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Learning by Doing in Contests�

Derek J. Clark and Tore Nilsseny

11 May 2010

Abstract

We introduce learning by doing in a dynamic contest. Contestants
compete in an early round and can use the experience gained to reduce
e¤ort cost in a subsequent contest. A contest designer can decide how
much of the prize mass to distribute in the early contest and how much
to leave for the later one in order to maximize total e¤orts. We show
how this division a¤ects e¤ort at each stage, and present conditions
that characterize the optimal split. The results are indicative of the
fact that the designer weakly prefers to leave most of the prize mass
for the second contest to reap the gains from the learning by doing
e¤ect.
Keywords: Learning by doing; dynamic contest; prize division
JEL Codes: D74, D72
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1 Introduction

In many contest situations, the same set of participants meet repeatedly in a
series of contests. One example is applicants for grants from a research coun-
cil that awards projects over several years. Other examples are in sports,
where teams meet several times. In many such circumstances, there are
interesting connections between the contests in the sequence. One such con-
nection, explored in the present paper, is learning by doing: A contestant
may, by exerting e¤ort in early rounds, gain expertise and therefore be a
more e¢ cient contestant in later rounds.
Such learning by doing naturally has two e¤ects on a contestant�s be-

havior: His incentives to exert e¤ort in later rounds increase since he now
gets more out of his late-round e¤ort with learning e¤ects from early-round
e¤orts. He also has incentives to increase e¤orts in early rounds, since such
e¤ort not only provides a chance to win early-round prizes but also makes
him a more e¢ cient contestant for late-round prizes.
Clearly, then, learning by doing makes contestants work harder, which is

good for a principal aiming at making contestants�total e¤orts as high as
possible. But many principals of repeated contests are budget constrained
and need to make tough priorities. In such cases, the question is how to
spread prizes across the sequence of contests. With learning-by-doing e¤ects,
the principal faces an interesting trade o¤: By having the higher prizes early
on, the principal induces extra e¤ort in early rounds, thereby providing the
contestants with a lot of experience that can be used in later rounds. On
the other hand, this leaves the participants with smaller prizes to �ght over
in those later rounds when they can expend e¤ort more e¢ ciently, and to
counter this, the principal may want to leave more of the total prize money
to later rounds.
To study this trade o¤, we set up a simple model of a sequence of two con-

tests where two contestants compete for prizes, one in each round. The total
prize over the two contests is assumed given, and we ask how the principal,
or contest designer, should split the total over the two contests. We model
learning by doing by assuming that, in the second contest, a participant�s
cost of e¤ort is decreasing in the amount of e¤ort put into the �rst contest.
The aim of the contest designer is to maximize the two participants�total
e¤orts over the two periods. The model is di¢ cult to analyze with a general
formulation of the learning-by-doing e¤ect. We do �nd, however, that the
trade-o¤ described above is decided in the favour of the second period in
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cases where there are decreasing returns to scale in learning by doing: In
such cases, the principal�s choice is always to have the larger prize in the
second period, and more so the greater is the learning-by-doing e¤ect.
This paper contributes to a growing literature on contest design.1 But

whereas the current literature almost exclusively discusses the design of a
single contest, we consider a sequence of contests, the crucial question being
how the total prize should be split among the contests in the sequence.
The paper is related to what Konrad (2009) calls multi-stage battles,

such as races and tugs-of-war;2 One way of viewing the di¤erence from that
line of work, is that these authors discuss various forms of dynamic win
advantages in repeated contests: winning an early round gives you some sort
of advantage in later rounds, no matter how much e¤ort you put in to win
that early round. Here, on the other hand, we discuss a form of dynamic e¤ort
advantages: exerting e¤ort in an early round, whether you win it or not, gives
you an advantage in later rounds. A related analysis, also featuring dynamic
e¤ort advantages, is Grossmann and Dietl (2009) who model a contestant�s
early-round e¤ort as an investment that has a positive e¤ect on win chances
in later rounds.3 They do not discuss any contest-design issues.
Our work is of course also related to earlier studies on the economics

of learning by doing, in particular by Arrow (1962) and Fudenberg and Ti-
role (1983). Of particular interest is Fudenberg and Tirole�s discussion of
a balanced-budget tax-subsidy scheme, which resembles our contest design
problem. Their remark that incentives should be shifted to the mature phase
of an industry when learning by doing is present, is re�ected in our result
that the optimal late prize is larger than the early prize.
The paper is organized as follows. Section 2 presents the general frame-

work for the analysis as well as conditions that characterize the equilibrium.
Section 3 demonstrates the results in an analysis of three speci�c learning-
by-doing functions, and a discussion of the results and applications of the

1Examples include Moldovanu and Sela (2006) and Fu and Lu (2009).
2See Konrad (2009, ch. 8), as well as papers by Klumpp and Polborn (2006), Konrad

and Kovenock (2009), and Clark et al. (2010). These papers do not typically discuss con-
test design, an exception being Clark, et al.�s (2010) analysis of how a principal should split
prizes across rounds in a situation with repeated contests and dynamic win advantages.

3One can, of course, also envision there being e¤ort disadvantages, i.e., today�s e¤ort
having a negative e¤ect on tomorrow�s win chances, for example because of fatigue. This
is discussed in single-contest, multi-stage settings by Harbaugh and Klumpp (2005) and
Ryvkin (2009).
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model are presented in Section 4.

2 The framework

Two participants compete over two periods for prizes with a total value of 1.
Before the two rounds of contests, the principal determines how to split the
total. In particular, the principal chooses the prize M 2 [0; 1] available in
the second period, leaving (1�M) as prize for the �rst period. Participant
i�s e¤ort in the �rst period is ai and in the second period bi, i 2 f1; 2g.
Write A := a1 + a2 for total e¤ort in period 1, and similarly B := b1 + b2
for total e¤ort in period 2. The cost of expending e¤ort a in period 1 equals
a. However, the cost of expending e¤ort in period 2 depends on the activity
in period 1. In particular, a contestant with activity a in period 1 has a
cost of expending e¤ort b in period 2 equal to c (a) b, where c (0) = 1, and
c (a) > 0, c0 (a) < 0, and c00 (a) � 0, all a � 0. Thus, the higher activity in
period 1, the lower is the cost of e¤ort in period 2. We write ci := c (ai), and
C := c1 + c2.
In each of the two periods, the winner of the contest is determined by

a standard Tullock contest function. We disregard discounting and let the
principal maximize participants�total e¤orts over the two periods, A+B.
We start by analyzing the period-2 game, following the participants�ef-

forts (a1; a2) in period 1. The expected pro�t of player i in period 2 is then:

�i2 =
bi
B
M � c (ai) bi; i 2 f1; 2g : (1)

The second-period subgame has an equilibrium determined by the following
set of �rst-order conditions:

bj
B2
M � ci = 0; i; j 2 f1; 2g ; i 6= j:

Solving, we obtain:

bi =
cj
C2
M; i; j 2 f1; 2g ; i 6= j:

We see that a player�s e¤ort in period 2 is proportional to the prize in that
period; and own e¤ort is increasing in the rival�s cost level if the rival is more
competitive in period 2, i.e., sign @bi

@cj
= sign(ci � cj). Expected period-2
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pro�t of player i in equilibrium can now be found by insertions in (1). We
obtain:

�i2 =
�cj
C

�2
M; i; j 2 f1; 2g ; i 6= j:

Moving to period 1, a contestant takes into account the e¤ect his e¤ort
today has on his expected pro�t tomorrow. Thus, in period 1, each player
maximizes

�i1 =
hai
A
(1�M)� ai

i
+

�
c (aj)

c (a1) + c (a2)

�2
M;

i; j 2 f1; 2g ; i 6= j; (2)

where (1�M) is the prize in period 1. The �rst two elements, inside square
brackets, are �rst-period pro�t while the third term is second-period pro�t.
Players�equilibrium e¤orts in period 1, supposing second-order conditions
are satis�ed, are found through the �rst-order condition:4

aj
A2
(1�M)� 1� 2

c0ic
2
j

C3
M = 0; i; j 2 f1; 2g ; i 6= j: (3)

Because of the symmetric nature of the problem, we can focus on a sym-
metric equilibrium, in which a1 = a2 = a, c1 = c2 = c, and C = 2c. This
means that the above equation can be written as:

1

4a
(1�M)� 1� c0

4c
M = 0;

which can be solved implicitly for a:

a =
c(a)(1�M)
4c(a) +Mc0(a)

(4)

It is not in general clear that second-order conditions are satis�ed, though.
Note, in particular, that second-period pro�ts may be convex in a player�s
�rst-period e¤ort ai. To see this, twice di¤erentiate the last term of (2) to
obtain

@

@ai

 �
c (aj)

c (a1) + c (a2)

�2
M

!
= �2

c0ic
2
j

C3
M > 0;

4We disregard cases where players choose their only available corner solution, a = 0, as
well as cases where their optimum e¤orts are not well de�ned. This means that a player�s
equilibrium action is found through the �rst-order condition.
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and
@2

@a2i

 �
c (aj)

c (a1) + c (a2)

�2
M

!
= �2

c2j
C4

h
Cc00i � 3 (c0i)

2
i
M:

This last expression is negative only if c00i > 3
(c0i)

2

c1+c2
. If it is positive, then sec-

ond period pro�t is increasing and convex, in which case an interior solution
from (3) can be obtained only if that convexity is not too strong.
The complete second-order condition for player i�s choice of �rst-period

e¤ort is:

�(1�M) 2aj
(ai + aj)3

� 2c2j

 
(ci + cj) c

00
i � 3c02i

(ci + cj)
4

!
M < 0;

where the �rst (second) term stems from the e¤ect of ai on �rst-period
(second-period) pro�t. Evaluated at a symmetric situation, this amounts
to:

�(1�M) 1
4a2

�
 
2cc00 � 3 (c0)2

8c2

!
M < 0

Inserting from (4) and simplifying, we obtain:

�2 (4c+Mc0)2 �
h
2cc00 � 3 (c0)2

i
M(1�M) < 0 (5)

First-period pro�t is increasing and strictly concave in ai, and second-period
pro�t is increasing and may be concave or convex in ai. If it is too convex,
then the player will want a corner solution for ai. To stop this, we need a
learning-by-doing function that is su¢ ciently convex in a. The details of the
conditions necessary will be discussed in the speci�c cases analyzed below.
Second-order conditions are not the only possible problem, however. As

alluded to in footnote 2, we also need to ensure that the equilibrium �rst-
period e¤ort, given implicitly in (4), is feasible, in particular that it is non-
negative. For this to hold requires that the denominator on the right-hand
side of (4) be positive, or that 4c(a) +Mc0(a) > 0, for all M 2 [0; 1]. Since
the second term here is negative, because c0 < 0, this condition holds for all
a and M if it holds for all a at M = 1, i.e., if

c0(a)

c(a)
> �4; all a � 0:
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This amounts to an assumption that c (a), even though it is falling, never
falls too steeply.
We let a (M) denote the equilibrium period-1 e¤ort of the contestants as

a function, given in (4), of the second-period prize M .
There will be symmetry also in period 2, implying b1 = b2 = b, and

b =
M

4c (a)
(6)

where a = a (M). The solution is denoted b (M). Note that e¤ort cost in
the second period will be constant, given the level of M set by the principal:
c(a)b = M

4
. The dissipation rate in the second period, given by 2c(a)b

M
= 1

2
, is

independent of the form of the learning-by-doing function and the division
of the prize between rounds.

Claim 1 The rate of rent dissipation in the second contest is independent of
the prize division and the learning-by-doing function: 2c(a)b

M
= 1

2
:

The principal aims at maximizing total e¤ort A + B, which in the sym-
metric equilibrium is 2 (a+ b), with respect to the second-period prize M .
This gives rise to the �rst-order condition:

da

dM
+
db

dM
= 0: (7)

Expressions for da
dM

and db
dM

are found by di¤erentiating (4) and (6). Note
that we need to implicitly di¤erentiate (4) since both sides vary in a. Thus,
from (4), we have:

da = � c (4c+ c0)

(4c+Mc0)2
dM +

M (1�M)
(4c+Mc0)2

�
(c0)

2 � cc00
�
da;

implying

da

dM
= � c (4c+ c0)

M (2M � 1) (c0)2 + 8c (2c+Mc0) +M (1�M) cc00
(8)

When we �nd the change in round-2 e¤orts, from (6), we need to account
for both the direct e¤ect on b of an increase in M , and the indirect e¤ect
working through the round-1 e¤ort a:

db

dM
=
@b

@M
+
@b

@a

da

dM
=
1

4c

�
1� c

0

c
M
da

dM

�
; (9)
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where da
dM

is given in (8).
The e¤ect of shifting the prize mass to the second contest on contestants�

early e¤ort can be signed unambiguously.

Claim 2 For any optimal M 2 (0; 1], it is the case that da
dM
< 0.

Proof. From (9) we have that

da

dM
+
db

dM
=
da

dM
+
1

4c

�
1� c

0

c
M
da

dM

�
=
da

dM
(1� c

0

c
M) +

1

4c

An optimal solution for M implies that

da

dM
(1� c

0

c
M) +

1

4c
� 0;

or
da

dM
(1� c

0

c
M) � � 1

4c
:

with strict equality for an internal solutionM 2 (0; 1). The right hand side is
negative, and (1� c0

c
M) > 0 since c0 < 0. For this inequality to hold requires

da
dM
< 0.
Moving prize mass to the second contest exerts di¤erent e¤ects on early

e¤ort. First, early e¤ort makes it cheaper to compete for the larger second
contest prize and this tends to increase early e¤orts. On the other hand, the
reduction in �rst contest prize tends to reduce �rst round e¤orts directly. By
Claim 2 this �rst order e¤ect always dominates. Furthermore, for an internal
M 2 (0; 1), it is the case that db

dM
> 0 by Claim 2 and equation (9).5

The principal�s �rst-order condition is then:

da

dM
+
db

dM
=�

� c (4c+ c0)

M (2�M) (c0)2 + 8c (2c+Mc0) +M (1�M) cc00

�
(1�Mc

0

4c2
)+

1

4c
= 0

The principal�s optimum M is thus found among solutions in [0; 1], sat-
isfying a second-order condition, of the following equation:h

cc00 � 2 (c0)2
i
M2 � c (12c0 + c00)M � 4c2 [4 (1� c)� c0] = 0 (10)

5Note that this does not necessarily follow in the case of a corner solution M = 1.
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Solving this equation in general is not possible. We therefore resort to
discussing some speci�c cases of learning-by-doing e¤ects in order to see how
this phenomenon a¤ects the contest design. Discussions of the second-order
condition are also relegated to the speci�c cases below.

3 Three learning-by-doing functions

In order to get a �rmer grip on this problem, and in particular to get out
results on the optimum contest design under learning by doing, it is necessary
to introduce a speci�c cost function c (�). Such a speci�c function also has
the advantage that we can parameterize the learning-by-doing e¤ect and thus
discuss the e¤ect on the optimum contest design of learning by doing being
more pronounced. We will discuss three di¤erent functions below. From this
discussion, some features of the solution will emerge: the late prize is always
weakly larger (M � 1

2
); and it is always weakly increasing in the extent of

the learning-by-doing e¤ect.

3.1 Logistic learning by doing

We start out with the logistic learning-by-doing function

c (a) =
1

1 + sa
; s > 0 (11)

Here, the parameter s is a measure of the learning-by-doing e¤ect: the
higher is s, the larger is the reduction in period-2 e¤ort costs from a given
e¤ort in period 1. We have:

c0 (a) = � s

(1 + sa)2
< 0; c00 (a) =

2s2

(1 + sa)3
> 0 (12)

This function has the interesting property that cc00 = 2 (c0)2. This means
that the quadratic term in (10) vanishes. Therefore, a solution of the princi-
pal�s problem is found implicitly from that equation as

M =
4c (a) [4 (1� c (a))� c0 (a)]

�12c0 (a)� c00 (a) , with a = a (M) ;

or, with insertions from (11) and (12),

M = 2
1 + 4a (M) [1 + sa (M)]

6 [1 + sa (M)]� s :
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The next step is to �nd a (M). By combining (4) and (11), we �nd an
implicit expression for a (M):

a =
(1�M) (1 + sa)
4 (1 + sa)�Ms

Solving for an explicit expression, we �nd two solutions, out of which one is
always negative and one is always positive. We want the positive solution,
implying:

a (M) =
1

8s

�
s� 4 +

q
(s+ 4)2 � 16Ms

�
(13)

Note that da
dM

< 0 for all parameter values; this is in accordance with
Claim 2 above. Moreover, it turns out that the second-period pro�t of a
player is always concave in this case, implying that the second-order condition
for a contestant�s choice of �rst-period e¤ort is always satis�ed.6

We can now use (6) and (13) to �nd an expression for contestants�second-
period e¤ort in this case. We have

b (M) =
1

32
M

�
s+ 4 +

q
(s+ 4)2 � 16Ms

�
(14)

Note that a necessary condition for the e¤ort functions to be de�ned is
that the square root expression in a(M) and b(M) is de�ned, i.e. (s+4)

2

16s
�M .

This is always ful�lled since the left-hand side has a minimum value of 1.
The principal aims at maximizing total expected e¤ort, that is maximiz-

ing a (M) + b (M), where a (M) and b (M) are given by (13) and (14). This
gives rise to the �rst-order condition7

24Ms� 8s� s2 + 16� (s+ 4)
q
(s+ 4)2 � 16Ms = 0

Heeding the restriction that M 2 [0; 1], we thus have:

M =

8<:
1
36s

�
s2 + 8s� 32 + (s+ 4)

p
s2 + 8s+ 64

�
;

if 0 < s < 4
�
1 +

p
2
�
� 9:66;

1; if s � 4
�
1 +

p
2
�
:

(15)

6The concavity of the second-period pro�t is ensured by noting that c00i � 3
(c0i)

2

C =
s2

2(1+sa)3 > 0:
7The second order condition is satis�ed for s

2+8s+32
12s > M which always holds since the

left-hand side is always above 1.
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The solution is depicted in Figure 1.
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0.9

1.0

s

M

Figure 1: Optimal M with logistic learning by doing

As the learning by doing e¤ect diminishes (s ! 0), the optimal prize
split is 1

2
in each round. A more pronounced learning by doing e¤ect means

that progressively more of the prize mass is moved to the second round. The
initial relationship between optimal M and the parameter s is convex, so
that prize mass is moved at an increasing rate. When the whole prize is
distributed in the second period, then only the corner solution obtains.
We can now put (15) into (13) to �nd how contestants�e¤ort depends on

the extent of learning by doing under the principal�s optimal contest design.
We have:

a =

8>><>>:
1
8s

�
s� 4 + 1

3

q
5 (s+ 4)2 + 192� 4 (s+ 4)

p
s2 + 8s+ 64

�
;

if 0 < s < 4
�
1 +

p
2
�

s�4
4s
; if s � 4

�
1 +

p
2
�
:

b =

8><>:
�
s+
p
(s+4)2� 4

9
(s+4)

p
s2+8s+64� 4

9
(8s+s2�32)+4

�
(8s+(s+4)

p
s2+8s+64+s2�32)

1152s
;

if 0 < s < 4
�
1 +

p
2
�

1
32

�
s+ 4 +

p
�8s+ s2 + 16

�
; if s � 4

�
1 +

p
2
�
:

Thus, e¤orts are positive for all s > 0, and �rst-period e¤ort is increasing in
the learning-by-doing e¤ect: da

ds
> 0. Both parts of this function are concave,
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and as s becomes very large, �rst-period e¤ort converges to 1
4
per player.

E¤orts per player are depicted in Figure 2, where the whole line is a and the
dashed one b.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

s

a, b

Figure 2: Optimal e¤orts and rent dissipation with logistic learning by
doing

E¤ort in the second period lies over that of the �rst period, and is always
increasing in the learning by doing parameter; the total cost of this exploding
e¤ort converges to 1

4
, however, since this cost is M

4
, as noted previously, and

M = 1 for large enough values of s. In Figure 2, rent dissipation per player is
depicted as the dotted line. This re�ects a player�s total cost of seeking the
prize of one unit: a+ c(a)b. As the learning-by-doing parameter gets larger,
the dissipation rate per player increases, converging to 1

2
in the limit.

3.2 Linear learning by doing

Consider next a linear learning-by-doing function:

c (a) = 1� ta; t > 0; (16)

where now t is the parameter measuring the strength of the learning-by-doing
e¤ect. This linear formulation is appropriate in situations where there is no
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reason to believe that there is a diminishing return from learning by doing as
�rst-period e¤ort increases, since here c00 (a) = 0. In this case, the principal�s
�rst-order condition in (10) writes

t2M2 � 6t (1� ta)M + 2t (1� ta)2 (1 + 4a) = 0, with a = a (M) . (17)

Combining (4) and (16), we �nd that a (M) now solves:

8ta2 � 2 [4 + t (1� 2M)] a+ 2 (1�M) = 0:

This equation has two solutions,

a =
1

8t

�
4 + t(1� 2M)�

q
(4� t)2 � 4t2M (1�M)

�
; (18)

when the term under square root in (18) is non-negative, i.e., when�
4� t
2t

�2
�M (1�M) ; (19)

and none otherwise. The right-hand side of (19) is never greater than 1
4
,

since M 2 [0; 1]. A su¢ cient condition for the left-hand side to be no less
than 1

4
, so that players� equilibrium e¤orts are well de�ned, is t 2 (0; 2].

We therefore impose such an upper bound on the learning-by-doing e¤ect
t. With this restriction, we can subject both the two solutions in (18) to
the second-order condition for a player�s �rst-period e¤ort in a symmetric
situation, given in (5). We �nd that the higher root in (18) does not satisfy
the second-order condition for any t 2 (0; 2], whereas the lower root satis�es
the second-order condition if and only if

t <
4
h
5
p
6M (1�M)� 6

i
25M (1�M)� 6 (20)

Subject to this constraint, we thus have

a (M) =
1

8t

�
4 + t(1� 2M)�

q
(4� t)2 � 4t2M (1�M)

�
(21)

Inserting this back into the �rst-order condition for M in (17) and solving,
we �nd a simple solution:

M =
1

2
: (22)
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Thus, when the learning-by-doing e¤ect is linear, the optimal policy for the
principal is to split the total prize evenly between the two rounds of contest.
We can now put M = 1

2
back into the constraint in (20) to �nd that the

second-order condition on players��rst-period e¤ort requires

t < t := 8
�
5
p
6� 12

�
� 1:98

Finally, given this restriction on t, one can show that the principal�s
second-order condition for her choice of M is satis�ed for all t 2

�
0; t
�
. And

for the permitted range of the learning by doing parameter, one can verify
that @a

@M
< 0.

Putting (22) back into (21) and then using (6), we �nd that, when the
principal exercises her optimal policy in the linear case, the contestants exert
the following e¤orts:

a = a

�
1

2

�
=
1

2t

 
1�

r
1� t

2

!
= b

�
1

2

�
; t 2

�
0; t
�
:

When the prize is divided equally between periods, the contestants have
equal e¤ort in each period, and this e¤ort is increasing in the learning-by-
doing e¤ect: da

dt
> 0, db

dt
> 0 8t 2

�
0; t
�
. These e¤orts are depicted as the

whole line in Figure 3.
Although e¤ort is equal in each period, the cost of e¤orts in round 2

is lower than round 1 due to the learning by doing e¤ect. In the linear
case, this cost is constant at c(a)b = 1

8
. The amount of rent dissipation per

player is a + c(a)b =
4+t�2

p
2(2�t)

8t
, depicted as the dotted line in Figure 3.

Rent dissipation per player increases and is convex in the learning-by-doing
parameter, reaching the maximum level of 0:352 for t = t.

3.3 Exponential learning by doing

Finally, we study the case of an exponential learning-by-doing e¤ect, with

c (a) = e�ua; (23)

implying
c0 (a) = �ue�ua; c00 (a) = u2e�ua. (24)

In this case, the �rst-order condition of the principal, (10), implies

u2M2 � u (12� u)M + 4
�
4� (4� u) e�ua

�
= 0, with a = a (M) : (25)
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Figure 3: Optimal e¤ort and rent dissipation with linear learning by doing
(a = b)

Combining (4) and (23), we have:

a (M) =
1�M
4� uM : (26)

To make sure that e¤ort in the �rst period is positive we require the
learning-by-doing parameter to be u < 4. In this range, it is easily veri�ed
that @a

@M
< 0. The second-order condition for players�choice of �rst-period

e¤ort, given in (5), becomes, after insertions from (23), (24), and (26),

u2M

2
� (4� uM)

2

1�M < 0: (27)

Inserting �rst-period e¤orts from (26) in (25), we have the optimal M as an
implicit function of u, the extent of the learning-by-doing e¤ect:

u2M2 � u (12� u)M + 4
h
4� (4� u) e�u

1�M
4�uM

i
= 0 (28)

We have not succeeded in obtaining an explicit solution for M from this
equation. However, in Figure 4 we plot combinations of M and u that solve
the equation in (28), obtained from a numerical analysis. In the same �gure,
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we also plot the second-order condition from (27). In particular, combina-
tions (u;M) below and to the left of the dashed line in Figure 4 satisfy the
second-order condition for �rst-period e¤ort. A check of the second-order
condition for the principal�s choice of M shows that it is satis�ed when-
ever the second-order condition on players��rst-period e¤orts, given in (27),
holds. The whole line gives then the optimal value of M as a function of the
learning-by-doing parameter u; from the �gure, we see that the principal�s
optimal choice of M , the second-round prize, is increasing in the learning-
by-doing e¤ect u, and at an increasing rate, for any value of u 2 (0; 3:74).

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

u

M

Figure 4: Optimal M in exponential case.

First-period e¤ort cannot be computed directly for this case as a closed-
form solution. Numerical analysis reveals the relationships depicted in Figure
5 between e¤orts and the learning-by-doing parameter. This indicates that
da
du
> 0, and db

du
> 0, 8u 2 (0; 3:74). The same �gure also plots the level of

rent dissipation per player. The larger e¤ort in the second period occurs at
a signi�cantly lower cost than the e¤orts in the preceding one.

16



0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 0.5 1 1.5 2 2.5 3 3.5 4
u

ef
fo

rts
 a

nd
 r

en
t d

is
si

pa
tio

n
a
b
a+c(a)b

Figure 5: Optimal e¤orts and rent dissipation with exponential learning by
doing

4 Discussion and applications

We have analyzed a simple contest design problem in which a principal faces
agents who compete against each other twice, and who reduce future e¤ort
costs through experience gained in the �rst confrontation. The instrument
of design for the principal is how much of the prize mass to distribute early,
and how much to leave for the late contest, in order to maximize total e¤ort.
E¤ort in the �rst period has a twofold e¤ect since it can secure the early
contest prize, at the same time as it reduces the costs of competing for the
later prize. In distributing the prize mass, the principal must be aware of
the trade-o¤ involved: A large early prize stimulates contestants� e¤ort in
the �rst period, but makes e¤ort in the second period less attractive. Since
e¤ort in the second period is less costly due to the learning by doing e¤ect,
this loss of later e¤ort can outweigh the e¤ort stimulated in the �rst contest,
leading to more weight being given to the later prize.
Even in the context of the very simple model that we have developed, it

would seem that general results for the distribution of the prize mass are hard
to obtain. The amount of rent dissipation in the second contest is shown to
be half of the prize on o¤er at that stage, and we have shown generally that
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shifting the prize mass to the second period will decrease e¤ort at the �rst
stage.
To move the analysis further to investigate the optimal division of the

prize between periods, we have had to assume di¤erent forms for the learning
by doing function. The results are indicative of a general pattern. The
principal will always prefer to distribute at least as much of the prize in the
second contest as the �rst. This reduces e¤ort in the �rst contest, however,
but encourages e¤ort in the second contest when this activity is cheaper. In
the logistic and exponential cases, in which the learning-by-doing function is
convex, the principal distributes more to the second contest,8 the stronger
is the learning-by-doing e¤ect, and therefore the larger is the cost reduction
achieved from a given �rst round e¤ort. The linear case is di¤erent, with half
of the prize being distributed to each contest, independent of the e¤ectiveness
of learning by doing. With the learning-by-doing function being linear, there
is no increased e¤ect on the margin from pushing more of the prize into the
second contest.
The phenomenon of gaining experience in contests that a¤ects the ability

to compete later on would appear to have widespread applications. Research
tournaments in which labs compete for the best invention have been shown
to have a close connection to the Tullock rent-seeking game that we have
analyzed here.9 One can imagine that there are several stages to the invention
process which may make it natural to divide up an overall prize into stage
prizes. The principal may for example grant an intermediate prize to the lab
that makes the best prototype, and then a prize to the team making the best
marketable product. Experience gained in the early stage will likely a¤ect
the cost of e¤orts later on.
The aim of maximizing e¤orts is also sensible in this context, since the Eu-

ropean Union�s Lisbon strategy of 2000 pinpointed a target level for research
and development activity.10 The process of applying for research money �ts
well into our framework, where early applications give experience that aid
later ones. A key insight from our study with a clear bearing on the running
of large research programs is that, in the presence of learning-by-doing ef-
fects, the larger funds should be kept for late rounds. And the stronger the
learning-by-doing e¤ects are, the more research money should be saved for

8Until a corner solution is reached in the logistic case.
9See Baye and Hoppe (2003) and Fullerton and McAfee (1999).
10See Johansson, et al. (2007) for more on the Lisbon agenda.
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later rounds.
Sports contests provide another area of application in which a natural

goal is to maximize the e¤ort contributed by the competitors (see Szymanski,
2003). The structure that we have analyzed resembles that of two teams that
compete with each other �rst in one competition (such as a league), and then
again in another such as the playo¤ �nals or a cup competition. Experience
gained from the �rst encounter a¤ects e¤orts levels in the second. Again, our
analysis indicates that the playo¤ prize should be larger than the prize for
winning the league, and the more so the stronger learning-by-doing e¤ects
are present.
Industrial organization provides several applications of our framework and

analysis. Two �rms that compete for shares of di¤erent market segments for
example, or �rms that compete to have their product adopted as the standard
in which the initial competition is to establish a product, and then the later
one to determine the one chosen as the standard.
With respect to procurement contracts, our analysis shows that a princi-

pal may be well advised to divide them up into smaller prizes so as to take
advantage of the learning by doing e¤ect. More e¤ort will be expended in
the competition to win the contract if the contestants are allowed to reap
the gains from their experience in competing for an intermediate prize, than
if the prize is awarded at once.
More generally, our analysis points to the importance of seeing sequences

of contests in context. When there are dynamic e¤ort e¤ects, such as the
learning-by-doing e¤ects highlighted in this paper, the players will take these
e¤ects into account when planning for their participation in the contest se-
quence. And so should also the principal do, whether she is running a research
program or a sports league.
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