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1. INTRODUCTION

In the first half of the twentieth century, pioneering contributions to univariate
Limited Dependent Variables (LDV) models were made by Fisher (1946/37), Bliss
(1937), Hald (1949) and other statisticians. The steadily decreasing price of com-
puter power has allowed application of increasingly more demanding LDV models.
Tobin (1958) introduced discrete-continuous LDV models with regressors and cen-
soring to the econometric literature. For (elements of) recent historical reviews
related to discrete LDV models in the logistic class, see e.g., Agresti (1990, Appen-
dix B) and Hilbe (2009, Section 1.3). This, together with vastly improved software
for computations, spawned a whole branch of econometric modeling. The early con-
tributions typically had a case-by-case approach — discussing LDV models one by
one — motivated by one or a few particular applications. A few later studies devel-
oped a more extensive typology and showed that seemingly disparate LDV models
share a common structure, notably Heckman (1976) and Amemiya (1984).

Heckman’s and Amemiya’s studies are limited in scope. Heckman (1976, p.
475) states that “To simplify the exposition, I consider a two equation model. Few
new points arise in the multivariate case, and the multivariate extension is straight-
forward”, while Amemiya (1984, p. 4), surveying the class of censored regression
models often nicknamed ‘Tobit models’; states “My review of the empirical litera-
ture suggests that roughly 95 % of the econometric applications of Tobit models fall
into one of ... five types”. In subsequent literature, relatively few studies have con-
sidered models with more than two equations, which may suggest that extending to
higher dimensions is not completely trivial. Although a typology based on previous
empirical literature can be useful for review purposes, it may, from a theoretical
perspective, have at least two disadvantages. First, the empirical literature existing
at any point in time is limited by the currently available computing resources, in
particular the publicly available software. Second, the number of possible types of
LDV models is infinite, and thus, the empirical literature cannot cover all cases.

The LDV literature benefits from a classification system that is disconnected
from limitations set by current computational resources. This is a primary moti-
vation for writing the present paper. Several models in the existing econometric
literature, with catchwords like censoring, truncation, selectivity, discrete choice,
missing observations etc., emerge as variations on a common theme, being essen-
tially special cases of a more general structure that has not, to our knowledge, yet
been fully specified. Our intended contribution is to offer a generalized framework,
a ‘language’, for classifying a wide set of uni- and multi-variate LDV models that
have censored, truncated, missing observations, or all the three in combination. We
introduce a notation which enables us to describe any model within the framework
in a compact manner. We provide examples where models with different nicknames
in econometric literature — indicating that they are essentially different — have in fact
a close ‘family likeness’ in their structure. Thus, we believe the classification system
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may ease the communication between experts from fields with different jargons, say,
in exchange of estimation software.

Our framework has three basic elements: a specification of a distribution of
latent variables, a partition of its support into subsets, and an observation rule for
each subset, defining whether each latent variable is observed, censored, or missing.
To clarify the link with previous literature, we provide examples where the latent
variables are normally distributed, and where the subsets are defined by linear re-
strictions. Since our focus is on classification and not on estimation per se, we take
the discussion up to the point of demonstrating how likelihood functions can be
constructed, but refrain from discussing typical inference issues, such as concavity
of the likelihood or identification of parameters.

The scope of the classification system for models to be proposed and exempli-
fied in this paper can be briefly described as follows: [1] The latent variables can
have any parametric distribution. [2] A set of rules which include the observed,
censored, missing status is imposed. [3] It should be possible, in principle, to write
a model combining the variables and the rules by means of a computer algorithm,
also potentially applicable for generating samples. [4] At a certain level of specifi-
cation, the models should have names facilitating identification and communication
among researchers. The likelihood functions of the models’ observed endogenous
variables (conditional on the exogenous variables when such occur) are discussed,
and described to some level of precision, but it is beyond the scope of the paper to
describe how these functions can be used for inference.

To draw a precise borderline between being missing, being censored, and being
truncated is far from easy. A variable of interest for which observations are unavail-
able may be considered a particular status of a stochastic (potentially) observable
variable: the analyst is unable to obtain a value regardless of the efforts paid. The
‘missing data’ field touches onto censoring, truncation, and latent variables (mis-
measurement being a special case); see Little and Rubin (1987) for a survey of the
‘missing data’ field in statistics. We will not attempt to draw a precise borderline
between missing and latent variables and between missing observations and quali-
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tative variables." However, the distinction between an observation being zero and

being missing, which is, unfortunately, sometimes disguised by sloppy practice of
statistical agencies and ‘data organizers’, is of the utmost importance.

The organization of the paper is as follows. In Section 2 we discuss, partly with
examples, notation and definitions. Next, in Section 3 we describe the compilation of
likelihood functions for univariate and bivariate models in some detail. A discussion
of the multidimensional generalization, using still more compact notation, and a

IThe missing status may be relative and temporary, as costs, efforts, institutional and legal arrangements
etc. may be involved. To decide whether a variable ‘unable of being observed’ may be observable in other
‘regimes’ is difficult. We will pay attention to a ‘globally missing’ variable only when it is related to
other variables of interest which are observable to some extent, and will classify a variable as missing
only if it is structural according to some theory. Hence, measurement errors and disturbances are not
missing variables by this usage. Neither are model parameters to be classified as missing variables; for
the distinction between parameters and variables relative to the ‘structure’ concept, see Marschak (1953,

Sections 2 and 3).
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further generalization accounting for covariates follows in Section 4. Section 5 first
presents a label system for models, next uses this for reference to models in the
literature and for elaborating examples. Section 6 provides concluding remarks.

2. DEFINITIONS AND NOTATION

2.1. Latent variables, subsets, and basic observation rules. Our general
framework has three basic elements. The first is a vector of latent stochastic vari-
ables, 7 = (n1,...,mn), defined over the N-dimensional Euclidian space, RY. The
second basic element is a partition of RY into I subsets, denoted as «;, so that

I
(2.1) U =RY, a,na;=0Vi#;
1=1
The subsets are arranged in the tuple & = («, ..., a;). The third basic element is a
register of observation rules. Over each subset, each latent variable n,, n =1,..., N,

has one among three possible observational statuses: observable, censored or missing,
indicated by the letters o, ¢, and m, respectively. The observation rule for subset i is
denoted r;, and is a ‘word’ with IV letters indicating the observational statuses for all
latent variables.? The observational rules are collected in the tuple r = (r1,...,7).

EXAMPLE: CENSORED UNIVARIATE NORMAL DISTRIBUTION, N =1, I = 2: Suppose the
latent variable is univariate, normally distributed, and that the real line is divided in two
parts by a threshold value, 6. In the interval below the threshold («;), the observation
status is ‘censored’. In the interval above the threshold (as), the observation status is
‘observable’. Then the model can be described by

o = {m eRYmy <61},
ay = {m eRYm > 601},
(8% (a17a2)7

r = (co).

EXAMPLE: TRUNCATED UNIVARIATE NORMAL DISTRIBUTION N =1, [ =2: We make the
same assumptions as in the Censored univariate normal distribution example, except that
the latent variable is missing below the threshold. The resulting truncated univariate model
can be described by replacing the observation rules above with r=(m, o).

EXAMPLE: AMEMIYA’S ‘TYPE 2 TOBIT MODEL’ N =2, I =2 (Amemiya, 1984): Suppose the
there are two latent variables (N = 2) that follow a bivariate normal distribution. There are
two subsets, defined by the value of the first latent variable, n;. The variable 7; is censored
in both subsets (Amemiya, 1984, p. 31, assumes that only the sign can be observed). The
second variable, 72 is censored in one subset (if 17 is negative in Amemiya’s setting) and
observed in the other (if 7; is positive in Amemiya’s setting). This model can be described
by

a; = {(m,m) € R*m <61},

ay = {(m,m2) € R*m > 01},
(041, a2)7
r = (cc,co).

Q
|

°In this definition, and in the next section, we borrow elements from formal languages as used in
computational theory, confer for instance Hein (2002). This link to formal languages is only chosen because

it enables us to make use of pieces of an already well-established notation.



4

2.2. Coding of observations. We will now offer a way of representing data gener-
ated within the framework described above. Broadly speaking, data are assumed to
be generated in three steps: first, realizations of the latent variables are drawn. Sec-
ond, each realization is assigned to a subset «; with the observation rule r;. Third,
depending on the observation rule for each realization an observation is recorded —
say, written to a computer readable file. Since each latent variable can be observ-
able, censored, or missing, and the number of latent variables may be arbitrarily
large, this can be complicated. Thus, we think the following, slightly formalistic
description is warranted.

Let a realization, t, of the vector of latent variables be denoted as m, =

(M4, ---,Mng). Each realization, m,, belongs to a specific subset («;) with a cor-
responding observation rule (r;). For conceptual purposes we define a vector of
observable stochastic variables, y, = (Yy;, - - -, Yny)» corresponding to realization t of

1, and with the same dimension, regardless the observation status. Let the obser-
vation rule for realization ¢ be denoted R;. We can then define an observation as a
pair, (yta Rt)

Consider first the univariate case: If the latent variable is observable in the
subset, then y; = ny; if the latent variable is censored in the subset, then vy, = 1,
which is the subset number; if the latent variable is missing in the subset, then
the realization is disregarded — which we denote as (y,, R;) = A, A representing an
empty string. This coding can be illustrated by the following extensions of the three
examples above:

EXAMPLE: CENSORED UNIVARIATE NORMAL DISTRIBUTION (N =1, I =2), CONTINUED:
R, — (me,0)  if myy € oy, when 1y = o,
Wo B =1\ 20 if hen o =
s N1 € 0o, When 7o = c.
EXAMPLE: TRUNCATED UNIVARIATE NORMAL DISTRIBUTION (N =1, I =2), CONTINUED:

(y,, Ry) = (me,0)  if myy € oy, when 1y = o,
e A if n;, € ay, when ro =m.

EXAMPLE: AMEMIYA’S ‘TYPE 2 TOBIT MODEL’ (N =2, ] =2), CONTINUED:

(y,, By) = { ((1,1),cc) it (914, M9;) € @, when 1 = cc,
v ((2777215)7 00) if (771ta 7721&) € ay, when o = co.

For multivariate models an important distinction goes between cases where all
latent variables are missing and cases where some are observed or censored. When all
are missing we will define (y,, R;) = A when r; = m, mm, mmm, ..., as an extension
of the definition in the univariate case. When only a subset of the latent variables
are missing we can choose to use the same coding as if they were censored. Suppose,
for a model with N =2, that the observational status in subset 7 is om, meaning that
71 is observable and 7, is missing. Then, assuming we know the subset number, we
may, without loss of generality, treat 7, as censored and code R; = oc and yq; = 1,
as usual. This type of coding reduces complexity since among the observation rules
for the 3V subsets only (2V¥+1) rules are used in the coding:
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EXAMPLE: BIVARIATE CASE, N = 2. There are 3V = 9 possible observation rules for
subset i, r; € {mm, me, mo,cm, cc,co,om,oc,00}t. The (2N +1) = 5 observation rules used
in coding observation t are R; € {00, 0c, co,cc,mm} as we do not need to distinguish me
from cc, mo from co, em from cc, and om from oc.

EXAMPLE: TRIVARIATE CASE, N = 3. There are 3 = 27 possible observation rules for
subset i, r; € {mmm, mme, mmo, mem, mee, mceo, mom, Mmoc, Moo, CMIN, CIMC, CMo, CCM,

cce, cco, com, coc, coo, O, OMC, 0MO, OCM,, 0CC, 0CO, 00M,, 00¢, 000}. The (2 +1) = 9 obser-
vation rules used in coding observation t are Ry € {ooo, ooc, oco, occ, coo, coc, cco, cce, mmm}.

Above we have implicitly assumed that the subset number is known. This may
not always be the case. The coding can be adjusted to accommodate such situations,
but some simplicity is lost, confer the following example:

EXAMPLE: INSPIRED BY COHEN (1950, casg III), N = 1,7 = 3: A univariate normal
distribution where the real line is divided in three parts by, 61,602 (61 < 02) and where
censoring occurs in both the upper and lower tails, can be represented as

a; = {m eR' :m <01},
Qy = {771 cR': 0 < m < 92},
Qg = {7]1 eR! 292<7’]1},
« (041,042,a3),
r = (c¢o0,c).

If the subsets are known, we would suggest the standard coding:
(170) if Mt € an,
(yta Rt) = (771t7 0) if e € Ao,
(3,¢) if 9, € as.
If we are unable to distinguish realizations in the upper tail from those in the lower tail, the
realizations can for instance be coded

_f (ne,0)  ifnyy €,
(ye, Be) = { (2,¢) if g, € ay Uag.

3. COMPILATION OF LIKELIHOOD FUNCTIONS, UNI- AND BIVARIATE MODELS

3.1. Univariate models. The density function of n =7, is

(3.1) fn,y) = fm,7),

where -y is a vector of parameters. We restrict attention to cases where the subsets
are defined as continuous intervals, such that each of the [ intervals are limited by
pairs of thresholds, collected in the vectors 8; = (6,,0;). Specifically

(3.2) o= {meR: 0, <m<B} =11

The probability that the latent variable belongs to subset ¢ is denoted
0 .

(3.3) F(0i,7) = [, f(nu,v)dn, i=1,...,1.

Suppose we have a set of observations which we will refer to as a sample and
denote T'. The likelihood for observation ¢ (¢t €T') takes different forms depending on
the value of R;. Let us first consider models where 7, is either observed or censored
in all subsets. Then the likelihood for observation t is defined as

_Jfney) iR =o,
(34) Et(ytv Rt) - { ‘/’-'(0“ 7) if R: =c.
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Let T; C T denote the subset of observations that falls in subset a;. We use the nota-
tion |.| to denote the number of elements in a set, so that the number of observation
in the full sample is |T| = Y27, T;. The likelihood for the full set of observations

can be written as

(3.5) L=T1T1I £ Ro).

1=1teT;

EXAMPLE: DOUBLE CENSORING (CASE II IN COHEN, 1950), N=1, I=3: Suppose there
are three pairs of thresholds, so that the real line is split in three parts:

01 = (—00,51), 02 = (51,52), 03 = (52,00).

If the latent variable is censored in a; and a5 while it is observed in oy, then a sample
likelihood for the |T'| observations can be represented as

=T co [ Lm0 I £e3,0) = [T FO1.%) T fO0nev) T F(03,7)

teTy teTs teTs teT teTs teTs

= F (01,7 F (03,9 T] )
teTs
EXAMPLE: QUADRUPLE CENSORING, N =1, I =5: Suppose there are five pairs of thresh-
olds, so that the real line is split in five parts:

01 = (_00751)7 02 = (Q17§2)7 03 = (Q27§3)7 04 = (Q37§4)7 05 = (Q4,00).

If the latent variable is censored in oy, a3 and a5 while it is observed in a, and ay, then a
sample likelihood for the |T'| observations can be represented as

L= H Et(l,C) H Et(mt,o) H Et(3,c) H Ct(nlt,o) H Et(5,C)

teT teTs teTs teTy teTs
= F(61,7)!" F(03,7) " F(65,v)"! {H f(771ta'7):| [ 11 f(771ta'7):| :
teTs teTy

If we assume 7); is missing in at least one subset, it convenient to define
Fo=iy— F(0i,7), 2 =o0,c,m,
and note that F,+ F.+ F,, = 1. The likelihood for observation ¢ can now be defined

f7) it R, =o

(36) oo R FotFe t ’
. t\Yt, L) = 0 ;

f(%’Y)d _ F(6i,7) (y,=1) if Ry =rc.

o, FotFo | FAF

Otherwise the setup is similar to that considered above, with 7; missing nowhere.
EXAMPLE: DOUBLE TRUNCATION (CASE I IN COHEN, 1950), N =1, I =3: Suppose that
the thresholds are as in the Double censoring example. Now the latent variable is missing

in o; and a4 and still observed in . Then the likelihood function for the |T3| observations
can be represented as

e= T edoor = [T 5270 = 1 56505

teTs teTs teTs
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EXAMPLE: QUADRUPLE TRUNCATION, N =1, I=5: Suppose that the thresholds are as in
the Quadruple censoring example. Now, the latent variable is assumed to be missing in oy,
ag and oy while it is observed in «y and «a,. Then a sample likelihood for the |T5|+ |T4|
observations can be represented as

L= H Ly(yr,0) H Ly(ys,0) [H Tme, y HH fme, ¥ ]

teTs teTy teTs

— O] PO | T £l vﬂ L7 ~/>} .

teT> tETy

3.2. Bivariate models. The density function of n is

(3.7) f(n,~) = fm,m2,7),

where again 7 is a vector of parameters known to the ‘compiler’. There are I subsets
shaped as rectangles. Each subset is limited by two pairs of known?® thresholds,
61; = (0,;,01;) and Oy; = (0, 04), so that

(3.8) Q; = {(n1,m) € R?: 0,;,<m < %,inénz < 52i}-
Define B
(39) f[em 7] 911 €2i f(nla 2, 7)d771dn2>
F 70 7/7 b ) d )
(3.10) 72, 61 f" (72, ) i=1,....1
Fylm, 02,7 fg (11, 72,7y )dn2,

where 6; = (64;,05;) and subscrlpts 1 and 2 on the F' functions indicate that they are
obtained by integrating the density f across the intervals of 17, and of 7y, respectively.
The probability that i belongs to subset (rectangle) i is F[0;,~]. Furthermore, let
Fo= D iy F(0i,7), z = 00, oc, om, co, cc, M, Mo, Mc, M,
Using (3.9) we can formalize how the form of the likelihood for observation ¢,
Li(y,, R;), depends on R;. If neither of (1;4,7s) is missing in any rectangle, i.e.,
Fum=0, then (3.13) takes the simpler form, generalizing (3.4):

(W Yo v)  if My € ; and R, = oo,
F1(ya, 015,7y) if m;, € ; and Ry = co,
Fy(yy4, 02i,7y) if m, € a; and Ry = oc,
F(O;,~) if n, € a; and Ry = cc.

(3.11) Li(y,, R) =

The likelihood for all observations, generalizing (3.5), becomes
I
(3.12) c=1]1] %R
=1 teT;

31f some thresholds are unknown to the analyst — reflecting, e.g., that the variables are only ordinally
measurable — they will become unknown parameters in the (elements of the) likelihood function.
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The generalization of (3.6), accounting for missing observations, is

§
f(y1t7 y2t77) if n, e o and Rt = 00,
Zz#mm‘rz
Fi(yy, 01,
% if n, € a; and R; € {co, mo},
(313) Ly, R) = e
FZ(ylta 02i7 7) .
—— ifn, € o; and R, € {oc,om},
F(0;,
ﬁ if n, € o; and R; € {cc,cm, me}.
L Zz;ﬁmmfz

The analyst may, for convenience or some other reason, choose to curtail the
sample, by including only observations for which no observation is missing, i.e.,
include only the |T,o|+|Teo| + |Toe| + |Tee| observations for which R, = oo, co, oc, cc.
Then (3.13) should be replaced by

e Yor ) it n, € o, and R, = oo,
‘FOO—i_‘FCO_'_fOC_'_fCC
F 70 (3
5 13{” ]1__ 7)}_ if n, € a; and R, = co,
(3'14> Et(yt’ Rt) — OO+ CO_'_ OC_'_ cc
Fy(y14,02i,7) .
if n, € a; and R, = oc,
‘FOO—i_‘FCO_'_fOC_'_fCC
F(6;,
(6:,7) if n, € a; and R, = cc,
\ foo+fco+foc+fcc
and
(3.15) L = [Foot Foot Foet Fee] " TeottTeottiTockTec)
< I £ewe R T Loy B T £e(wi R ] £i(wis Re).
t€Too te€Toe teTeco t€Tce

EXAMPLE: BIVARIATE ORDERED RESPONSE: Assume that [ = JK and let subset a; (i =

1,...,1) is defined as follows:
7716(@1 '551-j]7 j:172a"'7']7 . .
= , € a; means: 7 i=j+(k—1)J.
n =) {nze@z,k,@z,k], T A
where [Quagl,j];ii] and [0, ., 02x]f=f denote the threshold values, for each variable ar-
ranged in ascending order, 0, ; = 05, = —o0, 017 = 025 = 0o, and 0., = 51_0-,1 (j =

2,...,J), 85}, = O21-1(k = 2,...,K). The observed variables, defined as the interval
indexes, are

Y1 = Z;'Izl 31{771 € (Q17j7§1;47']}7

vz = Y K112 € (B 10241}

Let F(0,,7) be defined as in (3.9). The likelihood function for observation ¢, y, = (y1t, Yat)
can then be written as

‘Ct(ytht):]:(0177) if 776061', 7’:157]
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Let T; denote the set of observations which belongs to subset 4, let |T;| be the number of

such observations, and let T = UL_,T; and |T'| = Zle |T;|. The sample likelihood for the
|T'| observations can then be written as

L=11%w,R) =111 £ewe- B =TI [T 760 =11 II Z(00 ).

teT i=1teT; i=1teT; i=1¢1),€q
Although £ is formally a function of y,, ...,y p|, the expression after the last equality sign
does not involve the particular choice of y ‘metric’ adopted. The pair of interval indexes
Yy = ijl j1{me (Ql_’j,glyj]} and yo = Zszl k1{n. € (Q27k,527k]} do not enter the function.
We might have used for example the set of I=JK subset (rectangle) dummies instead.

4. EXTENSIONS

We now generalize the setup in Section 3 in two respects. First, we generalize from
N =1 and 2 to an arbitrary dimension (Section 4.1), second, we introduce covariates
which have so far been suppressed (Section 4.2). The first generalization necessitates
some more compact notation.

4.1. Extending to N-variate case. Assume that n follows an N-variate distribu-
tion with density f(n,-y). Subset i is defined by

(4.1) ai:{(m,...,nN)E]RN: ngnn<§m~, n=1,...,N}.

Since N and [ are finite, the number of interval bounds is at most 2N I, which is a
finite number. Some bounds may be unknown to the analyst and therefore unknown
parameters in the likelihood function for the model. We also define interval and
variable specific vectors of bounds,

0= (0,:,00), n

n

I
=
=
~.

Il
=
T~

Define the index set
N={1,...,N}.
and let A; and it complement A} be any set containing the indices of the variables
which, in subset i, are observed and non-observed (i.e., either censored or missing),
respectively.? Let the elements in 1 which, in subset i, are observed and non-
observed, be collected in, respectively,

nAiE{nnZHEAZ‘}, nA*iE{TInZHGAf}a

and let 6 4, and 0 4., be the set of interval bounds relating to observed and unob-
served variables, respectively, in subset i:

0, =1{6, :necA}, 0,4 =1{60,:nec A}
In particular,

Ai=N = nu=m ay=qa;, 0,=20.

Yoranyi: A, CN, ATCN, AUA =N, A4NA =0
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AMEMIYA’S ‘TYPE 2 TOBIT MODEL’ N =2, [ =2 RECONSIDERED. In the compact notation,
the ‘Tobit 2 type’ example, considered in Section 2.1, reads

For an: Ai=0, A7 ={1,2}; n 4 =0, na-=(n,7m2);
0./4:(2)7 0./4* :(0117021): [(_00791)7 (_00700)]

For ag: Ai={2}, A7={1} ng=n2, myg =m;
04=032=(-00,00), 04 =612= (01, 00).

The total number of A; sets is, in principle, 2V Vi, of which N,= (]:) (p=0,...,N)
sets contain p observed and N —p non-observed variables. A set with all variables
and a set with no variables observed (i.e., either fully censored or fully missing)
correspond to Ny = (%) =1 and N, = (](\)7 ) =1, respectively. This concurs with the
binomial formula Z;V:o (];) =2N2 Let (p,r) index selection no. r (r=1,...,N,)
among those sets which have p observable variables. Let A(p,r); symbolize that i
belongs to the r’'th selection among the sets containing p observed variables r (r=
L...,N,).

From the density f(n,-) we can define the prototype element in the likelihood

function for any observability status in subset i characterized by the set A; as follows:

(42) FA*i(nAi7 0.A*i7 PY) = an*ieeA*i f(nv V)dnA*w 1= 17 R I.

Its arguments are: (i) the observable elements of the 1 vector in subset 4, (ii) the
interval bounds of the non-observable elements in subset ¢, and (iii) the parameter
vector 4y of the distribution of 1. This equation generalizes (3.10). The integration
in constructing Fl4.;(-) goes across the non-observable variables, making the result
a function of their known or (to the analyst) unknown interval bounds. For subsets
with all, respectively no, variables observed, we have in particular:

FA*i(nAia 9,4*@',’7) = f(’l’],’j/), fOI'AZ’ — N’ A: — (Z)7
Flai (M 45 0 asisY) = fnegi f(m,v)dn = F(6,,7), ford; =0, A =N,
where F(0;,7) is the subset probability for subset i; Zfil F(0;,v) =1.

EXAMPLE: N =4. THE LIKELIHOOD ELEMENTS F (7 .4;,0.4+i,7) IN F 4, /() NOTATION.
The likelihood function elements below form a recursive structure, with the density
f(n,m2,m3,m4,7) at the bottom. The recursion can be exemplified as follows. (Recursive
computation may not, however, be a recommendable numerical procedure, owing to
cumulative approximation errors.):

5The two middle alternatives specified for the bivariate case in, say, (3.11), i.e. Fi(-) and F3(-), relate
to the (f) =2 subsets with either 71 or 12 observed.



11

p=4 Ny=1:  Fyqyln,m2nz,m,6,9] = f(n,m2,n3,m,7),
04
FA(371) [771 y 112,13, 041'7’7] fg: f(771= 2,13, 14, ’Y)dnﬁlu
03
p73 N. —4 2)[771777277747031'77] fQ; f(7717772a77377747’7)d7737
=3, N, = i
FA(3,3) [771’ 13,74, 02%7] fe; f(nla 712,73, 74, V)dUQa
014
FA(374) [7727 N3, M4, 041'7’7] fg Y f(771= 2,13, M4, ’Y)dnlu
03
F A(2, )[”17”27031704177] f93 F [77177727773704177]d7737
9 i
F_A( )[7717773702179417’7] = f92 F [77177727773,94i7’7]d7727
9 i
p=2 N, =6 Fp(2,3)[m1 4,02, 05i,7] = f922 F g (3,2)[m 72, m4, O35,7]dn2,
=2, N, = 2
Fp (2,002,113, 010, 045,7] = f9 h Fais (11, M2, M3, O44,7Y]dn,
9 i
F_A( )[7727774701179317’7] = f@l F [77177727774,93i7’7]d7717
F A(2,6) [773; N4, 011, 0217'7] f@ A(3,3) [771, n3, N4, 021,‘7]61771,
02
171)[771,921793“941,’)’] f92 F (271)[771,772,931,941,’)’]51772,
9 iR
p=1,N, —4: 2y[n2,614,03i, 0457 = fe " F 90y M 112, 050, 04,9 di,
313,014, 02i,045,7] = fg MF 9.2y [115 13, 023, 043 ¥]dnn
9 i
A(1,4) [774; 0117 021; 031;7] f‘g Y F A(2,3) [7717 N4, 021; 031;7]617717
Fp0,1)1016,02i, 03i,045,7] = F[0;,9]
015 rO2i (03i rOa;
= fg;i Q; Q; Q:_ F(msm2,m3, ma,y)dm dnz dns dna
014
0N -1 = Jo, " Faq,p)lm 02, 0si, 04i,y]dni
p=VyY, p = i}

02
= f92 Faa (M2, 01,034, 045, ¥]dnai

9 i
. FA(l 3) (13, 614, 025, 045,77 d3;

9 Q
= féﬁ- Fy1,4) 045 013, 023, 03| dnai

If no variable is missing in any rectangle — so that all A* contain censored variables
only — we can then, letting ¢ index observation and y 4;, =1 4;;, generalize (3.11) as

f(yt77) 1fnt€a7,a -AZ:N> A;k:@a
(4.3) Li(yy) = FasiYaier Oneiyy) ifm, €y, AiCN, A CN,
F(0177) ifnteaia A2:®a A;k:N
Let, in general, Fya(0,7), Fsa(0,7), Fan(0,7) denote the total subset probabili-

ties for the subsets, where, respectively, no variable, some variables, and all variables
are missing:

Fnm(0,%) = 22 Nowvar. missing & (035 7);
Fsni(0,7) = D somen-var. missing 7 (0557,
Fam(0,7) = Zz :All -var. missing F(0i,7),
Fnm(0,7) + Fsne(0,7) + Fan(6,7) =1
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Likewise if missing variables are allowed for — provided that all A} contain at
least some censored variables — generalize (3.13) to
( f(yt7 7)
Fnm(0,7)+Fsu(6,7)
F *7 ‘ 70 *7 9 .
(44)  Lily,) = il 04t ) e e A N A C .
Fnm(0,7)+Fsu(6,7)
\ -FNM<07 7)+fSM(07 7)

Finally, if the analyst actively chooses to curtail the sample by omitting only

itn, €, Ai=N, A =1,

itn, €a;, Ai=0, Af =N.

observation sets for which some observations are missing (when Fgp(0,7) > 0 and
Fan(0,7) > 0 in the original data set) which is often done, the generalization of
(3.14) — so that all A} contain censored variables only — becomes

M iftn, €, Ai=N, A =1,
FNM(0>7)
F *7 Z’70 %79 .
45) Li(y,) =4 = Wi O 7)o n, €a, A CN, A CN,
fNM(0>7)
F 0i>
F67) iftn, €aq;, A =0, Af =N.
\ .FNM(H,')/)

Using the ¢t € A(p,r); notation to symbolize that observation ¢ in subset i
belongs to the r’th selection among those set having p observed variables r (r =
1,...,N,). The prototype expression for the likelihood function, generalizing all
those above can then be written as

N Np

(4.6) L= HHH H Et (y,),

i=1 p=0r=1tcA(p,r)

where we can insert from (4.3), (4.4) or (4.5), as approprlate.

4.2. Introducing covariates.
We next fill the gap represented by the lack of covariates, letting the covariate
column vector, x, including a one attached to the intercept, be arbitrary, and let
n = (m,...,nn)" be considered the model’s endogenous latent variables and € =
(€1,...,€en) be the vector of disturbances.® Assume that the relationship is specified
as N linear regressions,
E(njz) = Ax =
(4.7)

n=Azx + €, e=n—E(n|x),
where A is a coefficient matrix with N rows, including the intercept column. This
equation formally defines a transformation from (n, ) to (€, ). The mapping from
ntoy = (yi,...,yn), as described in (2.1) is assumed to prevail, and we again,

6We will not address problems related to censored or missing values of x, except that in truncated
regression models, both 17 and « are assumed to be missing.
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according to custom, introduce distributional properties for the disturbances, so
that we will have to consider the corresponding partition of €.

Let f.(e;7) denote the density function of €, which implies that 1 has density
(4.8) fmiv, A,x) = fd(n—Ax;y).

The extension of the expression for the prototype element in the likelihood function
for any observability status described by the set A;, (4.2), then becomes

(49) FA*i(nAu O.A*Zu Y, A7 w) = anM-EOA*i f(nu Y, A7 w)dnA*z
= Jn.. 0., f(n— Az y)dn ..

Below follow three examples for the bivariate case (N =2), where we, for convenience
stick to the, less compact notation in Section 3.2.

EXAMPLE: CENSORED BINORMAL REGRESSION:

Let 7 = (n1,72)" and A = (@), ab)" and let fc(e;7) denote the density function of €, which
implies that n has density

fmiv, A x) = fe(n—Az;y)
f(7717772§’77a1aa2733) = fe(771—(11337772—a233;'7)'

Assume in addition that f. represents the binormal density function, - containing the two
variances and the correlation coefficient. Accordingly, extend (3.9), while using (3.8), to

§li §2i

]:[01'7’770’170‘27$] = fgh 0, f(7717772§’77a17a27$)d771d772
015 02;— QA>T
91__(11;1; 2,_a22m fé €1,€2;7Y )d€1d€2,

51

F1[772701i7’77017a27$] = fgh f(7717772§’77alaa2733)d771
01

glfalw fe(€1a772—02337’)’)d517
51

F2[771=02i7’77017a27$] = fQQl f(7717772§’77alaa2733)d772

02; )
927(12.’1} fe(m —aiz, e2;7y)des, i=1,...,1

We can then compile the likelihood function by replacing in (3.13) [or in (3.11) or (3.14)]
and in (3.12) [or in (3.15)]

FWies YausY) fWie, yot; 7, @1, a2, x)

F1(yay,010,7) b Fi[y2t, 014,77, a1, az, ]

Fa(y14,02i,7) Y Fyly1e,02i,7, a1, az, ]
F(O;:,7) Fl0;:,7,a1, a2,z

The above functions Fjlya, 01i,7, a1, a2, ] and Fylyi, 02i,7, a1, a2, ] are obtained for
(A;, A¥) = (2,1) and (A, AF) = (1,2), respectively, when expressed in the general notation
(4.9).

EXAMPLE: TRUNCATED BINORMAL REGRESSION:

This is similar to the censored binormal regression example, except that the likelihood
function for a single observation, £(y,, R:), in (3.11) is extended to

[ (Wt y2i;7, a1, @z, )
Zi:Yi:oo ]:[01'7 vY,ai, az, CE]
so that the full likelihood function (3.12) is extended to

ylt7y2t7’77a17a27 )
Z [ 15770’150‘25"”]

i=1teT; “~iYi=

‘C(yta Rt) =
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EXAMPLE: ORDERED BIVARIATE PROBIT:

Let F(a;;7, A, z) be defined as in the Censored Binormal Regression example above and
define, while recalling (3.8), the observable variable such that its value equals the rectangle

number %: .
y =2 11{n € a;}.
The likelihood function for observation ¢ can then be written as
‘Ct(yt;Rt):]:(ei;VaAvmt) if yt:ia 7’:157[
Let T; denote the set of observations which belongs to interval ¢, and |T;| the number of such

observations. The full sample likelihood for the Zle |T;| observations can then be written
as

£=TT 11 £ B) = [T ] 7057, A 2) =[] [] F(6i:7. A zo).

i=1teT; i=1t€T; i=1tiyp=i

Although L is formally a function of the rectangle counter yi,...,y7|, the expression after
the last equality sign does not involve the particular choice of ‘metric’ adopted: the rectangle
index y; = Zle i1{n, € «o;}. The parameters apart, £ only depends on the vectors of the
exogenous variables @1,..., @ . We might have used for example I rectangle dummies
instead.

5. DESCRIBING MODEL TYPES

We will now suggest short hand notations for labeling model types. Our discussion
above and the basic notation from Section 2.1 will serve as a backcloth, and as we
have seen, this notation can be supplemented, leading to formulations of models and
likelihood functions with or without explanatory variables.

In such a label system, we will have to sacrifice some details unless it shall
be unduly complicated. With this in mind, we will present two approaches with
different attractions and disadvantages. The first is directly linked to the definitions
in Section 2.1, having subsets as their core elements (Section 5.1), the second takes
a list of variables as basis, describing the observational status for each variable
(Section 5.2).

The econometric literature has traditionally given different LDV models pet
names, maybe ‘probit’ and ‘tobit’ are the most prominent examples. Sometimes,
such informal assignment of names may blur relationships between models with
similar structure — or may lead us to overlook key differences. For instance, three
‘friction models’ presented by Maddala (1983 Section 6.8) can be represented as
r=(cc.c,m), r=(ccc), and r = (0,c,0), the second having a clear link to the
standard probit model, and to ordered probit models in general. So does the first,
but, as we have seen, models with missing latent variables have distinctly different
likelihood functions.

Amemiya’s classification of censored regression, ‘Tobit’ models (Amemiya, 1984)
provides a notable contribution in providing a systematic labeling of related mod-
els. However, as remarked in the introduction, his suggested typology has a limited
scope, and before presenting our own suggestions, we will point out some of its lim-
itations. Amemiya defines five types, all in a setting where the latent variables are
normally distributed; Type I is the familiar univariate censored regression ‘tobit’
(Tobin, 1958), Types II and III are based on the bivariate normal distribution, and
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Types IV and V on the trivariate normal distribution. A virtue of Amemiya’s typol-
ogy is that it organizes an array of seemingly different models into a limited number
of types. For instance it may be less than obvious for the uninitiated how the study
“Application of a threshold regression model to household purchase of automobiles”
(Dagenais, 1975) relates to Nelson’s “Censored regression model with unobserved
stochastic censoring thresholds” (Nelson, 1977). According to Amemiya’s typology
they are closely related — both are in fact Type II tobit models.

For univariate cases, Amemiya’s classification is unsuited for distinguishing
between models with different number of subsets. The standard ‘tobit’ has, in our
notation, I = 2 and is characterized by r = (¢,0) (or, by symmetry, r = (o,¢)),
and models with more than two subsets can easily be handled. Examples include
a “friction model” r = (o, c,0) (Maddala, 1983, Section 6.8) or a double censored
distribution r=(c, o, ¢).

Amemiya’s bivariate types, Type II and Type III, can be represented by r =
(cc,co) and = (cc, 00), respectively. As pet names for special cases with I =2, this
works well. However, if we increase the number of subsets to I =3 and consider a
case with r=(cc, co, 00), it is not clear whether the result should be labeled Type II,
Type I1I, or both. Moreover, when I =2 a case with = (00, co) is clearly a ‘tobit-like
model’ (as at least one variable is observed in one subset and censored in another),
but it is neither a Type II nor a Type III model.

Amemiya’s trivariate models, Type IV and Type V, can be described as r =
(cco,00c) and T = (cco, coc), respectively. When I = 2, all of the configurations
r = (000, 0oc), (000, occ), (000, cce), (ooc, cee), (oce, cec) represent ‘tobit-like models’,
but they are unclassified in Amemiya’s typology. Nor is it clear how his typology
should be extended to account for more subsets. For instance, if /=3 it is not clear
whether 7= (cco, ooc, coc) is a Type IV or a Type V model or both.

5.1. A subset-oriented description. The observation rules as elaborated in Sec-
tion 2.1 can be used as a relatively accurate way of describing model types. As
another extreme, it is possible to take a bird’s eye view and only consider two key
model characteristics; the dimension of the latent distribution, and the number of
subsets. In some contexts it may seem excessive to list the observation rules for
all subsets, or insufficiently accurate to take the bird’s eye view, so we will suggest
descriptions with intermediate levels of detail.

Our least detailed notation specifies only the dimension of the distribution of
the latent variables and the number of subsets. In general, we suggest the notation
OCM (N, I), where OC'M indicates that we are dealing with observed, censored and
missing variables, and where N is the dimension and [ is the number of subsets, as
above. The standard ‘tobit’ is thus a OCM (1, 2) model, and so are the standard
probit and the truncated normal distribution. Since cases with missing variables
have structure distinctly different from that in cases with no missing variables, the
labels for the latter case can be modified to OC(N, I'). Similarly, an ordered probit
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with N =1 and an arbitrary number of alternatives, i.e. a OCM(1, 1) model, can
simply be labeled C'(I).

A description with an intermediate level of detail can be obtained by counting
the number of subsets with the same observation rule. All univariate models can be
labeled in the format o(-)c(-)m(-), where the letters indicate observation rules and the
arguments in parentheses express the number of subsets with a specific observation
rule. For the standard tobit, the standard probit and the truncated normal can be
denoted as o(1)c(1)m(0), 0o(0)c(2)m(0), and o(1)c(0)m(1), respectively. By omitting
from the labels observation rules which are not represented, these three models can
be labeled simply o(1)c(1), ¢(2), and o(1)m(1), respectively.

As we have seen in previous sections, the number of possible observation rules
increase rapidly in the number of dimensions, N. A way to simplify the description
is to ignore the order of letters in the observations rules and regard the string of

2 00 = 0%, cco = c?o, coc = c*o and so

letters as a product: we can then write cc = ¢
on.

This allows us to represent Amemiya’s tobit typology on four alternative levels
of detail:

Tobit type I: r = (c,0) o(1)c(1) o(1)e(1) 0C(1,2)
Tobit type II: r = (cc, co) oc(1)ee(1) oc(1)c*(1) 0C(2,2)
Tobit type III: r = (cc, 00) oo(1)ce(1) 0?(1)c%(1) 0C(2,2)
Tobit type IV: r = (cco, ooc) ooc(1)cco(1) o?c(1)c3(1) 0C(3,2)
Tobit type V: r = (cco, coc) cco(1)coc(1) oc?(2) 0C(3,2)

5.2. A variable-oriented description. In some cases it can be more convenient
to choose a variable-oriented description of a model rather than the subset-oriented
description introduced above. Since the subset-oriented and the variable-oriented
descriptions are closely linked for the model class considered in Sections 4.1 and 4.2,
which is characterized by the particular way of constructing the subsets, we will
introduce the variable-oriented description with an example from this model class:

EXAMPLE: EXPENDITURE FUNCTIONS FOR N =6 COMMODITIES:
The latent variables are determined by
nnt:mntﬁn+€nt7 n:1,...,N,
which exemplifies (4.7), where (€1, ..., ent) has density function with a ‘full’, ¢t-invariant
covariance matrix exemplified by (4.8). The pattern of observability of the y,; variables is:

Y1+ : observed over entire range,

yo¢ : one threshold; censored twice both below and above threshold,
ys+ : one threshold; censored below, observed above threshold,

Y4+ : one threshold; missing below, censored above threshold,

ys¢ : one threshold; missing below, observed above threshold,

Y6t © Missing over entire range.

Here y1; may be a commodity used (and purchased) frequently by most households and fairly
precisely recorded by the ‘data producer’; yo, ..., ys: may be commodities not universally
used or purchased more or less infrequently by several households, say alcohols, tobacco,
medical and holiday services, and consumer durables, while latent consumption of good 6,
Net, according to the theory being determined jointly with 714, ..., 75, and correlated with
them via the disturbances (€14, ..., €6t), but because of limitations in the recording proce-
dures, occurs as a completely missing variable in the data set.
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To obtain the number of subsets, I, in this specific example we first note the number
of intervals for each variable. Here y;; and yg have one interval (the whole real line),
the others have two intervals (below and above the threshold value). It follows that
the number of subsets is the product of the number of intervals for each variable,
I =1-2-2-2-2-1 = 16, so following the subset-oriented labeling, this is an
OCM (6,16) model.

Descriptions on intermediate levels of detail can be constructed by the variables
separately. For each variable we define a sequence of letters (o, ¢, m), to describe its
observations status. The length of the sequence is defined by the number of intervals,
and the order of the letters corresponds to the way the intervals are distributed on
the real line. Thus, in the above example, we describe the variable yi; by o, ya; by
ce, y3: by co, and so on. A description of the full model can be obtained by listing
the description for each variable, say

0-cC-Cco-mc-mo-m,

[

is chosen partly as a reminder that the number of subsets
equals the product of the number of intervals for the intervals, and partly to avoid
confusion with the alternative label system in Section 5.1. This description can be

where the delimiter

simplified by merging variables having the same observation status, by letting for
instance oc - oc = (oc)?. Less detailed descriptions can be obtained by disregarding
the order of the letters for a given variable, so that oc = co, and by using superscripts
to simplify sequences of equal letters, say cc = ¢ or commom = co’?m?. In this
manner a consumption system with N = 10 commodities, all censored due to a
non-negativity constraint, can be described alternatively as

CO-CO-CO-CO-CO-CO-CO-CO-CO-Co,
(60)10,
0C(10,1024).

Amemiya (1984, p. 31, Table 2) also describes models based on the observa-
tional status of individual variables. However, since Amemiya’s Types II through V
do no belong to the model class in Sections 4.1 and 4.2 the link between our subset-
oriented and the variable-oriented descriptions is lost: Amemiya’s Type V tobit
could still be given the variable-oriented description “cc - oc - oc”, but it would be
fallacious to infer from this that  =2-2.2 =8.

6. CONCLUDING REMARKS

The typology suggested in this paper applies to a frequently used class of econometric
models. Albeit it has been recognized for decades that members of this class have
common features, previous attempts to describe the class have been implicit and
deliberately incomplete. Our classification system is complete, in the sense of being
applicable to models of any dimension of the latent variables, containing any number
of subsets, and any combinations of observation rules. And depending on the amount
of details one want the label system to provide, the names may be more or less
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concise. We have suggested two ways of describing the models. The first, and
most generally applicable is the one called the subset-oriented description, while
the second, the variable-oriented description, can sometimes be simpler to apply.
However, for the N-variate case as presented in Section 4.1 the two descriptions
coincide.

We believe that our proposed classification system, in addition to facilitating
communication between masters of the LDV model field, may also benefit students
and newcomers. In contemporary econometric textbooks terms like ‘censoring’, ‘se-
lection’, ‘incomplete observation’, ‘defective data’ and ‘incidental truncation’ occurs
frequently. And although the meaning usually is sufficiently clear within the context
of a single book, it is not always obvious how these terms should be generalized to
other models. With our classification system at hand the whole class of model can
be presented with a few simple examples and straightforward induction.
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