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OLS with Multiple High Dimensional Category Dummies

Simen Gaure

The Ragnar Frisch Centre for Economic Research, Oslo, Norway

Summary. We present some theoretical results which simplifies the estimation of linear mod-
els with multiple high-dimensional fixed effects. In particular, we show how to sweep out
multiple fixed effects from the normal equations, in analogy with the common within-groups
estimator.

Keywords: Method of Alternating Projections, Multiple Fixed Effects, OLS
JEL Classification: C13, C33, C60

1. Introduction

Several authors (e.g. Abowd et al. (1999), Carneiro et al. (2009)) have implemented proce-
dures for estimation of linear models with two fixed effects. We present some results which
may simplify this.

A common strategy if there is a single fixed effect (e.g. individual fixed effects only) is
to centre the covariates and response on the group means, and do OLS on this projected
system.

It seems to be common knowledge that sweeping out more than one category variable
may not be done by centering on the group means, or by other simple transformations of the
data, see e.g. (Andrews et al., 2008, p. 676) and (Cornelissen and Hubler, 2007, Section
5.2). Thus, even if one only wants to control for the fixed effects, elaborate estimation
schemes are employed.

We present results that it is indeed possible to sweep out multiple fixed effects, due to
theorems by von Neumann and Halperin. Moreover, the residual linear system will typically
be sparse. In addition, we may often decompose it into smaller systems, depending on its
structure.

We assume we have a linear model

Y = Xβ +Dα+ ǫ

where X is a (n×k)-matrix, and D is a (n×g)-matrix. D is a set of dummies for e category
variables. I.e. D =

[

D1 D2 . . . De

]

. That is, the entries of each Di consists of 0 and 1,
with only 1 non-zero entry per row. Hence, the columns of each Di are pairwise orthogonal.
Though, in general, Di is not orthogonal to Dj for i 6= j.

We further assume that g is large (as in 106), so that ordinary least squares solvers fall
short. We may also assume that k is reasonably small, so that the system without dummies
is manageable.

In particular we look at the case e = 2, corresponding to two category variables, e.g.
“firm” and “employee” as in Abowd et al. (1999) and Andrews et al. (2008).

We have the normal equations
[

X ′X X ′D

D′X D′D

] [

β̂

α̂

]

=

[

X ′

D′

]

Y
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We recall some standard facts about these. We may write them as two rows

X ′Xβ̂ +X ′Dα̂ = X ′Y (1)

D′Xβ̂ +D′Dα̂ = D′Y (2)

and do Gaussian elimination of the α̂-term in the last row to get

X ′(I −D(D′D)−1D′)Xβ̂ = X ′(I −D(D′D)−1D′)Y (3)

provided D′D has full rank.
Now, let P = I −D(D′D)−1D′ and note that P = P 2 = P ′, to get

(PX)′(PX)β̂ = (PX)′PY

which shows that β̂ is the OLS-solution of the projected system

PY = PXβ + ǫ (4)

Thus, we don’t need α̂ to find β̂. This is a standard way to eliminate the fixed effects from
the equation in the case e = 1, i.e. with a single fixed effect. This result is also known as
the Frisch-Waugh-Lovell theorem.

Remark 1.1. We do not cover the statistical properties of such models (this has been
done in Abowd et al. (1999) and Andrews et al. (2008)), only some theory to simplify the
solution of the normal equations.

In practice, it may happen that β̂ is not uniquely determined, this is the same problem
as with ordinary fixed effects models with e = 1, (e.g. covariates which are constant for
individuals). We do not treat that problem here. That is, we assume PX is full rank.

Note that P is the projection onto R(D)⊥ where R(D) denotes the range of D, i.e. the
column space, and ⊥ denotes orthogonal complement. So P exists even if D is not full rank,
and only depends on the column space of D. Thus, removing columns of D participating
in linear dependencies does not change P , hence not β̂.

2. The structure of the projection P

Although (4) shows how to eliminate the fixed effects for arbitrary e ≥ 1, it does not seem
practical to compute the projection matrix P unless e = 1.

However, we don’t really need to find the matrix P (which is N ×N where N may be
of the order 107), rather we need to compute PY and PX.

To this end, for each i = 1..e let Pi be the projection onto the orthogonal complement
of the range R(Di)

⊥. We clearly have

R(D)⊥ = R(D1)
⊥ ∩R(D2)

⊥ ∩ · · · ∩R(De)
⊥,

thus
P = P1 ∧ P2 ∧ · · · ∧ Pe.

By (Halperin, 1962, Theorem 1), we have

P = lim
n→∞

(P1P2 · · ·Pe)
n.

This shows that the following algorithm converges.



OLS with Multiple Fixed Effects 3

Algorithm 2.1 (Method of Alternating Projections). Let v be a vector (typi-
cally a column of X or Y ). The following algorithm converges to Pv. It is a direct general-
ization of the familiar “mean deviations” transformation of the “within-groups” estimator
(i.e. the case e = 1).

(1) Let v0 = v, and i = 0.

(2) Let z0 = vi. Let j = 0.

(3) For j = 1..e, form zj by subtracting the group means of the groups in Di from zj−1.
I.e. zj = Pjzj−1.

(4) Let vi+1 = ze. If ‖vi+1 − vi‖ < ǫ, terminate with the vector vi+1 as an approximation
to Pv. Otherwise, increase i by 1. Go to step (2).

Remark 2.2. This is known as the Method of Alternating Projections. The case e = 2
was first proved in (von Neumann, 1949, Lemma 22, p.475), and it’s also in (von Neumann,
1950, Theorem 13.7). This really dates back to 1937, and even to lecture notes from von
Neumann’s lectures at Princeton in 1933–1934. It is also known as The Kaczmarz Method,
from Kaczmarz (1937).

Example 2.3. In the case with two fixed effects, like “firm” and “individual”, Algorithm
2.1 amounts to repeating the process of centering on the firm means, followed by centering
on the individual means, until the vector no longer changes.

Remark 2.4. It is a standard fact from operator theory that for commuting projections
Pi, we have P1 ∧P2 ∧ · · · ∧Pe = P1P2 · · ·Pe. (It is also a direct consequence of the Halperin
theorem cited above.) Thus, for such commuting projections, Algorithm 2.1 converges after
one step so that Pv = v1. This is the case with nested categories.

Recall from (2) that
D′Dα̂ = D′R (5)

where R = Y −Xβ̂ are the residuals for the original system with dummies omitted.
D is typically quite sparse, and so is D′D, thus with a good sparse solver it ought to be

possible to solve for α̂. Moreover, by Theorem 4.2, this system may in some cases be split
into smaller systems.

In the special case with a single category (e = 1), the columns of D are orthogonal,
thus D′D is diagonal; and α̂ is simply the group means of the residuals R. This is the
within-groups estimator.

The residuals of the full system Y = Xβ+Dα+ǫ are easily shown to be Y −(Xβ̂+Dα̂) =

PY − PXβ̂, the residuals of the centered system.

3. Identification in the case e = 2

Above, we assumed that D, and thus D′D was full rank. If we construct it from dummies
(with no references) we know that it is not.

Abowd et al Abowd et al. (1999) has analyzed this in the case where there are two
dummy-groups (firms and individuals). In this case they construct an undirected graph G

where each vertex consists of a firm or an employee. A firm and an employee are adjacent



4 S. Gaure

if and only if the employee has worked for the firm. There are no more edges in the graph.
(I.e. D′ (with duplicate rows omitted) is the incidence matrix of the graph).

They then analyze identifiability in terms of the connection components of G and show
that it is sufficient to have a reference dummy in each of the connection components, see
(Abowd et al., 2002, Appendix 1). They prove the theorem

Theorem 3.1 (Abowd et al). If e = 2, the rank deficiency of D equals the number
of connection components of the graph G

Proof. We provide a different proof of this fact.
The matrix D′ may be viewed as the incidence matrix of a multigraph, then D′D

is the signless Laplacian of this graph. Moreover, the graph is bipartite (firms in one
partition, employees in another). By (Cvetković et al., 2007, Corollary 2.2), the multiplicity
of eigenvalue 0 is the number of components.

Since the above reference does not cover multigraphs explicitly, for convenience, the
details are as follows, adapted from the proof of (Brouwer and Haemers, 2009, Proposition
1.4.2). Reorder the columns and rows of D′D by connection component. The resulting
matrix is a block-diagonal matrix. Its spectrum is the union (with multiplicities) of the
spectra of the blocks (since the determinant of a diagonal block-matrix is the product of
the determinants of the blocks). Thus, it is sufficient to show the result for connected
graphs.

So, assume G is connected. By construction from a complete set of dummy-variables
with no references, we know that the rank-deficiency of D′D is positive. We must show
that it is 1.

Let v = (v1, v2, . . . , vg) (indexed by the vertices of the graph) be a vector in the null-
space of D, i.e. Dv = 0. This means that whenever vertices i and j are adjacent (so that
a row in D has a 1 in both column i and j), then vi + vj = 0. Now, start out with a value
for v1, we may find vj = −v1 for all its adjacent vertices. We may continue this process
for each of them; since the graph is connected we will eventually reach every vi in this
way, thus the entire vector v is determined by its first coordinate v1, which proves that the
rank-deficiency of D (and thus D′D) is at most 1.

Remark 3.2. For e = 3, the graph is tripartite, and in general e-partite. We are not
aware of similar general results for multipartite graphs. (Though there’s more structure
than that in our graphs, so it may still be possible.)

In this case, one may perform a pivoted Cholesky decomposition of D′D + ǫI for some
small ǫ and look for small pivots. Each of these corresponds to a column of D′D which
participates in a linear dependence. But the identification problem (thus, the interpretation
of the resulting coefficients) is somewhat elusive.

4. A commuting decomposition of P

The algorithm in Theorem 2.1 may take some time to finish. But if we can find commuting
projections which has P as their intersection, we know by Remark 2.4 that only one iteration
is necessary.

To this end, assume the columns of D are ordered by connection components. This
makes D′D block-diagonal. In other words, D =

[

B1 B2 · · · Bc

]

where the columns
of each Bi consists of a single connection component. We have B′

iBj = 0 for every pair i, j
with i 6= j. That is, every column of Bi is orthogonal to every column of Bj .
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For i = 1..c, let Qi = I − Bi(B
′

iBi)
−1B′

i be the projection onto the complement of the
column space of Bi.

Since the column spaces of Bi and Bj are orthogonal whenever i 6= j, we have (I −
Qi)(I − Qj) = 0. This product may be expanded to yield I − Qi − Qj + QiQj = 0, thus
QiQj = Qi + Qj − I = QjQi So, the Qi’s commute for i 6= j. Moreover, it is clear that
P = Q1 ∧Q2 ∧ · · · ∧Qc.

By Remark 2.4, we have
P = QiQ2 · · ·Qc.

However, we have found no particularly easy way to compute Qiv for a vector v. We
may partition each Bi =

[

Bi1 Bi2 · · · Bie

]

into subsets of columns corresponding to
single categories, let Qij be the projection onto the R(Bij)

⊥ and compute Qiv by applying
Algorithm 2.1 to the projections {Qij}

e
j=1.

Thus, we may use the component decomposition to split the problem of Algorithm 2.1
into several smaller problems.

Remark 4.1. By construction, for every i, j we have R(Pj)
⊥ ⊂ R(Qij)

⊥. This is
because for every j = 1..e all the columns of Bij are columns of Dj. With a large c, there
will be many runs of Algorithm 2.1, but since the Qij’s are in a sense smaller it may happen
that the algorithm converges faster (both in terms of number of iterations and time for each
iteration.).

The rate of convergence has been analyzed in Deutsch and Hundal (1997).
For the case e = 2, Aronszajn, cited in (Deutsch and Hundal, 1997, Corollary 2.9), has

an estimate
‖(P1P2)

n − P‖ ≤ cos2n−1(R(D1)
⊥, R(D2)

⊥)

where the function cos denotes the cosine of the (complementary) angle between subspaces.
This was later shown by Kayalar and Weinert (Kayalar and Weinert, 1988, Theorem 2)
to be an equality. This quantity is strictly smaller than 1 in finite dimensional spaces
(Deutsch and Hundal, 1997, Lemma 2.3(3)). Thus, we have geometric convergence, but it
may still be very slow. Moreover, the convergence is monotonous.

We have not succeeded in comparing the convergence rate of the {Qij}
e
j=1’s above to

that of he Pi’s, so the status of Remark 4.1 remains open. Faster convergence could also
possibly be achieved by the methods of Gearhart and Koshy (1989) or Salomon and Ur
(2006).

The case e > 2 is also handled in Deutsch and Hundal (1997), but is more complicated.
We may also use this decomposition to simplify the system (5).

Theorem 4.2. With the above decomposition and reordering, we may write D′D as a
block matrix

[

B′

iBj

]

. By the above, it is a block diagonal matrix with B′

iBi on the diagonal.
Thus, our system (5) splits into c separate systems

B′

iBiα̂i = B′

iR (6)

where α̂i is the part of α̂ in component i.

Thus, we may find the fixed effects for each connection component separately.

Remark 4.3. This matrix is the block-diagonal version of the matrix in (Abowd et al.,
2002, Equation (4)) (i.e. with the covariates X removed).
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5. Summary

Let us summarize this discussion. Let

Y = Xβ +Dα+ ǫ (7)

be a linear system where D is the dummies for a set of category variables. I.e. D =
[

D1 D2 · · · De

]

, where each Di is the matrix of dummies for a single category.

Let Pi, for i = 1..e be the operation of subtracting group means for category variable
i. Formally, Pi = I −Di(D

′

iDi)
−1D′

i, though, one doesn’t need to find the matrices Pi to
perform this operation on a vector.

Let P = I −D(D′D)−1D′ be the projection on the orthogonal complement of the range
of D.

Algorithm 5.1. To find OLS estimates β̂ and α̂ for model (7) we proceed in the fol-
lowing manner.

(1) Compute Ȳ = PY and X̄ = PX according to Algorithm 2.1

(2) Perform an OLS on

Ȳ = X̄β + ǫ.

The result of this estimation is β̂. The residuals Ȳ − X̄β̂ are the residuals of an OLS
on (7). The standard errors need to be adjusted, taking into account the number of
eliminated parameters in the degrees of freedom. (one for each connection component)

(3) Compute R = Y −Xβ̂

(4) In case e = 2, find the c connection components of the graph discussed in section 3.
Reorder columns and partition D =

[

B1 B2 · · · Bc

]

into connection components.
For each i = 1..c, find the column with the highest column sum in Bi. Remove the
column. Solve α̂i from

(B′

iBi)α̂i = B′

iR.

with a sparse solver. α̂i is the estimate of the fixed effects for component i. Insert a
0 as the coordinate of α̂i corresponding to the removed column.

(5) In case e > 2, we may find the fixed effects, even though identification isn’t fully
understood. Do a pivoted Cholesky decomposition of D′D + ǫI for some small ǫ >

0. The small pivots correspond to row/columns of D′D which participate in linear
dependencies. Remove these row/columns from D′D. Solve (D′D)α̂ = R′Y and put
back zeros for the removed entries.

In principle, we could, in step (4), for each component, find the first fixed effect separately
by sweeping out the others, then repeat the process with the remaining c− 1 fixed effects,
and the residuals. However, keeping dummies for the first fixed effect and sweeping out the
others will destroy the sparsity of the system, so we do not find such a procedure attractive.



OLS with Multiple Fixed Effects 7

References

Abowd, J., R. Creecy, and F. Kramarz (2002). Computing Person and Firm Effects Us-
ing Linked Longitudinal Employer-Employee Data. Technical Report TP-2002-06, U.S.
Census Bureau.

Abowd, J., F. Kramarz, and D. Margolis (1999, March). High Wage Workers and High
Wage Firms. Econometrica 67 (2), 251–333.

Andrews, M., L. Gill, T. Schank, and R. Upward (2008). Hige wage workers and low wage
firms: negative assortative matching or limited mobility bias? J.R. Stat. Soc.(A) 171(3),
673–697.

Brouwer, A. and W. Haemers (2009?). Spectra of Graphs.
http://homepages.cwi.nl/~aeb/math/ipm.pdf.

Carneiro, A., P. Guimaraes, and P. Portugal (2009, May). Real Wages and the Business
Cycle: Accounting for Worker and Firm Heterogeneity. IZA Discussion Papers 4174,
Institute for the Study of Labor (IZA).

Cornelissen, T. and O. Hubler (2007). Unobserved individual and firm heterogeneity in
wage and tenure function: evidence from German linked employer-employee data. IZA
Discussion Papera (2741).
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