

200832
94.41 

1994 0 
0.00 

550 
0.26 

243 
0.11 

212 
0.10 

237 
0.11 

217 
0.10 

196 
0.09 

198 
0.09 

3046 
1.43 

4899 
2.30 

1996 0 
0.00 

0 
0.00 

97 
0.05 

125 
0.06 

116 
0.05 

97 
0.05 

88 
0.04 

92 
0.04 

1878 
0.88 

2493 
1.17 

1997 0 
0.00 

0 
0.00 

0 
0.00 

58 
0.03 

48 
0.02 

49 
0.02 

31 
0.01 

37 
0.02 

683 
0.32 

906 
0.43 

1999 0 
0.00 

0 
0.00 

0 
0.00 

0 
0.00 

58 
0.03 

53 
0.02 

43 
0.02 

38 
0.02 

638 
0.30 

830 
0.39 

2000 0 
0.00 

0 
0.00 

0 
0.00 

0 
0.00 

0 
0.00 

54 
0.03 

53 
0.02 

49 
0.02 

717 
0.34 

873 
0.41 

2001 0 
0.00 

0 
0.00 

0 
0.00 

0 
0.00 

0 
0.00 

0 
0.00 

45 
0.02 

39 
0.02 

637 
0.30 

721 
0.34 

2002 0 
0.00 

0 
0.00 

0 
0.00 

0 
0.00 

0 
0.00 

0 
0.00 

0 
0.00 

48 
0.02 

578 
0.27 

626 
0.29 

2003 0 
0.00 

0 
0.00 

0 
0.00 

0 
0.00 

0 
0.00 

0 
0.00 

0 
0.00 

0 
0.00 

542 
0.25 

542 
0.25 

Total 7282
3.42 

7821 
3.68 

3925 
1.85 

3970
1.87 

4198
1.97 

4454
2.09 

4413
2.07 

4734
2.23 

171925 
80.82 

212722
100.00 

 
Table 3 presents a short numerical analysis of family fluctuations based on the family registers from 

1993-2003.  A value in a row X and column Y shows the number of families observed continuously 

from year X to year Y (inclusive).  There are several reasons for different cells in a table to be non-

zeros, namely, two reasons for a family to appear – either after a marriage (samboer) registration or 

first appearance in the observation period of 1992-2003 – and three reasons for a family to 

disappear – divorce, death of a spouse or moving out of observation period.  By checking whether 

the spouse actually died in a given year (this information is available from the demographic files) 

and disregarding the observations slipping out of the data window it is possible to calculate sample 

specific divorce rates in every time period. 
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The described processes of demographic dynamics are presented in Figure 20 in the 

Appendix (p. 106).  As expected, the sample specific death rates are greater for males that for 

females, but differences along primary–secondary dimension are quite interesting.  While for 

females the difference between primary and secondary spouse are neglectable, death rates for 

secondary males are higher than those for secondary females.  This straightforwardly corresponds to 

the typical households mentioned earlier: when males are secondary in the households, this is very 

likely because they are older and slip out of the data window.  But the death rates are calculated 

with respect to primary spouse age, therefore they appear much higher than for the primary males.  

The fact that this effect is not visible for females simply reflect the tendency of age equality in the 

full households with primary husband. 

Since the model is built around only the primary spouse, the events of death of the secondary 

spouse and divorce are undistinguishable.  The only traceable event with this respect is shifting of 

the tsp  variable from 1 to 0.  Therefore it becomes possible to combine these two probabilities into 

one for the use in tsp  evaluation.  Combined death of spouse and divorce rates are also plotted in 

Figure 20.  It is clear that the drastic difference in the combined probabilities is mainly due to the 

differences in the spouse survival discussed above.  The divorce rate is rather independent of the 

gender of the household and although quite high compared to the death rates, much lower than the 

all ages average which is expected. 

Under earlier assumption of no new marriages discussed probabilities are enough to characterize the 

processes of deaths and divorces incorporated into the model and represented by the variable tsp . 

3.4.  AFP eligibility 

According to its definition the state variable te  keeps track of the otherwise non verifiable 

individual criteria for early retirement pension.  Available data allows for reconstructing AFP 

eligibility thoroughly according to the institutional settings described in section A.1 in the 

Appendixv.  Namely, the following checks are made: 

 Last two annual wages are over the basic pension amount G. 

 At least 10 years after age of 50 have annual wage over the basic pension amount G. 

 The average of the best 10 annual wages throughout working life is over 2G. 

 Individual is employed in the AFP companies for at least last 3 years. 

                                                 

v To be precise there is one exception, namely the rule that an individual is not receiving any payments from the 
employer other than labour related. 
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The last condition is used instead of more complicated one in the actual AFP rules that requires 

employment in the same AFP company for the last 3 years or employment in different AFP 

companies for the last 5 years.  Tracking the change of employers is somewhat tricky with the 

available data because it appears very hard to reliably identify same employer in different years, 

therefore the actual rule was to some extent simplified. 

Altering the AFP rules for eligibility reconstruction did not skew the aggregated image of the AFP 

program coverage.  Table 20 in the Appendix (p. 36) presents the fractions of the AFP eligible 

workers by age which correspond well to the overall figures.  As it was set in the model description, 

te  variable is only defined at the periods of possible early retirement, therefore only the middle 

section of the table (ages 62-66) is used in the model estimation. 

3.5.  Income 

A long tradition in the labour economic literature appeals to the use of consumption and leisure as 

two major variables in the utility function, maximization of which under the budget constraint 

resolves the trade off between higher consumption accompanied by more working hours and higher 

leisure.  Keeping this approach in the current model is highly desirable but rather hard.  Previous 

section showed that the available data on worked hours is unreliable and the consumption 

information is not available from any register sources.  In these circumstances several studies 

(Dagsvik and Strøm, 1992; Hernæs et al., 2000; Hernæs and Strom, 2001; Hernæs et al., 2006) have 

used discrete leisure variable defined as a deterministic function of labour market state and income 

to approximate consumption.  I apply the same principles below when defining deterministic part of 

the utility function (17) while this section is devoted to income analysis which takes on the main 

load of explaining the levels of utility that result from different decisions made by the agents. 

First, I investigate how plausible it is to assume away savings.  Life cycle theoretical framework 

suggests considerable movements in savings induced by the consumption smoothing effect at the 

end of working life when wage incomes are sharply decreasing.  This effect may however be offset 

by the fact that large part of savings is likely to be locked in the illiquid durable goods, in particular 

housing.  Figure 21 in the Appendix (p. 106) presents the dynamics of net household wealth 

averaged within 10 fixed groups representing deciles of lifetime averages.  As it follows from the 

graph changes in wealth are very moderate and smooth in all parts of the whole wealth distribution 

except perhaps the tails.  This is a clear indication of the fact that on average savings are quite 

constant in the considered sample and therefore may be assumed not to play important role in the 

explaining labour market transitions.  Still, some savings related processes like for example bequest 

motives are captured by the model in the termination function ( )TsΛ  to be defined later.  
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Comparison of the bottom graph in Figure 21 with Figure 12 indicates that the available wealth data 

is limited and prevents constructing of consumption variable from subtraction. 

One of the hardest challenges in developing models of discrete choice in the McFadden’s 

conditional sense, that is when the decisions are to be affected by the characteristics of the 

alternatives (through utility function), is the need to construct these characteristics for the 

alternatives not chosen by the decision maker.  Indeed, the data usually provides information only 

on those labour market states actually occupied by the agents and gives no information on, for 

example, income in other labour market states.  There are two ways to deal with the problem.  First, 

some simplifying assumptions may be made with respect to these unknown characteristics of the 

alternatives that allow their direct assessment.  In the income example this approach would lead to 

careful thorough calculation of e.g. potential early retirement pension from the available wage 

histories and other data for the people who could have retired but chose not to.  But as it is 

impossible to take into consideration and directly calculate other minor sources of additional 

benefits possibly existing in reality, they have to be assumed away.  Moreover, the dynamic model 

requires the state variables to be self-sufficient in predicting the next period values.  Together with 

the described technique this would imply that all variables such as income histories relevant for 

accurate calculations would have to be part of the state space in the model, which is clearly 

infeasible because of complexity limitation. 

Therefore I adopt second approach which suggests forecasting characteristics of the potentially 

chosen alternatives using statistical models estimated on the existing observations of the alternative 

characteristics included into the state vector.  In other words, the agents occupying a given labour 

market state provide information on income in this state, and it is used for constructing a 

probabilistic relation to state variables observed in whole sample, which in turn can be used to 

forecast potential income in this labour market state for all agents.  The presented approach may 

suffer from small numbers of available in each labour market state observations, but given the large 

sample it is not a problem in this paper.  Another open question is the accuracy of predictions of 

these statistical models.  Indeed, with the great degree of heterogeneity also associated with the 

broad sample it will appear to be a considerable issue.  Nevertheless, inevitable simplifications in 

representation of the modeled processes together with inevitable computational complications 

otherwise induced by the first approach and the aspiration to preserve accuracy of income data 

provide grounds for the use of statistical approach and the need to investigate available income data. 

The data vector { }
0{ 1,.., }, {1,.., }

, , , , , a a

a a a a a a
t t t t t t t T T a A

d ps e sp nw aw
∈ − ∈

 contains two indicators of income 

(aggregate wage taw  and the number of consecutive years with high incomes tnw ) which relate to 
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its long term and short term behavior as was mentioned in the model description.  This particular 

setup is not crucial for the model itself and presents a compromise between the accuracy and 

complexity of the model.  Since leisure will be a discrete deterministic function of labour market 

state so that income is the only available continuous explanatory variable, I decided to introduce 

additional discrete short term income indicator which is used for calculating benefits in the social 

security system and therefore should be useful in explaining utility levels in the passive labour 

market states. 

Variable tnw  is almost directly observed in the registers.  Following the rules of the social security 

system, I adopted the basic pension amount as threshold to define sufficient incomes.  It became 

therefore possible to use earning histories collected for the purpose of pension calculations to 

simply count the number of years with pension points over one while truncating it at 10 and 

bringing down to 0 every time lower pension point was detectedw.  Resulting simple pattern of 

evolvement for variable tnw  (at each iteration it can either become 0 or increase by 1 unless already 

at the truncation level) is made use of when discovering its motion rule in the next section. 

Aggregate wage taw  was not given any specific interpretation at the modeling stage to allow for 

several observed variables to be tried out to play its role.  The goal was to find a variable that on 

one hand could be easily forecasted one year ahead with the means of the rest of the state variables 

deployed in the model, and on the other hand was capable of explaining income levels in different 

labour market states.  Three candidates were considered: simple average of the annual wages, 

average over annual wages in the best 10 years of working life and average of the best 20 years.  All 

three of these variables were constructed from the earnings histories expressed in pension points.  

Relevant amounts for the basic pensions and CPI indexes were used to enforce common unit of 

measurement of 1 000 NOK in 1992 pricesx.  The reasons for considering these three variables as 

possible aggregate wage is the following.  All three present long term trends in individual wage 

earnings and therefore contain information on expected incomes in all labour market states.  

Average wage is probably least powerful in this respect since pension and disability benefits are 

calculated from the best averages.  On the other hand, simple average evaluates according to 

deterministic rule while the other two variables need statistical models for its evaluation and the 

very desirable property of deterministic evaluation of the continuous state variable may not be 

obtained.  Nevertheless, all three variables were calculated and their dynamics are presented in the 

                                                 

w Such calculations were started at age 40 to allow for maximum value of 10 in the initial period. 
x With inevitable loss of information on annual earnings below 1G and above 12G due to truncation in pension points 
calculation as it follows from the social security rules. 
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Figure 22-Figure 24 in the Appendix (pp. 107-107).  Here again annual means within 10 fixed 

groups representing deciles of overall averages are plotted against time.  As follows from the plots 

all three variables display very smooth motion in all parts of the distribution.  The latter two also 

naturally display non-decreasing behavior. 

The rest of this section presents the analysis of incomes in different labour market states that have 

to be explained by the aggregate wage together with other state variables.  Discussion of the 

statistical models developed in this respect and the presentation of the chosen aggregate wage 

variable is left for the next sections. 

The study of the income sources is based on the data from several different registers.  Major sources 

of income as wage, old age and AFP pensions and disability pension were investigated from the 

specific registers.  In addition the database kept by the social security office containing information 

on all the rest of the benefits received by individuals was used in the investigation of secondary 

sources of incomey.  The latter database is organized so that paid amounts are accompanied by 

Norwegian tax codes (LTO) and therefore can be categorized into several groups that appear to be 

most important in the sample: 

 Employment incomes that in addition to wages contain different occupational benefits 

provided by the employer (reimbursement for communication, commute expenses, etc.), 

holiday pay, travel allowance, etc. 

 Pension incomes consist of different pension benefits: disability benefits up to age 67, 

possibly AFP benefits between 62 and 67 and regular old age pension benefits after the age 

of 67. 

 Additional incomes combine the rest of the important sources of income for an individual 

such as occupational pension, survival benefit, unemployment benefit, child care, sickness 

and other forms of benefits resulting from governmental or private insurance schemes, 

additional personal old age annuities, golden shake premiums, capital income, etc. 

 Spouse income comprises previous three groups calculated for the spouse. 

Altogether these four sources of income allow for construction of total household income plotted in 

1000 NOK in 1992 prices in Figure 25 in the Appendix (p. 108).  The graph reflects the average 

decline of employment income with age which is accompanied with the gradual grow of pension 

income and additional income that include retirement related benefits.  The spouse’s income is 

                                                 

y Correspondingly, ATmLTO, Afpp, Afpo, Aldp, Ufp and LTO Trygd. 
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slightly declining towards the retirement age and growing again with pensionz.  The very high 

replacement rate observed in household incomes should be taken cautiously because of the 

aggregation over all observations on one hand and the fact that the number of observations is falling 

towards both ends of the time interval on the other hand. 

The four groups’ composition of the income sources presents nice opportunity for assigning 

different types of income to different labour market states and in general to different combinations 

of the state variables.  This way, spouse income should naturally be included into the total 

household income only when variable tsp  is 1 indicating a full household.  The collection of figures 

in the Appendix (Figure 26 to Figure 33 on pp. 108-112) investigate the dependence of different 

income sources on the labour market states.  Each figure contains two plots to display both the 

average level of the corresponding income group and the number of observations the average is 

taken over.  The following revealed correspondence clearly justifies the definitions for the income 

groups and provides grounds for income forecasting in each pair of values 1( , )t tps sp+  in the 

dynamic model: 

 In the OLM labour market state only spouse’s income and additional income constitute 

considerable income sources (See Figure 26). 

 In retirement pension is the main income source while spouse’s income and additional 

incomes play secondary roles.  The sharply decreasing employment income is most likely to 

be an artifact of the assumed annual time periods used in the model and possible phased 

retirement disregarded here (See Figure 27). 

 In the disability state as the number of observations grows, the stable image of the income 

structure is obtained.  Most important is disability pension within the pension income group, 

also important are spouse’s income and additional incomes (See Figure 28). 

 In the unemployment labour market state the most important source is probably wage and 

employment income group which does not appear to be a controversy because unemployment 

is defined to include partial employment as well.  Not least important although giving lower 

income is spouse incomes and additional incomes including unemployment benefit (See 

Figure 29). 

 In the employment labour market states quite expectedly the employment income group is by 

far most important with somewhat higher wages available for employees of the AFP 

                                                 

z Spouse incomes appear relatively smaller that other sources of incomes since many observations represent single 
households and thus zeros appear in the calculation of the average.   
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companies.  Spouse incomes also constitute considerable source while additional incomes are 

much more common for non-AFP employment (See Figure 30 and Figure 32). 

 Combined employment and partial disability labour market states present the cases where all 

groups of income sources are of considerable importance although smaller in absolute value 

both compared (in the relevant groups) to full time employment and full time disability.  The 

non-AFP case distributes the importance of wage, pension and spouse income quite uniformly 

while the AFP employment seems result in relatively higher wages which depart upwards 

from the rest of the income sources.  In both cases additional incomes represent smaller but 

rather stable component (See Figure 31 and Figure 33). 

This concludes the analysis of the income data.  Short description of the decision variable in the 

next section precedes the further discussion on forecasting incomes, best aggregate wage and the 

specification of the utility and termination functions in the empirical specifications in the next 

section. 

3.6.  Decisions 

By this time the data vector { }
0{ 1,.., }, {1,.., }

, , , , , a a

a a a a a a
t t t t t t t T T a A

d ps e sp nw aw
∈ − ∈

 necessary for the model 

estimation is fully populated except the decision variable a
td  which was not yet discussed.  Recall 

from the model setup that the decision variable indicates the intentions of an agent to change his or 

her labour market state by providing answers to the questions “To remain on the labour market or 

not?” and “Apply for pension or not?”.  Since the only type of data in paper is register data, it does 

not provide any information on the intentions of the individuals. 

The problem is solved by the fact that decision variable is completely recoverable from the 

observations of rest of the variables as it follows from Table 1.  To see this, again the tables has to 

be followed from right to left: for each combination of state variables there is only one feasible 

value of the decision variable.  This implies that as in the definition of the choice sets (9) the 

decision variable could be dropped from the likelihood function in (33).  It would however be 

wrong to think of the model as too restrictive because of this property since it has nothing to do 

with the definitions of the choice sets (e.g. restricting the choices). 

This concludes the section devoted to the data description and allows me to continue with 

definitions of the motion rules and other elements of the model in some way dependent on the data. 
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4.  Empirical specifications 

This section completes specification of the model giving functional forms for the utility and 

termination functions, completing definitions of the motion rules and describing additional elements 

of the utility.  It starts with complete specification of the utility function and finishes with 

enumeration of the parameters of the likelihood function. 

4.1.  Preferences 

This section specifies the functional form for the deterministic part ( , )t tu d s of the instantaneous 

utility function ( , )t tU d s  (17) in the sequential decision problem of the agent (2). 

As it was already announced in the previous sections, it is to be defined along the traditional lines as 

indirect utility dependent on income ( , , )t tI I t d s=  and leisure ( , , )t tL L t d s= .  Following in 

addition a number of microeconometric studies on the labour market data I adopt the additive 

functional form with constant relative risk aversion (CRRA) with respect to household disposable 

incomeaa and linear leisure. 

( ) ( ) ( )
7

1
0

( ) 1
( , ) ( , , ), ( , , ) ( )t t t t t t t k t

k

Tx I
u d s u I t d s L t d s a b s L c ps k

λ

ξ
λ +

=

−
= = + ⋅ + ⋅ =∑ ,  (34)

where ( )Tx i  is a mapping from before tax household incomes to disposable household incomes, and 

ts  is extended state vector which contains all the state variables in ts  and in addition gender and 

individual early retirement age.  A scalar coefficient a is used to scale the impact of the utility of 

income which is measured against the utility of leisure and additional non pecuniary utility 

generated by the different labour market statesbb and weighted by the set of parameters kc .  A 

compound coefficient with leisure superposed as a function of the extended state vector captures the 

individual heterogeneity of preferences.  Definition of the particular functional form for coefficient 

b is left for section 6 (where I discuss the estimation of the model) because the width of the 

reflected heterogeneity will apparently be defined by the computational tractability considerations. 

Leisure is a deterministic function of the labour market state and is simply calculated as a fraction 

of time available for leisure after 8 hours of sleep per day and time spent at work.  Active labour 

market states are assumed to occupy full 7.5 hours per working day (37.5 hours per week) except 

                                                 

aa CRRA as Box-Cox transformation also presents convenient flexible generalization that includes both linear ( 1λ = ) 
and logarithmic ( 0λ → ) specifications. 
bb Indicator function ( )ξ i  returns one if the condition is satisfied and zero otherwise. 
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the unemployment state which is assumed to occupy half of this time.  OLM, pension and full 

disability labour market states have maximum leisure. 

1

1
2

2

3

37.5 52+8 3651- 0.444,
24 365

37.5 52+8 3651- 0.555,
24 365

8 3651- 0.667.
24 365

L

L

L

⋅ ⋅
= =

⋅
⋅ ⋅ ⋅

= =
⋅

⋅
= =

⋅

 (35)

Thus, 1 2 3{ , , }L L L L∈ , and finally leisure function ( , , )t tL t d s  can be precisely defined in terms of 

state variables of the model as 

1 1

2 1

3 1

, {4,5,6,7},
( , , ) , {3},

, {0,1,2}.

t

t t t

t

L ps
L t d s L ps

L ps

+

+

+

∈⎧
⎪= ∈⎨
⎪ ∈⎩

 (36)

It should be noted that the given correspondence of leisure with the labour market states leads to the 

identification failure of the constant part of the leisure coefficient ( )tb s  because it is not 

distinguishable from the labour market state specific coefficients in the third component of the 

utility function (34).  Therefore, the constant will have to be dropped from ( )tb s  in estimation. 

Compared to leisure household disposable income needs a somewhat more complicated definition.  

Analysis of the income data in section 3 defines four major income sources for the household and 

reveals a certain correspondence of these source to the different labour market states 1tps +  as well 

as the spouse indicator tsp .  In this section I proceed with defining statistical relations of the 

different income sources to the model’s state variables and present my choice of aggregate wage 

measure. 

Several considerations were taken into account when estimating these quantitative relations.  First, 

because of the limited number of explanatory variables in the state vector, the information had to be 

used to the full extent.  The assumed timing convention allows using in the income equations both 

previous and current period labour market states because the utility calculation for the current 

period takes place after the state variables are known (previous labour market state among them) 

and current decision defining current period labour market state is taken.  Thus, the model is 

capable of conditioning the income levels not only on the current labour market state, but on a 

corresponding transition on the labour market. 

Second, even though the established correspondence reveals neglectable income sources in some of 

the labour market states, it does not work the other way around, and the problem of censoring at 
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zero must be addressed.  It turns out that wage, pension and spouse income are hardly affected by 

this: censored regressions estimates deviate very little from the ordinary regressions due to small 

number of censored observations.  However, in the case of additional income this issue has an 

important influence.  To preserve statistical properties of the residuals in the model for additional 

income (for the reasons that will be clear shortly) I decided not to use censored regression and 

instead estimated an auxiliary logit model that predicts positive outcome.  The model estimated for 

positive additional income is then applied in forecasting for the individuals with favorable logit 

prediction. 

Third, an appropriate approach for regression models selection had to be chosen.  Goodness of fit 

measures and the estimated standard error of the residuals were the most important factors for 

forecasting reasonable income levels in different labour market states.  These two criteria were best 

met with the models based on aggregate wage calculated as average of the 20 highest annual 

incomes up to a given age.  Herefrom this definition of the aggregate wage is used throughout the 

estimation. 

Table 3 presents the summary of the estimated income equations.  Each of the equations was 

estimated on a specific dataset (defined by the “estimated on” filter) and intended to be used for 

specific individuals (defined by the “applied for” filter).  These filters are set in accordance to the 

described correspondence of income sources and labour market states so that the income equations 

are estimated only on the data from those actually in particular states (working, pension, etc.) and 

forecasts are applied for people transferring to these states.  This forecasting mechanism is not free 

from the possible selection problems, but bearing in mind the large number of observations and 

therefore implied aggregating over immense amount of data, I disregard the selection problems on 

the grounds of their comparatively smaller importance. 

It should also be noted that the income sources are assumed to be independent and can therefore be 

forecasted separately under ordinary regression assumptions.  This quite considerable simplification 

facilitates an innovative method for the calculation of intertemporal utility (explained below) and 

therefore allows for a considerable reduction of the computational load of the model and 

simultaneous maintaining a reasonable level of accuracy of the predictions. 

All the coefficients in Table 3 are estimated with p-levels of the order 10-5 or less.  Similar values 

obtained for F-tests are not reported.  More detailed Table 21-Table 25 are available in the 

Appendix (pp. 95-98). 



 

Table 4.  Summary of models for different sources of income (ordinary regressions and one logit model marked with *). 
Dependent variable wage income pension additional income spouse income 

Transition (state codes) (≥3)-(≥3) 1-1 2-2 •-(5,7) any*  spouse exists Estimated 
on (filter) Age, other <60 60-67 ≥67 afp-67 ≥67    inc>0 gender 0 gender 1 

Transition (state codes) (≥3)-(≥3) ?-1 ?-2 •-(5,7) any  spouse exists Applied to 
(filter) Age, other <60 60-67 ≥67 afp-67 ≥67    logit>½ gender 0 gender 1 

Variable estimates 
Constant term 33.046 -28.438 -82.030 161.099 -1692.1 375.909 21.978 -0.747 25.993 -502.222 664.095 
AFP age    -1.901 -7.880 -5.288    9.635 -8.726 
Gender 16.474 13.339  -6.244 -15.981 -6.690 -8.595 0.325 12.928     
Time index (age-50) -1.250    242.880  0.617 0.167 1.408 -8.608 -17.124 
Time index squared  -0.166   -6.442    -0.102 0.069 1.080 
Spouse indicator (sp)         -1.081 -5.121     
Number of high wage years (nw) -2.080 -4.591  -4.964  -2.221 -0.093 -1.017   -0.601 
Aggregate wage (aw) 0.229 1.580 2.240 0.532 0.534 0.403 0.243 0.0005 0.118 0.365 0.245 
Aggregate wage squared (aw2) 0.001 -0.007 -0.009 -0.001 -0.001 0.000   0.000 -0.001   
Aggregate wage to the third (aw3)  9.9E-06 1.5E-05            
Cross effect of aw*nw 0.042 0.060 0.053  -0.010   
Prev. non-AFP employment        7.802       
Prev. partial DI + non-AFP employment        16.200       
Prev. AFP employment        20.509       
Prev. partial DI + AFP employment        16.365       
Current period OLM          63.230     
Current period pension retirement         0.346 -17.351 21.226   
Current period full disability         3.157 -21.772 10.907   
Current period unemployment         -1.042 9.563 9.828   
Current period non-AFP employment 48.070 46.185       -1.337  9.071   
Curr. partial DI + non-AFP employment -18.853 -14.388       3.257 -29.762 11.589   
Current period AFP employment 51.332 56.137       -1.538  18.651   
Curr. partial DI + AFP employment -8.728 -7.919      -7.979 3.728 -24.644 18.698   
Number of observations 914 839 703 107 11 296 53 212 108 727 216 503 151 419 2262566 886 269 1076041 433 340 
R-square (pseudo for logit) 72.36 % 66.63 % 64.45 % 32.12 % 22.33 % 60.87 % 35.74 % 0.5088* 39.46 % 10.83 % 9.02 % 
Estimated standard error of residuals 50.767 63.028 80.209 31.133 55.415 21.466 30.311  38.659 83.960 110.555 
Number of coefficients 12 13 6 6 9 6 11 12 15 14 7 



 

The large number of equations and coefficients presented in Table 3 (altogether 11 equations and 

113 coefficients for 4 sources of income) reflects the complexity of the task of income prediction 

based on the limited information available through the state vector.  Wage income is represented by 

three equations corresponding to three different age intervals: regular working careers, pre-

retirement and exceptional employment after normal retirement age.  These periods are chosen in 

accordance with the growing variance of the wage earnings revealed by a series of age-specific 

models (See Table 21 in the Appendix, p. 95).  The first two equations are very similar and both 

assign the lowest average wage level to non-AFP employment with partial disability and the highest 

to the full time AFP employment whereas unemployment (including part-time employment) 

representing the reference group occupies the median level.  Post retirement age employment is 

rather rare and is well explained by the lower levels of aggregate wage which leads to considerably 

smaller number of covariates for the model with comparable explanatory power. 

Pension income falls into four distinct categories each of which is modeled with a separate equation 

(See Table 22 and Table 23 in the Appendix, p. 95).  These categories (AFP pension, old age (NIS) 

pension, full and partial disability pension) can be clearly separated with the labour marker state and 

age variables facilitating the data fragmentation for the four regressions.  The question however 

arises about whether the first retirement year is relevant and should be included into the dataset for 

pension equations estimation.  Simple analysis shows that on average AFP and old age pensions are 

considerably lower in the first year of retirement than in the following years.  This is probably due 

to discrete time nature of the model: I disregard possible within year fluctuations of income and 

therefore end up observing lower pensions for those retiring during the calendar year.  I therefore 

drop the first retirement years from the datasets used in the estimation of the first three pension 

equations.  The same is not possible for partial disability pension since the incomes in the first and 

following years do not differ systematically.  Concentration on stable pension benefits in estimation 

of the pension equations is achieved by conditioning on the transfers from and to the corresponding 

labour market states.  A consequence of this approach is the impossibility to use state dummies as 

explanatory variables and thus pension levels are mainly conditioned on the aggregate wage, time 

and fundamental household characteristics.  In partial disability equation however, state dummies 

are used for both previous and current periods (their numbers are determined by considered 

transfers on the labour market) and display higher partial disability benefits to previously employed 

and currently employed in the non-AFP companies.  The later indicates the fact that individuals 

with lower disability pensions are sorted into AFP employment. 

Modeling of additional income is complicated by the fact that many households do not have any 

income from this source and the problem of censoring becomes quite considerable.  I estimate a 
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separate logit model for positive additional incomes which facilitates the use of the regression 

estimated only on the positive values of the dependent variable.  Additional income is then 

calculated only for the households which produce a probability prediction over one half with the 

logit model.  Both logit and ordinary regressions for additional income are displayed in Table 24 in 

the Appendix, p. 97.  As it follows from the table female gender, absence of a spouse, bad 

employment situation in the recent years, disability, retirement and age positively affect the 

probability of additional income which is also higher for females and singles and those out of labour 

market. 

Spouse income is modeled separately for two household genderscc reflecting the two major types of 

households (retiring older husbands with younger wives and retiring younger wives with husbands 

already on pension).  In the former case, the current labour market situation of the leading spouse is 

used as an instrument for the spouse’s situation whereas in the latter case this relationship 

disappears.  The latter cases is the least accurate as the amount of information available allows for 

only taking simple averages over the groups of households with similar characteristics. 

In general, analysis of goodness of fit in the models reveals the main complication of the chosen 

statistical approach to solve the problem of unobserved characteristics of alternatives.  A large 

number of observations and considerable heterogeneity embedded into the data as well as the 

limited number of explanatory variables resulted in quite poor fit of the predicting models.  As it 

follows from the last rows in Table 3 the best R-square of 72.36% is found in employment income 

equation while the most problematic ones are spouse’s income, in particular in the households with 

primary wife (R-square is only 9.02%)dd. 

Poor fit of the regression models will cause inaccurate income predictions and thus can spoil the 

calculation of the utility in different labour market states which in the end will affect the calculation 

of the likelihood function and influence parameter estimates.  However, this influence will not 

violate the asymptotic properties of the estimates because the errors are introduced only into the 

utility function and can be reformulated as its suboptimal specification.  Therefore the only negative 

consequence of this inaccuracy in income prediction is reduced goodness of fit. 

The problem can be dealt with in a couple of ways one of which can be related to what (Rust, 1994) 

calls a Newton step in the three step estimation procedure when all the model parameters that may 

be pre-estimated in the first steps are re-estimated altogether.  Coefficients vectors of the estimated 
                                                 

cc Refers to the gender of the main spouse, see section 3.1. 
dd Major reason for this outcome is the lack of relevant explanatory variables – even the age of the secondary spouse is 
not available in the state vector.  As it was many times mentioned, expanding the state vector is very costly 
computationally. 
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regressions can similarly be included into the set of model parameters and corrected in the general 

maximization of likelihood function.  Their large number however makes this approach very hard to 

apply in my case. 

Therefore I introduce the following procedure which seems sensible from the computational point 

of view but allows for great improvement in the accuracy of the utility calculation.  Instead of using 

the point estimates for the different sources of income, the estimated standard deviation may be 

incorporated into the utility calculation in the following manner.  Under standard OLS assumptions 

the error terms are independent identically normally distributed random variables with given 

standard deviations.  Noting that normal distribution is stable with respect to summation and that 

the estimated sources of income only appear in the utility function as a sum, it becomes possible to 

calculate the expected value of the current utility with respect to the noise in the income predictions.  

If the household income is represented by 
( , )
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where 
( , )t t

k
k K d s

ε ε
∈

= ∑  retains normal distribution with zero mean and standard deviation 

2

( , )t t

k
k K d s

σ
∈
∑  approximated from the individual estimated standard errors of residuals kσ  and ( )Φ i  

is standard normal cdf.  Expression (37) can be evaluated very fast with reasonable accuracy using 

well known Gaussian quadrature, thus it does not present additional computational burden.  

Recalling, that functions ( , , )k t tg t d s  are presented in Table 21-Table 25 in the Appendix, the 

deterministic part of the utility function is thus fully defined. 
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This completes the definition of preferences introducing a vector 0 7( , ( ), ,..., , )ta b s c c λ  of new 

parameters into the likelihood function.  Thus, I consider the coefficient estimates in the income 

predicting models as constants integrated into the utility function.  This approach may limit the 

overall fit of the model but does not interfere with the desired asymptotical properties of the 

maximum likelihood estimates of the rest of the parameters. 

4.2.  Motion rules (cont.) 

This section concludes the definition of the conditional transition probability matrix 

{ }1 1( | , )t t tp s s d− −  governing the Markov stochastic process { },t td s
δ

� �  induced by a decision rule δ .  I 

started defining the structure of this matrix in section 2.5 with assumption of independence of 

Markov health process { }th�  defined with the transition probability matrix (15) and conditional on 

health Markov matching process { }tm�  defined with the transition probability matrix (16).  Besides, 

the deterministic evaluation of the variable tps  was described there with the means of Table 1, and 

the data analysis part presented essential information to define time dependent and gender specific 

transition probability matrices 

( )
, {0,1} ( ) ( )

01 01

1.0 0.0
{ }

1
sp

tij i j sp sp
t t

π
π π∈

⎡ ⎤
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,  (38)

which govern evaluation of the Markov process { }tsp�  indicating the existence of a spouse.  Here 

( )
011 sp

tπ−  represents the sample specific probability of family survival from period t-1 to period t 

controlled for the gender of the household as defined in the previous section. 

It is now left to define the motion rules for the state variables te  (AFP eligibility), tnw  (number of 

consecutive years with sufficient incomes) and taw  (aggregate wage calculated as the average of 

best 20 annual earnings up to a given age).  I first present the marginal motion rules for these 

variables (as if their were completely independent) and then return to discussion of their 

dependence pattern. 

According to the assumption made in section 2.5 the AFP eligibility indicator te  is deterministically 

defined (equalized to zero) outside the time interval between the individual specific AFP retirement 

age and the normal retirement age of 67.  Thus, the motion rule for te  only determines its 

evaluation within this time interval and can naturally be divided into two states: initial AFP 

eligibility forecasting and later AFP forecasting.  The essential difference between these two stages 

is the existence of the value 1te −  of the AFP eligibility in the previous period. 
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A natural way to model probabilities of becoming or staying AFP eligible is to estimate a logit 

model with dichotomous outcome.  However, coefficients of such model will directly enter the 

parameter vector of the likelihood function as the parameters of the transition probabilities matrix.  

Thus, care should be expressed in picking the covariates because the goodness of fit and 

explanatory power are only important up to the general tractability of the model.  One way of 

reducing the number of parameters in the logit estimation is utilizing deterministic relationships 

between AFP eligibility and other state variables which would allow for perfect predictions.  In the 

unidentified groups (preferably small) randomizing the motion of te  could be done in a very 

“parameter efficient” way. 

AFP eligibility rules described in section 3.4 give a perfect example of such deterministic 

relationships embedded into the data.  Indeed, employment in the AFP company (expressed as 

1 6tps + ≥ ) and having been earning substantial wage in the last two years ( 2tnw ≥ ) can be directly 

checked with the state variables.  Furthermore, at the ages between AFP age and normal retirement 

age, previously recorded AFP eligibility gives perfect prediction of success ( 1 1 1t te e− = ⇒ = ), 

which only leaves 20 263 “undecided” individuals out of 415 124 on the second stage (only 4.88%).  

The outcome for this group is modeled with two coefficient logit model which simply predicts 

gender specific probabilities. 

In the initial prediction in the absence of previous period value things are a little less perfect.  It is 

possible to reformulate another AFP eligibility rule that puts a limitation on the average of the best 

10 annual earnings in terms of the variable taw  (representing the average of the best 20 annual 

earnings), but there is no other dimension in the ts  vector along which AFP eligibility perfectly 

separates.  Data analysis shows that condition 74taw <  – the level that roughly corresponds to 2G 

in 1992 prices – perfectly predicts failures.  One more AFP rule requires at least 10 years with 

substantial income after age of 50 – this may be approximated by tnw  but with no deterministic 

relation since the rule does not require consecutive employment.  In total, 96 704 out of 

179 215 (53.96%) individuals fall into the perfectly predicted group in the initial AFP forecasting 

and the rest are assigned initial AFP eligibility as predicted by the model presented in the Table 5 

along with the one just described above. 

Even though the goodness of fit for these models is rather poor for the remaining group of 

individuals, the fact that most of the predictions are actually perfect outside the model makes it 

good enough to guess AFP eligibility just a little bit better that at random.  Thus, transition 

probability matrix for AFP eligibility ( )
, {0,1}{ ( )}e

ij t i jsπ ∈  is wholly calculated on the bases of Table 5. 
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Table 5.  Logit models of individual AFP eligibility at period t . 
Dependent variable AFP eligibility 

Model Logit Logit
Age afp afp-67

1 6tps + ≥ 1 6tps + ≥
Verifiable AFP rules

2tnw ≥ 2tnw ≥Estimated on (filter) 

Other 74taw > 1 0te − =

Perfect predictions (⇒ ) 

6 0t tps e< ⇒ =  
2 0t tnw e< ⇒ =  

74 0t taw e< ⇒ =

6 0t tps e< ⇒ =  
2 0t tnw e< ⇒ =  

1 1 1t te e− = ⇒ =
Number of perfectly predicted observations 96 704 394 861

Age afp afp-67

1 6tps + ≥ 1 6tps + ≥
Verifiable AFP rules

2tnw ≥ 2tnw ≥Applied to (filter) 

Other 74taw > 1 0te − =
Variable coef. estim. st.err. coef. estim. st.err.
Constant term ( )

1
ec -0,119 0,044

( )
4

ec  -0,380 0,020
Gender ( )

5
ec  -0,713 0,031

9 consecutive years with high wage 9tnw =  ( )
2

ec 1,165 0,042   
10 consecutive years with high wage 10tnw =  ( )

3
ec 2,190 0,104   

Number of observations 82 511 20 263
Pseudo R-square (McFadden’s ratio) 3,54 % 2,16%

 
The motion rule for variable tnw  needs a little introduction.  As shown in section 3 the number of 

consecutive years with high earnings moves in a particular period either upward by 1 (until it 

reaches the ceiling of 10) or down to 0, that is evaluates according to the following formula: 

1 1

1

min(10, 1) with Pr{ 1 },
0 with Pr{ 1 },

t t
t

t

nw w G
nw

w G
− −

−

+ ≥⎧
= ⎨ <⎩

 (39)

where 1tw −  denotes the previous period employment income.  This implies that the motion rule for 

tnw  can as well be described by a logit model with dichotomous dependent variable indicating 

either a step up or a reset down to zero.  In general it could be possible within the model to 

introduce the dependence of this motion on the forecasted in the previous period wage, but there are 

two reasons not to do so.  First, assigning separate parameters to these related processes gives the 

model more flexibility.  Possible restriction could be then tested to confirm or reject the model 

structural assumptions.  Second, as it will be clear from the next two sections, separability of 

transition and preferences parameters is highly desirable in structural dynamic programming models 

as such separability greatly simplifies the estimation process. 
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Since the number of consecutive years with high income is crucially dependent on previous period 

income, it would be natural to use the same explanatory variables as in the wage equation.  Indeed, 

the logit estimated on the constant, previous value 1tnw − , aggregate wage and dummies for the 

previous period labour market state results in a very good fit with the McFadden’s ratioee 75.28%.  

A disadvantage of this model is the number of parameters that have to be re-estimated in the 

likelihood maximization.  The complication is however solvable as it appears that the information 

carried out by these covariates can be extracted with a small number of “sufficient statistics”: last 

period value 1tnw −  is mainly needed to indicate 1 0tnw − = , aggregate wage does not contain more 

information than the previous labour market state dummies, and the latter can be combined into 

three categories.  Final model for the motion of tnw  is given in Table 6. 

Table 6.  Motion rule for the number of consecutive years with sufficient wage income. 

Dependent variable

Increase in the number of 
consecutive years with 

high wage income 
{ }1max ,10t tnw nw −=  

Model Logit
Estimated on (filter) all

Applied to (filter) all
Variable coef. estim. st.err.
No consecutive high income years previously 1 0tnw − =  ( )

1
nwc -4,444 0,009

Active on labour market in the previous period {3,4,6}tps ∈  ( )
2

nwc 4,057 0,010

Partial disability in the previous period {5,7}tps ∈  ( )
3

nwc 2,327 0,012

OLM or fully disabled in the previous period {0,2}tps ∈  ( )
4

nwc -5,591 0,081

Constant term ( )
5

nwc -0,422 0,009
Number of observations 2 268 837
Pseudo R-square (McFadden’s likelihood ration) 75,23 %

 
Table 7.  Motion rule for aggregate wage. 

Dependent variable Aggregate wage in the 
current period 

Estimated on (filter) all
Applied to (filter) all

Variable coef. estim. st.err.
Aggregate wage in the previous period ( )

1
awc 1,0002 2,0E-5

Active on labour market in the previous period {3,4,6}tps ∈ ( )
2

awc 2,6950 0,004

Constant term ( )
3

awc 0,1440 0,005
Number of observations 2 268 837
Pseudo R-square (McFadden’s likelihood ration) 99,91 %
Estimated standard error of residuals 2,6585

                                                 

ee More on this type of measure in section 6.5. 
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It is now only left to describe the motion rule for the aggregate wage taw .  This is done with a 

simple regression model presented in Table 7.  Aggregate wage moves in a very smooth way almost 

completely explained by its previous value (See Figure 24 in the Appendix, p.107).  Still, the 

variable indicating active labour market states turns out to be very significant (with the t-value of 

678.18) and helps to distinguish the cases when aggregate wage actually grows from those when it 

is practically unchanged (first of all, pension).  Positive coefficients of the regression ensure non-

decreasing behavior implied by the definition.  Extremely high R-square and relatively small 

estimated standard error of residuals allows me to treat this relationship as deterministic which 

allows for significant simplification of the calculation procedures. 

Once all state variables are assigned their own motion rules, I can discuss the implied pattern of 

dependence in the transition matrix { }1 1( | , )t t tp s s d− − .  First, as assumed earlier, the health process 

{ }th�  is completely independent in a sense that it evaluates only conditional on its own previous 

value.  The same property is true for spouse existence process { }tsp�  which appears completely 

deterministic and exogenous (although individual specific).  The matching process dependent only 

on health in the same period combined with health process form an independent pair { },t th m� � .  

Previous labour market state process { }tps  is deterministic but depends directly on own previous 

value and the decision in the previous period but also indirectly through current health, match and 

AFP eligibility on their previous period values.  As specified by the logit model in Table 6 { }tnw�  

process depends on own previous values as well as previous labour market state and thus indirectly 

on previous health, match and AFP eligibility.  Aggregate wage process { }taw  is dependent on the 

previous labour market state besides own previous value.  Finally, AFP eligibility process { }te�  has 

the most complicated dependence pattern since the logit models in Table 5 describing its 

movements are dependent on previous period own value, number of consecutive sufficient annual 

wages and the aggregate wage, but also through the previous labour market state on previous health 

and match.  All this is not to mention dependence on age, gender and AFP eligibility age. 

The described dependence pattern is graphically displayed in Figure 1.  Solid lines represent direct 

dependence of period t+1 values on period t values whereas dashed lines represent indirect 

dependence links which go from indicated variable in t to the indicated variable in t+1 through 

some other variable in t+1.  Dependence on time, AFP age and gender of the household are not 

shown in the picture. 
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Figure 1.  Dependence pattern in the transition probability matrix. 

The constructed pattern of dependence in the transition probability matrix { }1 1( | , )t t tp s s d− −  appears 

to be quite complex and requires special attention when implemented in the computational 

algorithm.  Table 26 in the Appendix (p. 99) displays the implementation of the function that 

returns transition probability for given values of current and next period state variables.  The 

function deals with the total transition probability as a chain starting from the independent health 

transition probability and then multiplied by conditional probabilities related to each of the state 

variables which are carefully calculated taking into account all dependencies presented in Figure 1.  

The function constructs well defined probability distributions for each allowed combination of the 

current state and decision variables as defined by the assumptions listed in section 2.5 (and 

corresponding to the black areas in Figure 11 in the Appendix). 

This concludes the definition of the transition probability matrix { }1 1( | , )t t tp s s d− −  giving final 

appearance to the dynamic model apart from two minor functions used in preferences and defined 

in the next two short sections.  Complete definition of transition probabilities introduces additional 

the parameter vectors ( ) ( ) ( )
1 5( ,.., )e e ec c c= , ( ) ( ) ( )

1 5( ,.., )nw nw nwc c c=  for the likelihood function. 

4.3.  Tax function 

The tax function ( )Tx i  is a mapping from the set of before tax household incomes into the set of the 

disposable household incomes which is superposed inside the utility function.  In order not to 

complicate the construction of the dynamic model, the Norwegian tax system has to be represented 

within the scope of the model.  This section presents the technique used in this respect. 

The fully detailed Norwegian tax function is available due to (Haugen, 2000).  Main determinants 

of the household taxes are: year of calculation, type of household (single or full), distribution of the 

household income into employment income, capital income and pensions, distribution of household 

income among spouses, geographical location of the household and other information.  Clearly, 

1 1 1 1 1 1 1 1
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most of these characteristics are not available within the model.  Again, a statistical approach can be 

applied to relate the accurately calculated taxes to the state variables available in the model. 

To reconstruct the needed statistical relationship I use simulated data build on the following 

principles.  First, the data contains all combinations of the following variables in ever imaginary 

year form 1992 to 2001 (altogether 160 160 data points): 

 Household before tax income between 1 and 1000 measured in 1000 NOK in 1992 prices. 

 Spouse indicator tsp  (0 or 1). 

 Current labour market state recorded in 1tps +  (8 values). 

Second, the following assumptions about the household income distributions are made.  If 0tsp =  

the whole income is generated by the primary spouse, and depending on 1tps +  variable is assumed 

to originate fully from social security sources (when 1 {0,1, 2}tps + ∈ ), fully from employment 

sources (when 1 {4,6}tps + ∈ , or to be equally divided between the two (when 1 {3,5,7}tps + ∈ ).  If 

1tsp =  one third of household income is assigned to the spouse who is assumed to be a pensioner as 

a result of a simple random draw with probability 1
2 .  In this case the part of the household income 

corresponding to the spouse is categorized as pension, otherwise it is categorized as wage.  The two 

thirds of household income corresponding to the primary spouse are assigned a source the same 

way as in single households. 

Third, the full detail tax function is applied to the simulated data calculating taxes in every of the 

160 160 cases.  Calculated taxes are then used in the simple regression model which is estimated 

with the results presented in Table 27 in the Appendix (p. 100). 

As follows from the regression results, the model displays very good fit (R-square 98.34%) along 

with very precise coefficients.  The marginal tax for household incomes is estimated at the level 

42.3% which is rather high, but compensated by the negative coefficients for all the explanatory 

variables most extensively for full households with primary spouse on pension or disability.  High 

measure of goodness of fit allows treating the estimated tax function as deterministic, also keeping 

in mind that potential inaccuracies do not compromise the asymptotic properties of maximum 

likelihood estimation, but only affect the strict definition of the utility function. 

4.4.  Termination function 

The termination value function represents the residual utility after the age of 70 when the process 

{ },t td s
δ

� �  can no more be controlled by the decision variable.  In general following (1) it can be 

written as the infinite sum of the uncontrolled utilities multiplied by time specific depreciation rate: 
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0

1
( ) ( )t T

T t t
t T

s U sρ β
∞

−

= +

Λ ≈ ∑ � .  (40)

In order to represent (40) in terms of the existing state variables assume their motion freezes at 

termination period T and the utility after T becomes constant.  If furthermore survival probabilities 

tρ  are independent of time beyond T, (40) becomes a geometric series and the termination function 

can be represented by its sum 

0 1 ( )( )
1

T T
T T

T
U ss ρ β
β

− +

Λ ≈
−

.  (41)

Further, the only source of heterogeneity in the utility level after T is the last observed aggregate 

wage Taw  (in addition to the “constant” variables indicating household gender and the individual 

specific AFP age).  Therefore, it is possible to abstract from the detailed utility function and 

represent (41) as a simple linear function of the last aggregate wage. 

( ) ( ) ( )
1 2 3( ) tf tf tf

T Ts c afp c gender c awΛ = ⋅ + ⋅ + ⋅ .  (42)

The possible constant term in (42) is omitted because as the termination function enters the utility 

and correspondingly the value function only in the termination period, it would simply introduce an 

additively separable parameter in both enumerator and denominator in (26) and would clearly be 

unidentified. 

The last expression completes in all details the specification of the structural dynamic model which 

main components are: the agent sequential decision problem (2) in which the state vector (8) 

represents the evaluation of the stochastic process { },t td s
δ

� � ; the latter is induced by a feasible 

decision rule δ  which belongs to the class F  and in every time period defines the optimal decision 

from the choice set (9) and thus affects the transition of process by the means of the matrix 

{ }1 1( | , )t t tp s s d− −  defined by (15), (16), (38) and (39).  The model rationalizes the panel of 

observations { }
0{ 1,.., }, {1,.., }

, , , , , a a

a a a a a a
t t t t t t t T T a A

d ps e sp nw aw
∈ − ∈

 with the means of likelihood function (33) 

dependent on the vector of parameters 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
00 01 00 01 10 11 20 21

0 7
( ) ( ) ( ) ( ) ( ) ( )
1 5 1 5 1 3

( , , , , , , , , ,
, , , ( ), ,..., ,

,.., , ,.., , ,.., ),

h h m m m m m m bhm

t
e e nw nw tf tf

a b s c c

c c c c c c

θ π π π π π π π π θ
β λ

=
 (43)

altogether at least 34 parameters from which 19 are associated with the transition probability matrix 

and at least 15 are associated with preference calculations (from which at least 11 enter 

instantaneous utility function, 1 reflects the time preferences and 3 enter the termination function). 
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5.  Calibration of the model 

This section presents a preliminary analysis of the behavior of the model mainly aimed at the 

calibration of the latent state processes.  In particular I test a possible simplifying assumption on the 

matching process transition probability matrix that could allow for a reduction in the number of 

parameters. 

5.1.  Calibration technique 

The main purpose for the preliminary calibration of the model is making the main optimization of 

the likelihood function easier.  This can be achieved by exploring its area of definitionff, scaling the 

parameters to the magnitude of 0.1-1 and finding good starting values for them.  I mostly 

concentrate on the latent health and job match processes investigating responses to changes in their 

motion rules. 

To simplify calibration, itself instead of computationally demanding likelihood function, I use the 

much simpler aggregated squared error function which measures the Euclidean distance between 

the observed distributions among labour market states in all the periods and its predicted 

counterpart.  In other words, if the observed distributions are given by the matrix 

( ) ( ) ( )
50,0 51,0 70,0
( ) ( ) ( ) 1
50,1 51,1 70,1( ) ( ) 1

, 7

1( ) ( ) ( )
0 150,7 51,7 70,7

( )
, ,

( )

obs obs obs A

obs obs obs t
obs obs a

t k A

tobs obs obs
k a

lmd lmd lmd
ps klmd lmd lmd

lmd lmd
ps k

lmd lmd lmd

ξ

ξ

+
=

+
= =

⎡ ⎤
=⎢ ⎥

⎢ ⎥= =
⎢ ⎥

=⎢ ⎥
⎢ ⎥⎣ ⎦

∑

∑∑

"

# %
 (44)

where ( )ξ i  is again an indicator functiongg, 
7

( )
,

0

1obs
t k

k

lmd
=

=∑ ; and ( )simlmd  denotes the similarly 

defined matrix on the simulated data, the calibration function can be specified as 

( )
0

7 2( ) ( )
, ,

0

( )
T

obs sim
t k t k

t T k

lmd lmdθ
= =

Δ = −∑∑ .  (45)

Simulated data was constructed of 1000 hypothetical households which were assigned initial 

characteristics from the first observations of the randomly chosen sub-sample of household.  The 

behavior of these households was forecasted as solution of the agents problem (2).  Random 

assignment of the initial characteristics was held the same throughout the whole calibration process 

while the parameter vector θ  was adjusted to minimize the value of the objective function (45). 

                                                 

ff Dependent on the values of the parameters and certain observed variables numerical errors as overflows and 
logarithms of zeros may appear while calculating the likelihood function. 
gg Indicator function also returns zero in the cases when no observation is available. 
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The calibration was focused on the parameters of the latent processes of health and matching.  The 

rest of the parameters were given the following values. 

 Discount factor 0.95β = . 

 Main preference parameters 0 70.5, 0.001, ( ) 0.001, ... 0ta b s c cλ = = ≡ = = = . 

 Motion parameters ( ) ( ),e nwc c  for number of consecutive years with sufficient annual wage 

income and individual AFP eligibility as estimated by the corresponding models (See Table 5, 

Table 6). 

 Termination functions parameters ( ) ( )
1 3.. 0tf tfc c= = = . 

In addition transition probability matrix for matching process was assumed to have the following 

semi-symmetric structure which allowed for reduction of the corresponding number of parameters 

from 6 to 3. 

( ) ( ) ( ) ( ) ( ) ( )1 1
00 01 02 00 00 002 2
( ) ( ) ( ) ( ) ( ) ( ) ( )
10 11 12 10 11 10 11
( ) ( ) ( ) ( ) ( ) ( ) ( )
20 21 22 10 10 11 11

(1 ) (1 )
1

1

m m m m m m

m m m m m m m

m m m m m m m

π π π π π π
π π π π π π π
π π π π π π π

⎡ ⎤ ⎡ ⎤− −
⎢ ⎥ ⎢ ⎥= − −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦

.  (46)

The chosen objective function (45) is about twice faster to calculate than the likelihood function and 

has the very convenient interpretation as the aggregated accuracy of predictions of labour market 

outcomes, but mathematically displays challenging properties.  As seen in the Figure 35 in the 

Appendix (p. 113) which plots this function with respect to ( )
00

hπ , it is very unsmooth and partially 

flat.  This makes calibration quite difficult and justifies the use of derivative free methods as 

Nelder-Mead method for its minimization. 

5.2.  Calibration results 

Calibration was carried out in the Matlab programming interface using the built in optimization 

machinery.  The following parameters were found by the optimization procedure and gave a decent 

distribution of predicted labour market states. 

( ) ( ) ( ) ( )
00 01 00 01

( )

1 0.9589 0,0160 0,0251
0 1 0 0 1 0
0 0 1 0 0 1

h h h h

h

π π π π
π

⎡ ⎤− − ⎡ ⎤
⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

,  

( ) ( ) ( ) ( )
00 01 00 01

( ) ( ) ( ) ( ) ( )
10 11 10 11
( ) ( ) ( ) ( )
20 21 20 21

1 .0499 .47505 .47505
1 .0106 .9007 .0887
1 .0106 .0887 .9007

m m m m

m m m m m

m m m m

π π π π
π π π π π

π π π π

⎡ ⎤− − ⎡ ⎤
⎢ ⎥ ⎢ ⎥= − − =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− − ⎣ ⎦⎣ ⎦

,  

0.8045bhmθ = .  

(47)
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Figure 2.  Observed and predicted fractions of pension and disability states. 

Figure 3.  Observed and predicted fractions of working states. 
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Figure 4.  Observed and predicted fractions of OLM and unemployment states. 

Calibration results are presented in a form of graphs that compare observed and forecasted 

distributions of the sample among the labour market states in Figure 2–Figure 4 above and also in 

the Table 14 and Table 28 in the Appendix (p. 84). 

As follows from the graphs and the tables the calibrated model represents the observed behavior 

rather well.  The most accurate predictions seem to be concentrated around ages 60-67 where the 

most important transitions take place and most of the observations are available.  In general pension 

and disability states seem to be predicted best of all.  Employment in AFP and non-AFP companies 

is correspondingly under- and overestimated, besides both types of employment are overestimated 

after the usual retirement age.  The fact that the predictions of the two types of employment tend 

towards each other and fail to represent the observed in the real data gap clearly indicates severe 

limitation imposed by the semi-symmetric structure of the matching transition probability matrix.  

The kinky predictions of the unemployment state may have been affected by the relatively small 

number of simulations compared to the number of observed households.  The underestimated 

pension take-up together with poor estimation of the residual labour market state shares may have 

been influenced by the exclusion of the preferences from calibration. 

Nevertheless, calibration of the model produced reliable starting values for the parameters to be 

used in the full scale estimation undertaken in the next section. 
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6.  Estimation of the model 

This section describes model estimation methods and estimation strategy, derives final definition 

for the parameter vector (43), presents the estimates for the parameters and discusses the achieved 

goodness of fit of the model. 

6.1.  Estimation strategy 

Maximization of the likelihood function (33) with respect to the 34 parameters listed in the 

parameter vector (43) presents a demanding computational task.  Straightforward maximization 

with respect to all the parameters is especially undesirable because it may take enormous amounts 

of iterations before convergence.  Step by step optimization with respect to different parameter 

groups is more appropriate.  First, as it appears, vector θ  contain highly interconnected parameters 

as discount factor β , the income coefficient a and the Box-Cox parameter λ .  Even a slightest 

change in one of them causes large changes in the partial derivative of the likelihood function with 

respect to another.  Second, and more challenging, a single computation of the likelihood function is 

very time consuming. 

In the similar circumstances (Rust, 1994) suggests separating the likelihood function (28) into two 

partial likelihood functions composed correspondingly of the transition probabilities 

1 1( | , , )a a a
t t tp s s d θ− −  and choice probabilities ( | , )a a

t t tP d s θ  under the assumption of separability of the 

parameter vector.  The resulting combined vector of the estimates is consistent and asymptotically 

normal but lacks efficiency.  To improve this estimate further Rust suggests an additional third step 

which is virtually one iteration of a quasi-Newton line search algorithm, and shows that three-step 

procedure gives the result which is asymptotically equivalent to the full information maximum 

likelihood. 

This decomposition of the problem gives a great reduction of the computational burden of the 

likelihood function maximization.  In the current model the parameter vector is indeed composed of 

the two subvectors corresponding respectively to preferences and transitions thus granting the 

required separability: 

 19 parameters associated with the transition probability matrix { }1 1( | , )t t tp s s d− − , namely the 

health transition probabilities, the matching transition probabilities along with the reduction 

parameter bhmθ , and the parameters of the logit models for AFP eligibility and the number of 

consecutive high annual earnings. 
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 at least 15 parameters associated with instantaneous and intertemporal preferences, namely 

the discount factor β , the parameters of the utility function and the parameters of the 

termination function. 

I adopt the following four step estimation strategy (as illustrated by Table 8), which is inspired by 

(Rust, 1994) and builds on the general two-step maximum likelihood procedure described, for 

example in (Greene, 2000).  In the first step all the separable parameters are estimated with the 

independent models.  This step was already performed in section 4.2 when relevant data was used to 

fit logit models for te  and tnw  motion ruleshh.  Altogether, it covers 10 parameters and the 

estimates are reported in Table 5 and Table 6 in section 4.2 (pp. 53-54). 

Table 8.  Estimation strategy. 
Estimated in 

the steps Parameters Number of 
parameters Description 

1 2 3 4 
( ) ( )
00 01,h hπ π  2 Health transition probability matrix     
( ) ( )
00 01

( ) ( )
10 11
( ) ( )
20 21

, ,

, ,

, ,

m m

m m

m m bhm

π π

π π

π π θ  

7 Matching transition probability matrix     

( ) ( )
1 5,..,e ec c  5 AFP eligibility indicator motion rule     
( ) ( )
1 5,..,nw nwc c  5 Number of consecutive high annual 

wage incomes motion rule     

β  1 Discount factor     

0 7

, , ( ),
,...,

ta b s
c c
λ

 ≥11 Utility function parameters     

( ) ( )
1 3,..,tf tfc c  3 Termination function parameters     

 
The second step estimates the parameters of the transition probability matrix which are separable 

from preferences (19 parameters).  The approach proposed by (Rust, 1994) must be somewhat 

modified here because of the additional complication in the likelihood function (33) caused by the 

latent state variables.  To maintain on average the random structure imposed by the choice 

probabilities I replace them with the uniform distribution instead of completely dropping them from 

the likelihood function (which is equivalent to replacing them with ones).  This is important because 

the choice probabilities dependable on the choice sets implied by the latent variables influence the 

identification of the transition probability parameters.  In other words, in the second estimation step 

I use the following partial likelihood function: 

                                                 

hh All the models were estimated either by maximum likelihood or by OLS under classical assumptions which makes 
the estimates asymptotically equivalent to those of maximum likelihood estimation. 
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0 0
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t t t t t t t ts ps h m e sp nw aw= ,  

(48)

where ( )a
t tD s  denotes the number of alternatives in the choice set ( )a

t tD s  available for an agent at 

time t  and ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
00 01 00 01 10 11 20 21 1 5 1 5( , , , , , , , , , ,.., , ,.., )h h m m m m m m bhm e e nw nwc c c cθ π π π π π π π π θ′ = .  Note that the 

parameters of the logit models ( ) ( ) ( ) ( )
1 5 1 5( ,.., , ,.., )e e nw nwc c c c  are re-estimated in this step.  The rest of the 

parameters are taken as given forming a two-stage structure.  Greene (2000) references (Murphy 

and Topel, 1985) who show that the resulting estimates retain the properties of consistency and 

asymptotical normality with an adjusted covariance matrix. 

In the third step I define ( )tb s  and estimate the parameters associated with the preferences by the 

means of maximization of the complete likelihood function (33) with respect to the parameters 
( ) ( )

0 7 1 3( , , ( ), ,..., , ,.., )tf tf
ta b s c c c cθ λ′′ =  keeping parameter subvector θ ′  fixed.  Again, the resulting 

two-stage procedure again yields consistent and asymptotically normal estimates. 

To conclude, the forth step performs the final maximization of the full likelihood function with 

respect to all the parameters where the previous estimates are used as starting values.  With the 

logic of (Rust, 1994) since all previously estimated parameters are consistent, just a few quasi-

Newton iterations are necessary for convergence.  Besides yielding asymptotically efficient 

estimates, performing the final step as independent maximization allows me to skip complicated 

calculations of the covariance matrix for the parameters, which could in principle be done based on 

the mentioned results of Rust and Murphy.  Instead, I use “information equality” to approximate the 

covariance matrix from the numerically computed Hessian at the solution point of the final 

maximization problem. 

The proposed decomposition of the maximization procedure helps to defy the main source of the 

computational difficulty in the problem, namely the complicated recalculation of the value function 

which is required at each evaluation of the likelihood function.  The value function has to be 

calculated on each point of the state spaceii in each time period before the choice probabilities 

( | , )a a
t t tP d s θ  may be constructed according to (26).  This separates the value function calculation 

into a distinct computational task which is independent of any manipulations with the data.  Since 

the number of function evaluations in maximization routine grows very fast with the number of 

                                                 

ii With 7 points grid for the aggregate wage, the total number of points of the state space is 133 056. 
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parameters, especially when numerical derivatives are used, one way to deal with the complication 

is to avoid the value function calculation as much as possible.  Accordingly, the chosen estimation 

strategy requires value function calculations only on the last two steps of the process when half of 

the parameters are already pre-estimated. 

Another source of computational difficulty is integration over the unobserved variables.  As 

described in section 2.6 all trajectories of the partial state process { , }t th m� �  consistent with the 

observed state variables 
0{ 1,.., }

{ , , , , } a a
a a a a a
t t t t t t T T

ps e sp nw aw
∈ −

 for each household {1,.., }a A∈  have to be 

followed by the likelihood calculating routine.  Since at each time period observed state vector is 

likely to allow for several values of health, this essentially means following the branches of a treejj 

which in the worst case has 21 levels with up to 3 branches at each level.  Unfortunately, this 

process is hard to optimize because the branching depends on both observations (to ensure latent 

variable consistency) and on the previous values of the state variables (to ensure model structure).  

Thus, the runtime of the part of the likelihood calculation routine which deals with the data and 

integrates out the unobserved health and match processes crucially depends on the number of agents 

in the sample.  The full dataset comprises 200 921 households which provide 2 165 467 

observations (see section 3.1). 

The model was implemented in the MatLab environment with the inner circuit of the nested fixed 

point algorithm (see detailed description in (Rust, 1987)) programmed as a dynamically linked 

library written in C programming language and the outer circuit completely taken care of by the 

standard MatLab unconstrained minimization routinekk.  Using C for the computationally 

demanding part of the program (both value function calculation and the integration over the 

unobserved variables) ensured obtaining minimal running time.  On the Frisch Center serverll one 

evaluation of the likelihood function over a half of the dataset took approximately 160-170 seconds 

with approximately 60 seconds spent on the value function calculation.  Production runs of the 

optimization routine were performed in the supercomputing center of the University of Oslomm.  

Distributing the computational load over 8 to 12 CPUs brought the one evaluation run-time over the 

                                                 

jj The routine is implemented as a recursive function in C. 
kk Namely, fminunc() routine performed a line search with numerical derivatives and the BFGS Hessian updating 
followed by at most three single Newton steps based on the numerically approximated Hessian for “fine tuning” into the 
optimal point. 
ll At the time Anton: Dell PowerEdge 2850 x64-based PC with 8 EM64T Family 15 Model 4 Stepping 8 GenuineIntel 
~2793 Mhz processors, 8GB physical memory, running Microsoft Windows Server 2003 Enterprise x64 Edition, 
version 5.2.3790 Service Pack 1 Build 3790.  32bit MatLab version 7.3.1.267 (R2006b). 
mm The Titan II cluster at the time comprising 1852 CPUs (on 4-core SUN X2200 AMD and 2-CPU DELL 1425 Intel 
nodes) was used, see http://www.hpc.uio.no, http://login3.titan.uio.no/ganglia/. 
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full sample down to 9-12 seconds.nn  Parallelization was applied to both value function calculation 

and the data processing. 

Using an unconstrained optimization routine required reformulation of the parameters 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
00 01 00 01 10 11 20 21( , , , , , , , )h h m m m m m mπ π π π π π π π  constrained by the obvious probability limitations in the 

following manner. 

( ) ( )
( ) ( )00 01
00 01( ) ( ) ( ) ( )

00 01 00 01

( ) ( )
( ) ( )00 01
00 01( ) ( ) ( ) ( )

00 01 00 01
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( ) 10
10

exp( ) exp( ), ,
1 exp( ) exp( ) 1 exp( ) exp( )

exp( ) exp( ), ,
1 exp( ) exp( ) 1 exp( ) exp( )

exp( )
1 exp(

h h
h h

h h h h

m m
m m
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m
m
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π
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+ + + +

= =
+ + + +
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( ) 11
11( ) ( ) ( ) ( )

10 11 10 11

( ) ( )
( ) ( )20 21
20 21( ) ( ) ( ) ( )

20 21 20 21

exp( ), ,
) exp( ) 1 exp( ) exp( )

exp( ) exp( ), .
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 (49)

Parameter bhmθ  limited to the unit interval was modified so that 

1
1 exp( )

bhm
bhm
m

θ
θ

=
+

.  (50)

Invariance of the maximum likelihood estimation and the theorem about the asymptotic distribution 

of the nonlinear function (Theorem 4.17 in (Greene, 2000)) provide a mechanism of backward 

recalculation of the estimates and their covariances according to (49) and (50).  In the next section I 

shall skip these details and report the original parameters with their estimated standard errors 

directly. 

Finally, using standard MatLab minimization routines required multiplying the likelihood function 

by (-1) which also influences the calculation of the information matrix and the covariance matrices.  

In addition I scaled the logarithm of the likelihood function to the order of magnitude of one to 

facilitate the optimization.  All these adjustments are undone before the results are displayed in the 

next section. 

6.2.  Estimation results: step 2. 

Whereas the results of the first step were already presented in section 4.2. in Table 5 and Table 6 

this section takes the second step and presents the conditional transition probability estimates. 

The calibration results presented in section 5.2 (transformed in accordance to (49) and (50)) 

provided good starting values for the maximization of the partial likelihood function (48).  The 

                                                 

nn Run-time decreased non-linearly in the number of CPUs and had a pronounced minimum at 8-12 CPUs. 
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latter appeared to be smooth and well-behaved, so that direct maximization over all 19 

corresponding parameters went with no complications and achieved convergence after 93 iterations 

and 4 873 function evaluations.  Since partial likelihood was used, the optimal function value is not 

comparable with other results.  Table 9 displays the estimates and their asymptotic standard errors 

in comparison to the calibration results (for the health and match probabilities) and previous 

estimates (for AFP eligibility indicator). 

Table 9.  Estimates of the transition probability matrix parameters at step 2. 

Previous estimate Current estimate 
Parameter description Estimate Std. 

Err. Estimate Std. Err. p-value 

Good to good health ( )
00

hπ 0.9589 - 0.97073 0.00011 0.00000Health 
transition 

probabilities Good to bad health ( )
01

hπ 0.0160 - 0.02806 0.00011 0.00000

No match to non-AFP ( )
01

mπ 0.0499 - 0.19737 0.00151 0.00000

No match to AFP ( )
02

mπ 0.4751 - 0.13229 0.00131 0.00000

Non-AFP to non-AFP ( )
11

mπ 0.0106 - 0.89112 0.00045 0.00000

Non-AFP to AFP ( )
12

mπ 0.9007 - 0.08915 0.00042 0.00000

AFP to non-AFP ( )
21

mπ 0.0106 - 0.05584 0.00026 0.00000

Matching 
transition 

probabilities 

AFP to AFP ( )
22

mπ 0.0887 - 0.93550 0.00027 0.00000
Matching limitation due to bad health bhmθ 0.8045 - 0.99996 0.00008 0.00000

Constant term (1) ( )
1

ec  -0.119 0.044 -0.31837 0.05124 5.21E-10

9tnw =  ( )
2

ec  1.165 0.042 1.24310 0.10514 2.95E-32

10tnw =  ( )
3

ec  2.190 0.104 2.36392 0.05245 0.00000

Constant term (2) ( )
4

ec  -0.380 0.020 -0.30423 0.01949 6.21E-55

Motion rule 
for te  

Gender ( )
5

ec  -0.713 0.031 -0.62980 0.02928 1.31E-102

1 0tnw − =  ( )
1

nwc -4.444 0.009 -5.78499 0.02122 0.00000

{3,4,6}tps ∈  ( )
2

nwc 4.057 0.010 5.64890 0.01415 0.00000

{5,7}tps ∈  ( )
3

nwc 2.327 0.012 13.73441 1.44000 1.46E-21

{0,2}tps ∈  ( )
4

nwc -5.591 0.081 -5.93205 0.09033 0.00000

Motion rule 
for tnw  

Constant term ( )
5

nwc -0.422 0.009 -0.47464 0.00863 0.00000

 
Table 9 indicates a considerable amount of updating of the parameters especially vivid in the 

motion rule for variable tnw .  Although the signs and roughly the quantitative relations among the 

estimates remain, all the coefficients moved away from zero and thus became individually more 

influential in determining the direction of the next step in motion of tnw .  Moreover, previous 

combined disability and employment labour market state became more or less sufficient condition 

for the increase in tnw  variable next period.  These changes induced by the structure of the model 
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are due to the fact that the complex evolution of the dynamic environment in the model introduces 

additional relationships overseen in the separate static preliminary estimations. 

Similar shifting of the estimates away from zero is seen in the initial AFP eligibility assignment 

equation.  Decrease in the constant term reflects the lower average probability of becoming AFP 

eligible at the AFP age while the opposite neutralizes it with approximately same magnitude 

increase of the coefficient with the condition 10tnw =  maintaining the relative importance of 

having solid employment in the later years.  As a result, the change in the estimates reflects the 

decreased influence of the condition 9tnw =  compared to the preliminary case which is expected 

since the structure of the model takes on a part of the explanatory burden.  This very effect is even 

better illustrated in the second AFP equation (for years after the AFP age) as both of the coefficients 

shift towards zero and thus decrease the amount of the information contained in the logit probability 

distribution implied by it.  Again, general structure of the dynamic model imposed onto the 

estimation takes on some of the explanatory burden. 

Transfer probabilities for the health and matching processes are also estimated very sharply, but do 

change quite a lot from the calibration results.  This is expected, especially in light of rejection of 

the semi-symmetric structure of the transition probability matrix for the matching process in 

section 5.2.  Obtained estimates imply the following transition probability matrices. 

( )

0.9707 0.0281 0.0012
0 1 0
0 0 1

hπ
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

, ( )

0.6703 0.1974 0.1323
0.0197 0.8911 0.0892
0.0087 0.0558 0.9355

mπ
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

.  (51)

Thus, the probability of remaining in good health is 97.07% whereas the probability of a serious 

health shock resulting in a sure full-time disability is about 0.12%.  The model is capable of 

predicting this parameters with no corresponding observations due to its structural nature.  Health 

parameters are identified from two sources of information.  First, since health is partially 

recoverable from the data as mention numerously, there is a direct source of identification.  Second, 

and more importantly, careful reconstruction of the sets of available choices as the main element of 

the structure of the model allows for identification of health parameters indirectly through 

likelihood maximization similar to the parameters of unobserved heterogeneity.  Under the imposed 

structure, the obtained parameters appear most reasonable (in fact, consistent and not far from 

asymptotically efficient) to suggest that the estimated health process is likely to generate the 

observed behavioral patterns.  A reasonable question in this respect could be whether the direct 

identification along would differ much in conclusions about the latent health.  Using partial 

recoverability it is in principle possible to calculate the rate of observed transitions from the 

“healthy” labour market states (0, 3, 4, 6) to the same set of labour market states which could play a 
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role of ( )
00

hπ  estimateoo.  Such rate is 0.9229 in the sample.  The bias (possibly going both ways) is 

easily explained by the fact that health can be concealed in both the origin labour market state and 

the destination labour market state of the presumably healthy transition.  Thus, the technique could 

only be used to substantiate the last two rows of the ( )hπ  matrix while the estimation of the first row 

is only possible with the structural model. 

The transition probability matrix for matching reveals the following notable patterns.  About 67% 

of the unemployed ( 0tm = ) are likely to remain with no full-time job offer next year.  It is more 

probable to get a non-AFP job other than the AFP job.  Both types provide reasonable job security, 

but on average people leave AFP jobs much more rarely (by about 4.5% points).  If they do, 

switching to the opposite job type is 5 times more probable than becoming unemployed.  Again, 

employees at the AFP companies are holding on to their jobs to a considerably higher degree.  If 

this pattern holds in place for all ages of all generations, the limiting distribution assigns 37.15% 

and 59.08% of the population correspondingly to the non-AFP and AFP employment and implies an 

unemployment rate of 3.77%. 

The estimate of bhmθ  reflecting no reduction in labour market opportunities for the people receiving 

disability is probably an artifact of the model construction.  Since it is assumed that both agents 

with very bad health ( 2th = ) and those with bad health and no match end up in the full time 

disability labour market state, it is only the variation in AFP verses non-AFP job match to the 

disabled which identifies the parameter.  Obviously, this variation is not sufficient, and people with 

bad health and no job match could be regarded by the model as people with very bad health.  The 

true value of bhmθ  is then incorporated into ( ) ( ) ( )
02 00 011h h hπ π π= − −  which in this case is somewhat 

overestimated.  However, so far I accept the estimate of the labour market opportunities reduction 

parameter which could yet change in the fourth step and move on the next step of the estimation 

procedure. 

6.3.  Estimation results: step 3. 

The third step of the estimation strategy described in section 6.1 contains the estimation of the 

preference parameters ( ) ( )
0 7 1 3, , ( ), ,..., , ,..,tf tf

ta b s c c c cλ  which is achieved by maximization of the 

likelihood function (33) with respect to the parameter vector ( ) ( )
0 7 1 3( , , ( ), ,..., , ,.., )tf tf

ta b s c c c cθ λ′′ =  

while keeping the transition probability parameters fixed at the values obtained in section 6.2. 

                                                 

oo This approach will be used in section 6.5 when calculating the goodness of fit measures. 
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The third estimation step appears to be the most challenging for many reasons.  First of all, 

recalculation of the value function on each evaluation of the likelihood function is inevitable here, 

which drastically increases the running time of one likelihood evaluation compared to the previous 

step.  Then, since no preliminary calibration was performed for the preference parameters, finding 

good starting values is not a trivial task in itself.  In complicated structural models the likelihood 

function tends to be flat even in the static setups and to have multiple local extreme points.  Some 

parameters like the discount coefficient and the risk aversion are traditionally unstable as minor 

changes in their values lead to large disturbances in the other.  In these circumstances the choice of 

optimization routine is very important.  The usual argument that less iterations before the 

convergence is attained is more convenient, is many times strengthened because more iterations and 

thus more function evaluations to attain convergence may increase the running time beyond the 

reasonable bounds and make the whole problem computationally intractable.  Unfortunately, the 

structure of the likelihood function most of all complicated by the choice set dependencies is so 

complex that finding analytical derivatives of the likelihood function with respect to the parameters 

was infeasible.  Therefore only optimization methods based on numerically estimated derivatives 

could be used in spite of their generally lower convergence speed compared to the methods with 

analytical derivatives.  In addition, using numerical methods for likelihood function maximization 

lead to some inaccuracies in the calculation of Hessian and sometimes troubles in calculation of 

standard errors for the coefficient estimates. 

Nevertheless, after numerous runs of the optimization routine with slightly different settings, the 

final estimates had appealing properties.  To search for promising starting values for the full scale 

optimization, I followed the strategy of fixing most of the parameters first and then adding them one 

by one into the optimization routine.  As a result, Table 10 and Table 11 present 5 consecutive 

estimation approaches which lead to the final set of estimates. 

As shown in Table 10 I start with simplest setup where most of the parameters take zero values, the 

discount factor is fixed at 0.95 and the Box-Cox parameter is fixed at 0.5.  The only two preference 

parameters are constants with income and leisure which represent the average individual in the 

sample.  Although the coefficients are estimated rather sharply, the sign of the leisure coefficient is 

ambiguous.  I interpret the negative utility of leisure coefficient estimate as a result of heterogeneity 

which can be accounted for by introducing the additional labour market specific utility component 

(similar to (Rust and Phelan, 1997)).  Doing so solves the problem with the negative coefficient of 

leisure but the income coefficient is drastically reduced.  Since the income and leisure scale 

coefficients are reflecting the relative importance of either of these two major utility determinants, I 

turn back to the leisure coefficient trying to counteract the unexpected change with counting for 
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more heterogeneity.  The third set of estimates reveals the systematic difference in attitude towards 

leisure among healthy and not healthy individuals thus clarifying that the lack of this dimension in 

the utility function in the previous model caused the income coefficient to be estimated so lowpp. 

Table 10.  Estimates of the preference parameters at step 3.  First approaches. 
Income and leisure 
constant parameters 

only 

Introduce additional 
utility of labour 

market states 

Introduce 
heterogeneity in 

leisure preferences Parameter description 

Estimate Std. Err. Estimate Std. Err. Estimate Std. Err. 
Discount factor β  0.95 fixed 0.95 fixed 0.95 fixed

Risk aversion 
parameter λ  0.50 fixed 0.50 fixed 0.50 fixedUtility 

of 
income Income scale 

parameter a  0.30425 0.00254 0.06984 0.00313 0.15111 0.00376

Constant -1.73200 0.00580 2.22813 0.00000* 4.36834 0.00000*
1th =   18.14427 0.26597

tsp   0.05621 0.01935

Utility 
of 
leisure 

gender 

( )tb s  

 -0.66735 0.01698
OLM 0c  9.16281 0.00000* 9.17396 0.00000*

Pension 1c  9.70749 0.00000* 9.66068 0.00000*

Disability (DI) 2c  6.65482 0.00000* 8.80819 0.00000*

Unemployment 3c  9.51139 0.00000* 10.07589 0.00000*
Non-AFP 
employment 4c  9.96042 0.00000* 10.42392 0.00000*

Non-AFP 
employment 
with partial DI 

5c  14.22174 0.00000* 17.45291 0.00000*

AFP 
employment 6c  9.99934 0.00000* 10.43293 0.00000*

Labour 
market 
state 
specific 
add. 
utility 

AFP 
employment 
with partial DI 

7c  14.15713 0.00000* 16.79323 0.00000*

Termination function ( )tf
ic  0.00 fixed 0.00 fixed 0.00 fixed

 
The last estimates also suggest higher marginal utility of leisure for the individuals from full 

households and lower marginal utility of leisure for women (which may reflect their tendency to 

work more compared to men in order to counteract, for example, the gender gap in pension 

benefits).  Again all the coefficients have very small standard errors, although one problem is 

emerging.  Zero standard errors (market with *) of the labour market specific coefficients are due to 

the inaccuracy in the numerical approximation of the Hessianqq.  This implies that true errors of 

                                                 

pp Provided here definition of the parameter subvector ( )tb s  is a result of direct search of the parameters that could 
most comprehensively reflect individual heterogeneity but still keep the problem computationally tractable. 
qq Information equality is used to calculate asymptotic standard errors of the coefficients from the Hessian evaluated in 
the maximum point, see Greene (2000) for more details. 



 73

these coefficients fail to be calculated (although in other preliminary and not reported optimization 

runs they were assessed and appeared to be as small as the errors of other coefficients).  Another 

problem with the estimations presented in Table 10 is the failure to estimate the coefficients of the 

termination function.  In some runs and for some starting points I could obtain estimates for the 

termination function parameters, but in whole these parameters appear to be extremely unstable and 

sensitive to the changes in the income coefficient. 

Table 11.  Estimates of the preference parameters at step 3.  Final approaches 

Introduce discount factor and 
Box-Cox parameter 

Combine similar labour market 
state dummies 

(the final approach) Parameter description 

Estimate Std. Err. p-value Estimate Std. Err. p-value 
Discount factor β  0.80101 0.00088 0.00000 0.91305 0.00077 0.00000

Risk aversion 
parameter λ  0.71885 0.01901 0.00000 0.66743 0.03031 1.7E-107Utility 

of 
income Income scale 

parameter a  0.34830 0.00505 0.00000 0.16606 0.00420 0.00000

Constant 0.00 fixed 0.00 fixed
1th =  19.46889 0.37787 0.00000 17.43456 0.15031 0.00000

tsp  0.38676 0.02437 9.70E-57 0.28167 0.02059 1.28E-42

Utility 
of 
leisure 

gender 

( )tb s  

-1.14443 0.02202 0.00000 -0.54832 0.01813 7.7E-201
OLM 0c  9.03299 0.00000* 0.00000 10.54470 0.00000* 0.00000

Pension 1c  9.73344 0.00000* 0.00000 11.21128 0.00000* 0.00000

Disability (DI) 2c  8.41292 0.00000* 0.00000 5.10863 0.00000* 0.00000

Unemployment 3c  9.77845 0.00000* 0.00000 11.59163 0.00000* 0.00000
Non-AFP 
employment 4c  9.61362 0.00000* 0.00000 11.07245 0.00000* 0.00000

Non-AFP 
employment 
with partial DI 

5c  18.56178 0.00000* 0.00000 7c=

AFP 
employment 6c  9.71429 0.00000* 0.00000 4c=

Labour 
market 
state 
specific 
add. 
utility 

AFP 
employment 
with partial DI 

7c  18.23398 0.00000* 0.00000 15.62574 0.00000* 0.00000

Termination function ( )tf
ic  0.00 fixed 0.00 fixed

 
Unfortunately, the two described problems continue into Table 11 which displays the two remaining 

approaches including the final estimation result of the step 3.  As anticipated the parameters of the 

termination function appeared to be even more sensible to the changes in the risk aversion 

parameter λ  so that each time the optimization was performed with respect to these parameters 

simultaneously, the routine reported an inability to make a feasible step in the direction of the 

function increase.  Apparently, the reason for such behavior of the likelihood function lies in the 

insufficient variability of the available state variables at the termination age, and is likely to be a 

direct consecutive of the leaving the savings process out of the model. 
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Otherwise the estimation results presented in Table 11 are very appealing.  The two setups differ in 

the combined additional utilities for some of the labour market states, and even though this measure 

does not resolve the problem of noisy Hessian approximation, both approaches allow for sensible 

estimation of the discount factor and risk aversion parameterrr.  The final estimation approach 

suggests the discount factor 0.91305 or the intertemporal discount rate of 9.523%; risk aversion 

parameter 0.66743λ =  or the risk aversion coefficient of 0.3227.  The former estimate seems to be 

in line with the previous empirical findings whereas the latter is unusually small indicating that the 

observed individuals are rather risk neutral with respect to their disposable household income.  

Estimated in the final approach coefficients as before appoint higher marginal utility of leisure to 

the unhealthy men and with spouses. 

Comparison of the additional labour market state specific utility components (which demonstrate 

rather stable behavior throughout the approaches) reveals the underlying utility patterns.  The least 

attracting labour market state is full time disability, especially when it results from a permanent 

health shock (when 2th =  and no additional utility is attached to leisure).  The most attractive is 

combined disability and employment – this reflect large alternative cost of working for those who 

choose to become employed while on disability.  Out of the labour market state is the least 

attractive among the left states, while employment, unemployment and retirement result in 

approximately the same additional utility for the individuals occupying these states.  However, if 

these three are compared, the unemployment state seems to be a bit more attractive than pension, 

and pension a bit more attractive than employment which can be interpreted as evidence for the 

preferences outside the income-leisure dimensions that effect the choices of the labour market 

states. 

6.4.  Estimation results: step 4. 

As mentioned in section 6.1 step 4 of the estimation strategy is strictly speaking unnecessary.  The 

estimation results contained in the last three columns of Table 9 and Table 11 already bear the 

desirable asymptotic properties of consistency and asymptotic normality although lacking 

efficiency.  (Rust, 1994) provides formulas for calculation of the standard errors of the estimates 

from the partial likelihood Hessian matrixes.  On the other hand, (Rust, 1994) suggests a simple 

procedure to obtain the efficient estimators which essentially is a single step of the Newton 

optimization algorithm.  I take this approach a little bit further and perform three Newton steps from 

the best estimation found so far using the numerically approximated Hessian. 

                                                 

rr It could be noted that most of the times these parameters are fixed in the dynamic programming modeling papers, see 
(Berkovec and Stern, 1991; Gilleskie, 1998; Karlstrom et al., 2004; Burkhauser et al., 2004; Heyma, 2004). 
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Table 12.  Final estimates of all the parameters (step 4). 
Previous estimate Final estimate 

Parameter description 
Estimate Std. Err. Estimate Std. Err. p-value 

Good to good ( )
00

hπ  0.97073 0.00011 0.97087 0.00011 0.00000Health 
transition 
probabilities Good to bad ( )

01
hπ  0.02806 0.00011 0.02779 0.00011 0.00000

No to non-AFP ( )
01

mπ  0.19737 0.00151 0.18709 0.00148 0.00000

No to AFP ( )
02

mπ  0.13229 0.00131 0.12542 0.00127 0.00000

N-AFP to n-AFP ( )
11

mπ  0.89112 0.00045 0.89029 0.00046 0.00000

Non-AFP to AFP ( )
12

mπ  0.08915 0.00042 0.08908 0.00042 0.00000

AFP to non-AFP ( )
21

mπ  0.05584 0.00026 0.05585 0.00026 0.00000

Matching 
transition 
probabilities 

AFP to AFP ( )
22

mπ  0.93550 0.00027 0.93502 0.00028 0.00000
Matching limitation bhmθ  0.99996 0.00001 0.99999 0.00001 0.00000

Constant term (1) ( )
1

ec  -0.31837 0.05124 -0.31571 0.05129 7.50E-10

9tnw =  
( )
2
ec  1.24310 0.10514 1.24059 0.10513 0.00000

10tnw =  
( )
3

ec  2.36392 0.05245 2.36119 0.05250 0.00000

Constant term (2) ( )
4
ec  -0.30423 0.01949 -0.30211 0.01949 0.00000

Motion rule 
for te  

Gender ( )
5

ec  -0.62980 0.02928 -0.63135 0.02929 0.00000

1 0tnw − =  
( )
1

nwc  -5.78499 0.02122 -5.78533 0.02121 0.00000

{3,4,6}tps ∈  
( )
2

nwc  5.64890 0.01415 5.64858 0.01415 0.00000

{5,7}tps ∈  
( )
3

nwc  13.73441 1.44000 15.66852 3.78400 3.46E-05

{0,2}tps ∈  
( )
4

nwc  -5.93205 0.09033 -5.93309 0.09032 0.00000

Motion rule 
for tnw  

Constant term ( )
5

nwc  -0.47464 0.00863 -0.47346 0.00864 0.00000
Discount factor β  0.91305 0.00077 0.91235 0.00091 0.00000

1 - risk aversion λ  0.66743 0.03031 0.67393 0.03001 0.00000Utility of 
income Constant a  0.16606 0.00420 0.17147 0.00426 0.00000

1th =  17.43456 0.15031 29.32242 0.57728 0.00000

tsp  0.28167 0.02059 0.26551 0.02073 0.00000
Utility of 
leisure 

gender 

( )tb s  
-0.54832 0.01813 -0.61363 0.01838 0.00000

OLM 0c  10.54470 0.00000* 10.59219 0.00000* 0.00000

Pension 1c  11.21128 0.00000* 11.28129 0.00000* 0.00000

Disability (DI) 2c  5.10863 0.00000* 3.81063 0.00000* 0.00000

Unemployment 3c  11.59163 0.00000* 11.32202 0.00000* 0.00000

Employment 4c  11.07245 0.00000* 11.13257 0.00000* 0.00000

Labour 
market state 
specific 
additional 
utility 

Employment 
combined with 
disability 

7c  15.62574 0.00000* 18.24670 0.00000* 0.00000

Termination function ( )tf
ic  0.00 fixed 0.00 fixed
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The results of the step 4 estimation are given in the last three columns of Table 12.  The presented 

parameter estimates can be thought of as a result of applying standard maximum likelihood method 

in which the likelihood maximization was started from a point very close to the maximum point.  

Thus, the presented estimates are consistent, asymptotically normal and efficient.  As it follows 

from the last column of the table, all the estimates are significantly different from zeros and are in 

general very accurately estimated. 

Comparison of the final estimates to the previous ones (middle columns in Table 12) reveals little 

change.  The most movement is associated with the marginal utility of leisure for the unhealthy 

individuals.  Considerable increase of the coefficient is counteracted by the corresponding labour 

market state specific parameters.  Such behavior of these estimates indicates relative flatness of the 

likelihood with respect to these parameters and corresponding difficulty of estimation.  However, 

the elusive influence of the health process seems to be captured and well identified which follows 

from the low standard errors of the estimates. 

The final estimates imply transition probabilities for health and match process very similar to (51).  

Slight corrections correspond to the increase in the good health to the worst health transition 

probability (by 0.00013) and the increase of the no match to no match transition probability (by 

0.01715).  The latter is related to slightly higher natural unemployment of 4.163% (vs. 3.77% 

previously). 

The labour market state specific additional utilities are practically identical to those given in 

section 6.3, except that the coefficients of full time and part time disability change in reaction to the 

mentioned shift in the marginal utility of leisure for the potentially disabled.  The values 

corresponding to the employment, unemployment and retirement states compress, but the structure 

of the additional utilities is preserved.  Unfortunately, the standard errors of the labour market 

specific coefficients still could not be identified due to the conditions discussed in section 6.3. 

The final estimate for the discount factor is 0.91235, which implies 9.607% discounting of the 

future expected utilities by the almost risk neutral agents (risk aversion coefficient is estimated on 

the level 0.67393). 

Overall, the transition probabilities and preference parameter estimates obtained in the last step of 

the estimation and presented in the last three columns of Table 12 (apart from the skipped 

termination function parameters) appear to be informative, reasonable and accurate.  To assess the 

performance of the model as whole in the next section I turn to calculating its goodness of fit. 
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6.5.  Goodness of fit 

In the literature there is a considerable diversity in the measures of goodness of fit of the structural 

dynamic programming models.  First of all, this is a consequence of a general theoretical difficulty 

of applying principles of measuring goodness of fit by the means of summed squared errors (as in 

the linear regression analysis) for models with discrete dependent variables.  The mainstream 

approach here (as described by (Maddala, 1988) and (Greene, 2000)) is constructing fit measures 

based on the likelihood ratio test statistic which implements a comparison between actual model 

and its “restricted” or simplified version to understand how much additional information is gained.  

After proper scaling these likelihood ratio statistics can be interpreted as pseudo-R2 resembling a 

percentage of data variability explained by the model. 

A popular pseudo- R2 measure suggested by McFadden and used in many papers (for example, (Jia, 

2005) and (Heyma, 2004)) has the form 

( )
( )

2
ln ( )

1
ln ( )McF

L
R

L

θ

θ

∗

∗
= − � ,  (52)

where ( )L θ∗  and ( )L θ ∗�  are the maximum values of the likelihood function on the sets of 

correspondingly unrestricted and restricted coefficient vectors θ  and θ�  .  It is easy to see that 2
McFR  

belongs to the unitary interval and approaches unity when the model attains perfect fit (with 

( ) 1L θ∗ = ).  When the model does not differ from the benchmark case, that is when ( ) ( )L Lθ θ∗ ∗= � , 

McFadden’s pseudo-R2 becomes zero. 

Therefore, the choice of the restricted version of the model is very important in measuring the fit by 

the means of pseudo-R2.  The two simplest approaches that are used most of the time are restricting 

parameter vector to constants or restricting the parameter vector to a single value, namely zero.  

Both approaches can be well interpreted in the static discrete choice models – the latter corresponds 

to uniform distribution of choice probabilities, in this case the denominator in (52) has a particularly 

simple form of ln( )n m− ⋅ , where n  is number of individuals and m  is number of choices.  The 

former approach can be shown to be identical to substituting the choice probabilities in the 

likelihood function with the observed frequencies in
n

, where in  denotes a number of individuals 

observed to choose an alternative i. 
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In a dynamic contextss, however, standard restrictions for the parameter vector fail to facilitate the 

described interpretations due to the use of value functions instead of simple utilities in the formula 

(26) for choice probabilities.  That is why the majority of papers estimating structural dynamic 

models skip the unifying likelihood ratio approach and instead use distributed measures based on 

comparison of some predicted values with the ones observed in the data.  Plotting the differences on 

the appropriate axes leads to mostly used graphical representation of goodness of fit found in 

(Karlstrom et al., 2004), (Burkhauser et al., 2004), (Gilleskie, 1998), (Heyma, 2004), (French, 1999) 

and section 5.2 of the current paper.  Mostly compared are predicted choice probabilities and the 

observed frequencies of choices (like in (Rust and Phelan, 1997)) which is possible because the 

panel data required for estimation of a dynamic structural model most often allows for calculation 

of such frequencies.  As described in (Maddala, 1988) this is the feature of grouped data, and a 

standard Pearson chi-square test can be applied to make the comparison formal (as it is done in 

(Gilleskie, 1998) and (Gustman et al., 2002)). 

An even more detailed approach suggested by McFadden and described in (Maddala, 1988) requires 

tabulating the pairs of observed and simulated outcomes (choices) for each observation and 

constructing some aggregating measures on the resulting matrixes.  This approach is not found in 

the dynamic literature probably because of the additional complication and artificialization of this 

approach by the repeated nature of the dynamic choice. 

In the present paper along with the graphical representation of fit I use the concept of McFadden’s 

likelihood ratio adopting it for the dynamic settings.  As it follows from the description above, the 

only adaptation needed refers to the specification of the benchmark version of the likelihood 

function.  Instead of restricting the parameter vector in the benchmark case I compute the following 

proxies for the choice probabilities: 

{ }
{ }

( , ) : ,
( | )

( , ) :

a a a a
t t t t t tfreq

t t t a a a
t t t t

N d s d d s s
P d s

N d s s s

= =
=

=
,  (53)

{ }
{ }

( , ) : ,
: ( | )

( , ) :

a a a a
t t t tfreq

a a a
t t t

N d s d d s s
t P d s

N d s s s

= =
∀ =

=
,  (54)

1( | )
( )

uniform
t t

t

P d s
D s

= ,  (55)

where the notion { }N •  denotes the number of elements in the collection described by the properties 

in the brackets and the notion •  denotes the number of elements in a set.  The first two 

                                                 

ss When discount factor β does not equal 0. 
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approximates for the choice probabilities are based on the observed frequencies of choices in each 

point ts  of the state space and differ in the treatment of time.  ( | )freq
t t tP d s  are calculated as age-

specific values whereas ( | )freqP d s  are averaged over all ages.  The reason for calculating both of 

these frequency based proxies is the possibility of the lack of observations for some values of the 

state vector ts  in some ages.  Aggregation over ages can level off this possible problem although on 

the obvious expense of loosing accuracy of the estimate.  For those values of ts  when denominators 

in (53) or (54) become zeros, I use the simple uniform choice probability distribution formula (55) 

which assigns equal probabilities to all possible choices in the relevant choice set ( )tD s . 

Either of the approximations of the choice probabilities (53)-(55) may be used in a standard 

structural dynamic model for calculating restricted likelihood function which in turn may be used in 

formula (52) for computing McFadden’s likelihood ratio fit measure.  Still, in the present model one 

difficulty remains.  Recall that vector ( ), , , , , ,a a a a a a
t t t t t t t ts ps h m e sp nw aw=  contains two latent 

variables th  and tm  which are integrated out when calculating the likelihood function.  The values 

of these latent variables also have to be estimatedtt.  I apply the following simple approximation 

rules which allow reconstruction of the health and match variables given the values of the rest of the 

state variables (namely, the labour market state in the current period). 
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Application of the formulas (56) and (57) allows for the calculation of the frequency estimates for 

the choice probabilities in the model. 

The last complication relevant for the dynamic models deals with approximating the transition 

probabilities and imposing proper restrictions on the corresponding parameters (these parameters 

and probabilities are not present in the static case at all).  Following the logic of the frequency and 

uniform approaches, I consider three approximations for the transition probabilities: optimal values 

(as estimated within the maximization of likelihood for the whole model), frequency based 

                                                 

tt It should be possible to integrate them out of the frequency expressions as well as the likelihood function, but for the 
purpose of the constructing the benchmark case for the goodness of fit measures the simple approximation seems 
adequate enough. 
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approximation and uniform distribution.  Intuition under these three approximations for the 

transition probabilities is straightforward.  Using optimal values for the corresponding parameters 

allows for assessment of the amount of variation explained by structural modeling of choices as 

opposed to simple modeling of transitions.  Frequencies based approximation is equivalent to 

re-estimating the motion rules for individual AFP eligibility indicator e and the number of 

consecutive years with sufficient wage income nw (see Table 5 and Table 6) with the constant 

parameters only; and using frequencies of health and match transitions instead of parameterized 

Markovian transition probabilities (as in (15) and (16))uu.  The rest of the state variables evolve 

according to the motion rules fixed within the model: stochastic (like spouse indicator sp) or 

deterministic (like labour market state ps and aggregate wage aw) which do not require neither 

estimation nor, thus, approximation.  Finally, uniform distributions for the transition probabilities 

can be easily implemented by setting the parameters in the motion rules for e and nw to zeros and 

using equal probabilities of transitions for health and job match.  With respect to the latent variables 

this last approximation can be interpreted as skipping the health and match processes completely 

out of the model. 

The described three approximations for the choice probabilities and the three approximations for the 

transition probabilities can be conveniently presented in a table (see Table 13).  Here nine versions 

of McFadden’s pseudo-R2 are accompanied by the corresponding maximum values of restricted 

likelihoods calculated as the likelihood function (33) in which choice probabilities ( | , )a a
t t tP d s θ  and 

transition probabilities 1 1( | , , )a a a
t t tp s s d θ− −  are substituted by the corresponding approximations.  The 

initial condition probabilities 
0 0

0 ( , , )a aT T
p m h θ  are also effected by the approximated parameters of 

transition probabilities. 

Table 13 displays quite a variety of pseudo-R2 ranging from modest 9.12% to rather outstanding for 

discrete choice analysis 79.064% depending on the calculation technique.  Analysis of the different 

obtained values reveals certain patterns.  First, as the columns of the table completely dominate 

each other, that is the largest 2
McFR  in one column is still smaller than the smallest 2

McFR  in the other 

for each pair, it is obvious that transition parameters play a more important role in the overall model 

fit.  This is also supported by the low fit measures in the first column – the amount of additionally 

explained variation is rather small if the benchmark case is based on the optimal transition 

probabilities.  Second, the difference between more accurate age specific approximations of the 

choice probabilities and the less accurate aggregates over all ages is much more pronounced for the 
                                                 

uu Here frequencies for the latent variables are calculated on the basis of their approximated values from (56) and (57), 
thus leading to double approximation.  Still, it seems sufficient for goodness of fit measures. 
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true values of transition probabilities and completely diminishes when the transition probabilities 

are roughly guessed.  Thus, the static principle of using observed frequencies of choices as the bases 

for the goodness of fit measurement is quite applicable in the dynamic models in spite of some 

arising ambiguity.  Third, comparison of the obtained values of 2
McFR  in the third column with the 

corresponding values from the first column clearly shows the importance of latent variables of 

health and job match introduced in the model since destroying their transition mechanism changes 

the fit more than dramatically. 

Table 13.  Goodness of fit: McFadden’s likelihood ratio indexes. 

Transition probability restriction Choice probability 
restriction No restriction, optimal 

values 
Frequency based 
approximation Uniform approximation 

Frequency based age 
specific approximation 

( | )freq
t t tP d s  

2
McFR = 9.120% 

( )L θ ∗ = −� 1460907.66617 

2
McFR = 47.895% 

( )L θ ∗ = −� 2548076.47686

2
McFR = 78.030% 

( )L θ ∗ = −� 6043159.71612

Frequency based 
aggregated over age 
approximation 

( | )freqP d s  

2
McFR = 18.939% 

( )L θ ∗ = −� 1637875.96375

2
McFR = 53.129% 

( )L θ ∗ = −� 2832605.20954

2
McFR = 77.729% 

( )L θ ∗ = −� 5961513.80777

Uniform approximation 
( | )uniform

t tP d s  

2
McFR = 41.823% 

( )L θ ∗ = −� 2282118.52527

2
McFR = 61.990% 

( )L θ ∗ = −� 3492976.15806

2
McFR = 79.064% 

( )L θ ∗ = −� 6341716.39357

Optimal unrestricted 
likelihood value ( )L θ∗ = − 1327676.68661 

 
To point out one measure of goodness of fit from the Table 13 I again appeal to the static case 

where frequency based approximation and uniform approximations are applied most often.  

Keeping in mind the Bayesian tradition it seems appropriate to use the former approach as a way to 

utilize available information whereas the latter approach suits the situation when no prior 

information is available.  Thus, since it is generally possible to compute frequencies for the choice 

probabilities and choose the easier and more robust way to compute them, I appeal to the age 

aggregate frequency based approximation ( | )freqP d s  for the choice probabilities; whereas 

approximation of transition probabilities may be approached as if there was no prior information 

(third column) or through frequencies of approximated health and match as demonstrated (second 

column).  Since the job match is recoverable from the labour market state data, the latter approach 

seems more grounded in the present model.  Thus, the final measure of goodness of fit should be 

53.129%. 
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Figure 5.  Observed and predicted fractions of pension and disability labour market states. 

Figure 6.  Observed and predicted fractions of employment labour market states. 
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Figure 7.  Observed and predicted fractions of  labour market states. 

Figure 8.  Observed and predicted fractions of partial disability and employment states. 
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Table 14.  Observed distributions of states on the labour market by age. 
State 50 51 52 53 54 55 56 57 58 59 
0 0.0000 0.0025 0.0046 0.0056 0.0061 0.0069 0.0076 0.0090 0.0129 0.0182
1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
2 0.0000 0.0088 0.0172 0.0290 0.0429 0.0583 0.0755 0.0967 0.1203 0.1464
3 0.0665 0.0626 0.0601 0.0579 0.0540 0.0502 0.0453 0.0420 0.0390 0.0369
4 0.3649 0.3495 0.3281 0.3127 0.2942 0.2992 0.2965 0.2891 0.2795 0.2604
5 0.0129 0.0128 0.0147 0.0179 0.0207 0.0252 0.0293 0.0327 0.0362 0.0389
6 0.5412 0.5483 0.5583 0.5575 0.5597 0.5360 0.5186 0.5007 0.4787 0.4630
7 0.0146 0.0154 0.0170 0.0196 0.0223 0.0242 0.0272 0.0298 0.0333 0.0362
60 61 62 63 64 65 66 67 68 69 70 
0.0233 0.0436 0.0528 0.0808 0.0991 0.1191 0.1580 0.0832 0.0288 0.0198 0.0000
0.0000 0.0000 0.0454 0.0962 0.1382 0.1700 0.1758 0.8208 0.9417 0.9612 1.0000
0.1743 0.2071 0.2417 0.2828 0.3199 0.3520 0.3804 0.0000 0.0000 0.0000 0.0000
0.0335 0.0314 0.0289 0.0256 0.0242 0.0251 0.0277 0.0000 0.0000 0.0000 0.0000
0.2390 0.2167 0.1910 0.1655 0.1460 0.1238 0.1029 0.0451 0.0119 0.0074 0.0000
0.0420 0.0440 0.0466 0.0470 0.0460 0.0422 0.0356 0.0000 0.0000 0.0000 0.0000
0.4470 0.4130 0.3470 0.2603 0.1911 0.1395 0.0992 0.0509 0.0176 0.0116 0.0000
0.0408 0.0443 0.0465 0.0418 0.0354 0.0283 0.0205 0.0000 0.0000 0.0000 0.0000

 
Table 15.  Simulated distributions of states on the labour market by age (final estimation). 

State 50 51 52 53 54 55 56 57 58 59 
0 0.0000 0.0074 0.0040 0.0086 0.0068 0.0133 0.0166 0.0159 0.0153 0.0170
1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
2 0.0000 0.0147 0.0158 0.0144 0.0203 0.0210 0.0183 0.0174 0.0165 0.0215
3 0.0000 0.1029 0.0791 0.0632 0.0700 0.0610 0.0515 0.0608 0.0547 0.0556
4 0.0000 0.2794 0.3320 0.3477 0.3431 0.3467 0.3306 0.3097 0.3053 0.2948
5 0.0000 0.0074 0.0198 0.0144 0.0203 0.0324 0.0365 0.0333 0.0433 0.0465
6 0.0000 0.5662 0.5217 0.5172 0.4966 0.4743 0.4900 0.4920 0.4911 0.4853
7 0.0000 0.0221 0.0277 0.0345 0.0429 0.0514 0.0565 0.0709 0.0738 0.0794
60 61 62 63 64 65 66 67 68 69 70 
0.0172 0.0183 0.0206 0.0239 0.0263 0.0288 0.0315 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.1796 0.2412 0.3024 0.3451 0.4217 0.7176 0.7614 0.7760 1.0000
0.0243 0.0255 0.0279 0.0291 0.0306 0.0310 0.0293 0.0000 0.0000 0.0000 0.0000
0.0456 0.0438 0.0372 0.0333 0.0295 0.0160 0.0163 0.0110 0.0055 0.0034 0.0000
0.3040 0.2966 0.2828 0.2588 0.2287 0.2105 0.1924 0.0308 0.0044 0.0011 0.0000
0.0537 0.0612 0.0650 0.0748 0.0738 0.0705 0.0804 0.0857 0.0866 0.0848 0.0000
0.4711 0.4679 0.2807 0.2225 0.1802 0.1592 0.0891 0.0176 0.0067 0.0023 0.0000
0.0841 0.0866 0.1063 0.1164 0.1286 0.1389 0.1391 0.1374 0.1354 0.1324 0.0000

 
Along with McFadden’s likelihood ratio based pseudo-R2, I also draw the distributions among the 

labour market states for the 1000 simulated households by age – similar to the graphs in section 5.2  

Table 14 and Table 15 contain the plotted data – respectively observed and simulated frequencies.  

As before, the initial characteristics for these hypothetical households are chosen randomly from the 

real data initial conditions, and the graphs represent the outcomes of the solution of the agents 

sequential decision problem (2).  In addition to the full sample observed distributions of labour 

market states, I plot these distributions for the particular random sub-sample used in the initial 

conditions randomization. 
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As seen from the graphs (Figure 5-Figure 13) and the tables (Table 14 and Table 15) the model 

correctly replicates all the tendencies and in general presents reasonable fit.  The most problematic 

deviations are found in prediction of disability which is reasonable in the beginning and is gradually 

more and more underestimated (however, differences on the logarithmic scale are a bit 

overemphasized).  This is a possible consequence of the effects of two factors.  First, the model may 

be too strict in the assumption of markovian evaluation of health so that introduction of age 

dependence in health could be fruitful.  This seems plausible but not very likely because the model 

displayed reasonable flexibility under calibration in section 5 (compare, for example, Figure 2 and 

Figure 5).  The second explanation seems much more realistic – the chosen estimation method relies 

heavily on the distributional assumptions which could be violated in the given data sample.  

Besides, there is also a numerical issue here: since bad health necessary for disability retirement is 

relatively much less probable, individual likelihood associated with disabled individuals may be 

“lost” in the computation of the likelihood function due to the round off problem.  The latter effect 

is additionally worsened by the uneven data panel available for the estimation (presented 

graphically in Figure 12). 

Correspondingly to underestimated full time disability, partial disability is systematically slightly 

overestimated which is a sign of measurement errors in the characteristics of the combined 

disability and employment labour market state.  Also, AFP pension is somewhat overestimated 

which corresponds to a more pronounced kink in the employment curve for the AFP companies. 

In general, however, the model displays reasonable fit adequately representing observed dynamics 

on the labour market.  This allows me to move on and present one application of the estimated 

model. 
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7.  Policy simulation 

Completely estimated in section 6.4 and tested for the goodness of fit in section 6.5 the dynamic 

model of health and retirement may now be used for simulation runs in order to quantify the effects 

of any given changes of the environment the agents operate in.  This last section present an example 

of such policy analysis. 

7.1.  Substitution between AFP and disability 

AFP and disability insurance have been the two major exit routes from the labour marker in Norway 

for people before the normal retirement age of 67.  Therefore for the policy maker the question of 

substitution of the two schemes becomes equivalent to the question of whether the policy aimed at 

the increase of labour force participation of the older workers should be designed so that it affect 

these schemes jointly or the issues may be regulated separately.  As noted in the introduction, the 

question of substitution between AFP and disability have been already given attention in Norway, 

but the conclusions were rather differentvv. 

The estimated dynamic structural model is more than suitable to answer the question of substitution.  

Applying a structural model for policy questions is very natural in itself, but the dynamic model is 

also capable of tracking not only immediate consequences of a policy, but in addition a distant (in 

time) reactions of the labour market and the individuals.  Consider the question of potential 

substitution between the AFP and disability labour market state.  One way to address this issue is to 

eliminate AFP completely and analyze the changes in the distribution of the agents across other 

states on the labour market.  Unlike static models the dynamic model picks up the changes in 

behavior not only in the years affected by the simulated policy (in this case age 62-66) but also in 

other periods of life reflecting peoples’ reevaluation of future opportunities and corresponding 

correction in their decision making. 

Such “AFP elimination” policy is implemented into the model by simply shifting the AFP age up to 

67 for all individuals.  Then the model is used to simulate the responses of 1000 households in the 

new conditions but using the same estimates for the structural parameters.  Similarly sections 5.1 

and 6.5 1000 randomly chosen households from the sample provide the initial conditions for 

simulation, the value function is computed in the new conditions and the realizations of the 

decision-state process are constructed for each household to result is a set of simulated data on all 

the state variables including the occupied labour market states.  The distribution of the latter are 

                                                 

vv Røed and Haugen (2003) find no substitution while Bratberg, Holmas and Thogersen (2004) find 8.6%-22.4% 
substitution effect (see section 1). 
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compared to the pre-policy simulated distribution to highlight the changes induced by the policy.  

Thus, the core idea under the simulation is using the same structural parameters for preferences and 

transition probabilities in the new circumstances implied by the policy.  To make the two sets of 

simulated distributions of individuals among the labour market states accurately comparable, the 

sequence of random numbers that is used for modeling the stochastic events in the simulations is 

fixed between the simulation runs.  It is also important that the implementation of the policy into the 

model happens entirely through the exogenous and not through the state variablesww. 

7.2.  Simulation results 

Table 16 and Figure 9 present the result in the form of the differences in the simulated distribution 

across the labour market stages by age (in percentage points).  In the second row of the table the 

bold numbers show the reduction in the AFP retirement frequencies due to the introduced policy.  

Compared to the corresponding cells of Table 15 one can conclude that AFP pensions are 

eliminated completely as the policy suggests.  It should be noted that since the simulated policy was 

aimed only at the ages from 62 to 64, the negative effects on the retirement after that age should be 

considered among the outcomes of the policy change.  Table 16 only shows ages from 61 t0 69 due 

to the fact that the only response of the model is seen on this interval (in other words, all the omitted 

from Table 16 numbers are zeros). 

It is immediately seen that the people which would otherwise be retired with the AFP pensions 

mostly distribute themselves across working states.  Substitution into the full time disability is 

practically neglectable with the increase of only about one tenth of a percent point at ages 64 to 66.  

In the same time, the fractions of disabled employed increased much more in the same period.  The 

bottom parts of the Figure 9 gives a clear representation of the magnitudes of the impact for 

different labour market states.  Here only positive responses in the frequencies to the only decline 

induced by the policy are shown distinctly.  The biggest inflow of the displaced AFP pensioners is 

seen in AFP employment.  This is natural because exactly these employees loose the option to 

retire, this is also why AFP employment combined with disability is the third biggest increase.  The 

second biggest gain corresponds to the non-AFP employment which indicates together with the 

unemployment that most of the displaced AFP retirees stay on the labour market.  Inflow into full 

time disability is neglectable, but disability combined with non-AFP employment is in the third and 

fourth positions respectively. 

                                                 

ww In the current policy simulation the individual afp age is actually a state variable, but it only effects the choices 
through calculation of pension benefit and spouse income (see Table 4), the individual specific AFP age is saved in a 
separate variable and is used in these calculations. 
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Table 16.  Policy simulation: elimination of the AFP scheme. 
States 61 62 63 64 65 66 67 68 69 

OLM 0 0 0.21 0.21 0.32 0.43 0 0 0
Pension 0 -17.96 -24.12 -30.24 -34.51 -42.17 -6.81 -4.44 -4.30
Disability 0 0 0 0.11 0.11 0.11 0 0 0
Unemployment 0 0.21 0.42 0.21 0.53 0.76 0.77 0.22 0.11
Non-AFP work 0 1.34 2.6 4.43 6.09 7.07 0.66 0 0
Non-AFP work + DI 0 0 0 0.11 0.32 0.65 0.88 0.89 0.68
AFP work 0 16.41 20.37 23.92 25.21 30.54 1.43 0 0
AFP work + DI 0 0 0.52 1.26 1.92 2.61 3.08 3.33 3.51

Figure 9.  Graphical representation of policy simulation results. 
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Table 17.  Policy simulation: elimination of the AFP scheme with joint disability and employment. 
States 61 62 63 64 65 66 67 68 69 

OLM 0 0 0.21 0.21 0.32 0.43 0 0 0
Pension 0 -17.96 -24.12 -30.24 -34.51 -42.17 -6.81 -4.44 -4.30

Disability 0 
 

0 
(0%) 

0.51 
(2.16%)

1.48 
(4.88%)

2.35 
(6.81%)

3.37 
(7.99%)

3.96 
(58.1%) 

4.22 
(95%)

4.19 
(97.3%)

Unemployment 0 0.21 0.42 0.21 0.53 0.76 0.77 0.22 0.11

Employment 0 17.75 
(98.9%) 

22.97 
(95.3%)

28.35 
(93.7%)

31.30 
(90.7%)

37.61 
(89.1%)

2.09 
(30.7%) 

0 
(0%)

0 
(0%)

Figure 10.  Graphical representation of policy simulation results (joint disability). 

50 52 54 56 58 60 62 63 64 65 66 67 68 70

OLM

Pension

Disability

Unemployment

Employment

Differences in simulated frequencies before and after elemination of AFP (aggregated states)

 

 

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

60 62 63 64 65 66 67 68 70
10-3

10-2

10-1

100
Differences

 

 

OLM
Pension
Disability
Unemployment
Employment



 90

To make the results comparable to the previous studies, it is necessary to combine the three 

disability states as shown in Figure 10 and Table 17 (the two employment states are also combined).  

Now when disability is given a slightly different definition, the conclusions seem to change as well.  

From the bottom of Figure 10 it is now seen that even though the largest substitution is directed 

toward employment, the second largest escape for the displaced early pensioners is the disability 

state.  These results can be interpreted as displaying signs of AFP-disability substitution after the 

age of 63 and up to the age of 69.  Table 17 reports in prentices the fractions of the total decrease in 

AFP the disability and employment states are responsible for.  Thus, the model predicts the 

substitution effect at the level of about 4.88-7.99% in the ages 64 to 66, which is intermediate 

between (Bratberg et al., 2004) and (Røed and Haugen, 2003) findings. 

An interesting feature of the result is the absence of any reaction for the anticipated reduction of 

opportunities due to the elimination of AFP program.  When this policy was preliminary simulated 

on the calibrated values of the parameters, there were strong signs for a sensible employment supply 

reduction starting as early as from age of 52.  Now when the preference parameters are accurately 

estimated, it can be clearly demonstrated that the reduction of the opportunities induced by the 

simulated policy is not capable of causing any pre-policy behavioral responses. 

The model is however picking up a dynamic response – as follows from Table 16 and Table 17 – 

after the age of 66.  Negative numbers corresponding to the retirement state allow to conclude that 

the simulated policy induces general postponing of retirement in the society.  Partially, this is an 

understandable trail of the effect that can be rationalized by the slow motions of the social 

processes.  But the bottom of Figure 10 also indicates that while the fraction of unemployed is 

increasing towards the age of 67 and fades away towards 70, the fraction of disabled is increasing 

always while the model permits (at 70 everyone is forced into retirement by construction) although 

with decreasing intensity. 

Overall, when AFP pension is removed, people remain on the labour market and utilize the 

possibility of taking out a disability pension as well.  This behavior, in fact, may be interpreted as 

substitution into disability. 
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8.  Conclusions 

Labour market behavior among the older workers presents a complex process with several hidden 

factors affecting it.  The current paper makes an effort to model some of these factors as latent 

variables evolving dynamically as Markov processes in discrete time.  First, health is modeled to 

represent an option of taking out disability pension in order to retire or to combine disability 

benefits with a part-time job.  Second, the matching process is introduced to differentiate between 

voluntary and involuntary labour market outcomes that are observed in the data.  The individual 

AFP eligibility rules governing individual access to the early retirement option are also modeled 

endogenously in the dynamic context.  Finally, the demographic elements as marriage and survival 

of both the individual decision maker and the spouse were taken into account through exogenous 

parameters.  On the bases of these core state variables the model developed in the paper focused on 

careful reconstruction in each time period of the individual choice sets with regards to the decision 

about the future labour market position.  Forecasting of four different sources of income in each of 

8 different labour market states considered in the model allowed to assess structural parameters of 

the indirect utility function dependent on income and leisure.  In the described stochastically 

evolving environment the decision makers react to the situation they find themselves in at the 

beginning of each period and try to optimize the outcome from the point of view of the expected 

discounted lifetime utility maximization. 

The chosen structural dynamic setup proves worthwhile in analyzing the consequences of different 

changes in the regulations in the field of disability and retirement because it enables the model to 

pick up the effects spread widely in time and provides solid grounds for the analysis of behavioral 

responses.  After the model is structurally estimated with the incomplete information maximum 

likelihood method, the estimates are used to address the question of substitution between the AFP 

retirement scheme and disability insurance.  Simulation of the eliminating the AFP system 

altogether reveals very little substitution of the displaced AFP retirees into full time disability but 

provides signs of postponed retirement and disability pension take up.  The observed substitution 

into partial disability is responsible for 5-8% of the number of misplaced AFP pensioners.  This 

leads to a conclusion that dynamic analysis of a labour market behavior is essential and helpful tool 

in policy design which allows tracking long run consequences of the changes in the operating 

environment of the decision makers. 

In general the developed model seems promising in the labour market analysis and displays great 

potential of the structural dynamic model on the labour market.  Thus, this rather broad paper shall 

serve as the background for several shorter and more focused publications which will follow. 
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Appendix 

A.1. Institutional settings of Norwegian retirement 

Institutional settings that govern the retirement process in Norway are the following.  All permanent 

residents are provided with earnings based old age public pension with defined benefits.  Usual 

retirement age is 67 regardless of gender but it is possible to work for three more years in order to 

complete the full tenure of 40 years. 

Old age pension consists of three major component.  First, basic pension (1G) is paid to everybody 

with at least 3 years of working life.  The level of basic pension is corrected every year at the rate 

exceeding CPI.  Second component is an earnings based pension which is calculated as a function 

of earnings history expressed in basic pension amounts G.  Recalculation of annual wages into 

pensions points is performed with a piecewise linear convex function with truncation both above 

and below (so that neither too small nor too large wages are taken into account).  The average of 20 

best pension points is then multiplied by 0.42 (0.45 if they were earned before 1992) and by G to 

give the level of the earnings based component.  The third component is formed of special 

supplementary terms aimed on preventing the pension to go lower certain minimum. 

In addition to the old age pension provided by the national social security administration so-called 

occupational or employer based pensions also constitute considerable support for the retirees.  

Occupational pensions are managed by the insurance companies and financed by the employers 

who are given the opportunity to deduct the payments to the system from the taxation given that the 

number of regulation requirements are satisfied. 

An early retirement scheme (AFP) was introduced in 1989 and gave an opportunity to retire earlier 

than regular age with no loss in their pension benefits.  The program covers the whole public sector 

and part of the private sector.  In order to be eligible an individual must be employed in a company 

covered with the program and in addition meet certain individual criteria which include: 

 Having been employed in the AFP-company the last 3 years or having been covered by AFP 

scheme during last 5 years; 

 Having earnings no less than G prior to the year of take up and one year before; 

 Not receiving pensions or similar payments from employer without work effort in return; 

 Having at least 10 years after the age of 50 with earnings no less than 1G; 

 Having the average earnings in 10 best years since 1967 no less than 2G. 

The age of early retirement has been gradually lowered from 66 when it was initially introduced in 

1989 to 65 from 1990, 64 from 1993, 63 from 1997 and finally to 62 from March 1st, 1998. 
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The pension level calculations under AFP scheme are aimed to provide the same pension benefit as 

if person would continue working until the ordinary retirement age instead of retiring early.  This 

implies that the pension points in the years between the AFP eligibility age and 67 should be 

forecasted: it is done with use of the maximum between the average of the last three earned pension 

points and the average of ten best points from whole working history.  Once the missing pension 

points are forecasted, the AFP pension is calculated with regular old age pension calculation 

techniquexx. 

The disability pension roughly corresponds to the early retirement pension also compensating for 

the shorter job historyyy. 

The tax levels are generally lower for pensioners compared to the working people and differ for 

single and married individuals.  AFP pensions are taxed a little differently from other types of 

pensions.  Haugen (2000) gives details on the tax function. 

                                                 

xx For more detailed see Røgeberg (2000). 

yy For the disability program details see Bratberg (1999), Bratberg, Nilsen and Vaage (2005). 
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A.2. Tables 

Table 18.  Households in the sample. 
Spouse observable in the detailed data 

Individuals and families in the sample
both female male 

All 

Single person of full family 
full 87206 53164 59792 200162

single . 57254 49198 106452
All 87206 110418 108990 306614

 
Table 19.  Filtering report. 

Reasons for filtering Number of 
observations 

All observations 306 614

Fraction of 
deleted 

Fraction of 
all 

Incorrect initial labour market state 73 961 69.98 % 24.12 %
Static observation (only one period) 1320 1.25 % 0.43 %
Missing essential data 140 0.13 % 0.05 %
Extreme household income 17 681 16.73 % 5.77 %
Large net wealth variation 334 0.32 % 0.11 %
Ambiguous labour market transfers 2 820 2.67 % 0.92 %
Ambiguous value of the nw variable 9437 8.93 % 3.08 %

Total 105 693 100.00 % 34.47 %

Observations left in the sample 200 921

 
Table 20  Fractions of workers fulfilling individual AFP eligibility criteria by age. 

Age Fraction of 
employed 

50-59 0.00 % 
60 40.54 % 
61 48.38 % 
62 64.61 % 
63 65.68 % 
64 60.55 % 
65 53.62 % 
66 46.93 % 
67 54.57 % 
68 30.84 % 
69 8.65 % 
70 4.13 % 

 

 

 

 



 95

Table 21.  Model for employment earnings in period t . 
Dependent variable wage income 

Labour market transition From/to active labour market state Estimated 
on (filter) Age, other <60 60-67 ≥67 

Labour market transition From/to active labour market state Applied to 
(filter) Age, other <60 60-67 ≥67 

Variable estim. st.err. estim. st.err. estim. st.err. 
Constant term 33.046 0.508 -28.438 0.903 -82.030 7.764
Gender 16.474 0.151 13.339 0.207    
Time index (age-50) -1.250 0.024      
Time index squared   -0.166 0.002    
Number of high wage years (nw) -2.080 0.052 -4.591 0.064  
Aggregate wage (aw) 0.229 0.004 1.580 0.012 2.240 0.108
Aggregate wage squared (aw2) 0.001 0.000 -0.007 0.000 -0.009 0.000
Aggregate wage to the third (aw3) 9.9E-06 0.000 1.5E-05 0.000
Cross effect nw*aw 0.042 0.000 0.060 0.000 0.053 0.001
Current period unemployment (reference) (reference)  
Current period non-AFP employment 48.070 0.253 46.185 0.363    
Curr. partial DI + non-AFP employment -18.853 0.383 -14.388 0.446    
Current period AFP employment 51.332 0.247 56.137 0.356    
Curr. partial DI + AFP employment -8.728 0.376 -7.919 0.448    
F-test . . 5116.55
p-value for F-test 0.0000 0.0000 0.0000
Number of observations 914 839 703 107 11 296
R-square 72.36 % 66.63 % 64.45 %
Estimated standard error of residuals 50.767 63.028 80.212
 
Table 22.  Model for pension incomes (AFP and NIS) in period t . 

Dependent variable Pension income (AFP and NIS) 
Labour market transition From/to pension state Estimated 

on (filter) Age, other afp-67 ≥67 
Labour market transition From any to pension state Applied to 

(filter) Age, other afp-67 ≥67 
Variable estim. st.err. estim. st.err. 
Constant term 161.099 12.571 -1692.08 66.210
AFP age -1.901 0.198 -7.880 0.301
Gender -6.244 0.395 -15.981 0.463
Time index (age-50)   242.880 7.053
Time index squared   -6.442 0.190
Number of high wage years (nw)   -4.964 0.080
Aggregate wage (aw) 0.532 0.011 0.534 0.009
Aggregate wage squared (aw2) -0.001 0.000 -0.001 0.000
F-test 6293.00 4464.25
p-value for F-test 0.0000 0.0000
Number of observations 53 212 108 727
R-square 32.12 % 22.33 %
Estimated standard error of residuals 31.133 55.415
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Table 23.  Model for pension incomes (full and part-time disability) in period t . 
Dependent variable Pension income (disability) 

Estimated 
on (filter) Labour market transition From/to full DI From/to part DI 

Applied to 
(filter) Labour market transition To full DI To part DI 

Variable estim. st.err. estim. st.err. 
Constant term 375.909 4.341 21.978 0.673
AFP age -5.288 0.069    
Gender -6.690 0.119 -8.595 0.197
Time index (age-50)   0.617 0.024
Number of high wage years (nw)   -2.221 0.048
Aggregate wage (aw) 0.403 0.003 0.243 0.002
Aggregate wage squared (aw2) -1.18E-4 6.15E-6    
Cross effect nw*aw -0.010 0.0005
Previous period unemployment (reference)
Prev. non-AFP employment   7.802 0.569
Prev. partial DI + non-AFP employment   16.200 0.536
Prev. AFP employment   20.509 0.582
Prev. partial DI + AFP employment   16.365 0.564
Curr. partial DI + non-AFP employment (reference)
Curr. partial DI + AFP employment   -7.979 0.279
F-test 84202.17 7667.68
p-value for F-test 0.0000 0.0000
Number of observations 216 503 151 419
R-square 60.87 % 35.74 %
Estimated standard error of residuals 21.466 30.311
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Table 24.  Model for additional incomes in period t . 
Dependent variable Additional income 

Model
Logit for positive 

values of additional 
income 

Ordinary regression 

Estimated on (filter) All observations Observations with 
positive add. income 

Applied to (filter) All observations Observations with 
logit prediction >0.5 

Variable estim. st.err. estim. st.err. 
Constant term -0.747 0.014 25.993 0.389
Gender 0.325 0.006 12.928 0.112
Time index (age-50) 0.167 0.0007 1.408 0.056
Time index squared   -0.102 0.003
Spouse indicator (sp) -1.081 0.005 -5.121 0.089
Number of high wage years (nw) -0.093 0.001 -1.017 0.012
Aggregate wage (aw) 0.0004 0.00003 0.118 0.002
Aggregate wage squared (aw2)   3.33E-4 4.53E-6
Current period OLM (reference) 63.230 0.193
Current period pension retirement 0.346 0.009 -17.351 0.185
Current period full disability 3.157 0.014 -21.772 0.144
Current period unemployment -1.042 0.012 9.563 0.296
Current period non-AFP employment -1.337 0.009 (reference)
Curr. partial DI + non-AFP employment 3.257 0.019 -29.762 0.175
Current period AFP employment -1.538 0.009 (reference)
Curr. partial DI + AFP employment 3.728 0.021 -24.644 0.171
F-test 44437.03
p-value for F-test 0.0000
Number of observations 2 262 566 886 269
R-square (pseudo for logit) 50.88 % 39.46 %
Estimated standard error of residuals 38.659
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Table 25.  Model for spouse incomes in period t . 
Dependent variable Spouse income 

Estimated on (filter) Spouse exists 
gender=0 

Spouse exists 
gender=1 

Applied to (filter) Spouse exists 
gender=0 

Spouse exists 
gender=1 

Variable estim. st.err. estim. st.err. 
Constant term -502.222 9.063 664.095 15.916
AFP age 9.635 0.145 -8.726 0.256
Time index (age-50) -8.608 0.086 -17.124 0.165
Time index squared 0.069 0.005 1.080 0.008
Number of high wage years (nw) -0.601 0.046
Aggregate wage (aw) 0.365 0.007 0.245 0.003
Aggregate wage squared (aw2) -0.001 0.000  
Current period OLM (reference)  
Current period pension retirement 21.226 0.498  
Current period full disability 10.907 0.483  
Current period unemployment 9.828 0.628  
Current period non-AFP employment 9.071 0.450  
Curr. partial DI + non-AFP employment 11.589 0.619  
Current period AFP employment 18.651 0.443  
Curr. partial DI + AFP employment 18.698 0.710  
F-test 10892.77 8595.85
p-value for F-test 0.0000 0.0000
Number of observations 1 076 041 433340
R-square (pseudo for logit) 10.83 % 9.02 %
Estimated standard error of residuals 83.960 110.555
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Table 26.  Listing of the C function for transition probability calculation. 
double pr (int age,int ps,int h,int m,int e,int sp,int nw,int awi,double aw,int cs, 
           int fh, int fm, int fe, int fsp, int fnw, double faw) 
{   /*Probability of combination of next period (fh,fm,fe,fsp,fnw) 
      with current age,ps,h,m,e,sp,nw,awi,aw,cs, global arrays h_prtr and m_prtr, coef_trpr array */ 
    double pr=1.0, res; 
    if (cs==0 || cs==2) 
    {   //special cases with most combinations of future state vars infeasible 
        if (fm!=0 || fe!=0) 
        { pr=0; } 
        else 
        {   //Health 
            pr=pr*h_prtr[fh*nh+h]; 
        } 
    } 
    else if (cs==1) 
    {   if (fm!=0) 
        { pr=0; } 
        else 
        {   //Health 
            pr=pr*h_prtr[fh*nh+h]; 
            //zero in all infeasible combinations! 
        } 
    } 
    else 
    {   //regular case 
        //for s=5,7 bad health has zero pr by setup of the transition matrix 
        //Health 
        pr=pr*h_prtr[fh*nh+h]; 
        //Matching (dependent on same period health) 
        if (fh==0) pr=pr*m_prtr_h0[fm*nm+m]; 
        if (fh==1) pr=pr*m_prtr_h1[fm*nm+m]; 
        if (fh==2 && fm!=0) pr=0; //no matching for bad bad health 
        if (fh==2 && fm==0) pr=pr; 
        //AFP eligibility 
        if (age+1[afp || age+1]=retage1) 
        {   // e===0 for all for these ages 
            if (fe==0) pr=pr; 
            if (fe==1) pr=0;  
        } 
        if (age+1==afp && afp<retage1) 
        {   //group 1 
            if (cs<=5 || nw<2 || aw<74) 
            {   //perfect prediction: fe=0 
                if (fe==0) pr=pr; 
                if (fe==1) pr=0; 
            } 
            else 
            {   //logit model from coef_trpr (column 1) 
                res=coef_trpr[0]+ 
                    coef_trpr[3]*(nw==9?1:0) + coef_trpr[4]*(nw==10?1:0); 
                if (fe==0) pr=pr/(1+exp(res)); 
                if (fe==1) pr=pr*exp(res)/(1+exp(res)); 
            } 
        } 
        if (age+1>afp && age+1<retage1) 
        {   //group 2 
            if (cs<=5 || nw<2) 
            {   //perfect prediction: fe=0 
                if (fe==0) pr=pr; 
                if (fe==1) pr=0; 
            } 
            else 
            {    
                if (e==1) 
                {   //perfect prediction: fe=1 
                    if (fe==0) pr=0; 
                    if (fe==1) pr=pr; 
                } 
                else 
                {   //logit model from coef_trpr (column 2) 
                    res=coef_trpr[5+0] + coef_trpr[5+1]*afp + coef_trpr[5+2]*gender + coef_trpr[5+3]*aw + coef_trpr[5+4]*nw; 
                    if (fe==0) pr=pr/(1+exp(res)); 
                    if (fe==1) pr=pr*exp(res)/(1+exp(res)); 
                } 
            } 
        } 
    } 
    //Spouse survival 
    res=surpr(age+1,2); 
    if (sp==1 && fsp==1) pr=pr*res; 
    if (sp==1 && fsp==0) pr=pr*(1-res); 
    if (sp==0 && fsp==1) pr=0; 
    if (sp==0 && fsp==0) pr=pr; 
    //years with wage over 1G : nw 
    if (fnw!=0 && fnw!=nw+1 && !(nw==nnw-1 && fnw==nnw-1)) 
    {   //wrong value of fnw 
        pr=0; 
    } 
    else if (nnw-1==0) 
    {   //trivial case with nnw=1 (simplified test runs) pr is called twice with fnw=0.. 
        pr=pr/2; 
    } 
    else 
    {   //logit model from coef_trpr (column 3) 
        res=coef_trpr[10+0]+ 
            coef_trpr[10+1]*(cs==3||cs==4||cs==6?1:0) + coef_trpr[10+2]*(cs==5||cs==7?1:0)  
          + coef_trpr[10+3]*(cs==0||cs==2?1:0) + oef_trpr[10+4]*(nw==0?1:0); 
        if (fnw==nw+1 || fnw==nnw-1) pr=pr*exp(res)/(1+exp(res)); 
        if (fnw==0) pr=pr/(1+exp(res)); 
    } 
    if (v_tree(age+1,fh,fm,fe,cs)==0) { pr=0; } //infeasible next year combination 
    return pr; 
} 
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Table 27.  The tax function. 
Model OLS

Number of observation 160 160
Goodness of fit 98.34%
Estimated standard error of residuals 15.992
Explanatory variables Coeff. Std. Err. 

( , , )t tI t d s  Household income 0.423 0.000
tsp  Type of the household (0 for single, 1 for full) -21.951 0.080

1 {1, 2}tps + ∈  Curr. state: pension, disability -18.718 0.103
1 4tps + ≥  Curr. state: working, partial disability -9.250 0.103

- Constant term -24.501 0.113
All coefficients significant at 0.0005 level 

 
Table 28.  Simulated distributions of states on the labour market by age (calibration). 

State 50 51 52 53 54 55 56 57 58 59 
0 0.0000 0.0380 0.0401 0.0422 0.0485 0.0549 0.0611 0.0620 0.0717 0.0725
1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
2 0.0000 0.0000 0.0060 0.0100 0.0121 0.0183 0.0244 0.0372 0.0422 0.0576
3 0.0800 0.0160 0.0160 0.0161 0.0222 0.0264 0.0183 0.0248 0.0295 0.0192
4 0.3380 0.3720 0.3367 0.3173 0.2949 0.2663 0.2648 0.2603 0.2553 0.2473
5 0.0200 0.0320 0.0341 0.0341 0.0545 0.0508 0.0530 0.0682 0.0696 0.0746
6 0.5520 0.5080 0.5090 0.5080 0.4828 0.4736 0.4542 0.4215 0.3966 0.3923
7 0.0100 0.0340 0.0581 0.0723 0.0848 0.1098 0.1242 0.1260 0.1350 0.1365
60 61 62 63 64 65 66 67 68 69 70 
0.0941 0.0962 0.1002 0.1063 0.1086 0.1384 0.1709 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0706 0.1280 0.1869 0.2402 0.2269 0.8896 0.9180 0.9362 1.0000
0.0744 0.0850 0.1025 0.1304 0.1515 0.1854 0.2801 0.0000 0.0000 0.0000 0.0000
0.0219 0.0336 0.0228 0.0169 0.0126 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.2473 0.2327 0.2164 0.1908 0.1515 0.1123 0.0756 0.0478 0.0252 0.0284 0.0000
0.0722 0.0828 0.0752 0.0870 0.0833 0.0601 0.0364 0.0000 0.0000 0.0000 0.0000
0.3414 0.3289 0.2597 0.1908 0.1566 0.1149 0.1148 0.0627 0.0568 0.0355 0.0000
0.1488 0.1409 0.1526 0.1498 0.1490 0.1488 0.0952 0.0000 0.0000 0.0000 0.0000
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A.3. Figures 

Figure 11.  Structure of the feasible values of the state subvector ( , , , )t t t tps h m e  (with AFP age of 
62 and normal retirement age of 67 years). 
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Figure 12.  Shape of the panel of observations. 

Figure 13.  Observed combinations of labour market states tests (see explanations in the text). 
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Figure 14.  Observed fractions of states on the labour market by age. 

 

Figure 15.  Observed transitions among states on the labour market (1 of 5) 

 

50 52 54 56 58 60 62 63 64 65 66 67 68 70
10-3

10-2

10-1

100
Observed distributions across labour market states by age

 

 

Obs: OLM
Obs: Pension
Obs: Disability
Obs: Unemployment
Obs: Non-AFP employment
Obs: Non-AFP employment + Disability
Obs: AFP employment
Obs: AFP employment + Disability

0 1 2 3 4 5 6 7 8

0

1

2

3

4

5

6

7

8

State at age 51

S
ta

te
 a

t a
ge

 5
0

0 1 2 3 4 5 6 7 8

0

1

2

3

4

5

6

7

8

State at age 52

S
ta

te
 a

t a
ge

 5
1

0 1 2 3 4 5 6 7 8

0

1

2

3

4

5

6

7

8

State at age 53

St
at

e 
at

 a
ge

 5
2

0 1 2 3 4 5 6 7 8

0

1

2

3

4

5

6

7

8

State at age 54

St
at

e 
at

 a
ge

 5
3



 104

Figure 16.  Observed transitions among states on the labour market (2 of 5) 

 

Figure 17.  Observed transitions among states on the labour market (3 of 5) 
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Figure 18.  Observed transitions among states on the labour market (4 of 5) 

 

Figure 19.  Observed transitions among states on the labour market (5 of 5) 
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Figure 20.  Graphical representation of death tables and divorce tables. 

 

Figure 21.  Net wealth dynamics by age.  Number of observations of wealth. 
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Figure 22.  Average wage dynamics by age. 

Figure 23.  Best 10 average wage dynamics by age. 

Figure 24.  Best 20 average wage dynamics by age. 
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Figure 25.  Average household incomes by age (thousand NOK in 1992 prices). 

Figure 26.  Incomes in OLM state. 
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Figure 27.  Incomes in pension state. 

Figure 28.  Incomes in disability state. 
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Figure 29.  Incomes in unemployment state. 

Figure 30.  Incomes in non-AFP employment state. 
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Figure 31.  Incomes in non-AFP employment + disability state. 

Figure 32.  Incomes in AFP employment state. 
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Figure 33.  Incomes in AFP employment + disability state. 

Figure 34.  Typical likelihood as a function of the last parameter in the termination function. 

50 52 54 56 58 60 62 64 67 70
0

20

40

60

80

100

120
Incomes in state AFP employment + disability

 

 
Employment earnings
Pension
Additional income
Spouse's income

50 52 54 56 58 60 62 64 67 70

Number of observations

 

 
Employment earnings
Pension
Additional income
Spouse's income

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1



 113

Figure 35.  Sum of squared errors in prediction of frequencies of sample in 7 states and 20 periods 
with 1000 simulated decision making agents as a function of main health probability ( )
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