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1 Introduction

1 Introduction

Portfolio separation – i.e. the property of reducing the dimension of a portfolio optimization
problem to a low number vectors («funds») without welfare loss to the agents in question
– has been treated extensively since Tobin [43]. There are two main directions: the
one which is subject of this paper, is the characterization of those returns probability
distributions for which those funds will do for all agents. The other is the characterization
of preferences which admit the property for all suitable returns distributions (the standard
work being Cass and Stiglitz [6], but see even the modern probabilistic approach of
Schachermayer et al. [40]); there are also other routes to the separation property, e.g. risk
measures, falling somewhat in between beliefs and preferences (contributions include this
author [14] and independently, De Giorgi et al. [16]).

This paper is about the distributional side of the theory, where the standard literature
reference is Ross [35]. Ross considers preferences compatible with first-order stochastic
dominance, and the core of his result is the property that the returns distribution
(multivariate) be such that the portfolio returns distributions (univariate) can be ordered
by their mean once a single dispersion parameter is given. Subsequently, Owen and
Rabinovitch [33] and Chamberlain [7] establish that the elliptical (also frequently referred
to as «elliptically contoured») distributions satisfy Ross’ conditions for two-fund separation.
Their setting is a mean–variance trade-off, tying the knot back Markowitz [25] approach as
employed by Tobin [43]. Over these decades, the development has lent surprises to quite
a few of the giants who bear today’s theory on their shoulders, and we some: Markowitz
turned out predated by more than a decade by De Finetti [8] (see Markowitz account [26]
where he also credits Roy [36]). Tobin conjectured that any two-parameter distribution
would admit two-fund separation – counterexamples were given by Samuelson [39],
Borch [4] and Feldstein [12]. Fama’s discovery ([11], can also be read out of Samuelson [38])
that vectors of i.i.d. α-stables admitted two-fund separation, led Cass and Stiglitz to
conjecture that α-stability was necessary, until Agnew [1] provided a counterexample.
However, the properties that enabled Owen, Rabinovitch and Chamberlain to verify the
Ross [35] criterion for the ellipticals, were to be found as far back as Schoenberg [41], [42]
in 1938, before modern portfolio theory.

The classical 2-fund separation result, valid for the elliptical returns distributions,
is valid both (i) in the presence of a «risk-free» numéraire opportunity (in which case
it can be taken as one of the funds, so-called «monetary separation»), and (ii) in the
absence of such (in which case, one fund can be chosen as the «minimum variance
portfolio»). This paper sets out to generalize, if necessary by admitting a higher number
of funds, to the so-called pseudo-isotropic distributions, a multivariate class of symmetric
random variables such that all linear combinations of the coordinates are of the same
type. The pseudo-isotropic distributions admit a dispersion measure which is symmetric
and positively homogeneous, and which, together with the excess returns entering via a
location shift, characterize the portfolio return distribution completely. To summarize
the results briefly:

• The case with risk-free opportunity admits two-fund monetary separation just like
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1 Introduction

the ellipticals, or like the non-elliptical case of i.i.d. symmetric α-stable random
variables as established already by Fama [11] (for results in continuous time: this
author [13] and Ortobelli et al. [31]). Indeed, pseudo-isotropy generalizes both these
classes.

• If no risk-free opportunity exists, separation will only be admitted by a few special
cases; most of these will be non-integrable, but there are a few peculiar integrable
cases leading to 2d-fund separation if the index of symmetry is one of the values
α = 1 + 1/(2d− 1), d ∈ N, that is, one-and-an-oddth, where d = 1 subsumes the
elliptical distributions α = one-and-a-whole.

• If the index of symmetry exceeds one, then there is also CAPM for the case with
risk-free opportunity. Without, there is no securities market line, as there is no
two-fund separation.

The exposition will in section 2 establish a single period market, review stochastic
dominance, and point out the essential property that makes the elliptical distributions
admit two-fund monetary separation (Theorem 6). Section 3 will introduce pseudo-
isotropic random variables, point out how they fit Theorem 6, then establish a few cases
without risk-free opportunity, where agents can do with fewer funds than the entire market
and then adapt CAPM to the case with risk-free opportunity. Section 4 then extends to
dynamic markets in discrete and continuous time.

1.1 Notation, terminology and standing assumptions

Random variables and stochastic processes are denoted by upright Latin letters (boldfaced
if they are vector-valued). Minuscles (Greek/Latin) are non-random constants (vectors
if bold), where the (portfolio) choice variable is ξ, and 1 is the vector of ones, and 0
the null vector. Vectors are columns by default, unless indicated by the transposition
superscript «>». Matrices are Greek uppercase slanted bolds (non-bold if dimension is
1× 1 – and consider I a capital Iota. The ∼ symbol will denote equality in probability
distribution, or for processes: finite-dimensional distributions. The calligraphic fonts will
be used for sigma-algebras (F) and filtration (F). As we deal with non-integrable random
variables, and the notation E[ · | · ] may suggest integrability, we shall use notation like
X|X0 or X|F for conditioning and conditional distributions.

A set H % {0} is radial if it is composed as a union of half-lines from the origin.
Constraining the portfolio to the closed first orthant models a «no short sale» constraint,
and we shall use that terminology as well. No short sale on some, but not all, investment
opportunities, will also correspond to a radial constraint. As commonplace in the literature,
we will frequently refer to the numéraire as the «risk-free» investment opportunity, and
the other investments as «risky».

Assumption 1. We shall allow for constraints to be specified (in the single-period
model, we shall consider either the constraint to a radial set, covering e.g. no short sale
conditions, to an affine half-space represening no borrowing or limited degree of leverage,
or to the the affine hyperplane of no risk-free opportunity). After having restricted the
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2 The single-period market and the preferences

opportunity set according to these constraints, we shall assume the market to be free
from arbitrage opportunities and from redundant investment opportunities. (If there is a
redundant opportunity, then we can leave it out and rebuild the model without it.) 4

In line with the literature on portfolio separation, we make no assumption on limited
liability – indeed, all non-elliptical cases will violate that.

2 The single-period market and the preferences

Consider a single period investment in a numéraire (enumerated with as the zeroth
coordinate) returning X0 per monetary unit invested, and another n (finite!) investment
opportunities with returns vector assumed to possess the structure X01 +µR0 +XR – the
decomposition is in part chosen to fit a representation common in the theory of elliptical
distributions, see below. This way, the portfolio return from investments ξ – any vector,
permitting short sale and (for now) unlimited net borrowing without market frictions –
in the n opportunities and w − 1>ξ (where w is initial wealth) in the numéraire, will be

wX0 + ξ>
(
µR0 + XR

)
, (1)

Here, the probability distributions involved in the µR0 + XR will be specified conditional
on X0, and conditionally, (R0,R) will be stochastically independent of X. The location
parameter µ is assumed constant. We will not assume X to have finite mean, but we will
later assume it symmetric about the origin. In view of the above, it represents no loss of
generality to interpret – or even formally assume – X0 as a «risk-free» return. We shall
therefore use the term «monetary separation» to refer to separation where the risk-free
can be chosen as one of the funds.

2.1 Stochastic dominance and preferences.

Recall that a real-valued random variable X∗ first-order (weakly) stochastically dominates
another, X, if any of the three following equivalent criteria hold:

(i) (The «mass transfer» property:) there exists some nonpositive random variable X−
such that

X∗ + X− ∼ X (2)

(ii) CDFX∗ ≤ CDFX

(iii) E[u(X∗)] ≥ E[u(X)] for every bounded nondecreasing (utility) function u.

A recent article by Østerdal [32] elaborates on the various definitions, in particular the
mass transfer concept, which is the property that will be most useful in this paper.

The following easy observation will sometimes be needed:
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2 The single-period market and the preferences

Lemma 2. If neither of X and X∗ dominate the other, then there are two expected
utility maximizers who rank the random payoffs different, namely u(x) = 1x≥x̄ for two x̄
values which evaluate CDFX(x̄)− CDFX∗(x̄) to opposite signs.

For second-order stochastic dominance, assume that X̆ is independent of everything
else, and consider the formula

X∗ + X̆ + X− ∼ X + εX̆ (3)

Analogous to (i) above, second-order stochastic dominance is most frequently taken to
be formulated by way of the condition that ε = E[X̆] = 0. However, for our purposes,
we cannot assume expectation to exist. A natural extension would be to claim that a
risk-averse agent is someone who, when faced with the choice of how much to get of an
independent X̆ which is symmetric about zero (i.e. −X̆ ∼ X̆), then the agent will choose
as little as possible. This motivates the following definitions:

Definition 3. In sections 1 through 3, the following definitions will apply.

Suppose X− is a nonpositive random variable and that −X̆ ∼ X̆ is independent of
everything else. We shall use the term agent for a preference ordering which (weakly)
prefers X∗ to X whenever (2) holds1. The agent will be called risk-averse if X∗ is (weakly)
preferred to X whenever (3) holds with |ε| ≤ 1. 4

We shall return to preference assumptions for the purposes of dynamic markets in the
respective models in section 4. As we consider separation properties of the distributions,
we can define portfolio separation as follows:

Definition 4 (k + 1-fund (monetary) separation). The returns distribution admits
k-fund monetary separation if there exist vectors («funds») ϕ1, . . . , ϕk such that for
any given portfolio ξ, there exist q1, . . . , qk so that the return (1) is weakly first-order
stochastic dominated by the return obtained using

ξ∗ = q1ϕ1 + · · ·+ qkϕk (4)

for ξ in (1). (Fund number k + 1 is the risk-free.) The distribution admits k-fund
separation if in addition the position w − 1>ξ∗ in the risk-free opportunity vanishes
identically for all agents. 4

The latter case will be imposed whenever needed for the model; a model without
risk-free opportunity, will have 1>ξ = w as a constraint.

1Of course, as Khanna and Kulldorff [20] point out, an alternative assumption of free disposal would
dispose of the need to assume that agents prefer more to less – however our arguments still require
preferences to rank only probability distributions.
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2 The single-period market and the preferences

Remark 5.

• We do not assume that each agent has an optimal (finite) portfolio; rather, the
property says that for any given portfolio there is one which is at least as good and
which uses only the funds (implying that the restriction to the funds is without
welfare loss).

• Risk-aversion is not a main point of this paper, but it is not an uncommon assumption
in expositions of portfolio theory. It should be noted that risk-averse agents chould
in exceptional cases do with fewer funds. For example, there case of one-fund
separation if for e.g. Gaussian (1 , I) returns without risk-free opportunity not valid
among non-riskaverse agents, who will need another to boost variance. Theorem 11
will touch this issue.

4

Observe now that if two portfolios ξ and ξ∗ satisfy ξ>X ∼ ξ∗>X and ξ>µ ≤ ξ∗>µ,
then the return wX0 + ξ∗>

(
µR0 + XR

)
using ξ∗ will first-order stochastically dominate

the return using ξ; this follows from the assumed independence, and the nonnegativity of
R0 (the assumed nonnegativity of R is superfluous, but commonplace and without loss of
generality). We can therefore work as if R0 and R were both constants. We shall also say
that «ξ∗ dominates ξ» if the respective portfolio returns returns are ordered that way.

2.2 Portfolio separation: the key argument

Let us first review the elliptical case as an illustration. As is well-known, see e.g. Cambanis
et al. [5], any elliptical vector admits the representation µ + XR where the location
vector µ equals the mean iff this exists (it is in fact not uncommon in the theory of
elliptical distributions to refer to it as «mean» regardless of integrability), and where
X = ΣU where Σ is a positive definite2 matrix and U is uniform on the unit sphere. The
independent radial variable R can then be used to generate multidimensional versions of
any symmetric univariate distribution; for example, we obtain the multinormal by choosing
R as a zero-mean normal distribution (or equivalently its absolute value). Analogously,
taking R to be a symmetric α-stable, we obtain a symmetric α-stable vector; however,
except in the Gaussian case, the marginals will not be stochastically independent.

We can however take R = 1 and simply let X|X0 be elliptically distributed and located
at zero. Then the (conditional) characteristic function E

[
eiθ>X

∣∣X0

]
admits the form

h(
√
θ>ΣΣ>θ). If ϕ solves the problem

max
ξ

µ>ξ subject to ξ>ΣΣ>ξ = 1,

then the family {qϕ}q≥0 will yield a portfolio return distribution (from (1)), which first-
order stochastically dominate any other possible portfolio returns in the market. This

2some authors do include the singular extionsion allowing merely semidefiniteness, which would violate
the assumptions of absence of arbitrages and of redundant opportunities.
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3 Pseudo-isotropic distributions

is two-fund monetary separation, reducing the portfolio optimization problem to the
one-dimensional allocation between ϕ and the risk-free.

Realizing that the the key to the result is that h takes as argument a positive homoge-
neous real-valued functional of θ, we can immediately formulate a much more general
result. Notice the q in the exponent on the right-hand side of (5), and that the c function
therein is necessarily positively homogeneous.

Proposition 6. Consider the market (1) with the restriction that the portfolios are
restricted to some radial set H (possibly = the entire Rn). Suppose that the conditional
characteristic function E

[
eiθ>X|X0

]
admits the representation

E
[
eiqθ>X|X0

]
= h(q c(θ)) ∀ q ≥ 0, for some c : Rn → [0,∞). (5)

If there is a ϕ that solves the problem

max
ξ

ξ>µ subject to c(ξ) = 1, (6)

then there is two-fund monetary separation over all agents, with ξ∗ = qϕ.

Proof. If g is the characteristic function of X|X0, then ξ>X|X0 has characteristic function
of the form q 7→ g(qξ), i.e. the conditional distribution is uniquely determined by q c(ξ);
note that if c(ξ) = 0, then ξ>X = 0, and under the assumption of no arbitrages nor
redundant opportunities, this implies ξ = 0 . Assume ϕ to solve the maximization
problem as stated (if applicable subject to the additional constraint ξ ∈ H ); then for
arbitrary ξ 6= 0 , we have g(ξ/c(ξ)) = h(1). Let q = c(ξ)/c(ϕ) = c(ξ) > 0, so that
g(qϕ) = g(ξ). In terms of first-order stochastic dominance of the return distribution, we
have constructed ϕ so that it dominates ξ/q, implying that ξ∗ := qϕ dominates ξ.

For the particular case of the ellipticals, the introduction of another linear constraint
requires just another fund, which degenerates if this constraint forbids a risk-free oppor-
tunity. This well-known result follows by a Lagrange argument, and is contained as a
special case of Theorem 11 below.

3 Pseudo-isotropic distributions

The pseudo-isotropic random vectors form a multivariate distribution class which contains
the among others, the ellipticals (and no other square-integrable distributions!) and
the vectors of i.i.d. α-stables (α common over the coordinates). The following will
give a primer on the defining properties and the development of the theory from the
corresponding theory of elliptical distributions, assuming known the basics of the latter.

A univariate symmetric distribution X̃ is said to admit an n-dimensional version X
if for each non-random n-vector θ, there exists a c = c(θ) (often called the standard
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3 Pseudo-isotropic distributions

of X̃) such that θ>X ∼ c(θ)X̃. Obviously, this property is preserved under linear
transformations. The terminology originated with Eaton, see [10], where the starting
point was the univariate X̃; if one takes as starting point the multivariate X, then X̃ can
be taken as any coordinate of X, except any that is the nonrandom Dirac point mass at
zero – we will rule those out in this exposition. The term pseudo-isotropic does refer to
the multivariate X, cf. e.g. Jasiulis and Misiewicz [19, Definition 3]:

Definition 7. A pseudo-isotropic distribution is one which satisfies (5), extended to
arbitrary real q by imposing symmetry: h(−q) = h(q). 4

There are some geometric properties to observe: Define an origin-symmetric star body
K (e.g. Koldobsky [22]) as an origin-symmetric closed set with a continuous boundary
crossed precisely twice by each line through the origin, and introducing the K -quasinorm
notation ||θ||K = min{a > 0; θ/a ∈ K}; if the distribution is pseudo-isotropic with
c( · ) = || · ||K , then in the terminology of [21, ch. 6], the distribution is called K -isotropic.
A pseudo-isotropic measure in finite dimension must be of this form ([30], [29, Proposition
4.1.1]). Beware that K is not an isodensity curve for the distribution, except in the
elliptical case where rotational invariance of density and of characteristic function coincide.

The only known pseudo-isotropic distributions are those which are – up to a linear
transformation – so-called α-symmetric (Cambanis et al. [5]), for which K is an Lα unit
sphere, for α ∈ (0, 2], the case α = 2 being the ellipticals shifted to zero. In order to
distinguish out this linear transformation, we make the following choice of terminology:

Definition 8. A pseudo-isotropic random variable Z is called standard α-symmetric,
if its standard can be taken to be ||θ||α =

(∑
i |θi|α

)1/α. (We allow the slight abuse of
notation between || · ||α (for a number) and || · ||K (for a set).) A vector X = ΣZ is
then called Lα-norm symmetric. We call α the index of symmetry. 4

Pseudo-isotropic vectors share some properties of the ellipticals – assuming no Dirac
coordinate, they are atomless except possibly at the origin; however, unlike the ellipticals,
they are absolutely continuous outside 0 . A pseudo-isotropic variable with finite moment
of order ε > 0, is Lα-norm symmetric, where α > ε or α = 2 – again, the elliptical class
distinguishes itself. It has been conjectured by Misiewicz (see [28], in particular Theorem
II.2.6) that the Lα-symmetrics are the only pseudo-isotropic distributions. Koldobsky
([22], [23]) has further restricted the possible counterexamples to the Misiewicz conjecture
by establishing an imbedding of any counterexamples in some limiting space of the Lα
(settling the weaker Lisitskĭı [24] conjecture).

As mentioned, a vector of i.i.d. symmetric α-stables, will be α-symmetric, the char-
acteristic function for the usual scaling being exp

(
− ||θ||αα

)
. However, with dependent

components, the index of symmetry could exceed the index of stability (but not the other
way around): Precisely whenever 2 ≥ α ≥ ᾱ > 0, exp

(
− ||θ||αᾱ

)
is the characteristic

function of an α-symmetric ᾱ-stable vector. The reader should beware the confusion in
the literature, where the notion of symmetry sometimes has the antipodal meaning as
in this paper, whilst used for rotational invariance by other authors in the past. This
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3 Pseudo-isotropic distributions

translates to a confusion as to whether the canonical choice for a multidimensional version
of a symmetric stable is the one with i.i.d. coordinates, or the elliptical one – indeed, in
one of the questions posed by Owen and Rabinovitch [33, footnote 4] they use «symmetric»
for rotational invariance. Generally, when it comes to stable laws, the reader should be
warned against the literature’s inconsistent language and notation, dubbed by Hall [18]
as a «comedy of errors». Obviously, an independent radial scaling (the «R» variable) of
a pseudo-isotropic vector preserves the star body K (in particular, the sub-Gaussians
are elliptical), but there are other known α-symmetrics than the sub-stables. A range of
α-symmetric probability distributions is given in terms of valid (i.e. by Bochner’s theorem,
positive-definite) characteristic functions by Gneiting [17].

3.1 Portfolio separation with risk-free investment opportunity

The symmetry and positive homogeneity of the c functional yields two-fund monetary
separation for the pseudoisotropics, much the same way as the elliptical case or the case
of i.i.d. α-stable components treated already by Fama [11] (it is already known that the
independence of components is not essential, e.g. this author [13]). For α ≤ 1, the Lα
unit balls are not only non-convex sets – indeed, their complements intersected with any
orthant is a convex set (the first-orthant part of the epigraph defining any component as
a convex function of the others). This motivates the formulation of the following theorem:

Theorem 9. Proposition 6 applies to pseudo-isotropic X, and yields two-fund monetary
separation ξ∗ = qϕ, where the risky fund ϕ can be taken as an extreme point of the
convex hull of the unit ball {c ≤ 1}. In particular, if there is an extremum on an axis,
then one shall only invest in one opportunity, namely the one with highest excess return /
dispersion ratio.

Proof. Since the set K has continuous boundary, then the maximum in Proposition 6 is
attained, and this immediately yields two-fund separation. Geometrically, the maximiza-
tion of ξ>µ has to be obtained on an extreme point.

As a consequence of non-diversification, we immediately have that if components are
independent and c is the standard Lα unit ball || · ||α with α ≤ 1, then E|Xi| =∞, i ≥ 1.
There are particular results available for certain Lα-norm symmetric cases.

3.2 No risk-free investment opportunity: some cases which admit
separation or reduced dimensionality

This subsection assumes Lα-norm symmetry – if the Misiewicz conjecture holds, this is
the general case, modulo point mass coordinates which we rule out by Assumption 1.
It then turns out that we can take the linear transformation Σ of Definition 8 to be
invertible:
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3 Pseudo-isotropic distributions

Assumption 10. X = ΣZ, for a standard α-symmetric Z and an invertible Σ.

Introducing the notation

ζ = ξ>Σ, ζ = ξ>Σ, η = Σ−11 (6= 0 ) (7)

so that the portfolio return is ξ>(µ+ X) equals ζ>
(
ρ+ Z

)
and the risky invested amount

is ζ>η, we shall assume one of the following portfolio constraints:

ζ>η ∈ L with the special case ζ>η = w (8)

where w is the agent’s initial endowment. We shall refer to the ∈ L constraint as
constrained leverage, and to the special case L = {w} as no risk-free opportunity. 4

The constraints (8) could in principle remove an arbitrage opportunity even with Σ
being singular (that is, when Σ>θ = 0 for some θ ⊥ η); however, that would constitute
a riskless investment opportunity, and is therefore ruled out.

The elliptical case α = 2 admits 2-fund separation even without risk-free opportunity,
and we shall see that this generalizes, at the cost of additional funds, to α = 1 + 1/odd.
Note that the further restriction to arbitrary radial H is not admitted in Theorem 11.
First, introduce the signed power notation, which we for notational convenience apply
entry-wise to vectors. The following notation will be applied mutandis mutatis to column
vectors and scalars as well (we do not need it for matrices):

(ζ>)<p> := (|ζ1|p sign ζ1 , . . . , |ζn|p sign ζn) (9)

For example, −4<1/2> = −2 and∇||ζ||αα = α(ζ<α−1>)> = α(ζ>)<α−1>. The signed power
is a one-to-one transformation of the base number/vector, for every nonzero exponent.

Theorem 11. Consider the market under Assumption 10. In parts (a)–(d) assume
α ∈ (1, 2], while in part (e) assume α ∈ (0, 1]. Put

d =
1

2
· α

α− 1
( ∈ [1,∞).) (10)

(a) The minimum-dispersion portfolio for no risk-free opportunity – i.e. the one which
minimizes the dispersion c subject to the constraint – is

w

||η||2d2d
η<2d−1> (11)

(b) Suppose d ∈ N (i.e. α = 1 + 1/odd). Then we have 2d+ 1-fund monetary separation
under constrained leverage, and 2d-fund separation if there is no risk-free investment
opportunity. In both cases, the 2d risky funds are (with the convention 00 = 1)

ϕj =
(
ηj−1

1 ρ2d−j
1 , . . . , ηj−1

n ρ2d−j)
n

)> (12)

10



3 Pseudo-isotropic distributions

(c) Suppose in addition to part (b) that there is no risk-free opportunity. Then the
number of funds needed for all risk-averse agents, is precisely

min
{

2d, the number of distinct real ηiρi values plus 1 if ∃ı̄; ηı̄ 6= 0 = ρı̄
}

(13)

of linearly independent ϕj funds. This number also suffices for all agents with the
following single exception: when (13) yields 1, or equivalently when ρ is a multiple
of η, then all risk-averse agents will choose the minimum-dispersion portfolio (11),
while other agents require an arbitrary (non-null) free portfolio in addition.

Under constrained leverage, these funds together with the risk-free are sufficient.

(d) Part (b) does not generalize to the case where d− 1/2 ∈ N (i.e. α = 1 + 1/even); if
we formally consider the funds of (12) with 2d being odd, then there are cases where
some agents can do with these and other agents can not.

(e) Suppose now α ∈ (0, 1]. Then any agent holds the zero position in all but at most two
investment opportunities; this is however not a separation result, as different agents
may require different pairs. The minimum-dispersion portfolio for the equality con-
straint ζ>η = w can be chosen non-diversified on one axis (possibly non-unique). This
portfolio is chosen by all risk-avese agents in the special case where ρ is proportional
to η.

Before proceeding to the proof, notice that the case where (13) yields 1, is the only
where an opportunity with ηi = ρi = 0 is not redundant. Indeed, if Σ is the identity, then
(13) counts the number of different marginal distributions of nonzero excess returns – then
if there are at least two, one with zero excess return (possibly desired by a non-riskaverse
agent) can be generated as a linar combination.

Proof. In order not to be first-order dominated, any agent who chooses the level ŵ ∈ L
for ζ>η and the level c̄ for dispersion, must choose a solution of the problem

max
ζ

ζ>ρ subject to ||ζ||αα = c̄α, ζ>η = ŵ (14)

wher ŵ = w is mandatory if there is no risk-free opportunity. The Lagrange condition
yields

ρ− λη = ακζ<α−1> (15)

(a) The minimum-dispersion portfolio solves the problem

min
ζ
||ζ||α subject to ζ>η = w (16)

and in case α > 1 this is a concave problem with solution uniquely given by (11)
(which is a limiting case of (15)).

11



3 Pseudo-isotropic distributions

(b) Odd signed powers are just ordinary powers, so (15) yields

ζi · (ακ)2d−1 = (ρi − ληi)2d−1 (17)

For κ 6= 0, expand the power and collect terms to get the 2d funds given by (12), and
in addition there is the risk-free, unless it vanishes identically. To address degeneracies:
the constraint qualification could fail, but only at the minimum-dispersion portfolio,
which is the fund ϕ2d . And the case κ = 0 implies ρ = λη, which will be covered
next:

(c) Let us first cover the case when ρ and η are proportional. Then the left-hand side of
(15) collapse to one vector, a scaling of (11). In addition there is the risk-free, if one
such exists, but if it does not, then by proportionality the excess return is uniquely
given by w, so that κ = 0. If κ = 0, there has to be an additional fund ⊥ η – at zero
price, but also not contributing to excess return – to satisfy agents who want a higher
dispersion than the minimum. Risk-averse agents will not want to invest in this.

To establish the number of funds needed, i.e. the number of linearly independent
vectors in the expansion (12) (cf. (17)), assume κ 6= 0 (otherwise we have the
proportionality just covered) and λ such that

(ακ)2d−1ζ =

2d∑
j=1

(
2d− 1

j − 1

)
(−λ)j−1ϕj (18)

We wish to pick 2d agents with distinct distinct λ values. That is possible by Lemma
2 as no two distributions with different dispersions can be ordered by first-order
dominance; dot each side of equation (15) with η to eliminate κ and get, for w > 0,

ζ

w
=

1

η>(ρ− λη)<2d−1>
(ρ− λη)<2d−1> (19)

Scaling the problem by w by replacing c̄ by wĉ, we have a static maximization problem
where different choices of dispersion leads to different λ’s, and different.

Gather the 2d agents’ portfolios in a matrix Ξ. Then we can write

αkΞ∆ = ΓΠΛ> (20)

where ∆ is the diagonal 2d× 2d invertible matrix with the agents’ κ multipliers on
the main diagonal; Π is the diagonal 2d × 2d invertible matrix with the binomial
coefficients

(
2d−1
j−1

)
on the main diagonal; Γ is the matrix of the funds

(
ϕ1, . . . ,ϕ2d

)
;

and Λ is the Vandermonde matrix of the (−λ)’s, i.e. with row j being the geometric
sequence

(
1, −λj , (−λj)2, . . . , (−λj)2d−1

)>, and invertible as the λ’s are distinct.

It remains to find the rank of Γ , and it follows by properties of Vandermonde
determinants and their minors. Pick ` ≤ 2d rows each with ρi nonzero; these rows are
then ρ2d−1

i times a geometric seqeuence
(
1, ηi/ρi, . . . , (ηi/ρi)

2d−1
)
, and we have full

rank whenever these rows have ηi/ρi distinct, but not if two such ratios coincide. Let

12



3 Pseudo-isotropic distributions

` be the maximum number of linearly independent ρi 6= 0 rows, and form a matrix
of these rows and an arbitrary non-null row of the form (0, . . . , 0, η2d

ı̄ ) (equivalent to
ρı̄ = 0 6= ηı̄) – if there is one. If such a non-null row does exist and ` < 2d (= the
number of columns), it is another linearly independent row.

The last statement follows as the unconstrained optimum is spanned by (12), namely
the single fund ϕ1.

(d) This part will implicitely use Lemma 2 so that a continuum of multiplier pairs will
actually chosen by different agents. Observe that in the even-power case, (15) does
not yield (17), but

ζi =
(ρi − ληi

ακ

)k
sign

(ρi − ληi
ακ

)
(21)

which does not expand to a polynomial. Suppose for a counterexample that ρn/ηn >
. . . > ρ1/η1 > 0, with all ηi > 0. Let c̄ grow from minimum dispersion (which is of
the form of the expansion (12)). At the point where the optimum falls outside the
appropriate simplex (e.g. the unit simplex if η = 1 and w = 1), opportunity #1 is
shorted, requiring one more fund.

(e) Finally, assume α ∈ (0, 1]. Then the intersection of each orthant with the exterior of
the unit sphere, is convex. Except in the proportional case, and as long as dimension
exceeds 2, maximizing ζ>ρ subject to being in the plane ζ>η and on the Lα (quasi!-)
sphere, is to move a line in parallel in this plane until the last time intersects the
Lα sphere, which is on a nondifferentable edge of this sphere – that is, when some
coordinate is zero. Remove that coordinate from the model and repeat the argument
until there are only two left (in which case the constraints form a discrete set and the
process cannot be iterated).

Notice that the only way an agent can obtain dispersion as low as c(ζ) = |w|/maxi |ηi|
is to choose all coordinates of ζ as zero except for a (not necessarily unique) i with
highest |ηi| (nonzero, as the Σ matrix is assumed invertible), in which the position
should be w/ηi; note that in case of non-uniqueness, the mimimum dispersion is not
attained by mixing two opportunities, except in the case α = 1. This resolves the
special case. Obviously, a minimum-dispersion portfolio is indespensable, as some
agent would choose minimum dispersion. However, an agent choosing higher dispersion
could very well choose two different opportunities, as the minimum-dispersion portfolio
may not pay off very well in terms of ρi (say, it could be zero).

Remark 12. The last statement of item (c) does not claim that all funds are needed;
although any level of dispersion will be chosen by some agent, it is not necessarily so
that any ŵ will be chosen. Assume – with no claim to realism – that all ρi < 0; then the
opportunities will be shorted, and any upper bound ζ>η(−∞, w̄] with w > 0, would be
inactive. 4

13



3 Pseudo-isotropic distributions

The leverage constraints makes the separation result admit leverage-dependent interest
rates, and also agent-specific. Suppose that agent number a has interest spread of
ra = ra(ξ

>1 ) = ra(ζ
>η) relative to the risk-free opportunity; intuitively it makes sense

that ra has the same sign as ζ>η − w (if it is interest paid). Then the agent’s excess
return at leverage ŵ is not anymore ζ>ρ, but

ζ>ρ− raζ>η.

The following property then easily carries over from the classical case:

Corollary 13. Theorem 11 applies to the case of individual leverage-dependent
interest rate just as for constrained leverage. Also, it admits L = La individual.

Proof. For whatever choice of c̄, ŵ agent a considers, the −raζ>η = −ra(ŵ)ŵ term goes
outside the maximization, and the problem reduces to the problem for an agent with
wealth w = ŵ, choice c̄ and no risk-free opportunity, except that agent a’s position in the
risk-free opportunity does not vanish.

3.3 (When) can we have (what kind of) CAPM?

The answer to the question is of course highly dependent upon what properties one will
impose on a model to apply the «CAPM» name. (Elliptical) CAPM has various elements;
a bullet-shaped convex risk/return set for the risky opportunities, a pricing formula, and
a securities market line where the agents will adapt – applying the elliptical two-fund
separation theorem with or without risk-free investment opportunity. However, two-fund
separation fails without risk-free opportunity in the α ∈ (1, 2) norm symmetric case, and
although we can have zero-beta portfolios corresponding to efficient ones, we cannot then
have a securities market line.

Let us therefore assume that a risk-free opportunity exists, and make the commonplace
assumption of risk-aversion. Then there is an established CAPM for shifted (by expecta-
tion) symmetric ᾱ-stable returns, see e.g. the derivation by Belkacem et al. [2] for ᾱ > 1.
It works as close as we can get it to the elliptical case without having covariance as an
inner product: There is a covariation measure which, unlike covariance, is not symmetric
in the variables (Samorodnitsky and Taqquu’s book [37] is a good reference on stable
distributions, see in section 2.7 for covariation). Dividing the covariation of a security’s
return on (not «and», and not the other way around!) the market portfolio’s return by the
dispersion measured by the standard c( · ), we get a non-symmetric correlation coefficient
which becomes the security’s beta (again, see [2]). In fact, it is possible to represent the
beta in terms of joint moments of an arbitrary order strictly less than ᾱ, see [37, Lemma
2.7.16].

Now consider Lα-norm symmetry; we shall see that CAPM generalizes from the ᾱ-stable
or elliptical case, provided that the index of symmetry is > 1. Let us briefly establish
the derivation, using general c as far as possible. Unlike the previous section, we shall

14



3 Pseudo-isotropic distributions

work with ξ and Σ (otherwise, we would have transformed away the betas at the outset).
Starting from a position in a location–dispersion efficient portfolio ξ∗, the agent can then
consider buying a (sufficiently small) portfolio δ, and scale her position in ξ∗ by a factor
1− b as to maintain the dispersion of the return – by pseudo-isotropy, this is possible. By
efficiency, this (marginal) transaction can not increase the excess return. That is, defining
b as the b(δ) for which

c(δ + [1− b(δ)])ξ∗) = c(ξ∗) (22)

then this perturbation should not yield any higher location parameter («mean», if we
have integrability) – nor any lower, as we could choose −δ in place of δ. Therefore, 0
maximizes δ 7→ (δ>+ [1− b(δ)]ξ∗>)µ, with first-order condition (necessary3 if c and hence
b is smooth)

µ> = (µ>ξ∗)∇b(0 ) (23)

Notice that the set of attainable excess return/volatility pairs for risky portfolios,

{
(
ξ>µ, c(ξ)

)
; ξ>1 = w} (24)

is convex whenever ξ 7→ c is a convex function, and then stationarity is sufficient. By
(23), the betas are ∇b(0 ), which we find by differentiating (22) wrt. δ:

µ = (ξ∗>µ) · β where the betas are β> =
∇c(ξ∗)
∇c(ξ∗)ξ∗

(25)

– for excess returns (add the risk-free return times 1 on both sides if desired). For
symmetric ᾱ-stables treated by [2], this reduces to their formula; indeed, the gradient of
c is one of the possible ways to define covariation ([37, Definition 2.7.3]).

We have a securities market line for α ∈ (1, 2]: The efficient frontier is a concave
function in the (c, excess return) plane, namely a shifted α

√
function, whose derivative

tends to zero at infinity. Just like in elliptical CAPM, there is a unique increasing line
from the risk-free opportunity at the origin, touching the efficient frontier at precisely one
tangency point; this point is the equilibrium market portfolio (by scaling µ until markets
clear; as in the elliptical case, monetary two-fund separation ensures that the sum of all
agents’ portfolios is indeed on the line). To summarize what is shown:

Proposition 14. If a risk-free opportunity exists and the excess returns are of the
form µ plus an Lα-norm symmetric returns distribution with α > 1, we have a CAPM
that characterize excess returns and a securities market line in terms of the betas obtained
by taking ξ∗ to be the market portfolio in (25). The betas can be rewritten as

β> =
∇c(ξ∗)
∇c(ξ∗)ξ∗

=

(
ξ∗>Σ−1

)<α−1>
(Σ−1)>

||(Σ−1)>ξ∗||αα
(26)

where Σ being such that Σ−1X is standard α-symmetric.
3As we assume that a risk-free opportunity, δ could be arbitrary, and therefore and therefore the
directional derivative must vanish in all directions; this in contrast to the case without risk-free
opportunity, where only the zero-market value δ are possible.

15



4 Dynamic market models in discrete and continuous time

The argument breaks down when ξ 7→ c(ξ) is not convex, i.e. when α < 1. And, even
for α = 1 the shifted α

√
curve fails to be strictly convex and fails to have a tangent line

from the origin.

4 Dynamic market models in discrete and continuous time

The results generalize to dynamic models where the price processes have the appropriately
distributed increments – in continuous time, under the addtional assumption of the
semimartingale property. For a motivating example, consider the single-period market
treated this far as a model with decision at the beginning of the period, and consumption
before investment and at the end, where the terminal wealth is consumed. Suppose now
that an agent considers to consume γ and invest ξ. Under the hypothesis of Proposition 6,
the agent can instead invest ξ∗ = c(ξ)ϕ (which yields the same dispersion) and consume
γ+(ξ∗−ξ)>µR0; then terminal wealth (= terminal consumption) has the same distribution,
but initial consumption is higher. This should be preferable to an agent who prefers more
to less, and we will adjust the preference assumption accordingly by modifying the mass
transfer criterion. The case of a bounded number of periods could then be covered by
backwards induction, but we shall treat a case with unbounded horizon. The approach is
based on ([13], which in turn is based on an approach of Khanna and Kulldorff [20] for
the geometric Brownian case), though somewhat more rigorous; we shall first define the
problem on continuous time.

Assumption 15. Assume given the usual stochastic basis, i.e. a filtered probability
space where the filtration F = {Ft}t≥0 is right-continuous with F0 complete. We shall
consider the controlled (through cumulative consumption γ(t) and the Rn-valued portfolio
ξ = ξ(t), both assumed predictable) Itô stochastic process

dV(t) = ξ(t)>
[
µ(t) dt+Σ(t) dZ(t)

]
− dγ(t) (with V(t0) given) (27)

driven by a right-continuous adapted process Z, where µ and Σ are given predictable
processes. We shall consider the following two types of portfolio constraints:

ξ ∈ some radial set H, OR ξ>1 ∈ some set L (28)

where both H and L could be time-dependent, even stochastic if (i) adapted and (ii)
given the past path of V , conditionally independent of everything else. The case without
risk-free opportunity is L = {V (t)}. 4

The dynamics (27) can be given the standard justification as the market value of a
portfolio, self-financing except for consumption, in a continuously traded market with
one «risk-free» opportunity with price S0(t) = 1 ∀t and n risky investment opportunities
{Si} each satisfying an Itô stochastic differential equation with driving noise Z:

dSi(t) = Si(t)
[
µi(t) dt+ σi(t)

>dZ(t)
]
. (29)
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However, it can also be justified as the development of the value of an insurance portfolio,
without trading. It must be remarked that the distributions might (and usually will)
violate limited liability; notice also that we are not logging returns (the Gaussian is
exceptional in that the driving noise and the log of the geometric SDE, are both of
the same type, modulo different drift). It should also be noted that redundance of an
investment opportunity may change over time, and hence the number of investment
opportunities will as well. However, this change can not depend upon the realizations of
the Z itself and its jumps. For pseudo-isotropic increments, there is furthermore (almost
surely) no concern about jumps to zero in one of the Si, which would otherwise require
either the opportunity being reborn or it could disrupt separation properties (this author,
[15]).

Working with discounted figures is a simplication without loss of generality. The
increments Σ dZ now take the rôle of the XR of the single period model. We remark that
we could in principle have a more general drift process which is not absolutely continuous,
but that can be accomplished by a change of time-scale. We shall therefore assume
without loss of generality that Z can be decomposed into an absolutely continuous part
and a purely discontinuous part.

We want to specify what strategies are admissible, but we can first form preferences on
the (consumption, value) pairs. In line with the example at the beginning of the section,
we shall use the following dominance criterion.

Assumption 16. Consider two strategies

(γ, ξ) = {(γ(t), ξ(t))}t≥0 with corresponding wealth process V = {V(t)}t≥0

(γ∗, ξ∗) = {(γ∗(t), ξ∗(t))}t≥0 with corresponding wealth process V∗ = {V∗(t)}t≥0

If the process pairs (γ,V) and (γ∗,V∗) satisfy

(γ∗,V∗) ∼ (γ + γ+,V) where γ+(0) ≥ 0, dγ+ ≥ 0 (30)

then any agent (weakly) prefers (γ∗,V∗). 4

Notice that (30) does not only mean that cumulative consumption γ∗(t) ≥ γ(t) for all
t, but also that – up to equivalence in probability law – the amount consumed on any
time interval is no less. In other words, if the agent can have more to consume at each
instant and the same wealth left, then that is preferred. We shall in this case say that
the strategy (γ∗, ξ∗) dominates (γ, ξ).

4.1 The discrete-time case

This subsection considers discrete-time markets of the following form:

Assumption 17. For the discrete-time model, fix a partition 0 = t(0) < t(1) < . . .,
assume that the parameters µ and Σ are constant on each interval, and restrict the
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4 Dynamic market models in discrete and continuous time

portfolios to the left-continuous step processes

(γ(t), ξ(t)) = (γ(j), ξ(j)) on (t(j), t(j+1)] (31)

(with ξ(0) arbitrary). 4

Note that we do not assume Markovian processes nor controls – in particular, we are
not bound by infinite divisibility, which is necessary for Lévy processes. Indeed, we can
have Z constant except at the t(j).

We can now define risk-aversion under pseudo-isotropy, by the property that an agent
will shun dispersion:

Definition 18. Assume that
(
Z(t(j+1)) − Z(t(j))

)∣∣Ft(j) are pseudo-isotropic with
standard c(j) such that for all j,

ξ(j)>Σ(t(j))
(
Z(t(j+1))− Z(t(j))

)∣∣Ft(j) ∼ c(j)(Σ(t(j))>ξ(j))
(
Z1(t(j+1))− Z1(t(j))

)∣∣Ft(j)
An agent in the discrete-time market is called risk-averse if (s)he (weakly) chooses (γ∗, ξ∗)
over (γ, ξ) whenever the following holds for all times:

γ∗ ∼ γ, (ξ∗ − ξ)>µ ≥ 0, and c(j)(Σ(t(j))>ξ∗(j)) ≤ c(j)(Σ(t(j))>ξ(j)) (32)

4

From this we obtain the following, where the analogy to Theorem 11 might require an
additional time-scaling linear transformation in order to get the standard unit spheres
assumed therein:

Theorem 19. Consider the market model (27) on discrete time 0 = t(0) < t(1) < . . .,
and assume it to be free of arbitrage opportinities and redundant investment opportunities.
Then on each time interval (t(j), t(j+1)], the market inherits those separation (/nondiver-
sification) properties from Theorems 9 (for the case with risk-free opportunity) and 11
(for the case without) which apply to the distribution of X :=

(
Z(t(j+1))− Z(t(j))

)∣∣Ft(j) .
Proof. For each predictable step strategy (γ̄, ξ̄), consider a time step j and put c̄(j) =
c(j)(Σ>ξ(j)). Then generate a strategy (γ∗, ξ∗) piecewise such that

ξ∗ maximizes ξ>(t)µ(t) subject to c(j)(Σ>ξ(j)) = c̄(j) and (28) (33)

and γ∗(j) ∼ γ̃(j) + (ξ∗(j) − ξ(j))>µ(t(j)) · (t(j+1) − t(j)) (34)

– the latter «∼» being an equality if we express the consumptions in feedback form; at step
0, consume γ(0)+ the excess drift, at step 1 consume excess drift plus what you would have
consumed under the (γ, ξ) strategy plugging in your actual «starred» return at time t(1)

into the feedback form, and inductively so. Thus, this strategy (γ∗, ξ∗) dominates (γ, ξ)
in the sense of assumption 16. To resolve the case for the risk-averse agents, generate the
strategy (γ∗∗, ξ∗∗) by keeping γ∗∗ = γ∗, but such that

ξ∗∗ minimizes c(j)(Σ>ξ(j)) subject to ξ>(t)µ(t) = ξ∗>(t)µ(t) and (28) (35)
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Observe that we have not (yet) assumed any time-homogeneity, so the funds may change
from step to step. Indeed, in the case of Lα-norm symmetry without risk-free opportunity,
the number of funds may change from step to step as well, as we have not assumed
time-invariant α. We might very well require the full market in one period, and only two
funds in the next if α shifts to 2. In the following discussion on continuous time, then we
have the property that if α is continuously varying in (1, 2], we may approximate the case
with risk-free opportunity for a two-fund separation property, but not the case without
risk-free opportunity. For simplicity, we are therefore going to assume α-symmetry with
α constant.

4.2 Continuous time

As mentioned above, we shall make a few simplifying assumptions to the continuous-time
case. First, we consider limits through equidistant partitions t(j) = jδ, for δ ↘ 0. Second,
we assume some time-homogeneity of the increments of Z, in α-symmetry for common α
(the Σ(t) taking care of linear transformations). For the continuous-time case, the Itô
integral requires the semimartingale property of Z (in discrete time, all adapted processes
are semimartingales, so this assumption was redundant in the above).

Assumption 20. Z is a semimartingale whose increments
(
Z(T )−Z(t)

)∣∣Ft are pseudo-
isotropic and such that for some α ∈ (0, 2] and some h : (0,∞)→ (0,∞) we have for any
T > t ≥ 0, the equality in distribution

ζ>
(
Z(T )− Z(t)

)∣∣Ft ∼ h(T − t)||ζ||α(Z1(1)− Z1(0)). (36)

Furthermore, Σ(t) is invertible for each t, with t 7→ Σ(t)−1µ(t) left-continuous and
locally bounded, and – if the assumption of no risk-free investment opportunity is made –
also t 7→ η(t) := Σ(t)−11 left-continuous and locally bounded.

Finally, consumption paths γ are restricted to be of finite variation on compacts. 4

Again, no Markov property is assumed. The latter restriction likely requires a comment:
if Z is a has a Brownian (continuous!) component, then an agent could affect the
instantaneous volatility of the process by letting γ fluctuate in a correlating way. This
would of course lead to the objectionable property that cumulative consumption fluctuates
– by intuition, it should be non-decreasing. However, we may allow negative «consumption»
rates from e.g. independent income from other sources. For jumps, it is not the same
issue, as jumps in Z take place «between t− and t» while jumps in the control are only
effective the next instant.

By assumption 20, we can just like in the single-period model work as if Σ were the
identity, at the cost of transforming the no risk-free opportunity condition in terms of η
like in (8). We shall in Theorem 22 below do that, and writing the transformed portfolios
as in Assumption 10 with ζ(t) = Σ(t)>ξ(t).

Given Z, we have now introduced the integral over a dense set of the class of integrands
bounded in probability. The continuous linear extension, applying convergence uniformly
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on compacts in probability (ucp) of sequences of integrands, yields the Itô integral defined
as the limit taken in probability. This general approach to the integral can be found at
least as early as Meyer [27] and Bichteler [3], or for a now-classic reference see Protter’s
book [34, section II.4]; however, a reader who wants a brief account on the concept, might
very well browse Williams’ book review in the AMS Bulletin, [44]. We shall give conditions
where we can discretize, apply Theorem 19, and then apply the limit. Our conditions are
not going to be sharp; for convenience, we assume continuity to pick straigthtforward
representative values for discretization, although generalizations to measurability are
available.

First, we shall introduce an ad hoc concept of risk-aversion for α-symmetric markets
(27) under Assumption 20.

Definition 21. An agent in a continuous-time market under Assumption 20, is called
risk-averse if (s)he (weakly) chooses (γ∗, ξ∗) over (γ, ξ) whenever the following holds for
all t ≥ 0:

γ∗ ∼ γ, (ξ∗ − ξ)>µ ≥ 0, and ||Σ>ξ∗||α ≤ ||Σ>ξ||α (37)

4

On the other hand, the full domain of definition of the Itô integral is rarely used in
finance, as it allows for doubling strategies in finite time (cf. Dudley’s theorem, [9]). This
is not a problem to this model – we are seeking strategies such that the centered parts
are equivalent in probability law but one pays better than the other, so any restriction
which forbids ξ (resp. ζ) whenever it forbids our constructed dominating ξ∗, will be OK.
This is the reason for the somewhat vague «admissibility» (which might impose further
restrictions than (28)!) in the following:

Theorem 22. Consider the continuous-time market (27), and denote ζ(t) = Σ(t)>ξ(t).
Suppose that there applies an admissibility constraint on the portfolios restricting to
left-continuity with right limits, and such that any additional constraints are such that
if one ζ is admissible, then ζ∗ is admissible provided that ζ>dZ and ζ∗>dZ coincide in
probability law.

Then in the continuous-time market, any strategy will be (weakly) dominated by one
whose portfolio solves

max
ζ

ζ(t)>(Σ(t)−1µ(t)) subject to ||ζ(t)||α = c̄ and (28) (38)

and the continuous-time optimization problem inherits any applicable separation / non-
diversification properties from Theorem 9 (for the case with risk-free opportunity) and
Theorem 11 (for the case without) with X :=

(
Z(1)− Z(0)

)
|F0.

Proof. Partition the timeline into t(j) = j2−$, and consider the discretization with
processes represented by the right limit at the left endpoint of the interval – e.g. in terms
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of (31), (γ(j), ξ(j)) = limt↘t(j)(γ(t), ξ(t)). Then at each interval in each partition, the
discrete-time Theorem 19 applies, and we can construct a dominating strategy from the
funds.

Suppose first α = 1, where the unit ball is then strictly convex and the unique dominating
strategy varies continuous with the parameters. Then the following argument holds: The
discretized strategies converge ucp to the continuous-time strategies, by this continuity
and local boundedness of the parameters preserving boundedness in probability; hence
the funds (being merely linear subspaces) do as well. Finally, the (consumption,wealth)
pairs, being Itô integrals, converge in probability, hence in finite-dimensional distributions.
By Assumption 16, the limiting (γ∗(t), ξ∗(t)), with dγ∗ ∼ dγ + (ξ∗ − ξ)>µ dt ≥ dγ, will
dominate, and we have assumed it to be admissible.

For α ≤ 1, the above could fail at certain times, when the agent, depending on
Σ−1µ, swiches from one position to another or reaches indifference. Should we not have
convergence, observe that if there are two distinct combinations of opportunities occurring
in respective infinite subsequences as t+ 2−$ ↘ t, then dispersion and drift will converge
to the same for both subsequences, and each subsequence will in the limit obtain a solution
to problem (38).

5 Concluding remarks

The standard α-symmetric random variables behave quite a bit like the Fama [11] case of
i.i.d. α-stables; indeed, by inspecting Fama’s equations (14)–(17), we see that they do not
depend upon the specific form of the Lα-norm symmetric characteristic function. As a
matter of fact, it is the index of symmetry that is decisive – a special case of this follows,
at least in the integrable case, from Owen and Rabinovitch [33] and the observation that
scaling the uniform on the unit sphere by a univariate symmetric ᾱ-stable, yields ellipticity,
i.e. L2-norm symmetry, and hence they admit the classical 2-fund separation property
even without risk-free opportunity. As we have seen, this holds even in the nonintegrable
case ᾱ ≤ 1, where the i.i.d. case would lead to non-diversification and discontinuity wrt.
the excess drift vector of the optimal adaptation – it is the index of symmetry that is the
crucial, not the index of stability. The separation result holds of course for non-stable
Lα-norm-symmetric distributions as well, and for any other pseudo-isotropics should the
Misiewicz conjecture fail. Furthermore, we have shown CAPM for the case α > 1 with an
explicit form for the beta.

For the case without risk-free opportunity, we note again that it is the geometry of
the standard which is crucial. We have established a k + 1-fund separation result for
1 + 1/k-norm-symmetric variables when k is odd, generalizing the elliptical case k = 1.
Although infinitely, they form a discrete set in a continuum. The result thus appears
much more robust from a central limit theorem considerations, than from a generalized
CLT point of view; if tails are heavy and α < 2 should be considered, then we have no
result for α ∈ (4/3, 2), and α ≤ 4/3 implies infinite 4/3-order moment. Then on the other
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hand, the exact tail index is not necessarily the scope of application for a financial model.
Indeed, with the emergence of quantile measures (the infamous value-at-risk), the risk of
a portfolio is often measured in a way that totally disregards the order of integrability,
and may in certain cases penalize diversification – a property which under our framework
is only compatible with the even heavier-tailed non-integrabile distributions.
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