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Abstract

The new-Keynesian Phillips curve (NKPC) includes expected future inflation to explain current

inflation. Such models are estimated by replacing the expected value by the future outcome, using

Instrumental Variables or GeneralizedMethod of Moments methods. However, the underlying theory

does not allow for various non-stationarities–although crises, breaks and regimes shifts are relatively

common. We analytically investigate the consequences for NKPC estimation of breaks in data pro-

cesses, then apply the new technique of impulse-indicator saturation to salient published studies to

check their viability. The coefficient of the future value becomes insignificant after modelling breaks.

JEL classifications: C51, C22.

KEYWORDS:New-Keynesian Phillips curve; Inflation expectations; Structural breaks; Impulse-indicator

saturation.

1 Introduction

Expectations play an important role in most financial markets and in many economic theories. Central

Banks use interest rates for inflation ‘targets’ based on expected, or forecast, inflation one or two years

ahead. Nevertheless, it is unclear how accurate agents’ expectations of future variables are, even consid-

ering sophisticated agents. For example, although exchange rates are a key financial price, Nickell (2008)
∗We are grateful to Neil Ericsson, Katarina Juselius, Søren Johansen, and Bent Nielsen for helpful comments and sugges-

tions. This research was supported in part by grants from the Open Society Institute and the Oxford Martin School.
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shows the 2-year ahead consensus for £ERI systematically mis-forecasting by a large margin over the

prolonged time period, 1996–2002. Chart 1.16 in Bank of England (2009) shows similar mis-forecasting

from 2008. Moreover, despite a substantial investment in modeling and forecasting, and a committee

of experts to help it (namely, the Monetary Policy Committee), the Bank of England still significantly

mis-forecast CPI inflation as seen in figure 2, from Bank of England (2008): the CPI then rose above

5% in September 2008, outside the entire range shown in their graph. Or consider consensus oil price

forecasts for 2008, where none included any price near the $145 high, nor the $40 per barrel that even-

tuated. Finally, the collapse of many of the world’s largest financial institutions reveals how inaccurate

their expectations of asset values have proved to be.

Indeed, ‘crises’ occur with impressive frequency, but unimpressive anticipation: see e.g., Clements

and Hendry (2001), and Barrell (2001). Consequently, forecast failures are all too common as e.g., Stock

and Watson (1996), and Clements and Hendry (1998) document, and the primary causes of such failures

seem to be location shifts, namely changes in previous unconditional means: see e.g., Clements and

Hendry (1999), and Hendry (2000, 2006). These examples are not intended as criticisms of the agencies

and procedures involved: rather, together they suggest that it is extremely difficult to form accurate

expectations about future events, especially because the mean of the future distribution often differs in

unanticipated ways from the present mean.

Nevertheless, the currently dominant model of agents’ expectations assumes that they are rational,

namely, they coincide with the conditional expectation, E [yt+1|It], of the unknown future value, yt+1,

given all relevant information, denoted It. Indeed, E [yt+1|It] is often replaced in econometric models

by the later outcome, with an error that is claimed to be unpredictable from present information:

E [yt+1 | It] = yt+1 + vt+1 (1)

where E[vt+1|It] = 0. The error vt+1 in (1) cannot be independent of yt+1. Then equations of the form:

yt = β1E [yt+1 | It] + β2yt−1 + β3xt + ut (2)

(where xt is assumed ‘exogenous’) are re-written as:

yt = β1yt+1 + β2yt−1 + β3xt + εt (3)
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usually with the auxiliary assumption that εt ∼ D
[
0, σ2

ε

]
.

The formulation in (3) is almost invariably used in new-Keynesian Phillips curve (NKPC) models

of inflation. Estimating the parameters of such equations by Instrumental Variables (IV) or Generalized

Method of Moments (GMM) methods usually reveals high inflation persistence (i.e., β1 + β2 close to

unity), implying large costs of reducing inflation once it rises, and consequently entailing ‘tough’ interest

rate policies to avoid such a scenario. Policy at the Bank of England during much of 2008 reflected

such a belief, although other empirical models of inflation suggest persistence is partly an artifact of

the model specification adopted: see e.g., Castle (2008). Most dynamic stochastic general equilibrium

models (DSGEs) likewise impose rational expectations: see Smets and Wouters (2002), for a recent

implementation.

This paper investigates the role and significance of expectations in the context of NKPCs when there

are location shifts in the underlying processes. Previous tests of feedforward models include Hendry

(1988) and Engle and Hendry (1993), both of which focused on non-constancy to differentiate between

models. Here we consider using impulse-indicator saturation-based tests initiated in Hendry (1999) and

analyzed by Hendry, Johansen and Santos (2008), Johansen and Nielsen (2009) and Castle, Doornik and

Hendry (2009). The impulse indicators are selected in the ‘forecasting’ equation derived from (2), then

tested for significance in (3), related to the test for super exogeneity in Hendry and Santos (2010). Under

the null of correct specification, few such impulse indicators will be selected, and those that are should

not be significant when added to (3); moreover, parameter estimates should not alter much. Under the

alternative that there are unmodeled outliers or breaks, there will be significant impulse indicators in the

‘forecasting’ equation, and these will remain significant when added to (3). The properties of this class

of automatic model selection procedures using Autometrics (see Doornik, 2009) are discussed in Castle,

Doornik and Hendry (2010) and Hendry and Mizon (2010a).

The structure of the paper is as follows. Section 2 briefly describes the recent technique of impulse-

indicator saturation, denoted by its acronym IIS, which will provide the tool for investigating both lo-

cation shifts and their impacts on estimates of NKPCs. Subsection 2.1 considers the consequences of

adding instrumental variables from the reduced form of an endogenous variable to a structural equation.

Section 3 then reviews the requirements for forming conditional expectations of future values given all

relevant information. Section 4 discusses the formulation of new-Keynesian Phillips curve models that

embody (1), then section 4.1 considers the empirical evidence on NKPC estimation. Section 5 analyzes
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the impacts on feedforward models of ignoring breaks, and section 6 provides simulation findings on the

application of IIS to feedforward models. Sections 7 and 8 respectively report new Euro-area and US

NKPC estimates with and without IIS. Section 9 concludes.

2 Impulse-indicator saturation

Impulse-indicator saturation adds an indicator for every observation to the set of candidate regressors,

entered (in the simplest case) in blocks of T/2 for T observations (when there are fewer than T/2 other

regressors). The theory of IIS is derived under the null of no outliers, but with the aim of detecting

and removing outliers and location shifts when they are present. We first describe the simplest form of

‘split half’ IIS, the case for which Hendry et al. (2008) and Johansen and Nielsen (2009) develop an

analytic theory and derive the resulting distributions of estimators, then consider the more sophisticated

algorithm used by Autometrics, an Ox Package implementing automatic model selection: see Doornik

(1999, 2009).

First, add half the impulse indicators to the model, record the significant ones, then drop that first

set of impulse indicators. Now add the other half, recording again. These first two steps correspond to

‘dummying out’ T/2 observations for estimation, noting that impulse indicators are mutually orthogonal.

Finally combine the recorded impulse indicators and select the significant subset. Under the null of no

outliers or location shifts, Hendry et al. (2008) derive the distribution of the mean after IIS in scalar

IID processes, and also show that on average αT indicators will be retained adventitiously, where α is

the chosen significance level. Johansen and Nielsen (2009) generalize the theory to more, and unequal,

splits, as well as to dynamic models with possibly unit roots. Moreover, Johansen and Nielsen (2009)

prove that under the null of no outliers or shifts, there is almost no loss of efficiency in testing for T

impulse indicators when setting α ≤ 1/T , even in dynamic models, and relate IIS to robust estimation

facing potential data contamination. While such high efficiency despite having more candidate regressors

than observations is surprising at first sight, retaining an impulse indicator when it is not needed merely

‘removes’ one observation, which is all that will happen on average under the null. Thus, efficiency is of

the order of 100(1 − α)%.

The algorithm used by Autometrics has several block divisions and does not rely on the impulse

indicators being orthogonal. With IIS at the recommended tight significance levels, Monte Carlo experi-
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ments in Castle et al. (2009) have confirmed the null distribution, and shown that Autometrics selection

has the appropriate properties: at nominal significance levels of α = 2.5%, 1%, and 0.1%, the probabil-

ities of retaining any irrelevant dummies are close to α. Castle et al. (2009) also show that IIS is capable

of detecting up to 20 outliers in 100 observations as well as multiple shifts, including breaks close to

the start and end of the sample. They also compare its power to detect breaks in U.S. real interest rates

with the procedure in Bai and Perron (1998) based on Garcia and Perron (1996): extending the sample

to 1947:2–2009:3, covering most of the post-war period, revealed substantial benefits to IIS as there are

breaks or outliers near the start and end of the sample as well as other shifts.

2.1 Adding instrumental variables to structural equations

The IIS tests involve adding the significant impulse indicators from the forecasting equation to the struc-

tural equation. Hendry (2010b) shows that adding valid over-identifying instruments from the reduced

form of a second structural equation has almost no impact on the estimates of the parameters of a first

structural equation. Finding instruments in the reduced form which are irrelevant in the structural equa-

tion, but nevertheless adding them to that structural equation, cannot improve efficiency, but leaves the

population parameter values of that structural equation unaffected. The null hypotheses for the irrelevant

variables in the first equation are rejected at their nominal significance levels, and there is little impact on

the null rejection rates of the relevant variables. Adding the instruments does increase the spread of the

t-distributions of estimated parameters relative to knowing the instruments enter the second equation’s

reduced form, but leaves the t-distribution essentially the same relative to when it is not known that they

are additional instruments. The latter is the situation here with any selected impulse indicators from the

forecasting equation. There should be almost no impact on the estimates of the parameters of the first

structural equation, and the added instruments should be insignificant when the first structural equation

is correctly specified, so the estimated equation standard error should also be nearly unaffected. Thus,

it is legitimate to add over-identifying instruments to a structural equation, and if they are significant on

doing so, that demonstrates the mis-specification of the structural equation.
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3 Models of expectations

A ‘rational’ expectation (denoted RE, following Muth, 1961) is the conditional expectation of a variable,

yt+1, given available information It, often written as:

yret+1 = E [yt+1 | It] (4)

Agents are assumed to adopt such a minimum mean square error formulation as it avoids arbitrage and

hence unnecessary losses. Since RE requires free information, unlimited computing power, and free

discovery of the form of E[yt+1|It], such an approach has many critics (see e.g., Kirman, 1989, Frydman

and Goldberg, 2007, and Juselius, 2006). Nevertheless, in stationary processes (including difference

stationary and trend stationary), assuming that agents use E[yt+1|It] is not unreasonable, perhaps with

learning (see e.g., Evans and Honkapohja, 2001).

But as economic processes lack time invariance, (4) is far too demanding. Agents cannot do the

entailed calculations, since (4) should be written formally as:

yret+1 = Et+1 [yt+1 | It] =

∫
yt+1ft+1 (yt+1 | It) dyt+1 (5)

The crucial feature is the explicit dating of the expectations operator, Et+1, since (5) reveals that RE

requires a ‘crystal ball’ to know in advance the entire future distribution ft+1(yt+1|It). This dating of

the operator was deliberately omitted in both (1) and (4) to reflect widely-used conventions. Yet written

as:

ŷt+1 = Et [yt+1 | It] =

∫
yt+1ft (yt+1 | It) dyt+1 (6)

ŷt+1 will not even be unbiased for yt+1 unless ft+1(·) = ft(·), so Et+1 = Et. Simply writing (6) makes

it evident why location shifts are so pernicious–one is integrating relative to the wrong mean.

In practice, the best an agent can do is to form a ‘sensible expectation’, yset+1, which involves ‘fore-

casting’ ft+1(·) by f̂t+1(·):

yset+1 =

∫
yt+1f̂t+1 (yt+1 | It) dyt+1. (7)

However, if the moments of ft+1(yt+1|It) alter, there are no good rules for f̂t+1(·), except that ft(·) is

not a good choice when there are location shifts. Agents cannot know how It enters ft+1(·) if there is a
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failure of time invariance. Since REwould be a more feasible approach when ft+1(·) = ft(·), its viability

depends on the extent and magnitude of location shifts in the underlying process, and IIS offers a method

for evaluating that. Hendry and Mizon (2010b) provide a mathematical analysis of the implications

of location shifts for models based on inter-temporal optimization assuming constant distributions, and

prove that conditional expectations are biased and that the law of iterated expectations does not hold

inter-temporally. Hendry (2010a) derives some implications of those findings for the analysis of climate

change.

4 New-Keynesian Phillips curve

The ‘hybrid’ new-Keynesian Phillips curve (NKPC) is usually given by a model of the form:

Δpt = γf
≥0

Et [Δpt+1] + γb
≥0
Δpt−1 + λ

≥0
st + ut (8)

where Δpt is the rate of inflation, Et [Δpt+1] is expected inflation one-period ahead conditional on in-

formation available today, using the conventions of the literature, and st denotes firms’ real marginal

costs. The notation Et+1 [Δpt+1|It] in (5) distinguishes the timing for which the expectation is made

(i.e., t + 1), from the timing of the available information (i.e., t). For estimation, Et [Δpt+1] in (8) is

usually replaced by Δpt+1 as in (1), leading to:

Δpt = γfΔpt+1 + β′xt + εt where εt ∼ D
[
0, σ2

ε

]
(9)

which includes Δpt+1 as a feedforward variable, where all other variables (including lags) are compo-

nents of xt. Generally, Δpt+1 in (9) is instrumented by k variables zt = (x′
t : w

′
t)
′ using whole-sample

estimates based on GMM, thereby implicitly postulating relationships of the form:

Δpt = κ′zt + vt (10)

as in Galı́ and Gertler (1999) and Galı́, Gertler and Lopez-Salido (2001): compare Nymoen (2005) and

Bjørnstad and Nymoen (2008). Mavroeidis (2004) discusses the potential problems of weak identifica-

tion in such forward-looking models.
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There are few studies of the properties of estimating forward-looking models like (9) when the null

hypothesis, γf = 0, is true but the data processes like (10) involve location shifts. As with testing

for super exogeneity (see Hendry and Santos, 2010), IIS is applied to the marginal model (‘the fore-

casting equation’ (10) for Δpt) to check for location shifts, then the retained impulses are added to the

structural equation and tested for significance. Impulses that matter in the marginal, or ‘reduced form’,

model for Δpt should nevertheless be insignificant in models like (9) when they are correctly specified.

Consequently, the significance of added dummies refutes invariance. If estimates of γf also cease to

be significant, that entails the potential spurious significance of the feedforward terms (9) as proxies for

the unmodeled location shifts. As noted in section 2.1 and explained in Hendry (2010b), instrumental

variables selected from the reduced form of an endogenous variable should be insignificant when added

to a correctly-specified structural equation.

Intuitively, because Δpt+1 reflects breaks before they occur, as seen from time t, even instrumenting

Δpt+1 could let it act as a proxy for those breaks, leading to γf being ‘spuriously significant’ in (9).

As breaks are generally unanticipated, even by economic agents, precisely in a setting where (9) is an

invalid representation, one would find γf �= 0. Thus, we allow the DGP to be of the general form:

Δpt = φ′zt +
r∑

i=1

ρi1{ti∈T } + ηt = φ′zt + ρ′dt + ηt (11)

where ηt ∼ IN
[
0, σ2

η

]
independently of the regressors, 1{ti∈T } is unity when ti ∈ T , and zero otherwise,

where T denotes the set of breaks, and dt collects the r ≥ 0 relevant indicators. We will investigate:

(a) the estimation biases that arise under the null γf = 0 in assumed feedforward models of the NKPC

when breaks are not modeled;

(b) tests of the specification of feedforward models when the null γf = 0 holds;

(c) check the properties of the new procedures by simulation; and

(d) apply them to salient empirical models of the NKPC in the Euro-zone and USA.

Such an analysis is important as many Central Banks and policy agencies use models of the form (9), so

a rigorous evaluation is urgently needed to discriminate cases where γf �= 0 from when it is ‘spuriously

significant’ due to unmodeled breaks. Indeed, the proposed tests have relevance to all empirical equations

with leads, which now permeate empirical macromodels in monetary policy. Moreover, Euler equations

have a similar hybrid form, so the tests are relevant for the demand side as well. Section 4.1 now discusses
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the existing empirical evidence on NKPC estimation.

4.1 Empirical evidence on NKPC estimation

The ‘pure’ NKPC is (8) with γb = 0 representing the case where all price-setting firms (that are aggre-

gated over) form rational expectations. Both the pure and the hybrid form are usually presented in theory

as ‘exact’, i.e., without an error term. When Et[Δpt+1] is replaced by Δpt+1 for estimation, a moving-

average error term is implied. This has motivated ‘robust’ estimation with, for example, pre-whitening

switched on in GMM, so many papers downplay the relevance of congruency for the evaluation of the

NKPC.

The basis for the NKPC as a successful model of inflation is due to the results of Galı́ and Gertler

(1999) (henceforth GG) on US data, and Galı́ et al. (2001) (henceforth GGL1) on Euro-area data. Others

have discussed problems related to identification, inference and encompassing, but their critiques are

claimed to be rebutted in Galı́, Gertler and Lopez-Salido (2005) (GGL5), who re-assert that the NKPC,

in particular the dominance of γf characterizing forward-looking behavior, is robust to the choice of

estimation procedure and specification bias. They assert that the following three results are proven char-

acteristics of NKPC for all data sets:

1. The two null hypotheses γf = 0 and γb = 0 are rejected both individually and jointly.

2. The coefficient γf on expected inflation exceeds the coefficient γb on lagged inflation substantially.

The hypothesis of γf + γb = 1 is typically not rejected at conventional levels of significance,

although the estimated sum is usually a little less than unity numerically.

3. When real marginal costs are proxied by the log of the wage-share, the coefficient λ in (8) is

positive and significantly different from zero at conventional levels of significance.

Critics of the NKPC have challenged the robustness of all three claims, but with different emphases and

from different perspectives. The inference procedures and estimation techniques used by GG and GGL1

have been criticized by Rudd and Whelan (2005, 2007), and others, but GGL5 claim that their initial

results #1 and #2 remain robust to these objections.

When it comes to #3, GGL5 overlook that several researchers have been unable to confirm their view

that the wage-share is a robust explanatory variable in the NKPC. Bårdsen, Jansen and Nymoen (2004)
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showed that the significance of the wage share in the GGL1 model is fragile, as it depends on the exact

implementation of the GMM estimation method used, thus refuting that result 3 is a robust feature of

NKPC at least when estimated on Euro-area data.

Fanelli (2008) uses a vector autoregressive model on a Euro-area data set, but finds that the NKPC

is a poor explanatory model. On US data, Mavroeidis (2005) has shown that real marginal costs appears

to be an irrelevant determinant of inflation, confirming the view in Fuhrer (2006) about the difficulty of

developing a sizeable coefficient on the forcing variable in the US NKPC. The studies cited represent

evidence that clashes with the claim that #3 is robust. Instead, it is to be expected that depending on the

operational definition of real marginal costs, the estimation method and the sample, the numerical and

statistical significance of λ will vary across different studies.

Result 3 is just as important as #1 and #2 for the status of the NKPC as an adequate model, so if that

part of the model is non-structural, it might be that #1 and #2 have another explanation than that intended

of a good match between the NKPC and the inflation data generating process. Bårdsen et al. (2004)

(Euro area), and Bjørnstad and Nymoen (2008) (OECD panel data) demonstrate that the significance of

γf can be explained by a linear combination of better forcing variables that are a subset of the over-

identifying instruments. Their presence is revealed by the significance of the Sargan (1964) specification

test. Importantly, the re-specified models in these two studies lend themselves directly to interpretation

either as conventional Phillips curves, or as an equilibrium-correction price equation consistent with the

theory of monopolistic competition in product market and a certain element of coordination in wage

bargaining, see Sargan (1980), Nymoen (1991), Bårdsen, Eitrheim, Jansen and Nymoen (2005, Ch4-6).

Hence, the NKPC fails to parsimoniously encompass these models. However, like Russell, Banerjee,

Malki and Ponomareva (2010) (US panel data), we are concerned with the impact of unmodeled location

shifts on the NKPC, to which issue we now turn.

5 Estimating feedforward models ignoring breaks

Once breaks occur, under the null that γf = 0, the DGP is (11) at time t, so at t+ 1:

Δpt+1 = ρ′dt+1 + φ′zt+1 + ηt+1 (12)
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Subtracting (12) from (11) to eliminate the breaks introduces the future value:

Δpt = Δpt+1 − ρ′Δdt+1 − φ′Δzt+1 −Δηt+1. (13)

5.1 Static DGP

In the simplest case where φ = 0, (13) becomes:

Δpt = Δpt+1 − ρ′Δdt+1 −Δηt+1 (14)

The differenced dummies in (14) are just ‘blips’ rather than impulses, or impulses rather than step shifts,

so become an almost indistinguishable part of a composite error term when unmodeled, even if they are

easily detected in (11). This suggests that a coefficient near unity may be obtained for γf when estimating

(14) using instrumental variables (IVs) that are correlated withΔpt+1 and orthogonal toΔηt+1. Indeed,

since the break in (11) is also partly proxied by the lagged dependent variable, providing lagged values

ofΔpt are used as instruments, even after instrumenting, Δpt+1 will ‘pick up’ a spurious effect and lead

to a large coefficient in (14). For example, ifΔpt−1 is the only IV used in estimation when the postulated

model is, perhaps after application of the Frisch and Waugh (1933) theorem to remove any zt regressors:

Δpt = θΔpt+1 + et (15)

then from (11):

E

[
θ̂
]
= E

[ ∑T−1
t=2 Δpt−1Δpt∑T−1

t=2 Δpt−1Δpt+1

]
= E

[ ∑(
ρ′dt−1 + ηt−1

)
(ρ′dt + ηt)∑(

ρ′dt−1 + ηt−1

) (
ρ′dt+1 + ηt+1

)] �
ρ′ (

∑
dt−1d

′
t)ρ

ρ′
(∑

dt−1d
′
t+1

)
ρ
.

If there are just a few outliers not in successive, or overlapping, periods, then θ̂ would be near zero and

ill-determined when γf = 0 (although that is mainly due to the simplicity of the specification in (12),

since there is no persistence when φ = 0). However, even if there is just a single location shift of size δ

from T1 to T2 > T1 + 2 so:

d′
t =

(
1{T1} 1{T1+1} · · · 1{T2}

)
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as:
T2∑

j=T1

1{j} = 1{T1≤t≤T2}

then ρ′dt = δ1{T1≤t≤T2} and hence:

ρ′

(
T−1∑
t=2

dt−1d
′
t

)
ρ = δ2

∑
1{T1≤t−1≤T2}1{T1≤t≤T2} = δ2 (T2 − T1)

ρ′

(
T−1∑
t=2

dt−1d
′
t+1

)
ρ = δ2

∑
1{T1≤t−1≤T2}1{T1≤t+1≤T2} = δ2 (T2 − T1 − 1)

leading to the estimate in (15):

E

[
θ̂
]
�

(T2 − T1) δ
2

(T2 − T1 − 1) δ2
=

(T2 − T1)

(T2 − T1 − 1)
� 1. (16)

Consequently, despite the complete irrelevance ofΔpt+1 in the DGP, and the use of lagged valuesΔpt−i

as instruments, its estimated coefficient will be near unity when there are unmodeled location shifts.

Even if T2 − T1 − 1 is as small as 3, a notable coefficient will be obtained. The estimated standard error

of θ̂ will be approximately:

SE

[
θ̂
]
�

√
2σ2

η√
(T2 − T1 − 1) δ2

as:

et = δ
(
1{T2} − 1{T1}

)
−Δηt+1

so:

E
[
σ̂2
e

]
� 2

(
σ2
η + T−1δ2

)
If there is a single location shift of δ = rση:

SE

[
θ̂
]
�

√
2 (1 + r2)ση

rση

√
(T2 − T1 − 1)

=

√
2 (1 + r−2)√

(T2 − T1 − 1)
(17)

which will be less than 1/2 for even small and relatively short breaks (e.g., r = 3 and T2 − T1 = 7)

leading to a ‘significant’ θ̂.
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5.2 Dynamic DGP, dynamic model

We now allow for a dynamic DGP:

Δpt = κΔpt−1 + ρ′dt + ηt (18)

The model is:

Δpt = θ1Δpt+1 + θ2Δpt−1 + θ′
3zt + et (19)

We use the Frisch–Waugh theorem to remove zt, equivalent to θ3 = 0, so do not change notation.1 For

the same shift, ρ′dt = δ1{T1≤t≤T2}, estimation of (19) usingΔpt−2 as the identifying instrument yields:

E

⎡⎢⎣
⎛⎜⎝ θ̃1

θ̃2

⎞⎟⎠
⎤⎥⎦ �

1

(1− κ− κ2)

⎛⎜⎝ (1− κ)2

κ
(
1− 2κ+ κ2

)
⎞⎟⎠ (20)

where δ �= 0. Because of an approximation that κ3 � 0, values of κ have to be less than about 0.5 in

(20). For example, when κ = 0.35, (20) delivers:

E

⎡⎢⎣
⎛⎜⎝ θ̃1

θ̃2

⎞⎟⎠
⎤⎥⎦ �

1

(1− 0.35 − 0.352)

⎛⎜⎝ (1− 0.35)2

0.35 ×
(
1− 2× 0.35 + 0.352

)
⎞⎟⎠ =

⎛⎜⎝ 0.81

0.28

⎞⎟⎠
so there would be a root just outside the unit circle. If κ = 0, then:

E

⎡⎢⎣
⎛⎜⎝ θ̃1

θ̃2

⎞⎟⎠
⎤⎥⎦ �

⎛⎜⎝ 1

0

⎞⎟⎠ .

matching (16). Consequently, expectations are estimated to be important, even when they are in fact

irrelevant, and persistence is thought to be high.

6 Simulation of feedforward and feedback mechanisms

Monte Carlo simulation helps assess the properties of feed-forward versus feedback mechanisms when

there are location shifts by comparing selection and estimation with and without IIS under both null
1Detailed calculations are available on request.
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and alternative. The experimental design covers two cases of the NKPC: the backward-looking DGP

with no future expectations term (the null), and the DGP model with forward- and backward-looking

mechanisms (the alternative). The DGP is given by:

yt = γfy
e
t+1 + γbyt−1 + βzt + ψd81−100,t + εt, εt ∼ IN

[
0, σ2

ε

]
(21)

zt = λ0 + λ1zt−1 + λ2zt−2 + ηt, ηt ∼ IN
[
0, σ2

η

]
, (22)

for t = 1, . . . , T , where yet+1 = E [yt+1|It] is the rational expectation when It = (zt,It−1) is the

information set available at t. Furthermore, E [εt|zt,It−1] = 0 when zt is exogenous and observed. An

AR(2) process (at least) for the exogenous variable is required for identification, see Pesaran (1981).

There are two possible forms of location shift, either through the intercept of the exogenous variable

or directly into the equation for yt. We examine the latter as the break is then internal and unmodeled.

There is a location shift of 5 standard deviations at T1 = 81, (I81,t + · · · + I100,t), denoted d81−100,t,

designed to proxy the location shift observed in UKwage growth data since 1946 (see Castle and Hendry,

2009). Parameter values are ψ = 5, β = 1, λ0 = 0, λ1 = 1.5, λ2 = −0.7, σ2
ε = 1, σ2

η = 1, T = 100

andM = 1000 replications are undertaken.

Six models are considered, namely (i) feed-forward: γf �= 0, γb = 0; (ii) hybrid: γf �= 0, γb �= 0;

and (iii) feedback: γf = 0, γb �= 0; and these three models augmented by IIS with selection of the

indicators at α = 0.01. Selection is undertaken in two stages for the forward and hybrid models. First,

the reduced form is estimated with IIS to obtain a set of indicators:

yt = ρyt−1 + γ0zt + γ1zt−1 +

T∑
i=1

δi1i + ut (23)

where yt−1, zt and zt−1 are forced to enter the regression (so only the indicators are selected over).2 The

retained indicators, dt, are then included in the forward/hybrid model (8), which is estimated using 2SLS

with the set of instruments including the constant, zt−1 and zt−2. For the backward-looking model, IIS

is applied directly at the first stage as (8) can be estimated using OLS when γf = 0.

2Diagnostic tests are switched off when undertaking selection here as the reduced form errors are necessarily autocorrelated,
to avoid retaining additional indicators which could be kept to ensure congruency.
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6.1 Backward-looking DGP

We first consider the case where the DGP is generated as a feedback mechanism (γf = 0 and γb =

0.8). Table 1 reports the unconditional parameter estimates, retention probabilities and diagnostic test

rejection frequencies for the feedback DGP with a break. Retention probabilities refer to the number of

replications in which |t| > cα for IV estimation, as selection is not undertaken.

Model: Backward Hybrid Forward
IIS: No Yes No Yes No Yes
γ̂f 0.438

(0.065)

7.20

0.109
(0.157)

1.59

1.230
(0.091)

15.61

1.459
(0.090)

17.55

β̂ 0.835
(0.068)

12.58

0.993
(0.043)

24.18

0.198
(0.110)

1.93

0.807
(0.284)

3.27

−1.017
(0.269)

−4.11

−1.612
(0.253)

−6.79

γ̂b 0.932
(0.016)

59.42

0.808
(0.014)

60.46

0.586
(0.053)

12.01

0.744
(0.090)

10.13

σ̂ε 1.857 0.989 1.463 1.070 4.297 2.971
No. impulses - 19.68 - 17.72 - 17.72
Retention probability
γ̂f

1.00
1.00

0.29
0.25

1.00
1.00

1.00
0.99

β̂ 1.00
1.00

1.00
1.00

0.46
0.23

0.83
0.69

0.96
0.87

1.00
0.97

γ̂b
1.00
1.00

1.00
1.00

1.00
1.00

0.99
0.99

Diagnostic test rejection frequencies
χ2
nd
(2) 0.342

0.189
0.062
0.013

0.963
0.953

0.269
0.220

0.963
0.953

0.736
0.620

Portmanteau 1.000
0.991

0.143
0.058

0.031
0.014

0.167
0.080

0.031
0.014

0.453
0.312

Far(1)
1.000
1.000

0.090
0.034

0.287
0.138

0.189
0.084

0.287
0.138

0.799
0.635

Far(5)
1.000
0.998

0.072
0.026

0.240
0.134

0.133
0.063

0.240
0.134

0.605
0.358

Fhet
0.240
0.110

0.080
0.020

Farch(1)
0.893
0.816

0.085
0.019

0.113
0.075

0.108
0.040

0.113
0.075

0.233
0.156

χ2
S

0.237
0.093

0.113
0.030

1.000
1.000

0.899
0.768

Table 1: The backward looking DGP with break of 5σε at T1 = 81. Monte Carlo standard errors in
parentheses, Monte Carlo t-statistics in bold. Retention probabilities report frequencies at 5% (top) and
1% (bottom). Test statistics report rejection frequencies at 5% (top) and 1% (bottom).

In Table 1, χ2
nd
(2) is the normality test in Doornik and Hansen (2008). The Portmanteau test is the

Box–Pierce test with a degrees-of-freedom correction given by Ljung and Box (1978). Let Fname denote

an approximate F-test. Then Far tests are Lagrange-multiplier tests for autocorrelation of order k: see

Godfrey (1978), and Pagan (1984) for an exposition. The heteroscedasticity test, Fhet, computed only

for OLS estimation, uses squares of the original regressors: see White (1980). Engle (1982) provides
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the Farch test for kth-order autoregressive conditional heteroskedasticity (ARCH); and the χ2
S test for the

validity of instruments is given by Sargan (1958).

The shaded columns refer to the case where the model coincides with the DGP. When the break

is unmodeled, the estimate of γb is higher at 0.93, suggesting more persistence: to closer fit the break

requires a near unit root. Diagnostic test rejection frequencies all highlight mis-specification due to

the unmodeled break. When IIS is applied, 20 impulse-indicators are retained on average successfully

capturing the step shift. This results in coefficient estimates close to their DGP parameter values, with

slight over-rejection of the diagnostic tests.

When the data are generated under the null of no forward-looking behavior, but a hybrid model is

nevertheless estimated, then an unmodeled break results in a highly significant γ̂f of 0.44 despite its

irrelevance in the DGP, matching the above theory. The exogenous variable has a small impact, and

is close to insignificant, corresponding to previous empirical findings (see §4.1). Applying IIS to the

mis-specified model reduces the magnitude and significance of γ̂f , and γ̂b is much closer to its DGP

value. Hence, unmodeled breaks lead to more forward-lookingness than the DGP contains, but modeling

the breaks by IIS mitigates that erroneous conclusion. When the model is purely forward-looking, so

does not nest the DGP, under-specification is evident in the diagnostic test rejection frequencies, with the

Sargan test rejecting most of the time. An empirical researcher is unlikely to set γb = 0 in the face of

such mis-specification.

6.2 Hybrid DGP

Data for the hybrid DGP simulations are obtained by first generating the exogenous process given by

(22), then generating the endogenous process from the reduced form. The location shift is added to the

reduced form DGP, translated back to the structural model as a step shift. To obtain the reduced form

parameterization, first set ψ = 0 in (21) and solve for the constant parameter reduced form:

yt = ρ0 + ρ1yt−1 + ϕ0zt + ϕ1zt−1 + ut (24)

so:

yt+1 = ρ0 + ρ1yt + ϕ0zt+1 + ϕ1zt + ut+1 (25)
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and hence:

yt+1 = ρ0 + ρ1yt + ϕ0zt+1 + ϕ1zt + ut+1

= ρ0 + ρ1 (ρ0 + ρ1yt−1 + ϕ0zt + ϕ1zt−1 + ut) + ϕ0

(
λ0 + λ1zt + λ2zt−1 + ηt+1

)
+ϕ1zt + ut+1

= ρ21yt−1 + (ρ0 (1 + ρ1) + ϕ0λ0) + (ϕ0 (ρ1 + λ1) + ϕ1) zt + (ρ1ϕ1 + ϕ0λ2) zt−1

+ϕ0ηt+1 + ut+1 + ρ1ut (26)

Taking expectations:

Et [yt+1|zt,It−1] = Et

[
ρ21yt−1 + (ρ0 (1 + ρ1) + ϕ0λ0) + (ϕ0 (ρ1 + λ1) + ϕ1) zt

+(ρ1ϕ1 + ϕ0λ2) zt−1|zt,It−1] (27)

= ρ21yt−1 + (ρ0 (1 + ρ1) + ϕ0λ0) + (ϕ0 (ρ1 + λ1) + ϕ1) zt + (ρ1ϕ1 + ϕ0λ2) zt−1

Using yet+1 = Et [yt+1|zt,It−1] and substituting (27) in (21):

yt = γfy
e
t+1 + γbyt−1 + βzt + εt

= γf
(
ρ21yt−1 + (ρ0 (1 + ρ1) + ϕ0λ0) + (ϕ0 (ρ1 + λ1) + ϕ1) zt + (ρ1ϕ1 + ϕ0λ2) zt−1

)
+γbyt−1 + βzt + εt

=
(
γfρ

2
1 + γb

)
yt−1 + γf (ρ0 (1 + ρ1) + ϕ0λ0) +

(
γfϕ0 (ρ1 + λ1) + γfϕ1 + β

)
zt

+γf (ρ1ϕ1 + ϕ0λ2) zt−1 + εt (28)

Comparing coefficients in (24) and (28) using 1−γfρ1 = γfρ2, leads to the following set of restrictions:

ρ0 = ϕ0
λ0

(ρ2 − 1)

ρ1 =
(1−

√
1− 4γfγb)

2γf
ρ2 =

(1 +
√

1− 4γfγb)

2γf

ϕ0 =
β

γf

(
ρ2 − λ1 − λ2ρ

−1
2

)−1
ϕ1 = ϕ0

λ2

ρ2
.

The difference between yt+1 and Et [yt+1|zt,It−1] is:
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ϕ0ηt+1 + ut+1 + ρ1ut (29)

which has a variance:

σ2
e = ϕ2

0σ
2
η +

(
1 + ρ21

)
σ2
ε (30)

as against σ2
ε when Et [yt+1|zt,It−1] is known. The coefficient in (21) is γf so:

yt = γfyt+1 + γbyt−1 + βzt + εt − γf
(
ϕ0ηt+1 + εt+1 + ρ1εt

)
(31)

so the error variance is:

σ2
ν = σ2

ε + γ2f
(
ϕ2
0σ

2
η +

(
1 + ρ21

)
σ2
ε

)
− 2γfρ1σ

2
ε (32)

Model: Backward Hybrid Forward
IIS: No Yes No Yes No Yes
γ̂f 0.554

(0.051)

11.24

0.442
(0.120)

5.00

0.078
(0.205)

0.74

−0.725
(0.279)

−2.52

β̂ 2.961
(0.172)

17.45

3.599
(0.078)

47.57

0.446
(0.270)

1.83

1.077
(0.692)

2.37

4.731
(1.054)

4.54

8.872
(1.437)

6.70

γ̂b 0.529
(0.030)

17.60

0.378
(0.014)

26.82

0.470
(0.026)

19.17

0.447
(0.032)

16.45

σ̂ε 3.326 1.222 2.679 2.092 6.737 5.821
No. impulses - 21.31 - 17.81 - 17.81
Retention probability
γ̂f

1.00
1.00

0.95
0.87

0.32
0.20

0.76
0.63

β̂ 1.00
1.00

1.00
1.00

0.42
0.24

0.55
0.40

0.95
0.91

0.98
0.97

γ̂b
1.00
1.00

1.00
1.00

1.00
1.00

1.00
1.00

Diagnostic test rejection frequencies
χ2
nd
(2) 0.799

0.653
0.048
0.009

0.437
0.366

0.312
0.187

0.666
0.545

0.453
0.327

Portmanteau 1.000
1.000

0.412
0.225

0.020
0.004

0.119
0.043

0.999
0.998

0.895
0.825

Far(1)
1.000
1.000

0.710
0.426

0.077
0.020

0.304
0.174

1.000
1.000

0.884
0.762

Far(5)
1.000
1.000

0.329
0.103

0.117
0.051

0.378
0.261

1.000
1.000

0.588
0.466

Fhet
0.374
0.200

0.039
0.005

Farch(1)
0.999
0.998

0.186
0.074

0.060
0.033

0.104
0.040

0.986
0.974

0.672
0.565

χ2
S

0.082
0.017

0.120
0.055

0.994
0.981

0.972
0.937

Table 2: The hybrid DGP with break. Legend as Table 1.
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The location shift, ψd81−100,t is added to (24). We set γf = 0.45 and γb = 0.45, with all other

parameters as above.3 Many theoretical papers set γf + γb = 1, thereby imposing a unit root in order to

preclude the existence of a long-run level trade-off between inflation and real activity, see e.g. Rudd and

Whelan (2006). Although we consider a stationary process, the process looks like a unit root when the

location shift is unmodeled.

Table 2 records the results, with the shaded columns highlighting the case where the DGP and model

coincide once the break is modeled. When the break is unmodeled, the hybrid model places more weight

on the forward-looking component and a unit root is estimated in most replications. β̂ is much lower than

β, and all the dynamics are captured through the endogenous variables. Applying IIS detects 18 impulse-

indicators on average, and returns the parameter estimates close to their DGP parameters, including the

equation standard error. The mis-specified feedforward and feedback models deliver poor parameter

estimates as neither model nests the DGP, so under-specification results in omitted variable bias. IIS

in the feedback model does mitigate the effect of the location shift: Castle and Hendry (2010) discuss

under-specified models facing breaks.

Thus, IIS helps to distinguish between unit roots and structural breaks in the feedback model, and

analogously, provides more accurate estimates of the forward-looking component in the hybrid model.

Not accounting for breaks results in more forward-looking behavior and persistence than there really is.

7 Euro-area NKPC estimation with impulse-indicator saturation

As proposed above, a separate source of the sizeable coefficient estimates of the forward term in NKPC

models reviewed in section 4 may be a ‘forward knowledge bias’ in estimates of γf , since (8) does not

take into account non-stationarities in the form of location shifts. Instrumenting by Δpt−j will ‘pick

up’ the effects of location shifts (which are in fact unpredictable) and contribute to a positive bias in

the estimated γf . As we propose, a test of this hypothesis can be based on invariance tests similar to

those proposed for testing exogeneity by Hendry and Santos (2010). Dummies from the marginal model

of Δpt (from which Et[Δpt+1] is obtained) should be insignificant in (8), and significance of the added

dummies refutes invariance whereas insignificance of the estimates of γf is inconsistent with the claimed

forward-looking formulation.
3The reduced form parameters are ρ0 = 0, ρ1 = 0.627, ρ2 = 1.595, ϕ0 = 4.16, and ϕ1 = −1.825, with σν = 2.055.
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As a reference, we estimate the ‘pure’ NKPC similar to equation (13) in GGL1, but with IV es-

timation instead of GMM.4 Both Δpt+1 and st are treated as endogenous. We use the same set of

instruments: five lags of inflation, two lags of st, detrended output and wage inflation, for T = 102

(1972(2) to 1998(1)):

Δ̂pt = 0.925

(0.083)

Δ̂pt+1 + 0.0142

(0.016)

st + 0.010

(0.011)

σ̂ = 0.32% χ2
S(9) = 14.57

(33)

Significance of mis-specification tests at 5% and 1% are respectively denoted by ∗ and ∗∗. The estimated

γf is less than unity, so formally a stable forward solution applies (even for strongly exogenous st). But

γf = 1 cannot be rejected, so dynamic stability hinges on equilibrium correction in st.

The Euro-area hybrid NKPC over the same sample is:

Δ̂pt = 0.655

(0.135)

Δ̂pt+1 + 0.280

(0.117)

Δpt−1 + 0.012

(0.014)

st + 0.009

(0.010)

σ̂ = 0.28% χ2
S(6) = 11.88

(34)

The dominance ofΔpt+1 over Δpt−1 is confirmed (#2 above), and the elasticities sum to 0.94. The 0.66

estimate of γf is comparable to, and only a little lower than, the GMM estimates in Table 2 in GGL1

who report four estimates: 0.77, 0.69, 0.87, and 0.60.

We next investigate the marginal model (‘the forecasting equation’). We modelΔpt by the variables

that are in the instrument set for the NKPC estimation, and then investigate structural breaks using

impulse-indicator saturation in Autometrics. With the significance level set at 0.025, Autometrics finds

11 dummies. When the hybrid NKPC is augmented by these dummies, the model is not congruent, with

χ2(6) = 17.83∗∗. Following earlier analysis (in Bårdsen et al., 2004), an interpretation is that some

of the variables in the instrument set have separate explanatory power for Δpt, consistent with (earlier)

standard models of inflation.

Adding gapt−1to the equation as an explanatory variable makes the dummy augmented NKPC con-

gruent χ2
S(5) = 3.45, with no significant tests of residual mis-specification. Using Autometrics with

4Bårdsen et al. (2004) uses GMM. The results are similar to the IV results here. Changes in the GMM estimation method
affect the point estimates just as much as the change to IV does. For example, there is a sign change in the estimated coefficient
of the wage-share coefficient as a result of a change in pre-whitening method.
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significance level 0.05 gives (coefficients of dummies are multiplied by 100):

Δ̂pt = − 0.298

(0.264)

Δ̂pt+1 + 0.115

(0.029)

st + 0.505

(0.126)

Δpt−1 + 0.086

(0.021)

+ 0.0015

(0.0004

gapt−1

+ 1.09

(0.30)

I73(1),t + 1.09

(0.38)

I73(3),t + 0.73

(0.31)

I73(4),t + 0.85

(0.34)

I74(2),t

+ 0.80

(0.33)

I74(3),t + 0.98

(0.38)

I76(2),t + 0.57

(0.29)

I76(3),t − 0.66

(0.28)

I78(4),t + 0.69

(0.28)

I83(1),t

σ̂ = 0.27% χ2
S(5) = 5.06 Far(5, 85) = 1.55

Farch(4, 96) = 1.49 Fhet(14, 80) = 1.41 χ2
nd
(2) = 1.04

(35)

The diagnostic tests are described following Table 1. Nine of the 11 ‘reduced form’ dummies are re-

tained, so represent evidence for lack of invariance in the feedforward NKPC. Further, the coefficient of

the forward term is substantially affected: it is no longer significantly different from zero, and indeed is

negative. The coefficient of the wage-share is also affected and is now sizeable, allowing the wage-share

to serve as a statistically and substantively important equilibrating mechanism.

Re-estimation of the augmented model on the shorter sample commencing after the breaks in (35),

starting in 1983(2) yields consistent outcomes, with the estimated coefficient of the forward term just

0.082, confirming that its significance in (33) and (34) depended on its being a proxy for unmodeled

location shifts.

8 US NKPC estimation with impulse-indicator saturation

The pure NKPC on the same sample period used by GG, and their instruments, but with IV instead of

GMM gives for T = 152 (1960(1) to 1997(4)):

Δ̂pt = 0.992

(0.048)

Δpt+1 + 0.011

(0.018)

st + 5.12e−005

(0.00052)

σ̂ = 0.20% χ2
S(8) = 17.7∗

(36)

which can be compared to the GMM estimate at the top of page 207 in GG which are 0.95(0.045)

and 0.023(0.012). GG’s equation is without intercept, and clearly that is also zero in (36). Without the
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intercept, the standard error of the wage-share is reduced to 0.011, the point estimates being unaffected.56

Hence, in the same way as above, the significance and size of the wage-share coefficient seems to depend

on ‘technicalities’ in NKPC estimation, so can hardly be said to be robust, or to represent a structural

feature of the NKPC, despite #3 in GGL5’s list.

The hybrid NKPC for the US is:

Δ̂pt = 0.623

(0.092)

Δpt+1 + 0.357

(0.081)

Δpt−1 + 0.014

(0.014)

st + 0.00016

(0.00041)

σ̂ = 0.23% χ2
S(7) = 7.60

(37)

The estimates of γb and γf are similar to the Euro-area hybrid in equation (34), and they are representa-

tive of the GMM estimates found in Table 2 in GG. γ̂f dominates, and they sum almost to unity, so #1

and #2 are confirmed by the estimation. Sargan’s χ2
S test which is significant in (36), is insignificant in

(37), which is direct evidence that Δpt−1 is misplaced as an instrument and belongs to the category of

explanatory variables. However, in terms of mis-specification tests, (37) fails badly, as all are significant.

Autometrics finds nine location-shift dummies in the marginal model for the US inflation rate at a

0.025 significance level. When they are added to (37), they are significant, the diagnostics improve,

except for the residual autocorrelation which is still highly significant. It has not been straightforward to

find a congruent model from this information set, but movingΔpt−2 and gapt−1 from being instruments

to explanatory variable at least helps (the autocorrelation and heteroskedasticity statistics now have sig-

nificance levels 0.023 and 0.013). Estimation of the augmented hybrid US NKPC yields (coefficients of

dummies are multiplied by 100):
5The mean of st is not exactly zero over the sample period, despite being described as ‘a deviation from steady-state’ in the

text.
6GGL5 compare Euro and US results. The pure NKPC is reported as λ̂ = 0.25, with no comments about the difference

from GG.
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Δ̂pt = 0.253

(0.168)

Δpt+1 + 0.502

(0.083)

Δpt−1 + 0.196

(0.085)

Δpt−3 + 0.022

(0.013)

st + 0.028

(0.018)

gapt−1

+ 0.00032

(0.00041)

+ 0.51

(0.18)

I63(4),t + 0.66

(0.19)

I72(1),t − 0.62

(0.19)

I72(2),t + 0.73

(0.24)

I74(3),t

− 0.63

(0.20)

I75(2),t + 0.44

(0.21)

I76(4),t + 0.59

(0.18)

I77(4),t + 0.46

(0.19)

I78(2),t − 0.44

(0.20)

I81(2),t

σ̂ = 0.18% χ2
S(5) = 3.87 Far(5, 132) = 2.71∗

Farch(4, 144) = 0.79 Fhet(20, 122) = 1.93∗ χ2
nd
(2) = 1.04

(38)

All the shift-dummies from the ‘reduced form’ are statistically significant at the 5% level (and most

at lower levels). The estimate of the feed-forward term has been reduced from 0.62 to 0.25 while the

standard error of the estimate has increased, so the t-value is just 1.5. The coefficient of the wage-share

improves statistically: compared to (37), the point estimate has increased somewhat, and the standard

error has been reduced in (38). So this endogenous variable does not ‘suffer’ in the same way as the lead

in inflation does.

When the ‘post-break’ sample 1981(3) to 1997(4) is used to estimate the augmented model, the

results are similar to (38): the forward coefficient is 0.28 with a t-value 0.94.

9 Conclusion

The new-Keynesian Phillips curve (NKPC) includes expected future inflation as a major feedforward

variable to explain current inflation. Models of this type are regularly estimated by replacing the expected

value by the actual future outcome, then using Instrumental Variables (IV) or Generalized Method of

Moments (GMM) methods to estimate the parameters. However, the underlying theory does not allow

for various forms of non-stationarity in the data–despite the fact that crises, breaks and regimes shifts are

relatively common.

We have shown the serious consequences for NKPC estimation of unmodeled breaks in data pro-

cesses using the new technique of impulse-indicator saturation: a failure to model location shifts, or

blocks of outliers, can induce spurious significance of the feedforward measure when expectations do
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not in fact matter. Applying the resulting methods to two salient empirical studies of Euro-area and US

NKPCs radically alters the results. In the former, the future variable had a negative, insignificant coeffi-

cient; and in the latter, its value was more than halved and again was insignificant. All of the features of

adding instrument described in §2.1 are violated in these empirical studies:

(a) the estimated structural parameters change substantially in magnitude, and sometimes in sign;

(b) the added instruments are highly significant;

(c) the fit is substantively improved.

Thus, the previous models were clearly mis-specified by failing to account for breaks. Until a theory of

NKPCs is formulated that accommodates breaks of the kind commonly observed in economics, or more

robust methods are developed, caveat emptor forcibly applies to using estimated NKPCs.
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10 Appendix calculations for Referees

Section 5.2 used the following formulae, where the break ρ′dt = δ1{T1≤t≤T2} is completely internal to

the sample, namely 4 ≤ T1 ≤ T2 ≤ T − 1. The DGP is:

Δpt = κΔpt−1 + ρ′dt + ηt =
[
ρ′ (dt + κdt−1) + κ2Δpt−2 +

(
ηt + κηt−1

)]
where the second expression is used as an approximation by neglecting powers of κ greater than squared.

In the special case of δ = 0, the feedforward model will be unidentified, having used the Frisch–Waugh

theorem to remove zt, equivalent to θ3 = 0, so we do not change notation. The following terms in break

cross products occur in most formulae:

ρ′

(
T−1∑
t=3

dt−kd
′
t+j

)
ρ = δ2

∑
1{T1≤t−k≤T2}1{T1≤t+j≤T2} = δ2 (T2 − T1 + 1− k − j)
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where all calculations are for a common sample of t = 3, . . . , T − 1. Hence:

E

[
T−1∑
t=3

Δptd
′
tρ

]
= κE

[
T−1∑
t=3

Δpt−1d
′
tρ

]
+ ρ′

T−1∑
t=3

dtd
′
tρ

� ρ′
T−1∑
t=3

(
dtd

′
t + κdt−1d

′
t + κ2dt−2d

′
t

)
ρ

� δ2 (T2 − T1 + 1) + κδ2 (T2 − T1) + κ2δ2 (T2 − T1 − 1)

= δ2
[(
1 + κ+ κ2

)
(T2 − T1 + 1)− κ (1 + 2κ)

]
.

Similarly:

E

[
T−1∑
t=3

Δpt−1d
′
tρ

]
�

T−1∑
t=3

(
ρ′dt−1d

′
tρ+ κρ′dt−2d

′
tρ+ κ2ρ′dt−3d

′
tρ

)
= δ2 (T2 − T1) + κδ2 (T2 − T1 − 1) + κ2δ2 (T2 − T1 − 2)

= δ2
[(
1 + κ+ κ2

)
(T2 − T1 + 1)−

(
1 + 2κ+ 3κ2

)]
.

Next, letting R = (T2 − T1 + 1) / (T − 3) with:

σ2
Δp =

1

(T − 3)
E

[
T−1∑
t=3

(Δpt)
2

]
�

1

(T − 3)
E

[
T−1∑
t=3

(Δpt−1)
2

]

then assuming
(
1 + 2κ+ 3κ2

)
/ (T − 3) � 0:

1

(T − 3)
E

[
T−1∑
t=3

(Δpt)
2

]
=

1

(T − 3)
E

[
T−1∑
t=3

(
κΔpt−1 + ρ′dt + ηt

)2]

�
δ2R

(
1 + 2κ+ 2κ2

)
+ σ2

η

1− κ2
.

Also:

1

(T − 3)
E

[
T−1∑
t=3

Δpt−1Δpt

]
=

1

(T − 3)
E

[
T−1∑
t=3

Δpt−1

(
κΔpt−1 + ρ′dt

)]

�
δ2R

(
1 + 2κ+ 2κ2

)
+ κσ2

η

1− κ2
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and similarly:
1

(T − 3)
E

[
T−1∑
t=3

Δpt−2Δpt−1

]
�

δ2R
(
1 + 2κ+ 2κ2

)
+ κσ2

η

1− κ2
.

Thirdly:

1

(T − 3)
E

[
T−1∑
t=3

Δpt−1Δpt+1

]
�

1

(T − 3)
E

[
T−1∑
t=3

Δpt−2Δpt

]
�

δ2R
(
1 + 2κ+ 2κ2

)
+ κ2σ2

η

(1− κ2)

having dropped −
(
1 + 2κ+ 3κ2

)
/ (T − 3) � 0 as before and using:

1

(T − 3)
E

[
T−1∑
t=3

Δpt−2d
′
tρ

]
�

1

(T − 3)

T−1∑
t=3

(
ρ′dt−2d

′
tρ+ κρ′dt−3d

′
tρ+ κ2ρ′dt−4d

′
tρ

)
� δ2R

(
1 + κ+ κ2

)
.

Finally:

1

(T − 3)
E

[
T−1∑
t=3

Δpt−2Δpt+1

]
�

1

(T − 3)
E

[
T−1∑
t=3

Δpt−3Δpt

]
�

δ2R
(
2 + 3κ+ 2κ2

)
+ κ3σ2

η

(1− κ2)

where:

1

(T − 3)
E

[
T−1∑
t=3

ρ′dtΔpt−3

]
�

1

(T − 3)

T−1∑
t=3

(
ρ′dt−3d

′
tρ+ κρ′dt−4d

′
tρ+ κ2ρ′dt−5d

′
tρ

)
= δ2R

(
1 + κ+ κ2

)
having dropped −

(
2 + 3κ+ 4κ2

)
/ (T − 3) � 0.

The postulated equation is:

Δpt = θ1Δpt+1 + θ2Δpt−1 + et

where Δpt−1, Δpt−2 are the IVs. The over-identifying IV is now Δpt−2 (in practice, zt−1 might be

used). Then for y = Δp, X = (Δp+1 : Δp−1) and Z = (Δp−1 : Δp−2), as the equation is just
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identified:

θ̃ =
(
Z′X

)−1 (
Z′y

)
=

⎛⎜⎝ Δp′
−1Δp+1 Δp′

−1Δp−1

Δp′
−2Δp+1 Δp′

−2Δp−1

⎞⎟⎠
−1 ⎛⎜⎝ Δp′

−1Δp

Δp′
−2Δp

⎞⎟⎠ .

Then, using a Nagar (1959) approximation:

E

[
θ̃
]
�

⎛⎜⎝E

⎡⎢⎣
⎛⎜⎝ Δp′

−1Δp+1 Δp′
−1Δp−1

Δp′
−2Δp+1 Δp′

−2Δp−1

⎞⎟⎠
⎤⎥⎦
⎞⎟⎠

−1

E

⎡⎢⎣
⎛⎜⎝ Δp′

−1Δp

Δp′
−2Δp

⎞⎟⎠
⎤⎥⎦

=

⎡⎢⎣ 1

1− κ2

⎛⎜⎝ G+ κ2σ2
η G+ σ2

η

G+ κ3σ2
η G+ κσ2

η

⎞⎟⎠
⎤⎥⎦
−1

1

1− κ2

⎛⎜⎝ G+ κσ2
η

G+ κ2σ2
η

⎞⎟⎠
�

1

H

⎛⎜⎝ (
G+ κσ2

η

) (
G+ κσ2

η

)
−

(
G+ σ2

η

) (
G+ κ2σ2

η

)
(
G+ κ2σ2

η

) (
G+ κ2σ2

η

)
−

(
G+ κ3σ2

η

) (
G+ κσ2

η

)
⎞⎟⎠

�
1

(1− κ− κ2)

⎛⎜⎝ (1− κ)2

κ
(
1− 2κ+ κ2

)
⎞⎟⎠

where:

H =
(
G+ κ2σ2

η

) (
G+ κσ2

η

)
−

(
G+ κ3σ2

η

) (
G+ σ2

η

)
= G2 +Gκσ2

η +Gκ2σ2
η + κ3σ4

η −G2 −Gσ2
η −Gκ3σ2

η − κ3σ4
η

� −G
(
1− κ− κ2

)
σ2
η.
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