MEMORANDUM

No 02/2011

Portfolio Separation Properties of the Skew-Elliptical Distributions

This series is published by the

University of Oslo

Department of Economics

P. O.Box 1095 Blindern N-0317 OSLO Norway

Telephone: + 47 22855127 Fax: + 47 22855035

Internet: http://www.sv.uio.no/econ
e-mail: econdep@econ.uio.no

In co-operation with

The Frisch Centre for Economic

Research

Gaustadalleén 21 N-0371 OSLO Norway

Telephone: +47 22 95 88 20 Fax: +47 22 95 88 25

Internet: http://www.frisch.uio.no
e-mail: frisch@frisch.uio.no

Last 10 Memoranda

No 01/11	Karine Nyborg, Tao Zhang Is corporate social responsibility associated with lower wages?
No 22/10	Rebecca Graziani, Nico Keilman The sensitivity of the Scaled Model of Error with respect to the choice of the correlation parameters: A Simulation Study
No 21/10	Jennifer L. Castle, Jurgen A. Doornik, David F. Hendry, Ragnar Nymoen <i>Testing the Invariance of Expectations Models of Inflation</i>
No 20/10	Erik Biørn Identifying Trend and Age Effects in Sickness Absence from Individual Data: Some Econometric Problems
No 19/10	Michael Hoel, Svenn Jensen Cutting Costs of Catching Carbon Intertemporal effects under imperfect climate policy
No 18/10	Hans Jarle Kind, Tore Nilssen, Lars Sørgard Price Coordination in Two-Sided Markets: Competition in the TV Industry
No 17/10	Vladimir Krivonozhko, Finn R. Førsund and Andrey V. Lychev A Note on Imposing Strong Complementary Slackness Conditions in DEA
No 16/10	Halvor Mehlum and Karl Moene Aggressive elites and vulnerable entrepreneurs - trust and cooperation in the shadow of conflict
No 15/10	Nils-Henrik M von der Fehr Leader, Or Just Dominant? The Dominant-Firm Model Revisited
No 14/10	Simen Gaure OLS with Multiple High Dimensional Category Dummies

Previous issues of the memo-series are available in a PDF® format at: http://www.sv.uio.no/econ/forskning/publikasjoner/memorandum

PORTFOLIO SEPARATION PROPERTIES OF THE SKEW-ELLIPTICAL DISTRIBUTIONS

NILS CHR. FRAMSTAD*†

Version: February 1, 2011.

Abstract. The two fund separation property of the elliptical distributions is extended to the skew-elliptical and by adding a number of funds equalling the rank of the skewness matrix. Some elements of the generalization to *singular* extended skew-elliptical distributions are covered.

Key words and phrases: Portfolio separation, mutual fund theorem, stochastic dominance, singular extended skew-elliptical distributions.

MSC (2000): 91B28, 60E05, 49K45. JEL classification: G11, C61, D81, D53.

0 Introduction

The concept of portfolio separation, a.k.a. the mutual fund theorem, should be well known. Since Tobin [12], numerous works have generalized the result in terms of the preferences which admit separation (like Cass and Stiglitz [2] or even as recently as Schachermayer et al. [11], using a modern approach), or in terms of distributions (Ross [10]). The concept of risk measures falls somewhat in between, see e.g. this author [6] and independently, De Giorgi et al. [7].

This note extends the results of Owen and Rabinovitch [9] and Chamberlain [3], who point out that the elliptical (also frequently referred to as «elliptically contoured») distributions admit two fund separation. It will turn out that a similar result holds for the skew-elliptical class (Branco and Dey [1] and Díaz-García and González-Farías [4]), at the expense of requiring an additional number of funds corresponding to the rank of the skewness matrix. The latter introduce the wider singular extended skew-elliptical (SESE) class, and one of these generalizations will be covered herein. We shall restrict ourselves to the single-period discrete time case. Using this author's refinement [5] of the approach given by Khanna and Kulldorff [8], there will be a continuous-time analogue if the probability law is infinitely divisible (hence the discrete-time setup is more general in terms of probability distributions).

^{*} University of Oslo, Department of Economics, P.O. Box 1095 Blindern, NO-0317 Oslo, Norway. mailto: ncf+research@econ.uio.no

[†] Also affiliated with the Financial Supervisory Authority of Norway, P.O. Box 1187 Sentrum, NO-0107 Oslo, Norway. The content of this article does not reflect the views of the Norwegian FSA.

1 The result

Consider a single period investment in a numéraire (enumerated with a zero) returning Y_0 per monetary unit invested, and another p investment opportunities with returns vector $Y_0\mathbf{1} + \mu + Y$, so that the return with investments u in the p opportunities and $w - u^{\dagger}\mathbf{1}$ (where w is initial wealth) in the numéraire, will be

$$X = wY_0 + \mathbf{u}^{\dagger}(\boldsymbol{\mu} + \boldsymbol{Y}),\tag{1}$$

(where the «[†]» superscript denotes transposition). The market will be assumed free of arbitrage opportunities and of redundant investment opportunities (having removed the latter from the market).

The probability distribution of $\mu + Y$ will be considered conditional on Y_0 – therefore, we can (and will) without loss of generality assume $Y_0 = 0$ (or, for that matter, a risk-free return). μ will be a location parameter, enabling us to assume location at zero in the representation to follow – note however, that we do not assume finite moments of any order.

Recall that an elliptical (a.k.a. elliptically contoured) random variable Z, has characteristic function of the form $e^{-i\theta^{\dagger}\delta}\psi(\theta^{\dagger}M\theta)$, where the matrix M is positive definite. The underlying spherical distribution (i.e. $M^{-1/2}(Z-\delta)$) can then be written as a mixture RS of a positive radial variable R, and S which is independent and uniform on the sphere. A singular elliptical distribution in the sense of [4], is obtained by relaxing the requirement to positive semidefinite M. Therein, it is assumed that R is absolutely continuous, but an approximation argument will allow for general R.

This paper does only to a limited extent use singular properties covered by [4], but will utilize their multivariate generalization of the case treated in [1]. Following their notation, one takes as starting point a singular elliptical vector $\boldsymbol{E} = (\boldsymbol{E}_1^{\dagger}, \boldsymbol{E}_2^{\dagger})^{\dagger}$ located at $\boldsymbol{\delta} = \boldsymbol{0}$ and with associated matrix $\boldsymbol{M} = \begin{pmatrix} \boldsymbol{\Sigma} & \mathbf{0} \\ \mathbf{0} & \boldsymbol{\Delta} \end{pmatrix}$, and where the marginals \boldsymbol{E}_1 and \boldsymbol{E}_2 (p-vector and q-vector, respectively) have associated positive semidefinite matrices $\boldsymbol{\Sigma} \in \mathbf{R}^{p \times p}$ and $\boldsymbol{\Delta} \in \mathbf{R}^{q \times q}$ – observe that each \boldsymbol{E}_i is allowed intra-dependent components. Now for arbitrary non-random $\boldsymbol{\mu} \in \mathbf{R}^p$, $\boldsymbol{\nu} \in \mathbf{R}^q$, $\boldsymbol{D} \in \mathbf{R}^{q \times p}$, then

$$[\mu + E_1 | DE_1 + E_2 - \nu \ge 0]$$
 (component-wise inequality, i.e. positive orthant)

has the singular vector-variate skew-elliptical distribution. In [4], this is parametrized as $SESE_r^{(p)}(q, k_1, \boldsymbol{\mu}, \boldsymbol{\Sigma}, k, \boldsymbol{D}, \boldsymbol{\nu}, \boldsymbol{\Delta}, h_r^{(p)})$ where r, k and k_1 are the ranks of $\boldsymbol{\Sigma}$, $\boldsymbol{\Delta}$ and $\boldsymbol{\Delta} + \boldsymbol{D}\boldsymbol{\Sigma}\boldsymbol{D}^{\dagger}$, respectively, and $h_r^{(p)}$ denotes the density generating function with respect to some appropriate Hausdorff measure (which is not unique – however, the results won't depend on the choice). We remark that integrability assumptions are not needed, despite the literature's common use of terms like e.g. covariance matrix.

We shall assume $\mu + Y$ to have such a distribution. Then Y belongs to the same class, except with location μ replaced by null. In order to ensure absence of arbitrage and of redundant investment opportunities, we shall assume Σ positive definite (so that in particular, r = p); the only «singular» property left then is a possible rank-deficiency of Δ . We can adapt the following special case from [4, Theorem 5.1]:

Lemma. Suppose that Y is absolutely continuous and distributed

$$Y \sim SESE_p^{(p)}(q, k_1, \mathbf{0}, \mathbf{\Sigma}, k, \mathbf{D}, \boldsymbol{\nu}, \boldsymbol{\Delta}, h_p^{(p)}),$$
 (2)

where Σ is positive definite and $h_p^{(p)}$ is the density generating function with respect to p-dimensional Lebesgue measure. Then, for any non-random non-null p-vector u:

$$u^{\dagger} Y \sim \text{SESE}_{1}^{(1)}(q, k_{1}, \mathbf{0}, u^{\dagger} \Sigma u, \text{rank}(\boldsymbol{\Delta}_{u}), \boldsymbol{D}_{u}, \nu, \boldsymbol{\Delta}_{u}, h)$$
 (3)

where $h = h_1^{(1)}$ is a univariate density-generating function, and

$$D_{u} = \frac{1}{u^{\dagger} \Sigma u} D \Sigma u, \qquad \Delta_{u} = \Delta + D \Sigma D^{\dagger} - D_{u} (u^{\dagger} \Sigma u) D_{u}^{\dagger}. \tag{4}$$

Recalling that non-absolutely continuous components in the underlying radial distribution can be recovered by approximation, we then have the following:

THEOREM. Assume the market (1) with the returns distributed according to (2), where Σ is positive definite. Suppose the agents rank portfolios according to first-order stochastic dominance of the return. Then we have $2 + \operatorname{rank}(\mathbf{D})$ fund separation. Furthermore, under the additional constraint of $\mathbf{u}^{\dagger}\mathbf{1} = w$ (i.e. the absence of opportunity to invest in the («safe») numéraire), we have $1 + \operatorname{rank}(\mathbf{D}^{\dagger}, \mathbf{1}^{\dagger}\Sigma^{-1})$ fund separation.

Proof. We observe from (4) that the distribution (3) depends on \boldsymbol{u} only through $\sqrt{\boldsymbol{u}^{\dagger}\boldsymbol{\Sigma}\boldsymbol{u}}\in\mathbf{R}_{+}$ and $\boldsymbol{D}\boldsymbol{\Sigma}\boldsymbol{u}\in\mathbf{R}^{q}$. For given values Q>0 and $Q\boldsymbol{q}\in\mathbf{R}^{q}$ of these, the agent will

$$\max_{\boldsymbol{u}} \boldsymbol{\mu}^{\dagger} \boldsymbol{u}$$
 subject to $\boldsymbol{u}^{\dagger} \boldsymbol{\Sigma} \boldsymbol{u} = Q^2, \quad \boldsymbol{D} \boldsymbol{\Sigma} \boldsymbol{u} = Q \boldsymbol{q}$

or equivalently, putting $v = \Sigma u$, $a = \mu \Sigma^{-1}$

$$\max_{\boldsymbol{v}} \; \boldsymbol{a}^{\dagger} \boldsymbol{v} \qquad \text{subject to} \quad \boldsymbol{v}^{\dagger} \boldsymbol{\Sigma}^{-1} \boldsymbol{v} = Q^2, \quad \boldsymbol{D} \boldsymbol{v} = Q \boldsymbol{q},$$

where for the case without safe investment opportunity, augment with the additional constraint $\mathbf{1}^{\dagger}\boldsymbol{u}=(\mathbf{1}^{\dagger}\boldsymbol{\Sigma}^{-1})\boldsymbol{v}=\boldsymbol{w}$. Now the constraints $\boldsymbol{D}\boldsymbol{v}=Q\boldsymbol{q}$ form rank (\boldsymbol{D}) linear equations in \boldsymbol{v} . Rewriting these constraints – including $\mathbf{1}^{\dagger}\boldsymbol{\Sigma}^{-1}\boldsymbol{v}=\boldsymbol{w}$ if appropriate – into $\boldsymbol{D}\boldsymbol{v}=\boldsymbol{q}$ where \boldsymbol{D} has full rank, the proof is now a standard procedure: The associated Lagrangian becomes

$$a^{\dagger}v - \lambda^{\dagger} \overset{\vee}{D}v - \Lambda v^{\dagger} \Sigma^{-1}v,$$

which is stationary when $\boldsymbol{a} - \boldsymbol{\lambda}^{\dagger} \boldsymbol{\check{D}} = 2\Lambda \boldsymbol{\Sigma}^{-1} \boldsymbol{v} = 2\Lambda \boldsymbol{u}$. To complete the proof, we merely need to address degeneracies: First, if the constraint qualification fails (where the ellipsoid $\boldsymbol{v}^{\dagger} \boldsymbol{\Sigma}^{-1} \boldsymbol{v} = Q^2$ is tangent to one of the hyperplanes), the solution is obtained as a limiting case, and spanned by the rows of $\boldsymbol{\check{D}}$. Finally, the case $\Lambda = 0$ is only possible when \boldsymbol{a} is spanned by the rows of $\boldsymbol{\check{D}}$, and the one fund saved this way will be replaced by an additional orthogonal vector in order to achieve the desired dispersion Q^2 (since no risk aversion is assumed).

Observe that the result reduces to three-fund separation for the setup of Branco and Dey [1] (who restrict their analysis to D being a vector), and that by putting D = 0 we recover the Owen and Rabinovich [9] two-fund separation property as a corollary.

References

References

- [1] M. D. Branco and D. K. Dey, A general class of multivariate skew-elliptical distributions, J. Multivariate Anal., 79 (2001), pp. 99–113.
- [2] D. CASS AND J. E. STIGLITZ, The structure of investor preferences and asset returns, and separability in portfolio allocation: a contribution to the pure theory of mutual funds, J. Econom. Theory, 2 (1970), pp. 122–160.
- [3] G. Chamberlain, A characterization of the distributions that imply mean-variance utility functions, J. Econom. Theory, 29 (1983), pp. 185–201.
- [4] J. A. DÍAZ-GARCÍA AND G. GONZÁLEZ-FARÍAS, Singular extended skew-elliptical distributions, J. Korean Statist. Soc., 37 (2008), pp. 385–392.
- [5] N. C. Framstad, Portfolio separation without stochastic calculus (almost), University of Oslo: Preprint Pure Mathematics, (2001).
- [6] —, Coherent portfolio separation—inherent systemic risk?, Int. J. Theor. Appl. Finance, 7 (2004), pp. 909–917.
- [7] E. D. GIORGI, T. HENS, AND J. MAYER, A note on reward-risk portfolio selection and two-fund separation, Finance Research Letters, In Press, Corrected Proof (2010).
- [8] A. Khanna and M. Kulldorff, A generalization of the mutual fund theorem, Finance Stoch., 3 (1999), pp. 167–185.
- [9] J. OWEN AND R. RABINOVITCH, On the class of elliptical distributions and their applications to the theory of portfolio choice, J. Finance, 38 (1983), pp. 745–52.
- [10] S. A. Ross, Mutual fund separation in financial theory—the separating distributions, J. Econom. Theory, 17 (1978), pp. 254–286.
- [11] W. SCHACHERMAYER, M. SÎRBU, AND E. TAFLIN, In which financial markets do mutual fund theorems hold true?, Finance Stoch., 13 (2009), pp. 49–77.
- [12] J. Tobin, Liquidity preference as behavior toward risk, Rev. Econom. Stud., 27 (1958), pp. 65–86.