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THE MEASUREMENT ERROR PROBLEM

IN DYNAMIC PANEL DATA ANALYSIS:

MODELING AND GMM ESTIMATION

ERIK BIØRN

Department of Economics, University of Oslo,

P.O. Box 1095 Blindern, 0317 Oslo, Norway

E-mail: erik.biorn@econ.uio.no

Abstract: The Generalized Method of Moments (GMM) is discussed for handling the joint oc-
currence of fixed effects and random measurement errors in an autoregressive panel data model.
Finite memory of disturbances, latent regressors and measurement errors is assumed. Two special-
izations of GMM are considered: (i) using instruments (IVs) in levels for a differenced version of
the equation, (ii) using IVs in differences for an equation in levels. Index sets for lags and lags are
convenient in examining how the potential IV set, satisfying orthogonality and rank conditions,
changes when the memory pattern changes. The joint occurrence of measurement errors with long
memory may sometimes give an IV-set too small to make estimation possible. On the other hand,
problems of ‘IV proliferation’ and ‘weak IVs’ may arise unless the time-series length is small. An
application based on data for (log-transformed) capital stock and output from Norwegian manu-
facturing firms is discussed. Finite sample biases and IV quality are illustrated by Monte Carlo
simulations. Overall, with respect to bias and IV strength, GMM inference using the level version
of the equation seems superior to inference based on the equation in differences.

Keywords: Panel data, Measurement error, Dynamic modeling, ARMA model, GMM,
Monte Carlo simulation

JEL classification: C21, C23, C31, C33, C51, E21

Acknowledgements: Substantially revised version of paper presented at: Conference on Factor
Structures for Panel and Multivariate Time Series Data, Maastricht, September 2008; the North
American Summer Meeting of the Econometric Society, Boston, June 2009; the 15th International
Conference on Panel Data, Bonn, July 2009; the 64th Econometric Society European Meeting,
Barcelona, August 2009, and seminars at the University of Oslo and Statistics Norway. I am
grateful to Xuehui Han for excellent assistance in the programming and testing of the numerical
procedures and to Terje Skjerpen and conference and seminar participants for comments and
suggestions.



1 Introduction

It is well known that endogenous right-hand side variables correlated with the disturbance

in a static equation biases Ordinary Least Squares (OLS) – the ‘simultaneity problem’ –

and that similar problems arise (A) in a static equation where random measurement errors

affect the regressors and (B) in a dynamic equation where lagged endogenous variables and

autocorrelated disturbances jointly occur. In the (A) case – unless extraneous information,

say parameter restrictions or valid instrument variables (IVs), exist – coefficients cannot

be identified from uni-dimensional data. In the (B) case, consistent estimation is possible

by using lagged values of the exogenous, and the endogenous variables, as IVs. Panel data,

exhibiting two-dimensional variation, may improve the situation, as data transformations

can be performed along one dimension to eliminate heterogeneity, leaving one dimension

available for constructing IVs. Such ideas have been explored for the (A) case in Griliches

and Hausman (1986), Wansbeek and Koning (1991), Biørn (1992, 1996, 2000), Wansbeek

and Meijer (2000, section 6.9), Wansbeek (2001), Biørn and Krishnakumar (2008, Section

10.2), and Xiao et al. (2007, 2010). For the (B) case consistent estimation with finite time

series length is discussed in Balestra and Nerlove (1966), Anderson and Hsiao (1981, 1982),

Harris, Mátyás, and Sevestre (2008), Holtz-Eakin et al. (1988), Arellano and Bond (1991),

Arellano and Bover (1995), Ahn and Schmidt (1995), Kiviet (1995), and Blundell and

Bond (1998).1

In this paper we discuss the Generalized Method of Moments (GMM) to handle the

joint occurrence of random measurement errors and autoregressive mechanisms in panel

data. Motivating examples are: (1) an equilibrium-correcting mechanism for a firm’s

capital-labour ratio motivated by an error-inflicted labour/capital service price ratio,

(2) an autoregressive household consumption function with inadequately measured in-

come and net wealth, (3) an autoregressive equation explaining individual wage rates by

noisy measures of ability, education achievement or work experience. The errors may well

have memory. We will consider autoregressive equations with additive, random measure-

ment errors (errors in variables, EIV) for confrontation with balanced panel data. It is

possible to estimate such equations consistently while eliminating fixed and unstructured

individual heterogeneity in two different ways: letting y and q denote the error-infected

endogenous and exogenous variables, respectively, we can: (a) Keep the equation in level

form and use q- or y-values in differences as IVs for the level q-values. (b) Transform the

equation to differences and use q-or y-values in levels as IVs for the differenced q-values.

GMM estimators which are valid for situations with white noise errors can be modified

to account for finite memory of errors or disturbances by reducing the IV set. The essence

is, loosely speaking, to remove IVs valid for the zero memory case such that all remaining

IVs ‘get clear of’ the memory of the error process, in order to ensure that the IVs and

the error/disturbances are uncorrelated (the orthogonality condition), while ensuring that

1For time-series data, consistent IV estimation of static errors in variables models is discussed in Fuller (1987,
Sections 1.4 and 2.4), among others. Grether and Maddala (1973), Pagano (1974), and Staudenmayer and Buonac-
corsi (2005) discuss distributed lag models for pure time series combining errors in variables and serially correlated
disturbances. Maravall and Aigner (1977), Maravall (1979) and Nowak (1993) discuss identification problems for
such models.
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they are also correlated with the variables for which they serve as IVs (the rank condition).

Certain extensions of static EIV models to cases with finite error memory are discussed

in Biørn (2000, 2003). The present paper sets out to extend these ideas more thoroughly

from static to autoregressive models.

The paper proceeds as follows. In Section 2 we present the basic model and describe

its relation to the literature. The orthogonality and rank conditions and their implied IV

sets are considered and GMM estimation equations in levels and in differences is discussed

in Section 3. An application based on panel data for measures of capital stock and output

volume from manufacturing firms with 10 observations of each unit, supplemented with

Monte Carlo (MC) simulations to illustrate finite sample biases, are presented in Section 4.

We show on the one hand how the transformation from levels to differences and the

following changes in the IV set – inter alia inclusion of IVs based on lagged endogenous

variables to supplement IVs based on exogenous variables – affect the estimation results.

On the other hand the results illustrate how the IV set and its quality and the coefficient

estimates they lead to change when the memory pattern of the latent regressor and error

elements change. Section 5 concludes.

2 An ARMAX-EIV model for panel data

The model under consideration is first-order autoregressive and allows for individual het-

erogeneity and measurement errors in both endogenous and exogenous variables, in a panel

of N individuals, indexed by i, which are observed in T periods, indexed by t:

µit = αi + ξitβ + µi,t−1λ+ uit, |λ|<1,
qit = ξit + ηit,
yit = µit + νit,

ξit ⊥ ηit ⊥ uit ⊥ νit,

(2.1)

E(uit) = 0, E(uitui,t+s) ̸= 0 for |s| ≤ Nu, = 0 for |s| > Nu,

E(νit) = 0, E(νitνi,t+s) ̸= 0, for |s| ≤ Nν , = 0 for |s| > Nν ,

E(ηit) = 0, E(η′
itηi,t+s) ̸= 0, for |s| ≤ Nη, = 0 for |s| > Nη,

i = 1, . . . , N,
t = 1, . . . , T,

where αi is a fixed effect, (µit, ξit) are latent variables where ξit has finite memory Nξ,

(yit, qit) are their observable counterparts, (νit,ηit) are errors with memories (Nν , Nη), uit
is a disturbance with memory Nu, and (λ,β ′, k) are constants. Boldface letters denote

vectors with K elements, rows for variables, columns for coefficients. In general, all

structural and error variables are then allowed to have memory.

Allowing for memory of errors can be motivated by some examples. First, the equation

may include a stock variable, e.g., of finished goods or of production capital constructed by

cumulated flows, in which case (measurement) errors tend to vary cyclically. Second, for a

flow variable like sales, cash-flow and income, the periodization may be incorrect, creating

serial correlation, often negative, between errors which are close in time. Third, a latent

non-stationary variable in levels, integrated of order P with white noise measurement

errors, will have an observed counterpart which after differencing P times is stationary

with MA(P ) errors. An IID property for the latent regressors would have been detrimental
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to identification of slope coefficients, even in the case with zero memory if all errors, as

demonstrated for a related static model in Biørn (2000, Section 2.b).2

Eliminating µit and ξit from (2.1) we obtain

yit = αi + qitβ + yi,t−1λ+ wit,(2.2)

wit = uit + νit − νi,t−1λ− ηitβ,(2.3)

which after a one-period differencing yields

∆yit = ∆qitβ +∆yi,t−1λ+∆wit,(2.4)

Since (2.2) implies

yit = (1−λ)−1αi +
∑∞

s=0 λ
s[qi,t−sβ + wi,t−s],(2.5)

(yit, qi,t+τ ) and wi,t+θ, and hence (∆yit,∆qi,t+τ ) and ∆wi,t+θ, will be correlated for some

(τ, θ), uncorrelated for others. A closer examination is needed to delimit valid IV sets.

This follows in Section 3. We assume that the panel has a finite number of time periods,

T ; all asymptotics refer to the N → ∞ case.

Notable special cases of this setup are:3

(i) EIV static, with memory in errors and disturbances: λ=0.

(ii) EIV static, without memory in errors and disturbances: λ=Nu=Nν=Nη=0.

(iii) ARMAX without errors: ηit=0.

(iv) ARX(1) without errors: ηit=0; Nu=Nν=0.

(v) EIV-ARX(1) without memory in errors: Nu=Nν=Nη=0.

Cases (i) and (v) include Case (ii). Case (iii) includes Case (iv). These special cases relate

to the literature in several ways. Case (ii), and to some extent Case (i), are discussed in

Griliches and Hausman (1986), Wansbeek and Koning (1991), Biørn (1992, 1996, 2000),

Wansbeek (2002), Biørn and Krishnakumar (2008, Section 10.2), and Xiao et al. (2007,

2010). Case (iv) is related to Anderson and Hsiao (1981, 1982), Harris, Mátyás, and

Sevestre (2008), Arellano and Bond (1991), and Arellano and Bover (1995). Holtz-Eakin

et al. (1988) consider Case (iii) and a generalization which allows for higher-order autore-

gression, and also include errors without memory, although in a bivariate context. Notice

also that by specifying the latent regressor vector such that cross-sectional dependence

is allowed for, elements from the literature on factor models for panel data, see, e.g.,

Pesaran (2006), can be accounted for by this setup.

3 GMM estimation

To delimit potential IVs we need to establish the set of ys and qs that satisfy jointly

rank conditions – ensuring correlation between the IVs and the variables in (2.2) or (2.4)

2“· · · to ensure identification of the slope coefficient vector from panel data, there should not be ‘too much
structure’ on the second order moments of the latent exogenous regressors along the time dimension, and not ‘too
little structure’ on the second order moments of the errors and disturbances along the time dimension.” [Biørn (2000,
p. 398)].

3ARX and ARMAX are acronyms for AR and ARMA models with exogenous variables.
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for which they serve – and orthogonality conditions for the IVs and their composite er-

rors/disturbances. How these sets change when the model’s memory pattern changes, is

of particular interest. Another issue is how to address problems related to an excessive

number of ‘weak IVs’.

Index sets for leads and lags

Let the integer τ index the lags(−)/leads(+) and let for arbitrary pairs of variables,

(a, b), (c, d), Za•b denote the set of τ indexes which ensures ai,t+τ and bit to be orthogonal,

and let Sc•d denote the set of τ indexes which ensures ci,t+τ and dit to be correlated. For

our problem, writing (2.2) and (2.4) as

yit = αi + xitγ + wit, xit = (qit, yi,t−1),

∆yit = ∆xitγ +∆wit, ∆xit = (∆qit,∆yi,t−1),
γ =

[
β
λ

]
,

the relevant index sets are:

[1] Z∆q•w≡{τ : cov(∆qi,t+τ , wit) = 0}, Z∆y•w≡{τ : cov(∆yi,t+τ , wit) = 0},
[2] Zq•∆w≡{τ : cov(qi,t+τ ,∆wit) = 0}, Zy•∆w≡{τ : cov(yi,t+τ ,∆wit) = 0},

[3] S∆q•x≡{τ : cov(∆qi,t+τ ,xit) ̸= 0}, S∆y•x≡{τ : cov(∆yi,t+τ ,xit) ̸= 0},
[4] Sq•∆x≡{τ : cov(qi,t+τ ,∆xit) ̸= 0}, Sy•∆x≡{τ : cov(yi,t+τ ,∆xit) ̸= 0}.

The sets [1] and [3] relate to the orthogonality and rank conditions for (2.2), while [2] and

[4] relate to the orthogonality and rank conditions for (2.4),4 and can be derived from

Zq•w≡{τ : cov(qi,t+τ , wit) = 0}, Zy•w≡{τ : cov(yi,t+τ , wit) = 0},(3.1)

Sq•x≡{τ : cov(qi,t+τ ,xit) ̸= 0}, Sy•x≡{τ : cov(yi,t+τ ,xit) ̸= 0},(3.2)

since in general

Z∆a•b = Za•b ∩Za(−1)•b,
Za•∆b = Za•b ∩Za•b(−1),

(3.3)

S∆c•d = Zc•d ∪Zc(−1)•d,
Sc•∆d = Zc•d ∪Zc•d(−1).

(3.4)

Therefore:

The sets Z∆q•w ∩ S∆q•x and Z∆y•w ∩ S∆y•x define the τ -indexes for which
(∆qi,t+τ ,∆yi,t+τ ) give valid IVs for xit = (qit, yi,t−1) in (2.2).

The sets Zq•∆w ∩ Sq•∆x and Zy•∆w ∩ Sy•∆x define the τ -indexes for which
(qi,t+τ , yi,t+τ ) give valid IVs for ∆xit = (∆qit,∆yi,t−1) in (2.4).

Memory pattern and potential IVs

Let (Nq, Nw) and (N∆q, N∆w) be the memory of (qit, wit) and (∆qit,∆wit), respectively.

We have

(3.5)
Nq = max[Nξ, Nη]
Nw = max[Nu, Nν+1, Nη]

=⇒ N∆q = Nq+1,
N∆w = Nw+1.

Also, let Nω =max[Nu, Nν+1] be the memory of the ‘gross disturbance’ in (2.2), ωit =

uit+νit−νi,t−1λ. Since (3.1)–(3.2) imply

4Subscript convention: IVs are placed before •, the composite error/disturbance and the instrumented variable
are placed after • in the Z-sets and the S-sets, respectively.
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Zq•w = {τ : |τ | ≥ Nη+1},
Zy•w = {τ : τ ≤ −(Nω+1)},
Sq•q = {τ : |τ | ≤ Nq},
Sy•q = {τ : τ ≥ −Nξ},
Sq•y = {τ : τ ≤ Nξ},

we find, using (3.3)–(3.4),

Z∆q•w = {τ : τ ̸∈ [−Nη, Nη+1]},
Z∆y•w = {τ : τ ≤ −(Nω+1)},
Zq•∆w = {τ : τ ̸∈ [−(Nη+1), Nη]},
Zy•∆w = {τ : τ ≤ −(Nω+2)},

(3.6)

S∆q•q = {τ : −Nq ≤ τ ≤ Nq+1},
S∆y•q = {τ : τ ≥ −Nξ},
S∆q•y(−1) = {τ : τ ≤ Nξ},
Sq•∆q = {τ : −(Nq+1) ≤ τ ≤ Nq},
Sy•∆q = {τ : τ ≥ −(Nξ+1)},
Sq•∆y(−1) = {τ : τ ≤ Nξ−1}.

(3.7)

The potentially valid IVs thus obtained are:5

Equation in levels, IVs in differences. General case

Potential IVs for qit:

[A]: ∆qi,t+τ for τ ∈(Z∆q•w ∩ S∆q•q) =⇒ τ ̸∈ [−Nη, Nη+1] & τ ∈ [−Nq ≤ τ ≤ Nq+1].

[B]: ∆yi,t+τ for τ ∈(Z∆y•w ∩ S∆y•q) =⇒ τ ∈ [−Nξ,−(Nω+1)].

Potential IVs for yi,t−1:

[C]: ∆qi,t+τ for τ ∈(Z∆q•w ∩ S∆q•y(−1)) =⇒ τ ̸∈ [−Nη, Nη+1] & τ ≤ Nξ.

[D]: ∆yi,t+τ for τ ∈(Z∆y•w ∩ S∆y•y(−1)) =⇒ τ <−(Nω+1).

Equation in differences, IVs in levels. General case

Potential IVs for ∆qit:

[A]: qi,t+τ for τ ∈ (Zq•∆w ∩ Sq•∆q) =⇒ τ ̸∈ [−(Nη+1), Nη] & τ ∈ [−(Nq+1), Nq].

[B]: yi,t+τ for τ ∈(Zy•∆w ∩ Sy•∆q) =⇒ τ ∈ [−(Nξ+1),−(Nω+2)]

Potential IVs for ∆yi,t−1:

[C]: qi,t+τ for τ ∈ (Zq•∆w ∩ Sq•∆y(−1)) =⇒ τ ̸∈ [−(Nη+1), Nη] & τ ≤ Nξ−1.

[D]: yi,t+τ for τ ∈(Zy•∆w ∩ Sy•∆y(−1)) =⇒ τ ≤ −(Nω+2).

From (3.5) it follows that in general

Increasing Nξ =⇒ Increasing Nq =⇒ Potential IV set extended.

Increasing Nω =⇒ Increasing Nw =⇒ Potential IV set diminished.

Increasing Nη =⇒ Increasing Nw =⇒ Effect on Potential IV set indeterminate.

For the potential IV set to be sufficiently large, the latent regressors must have a sufficiently

long and the disturbances and errors in the endogenous variables must have a sufficiently

short memory. Since an increase in the error memory of the exogenous variables increases

the memory of both q and w in general, its effect on the potential IV set is indeterminate.

5Note that the sets [C] and [D] have elements in common with the sets [A] and [B].
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If Nη ≥ Nξ, no valid ∆q-IV for q and no valid q-IV for ∆q exist. If Nω ≥ Nξ, no ∆y can

be an IV for q and no y can be an IV for ∆q.

If the disturbance and the errors have no memory (Nη =Nu =Nν =0 =⇒ Nq =Nξ >

0, Nw=1), confer Case (v) above, we get

Z∆q•w = {τ : τ ̸= 0, 1},
Z∆y•w = {τ : τ ≤ −2},
Zq•∆w = {τ : τ ̸= −1, 0},
Zy•∆w = {τ : τ ≤ −3},

(3.8)

S∆q•q = {τ : −Nξ ≤ τ ≤ Nξ + 1},
S∆y•q = {τ : τ ≥ −Nξ},
S∆q•y(−1) = {τ : τ ≤ Nξ},
Sq•∆q = {τ : −(Nξ+1) ≤ τ ≤ Nξ},
Sy•∆q = {τ : τ ≥ −(Nξ+1)},
Sq•∆y(−1) = {τ : τ ≤ Nξ−1},

(3.9)

so that the potentially valid IVs become:

Equation in levels, IVs in differences. No error memory case

Potential IVs for qit:

[A]: ∆qi,t+τ for τ ∈ (Z∆q•w ∩ S∆q•q) =⇒ τ = −Nξ, . . . ,−2,−1, 2, 3, . . . , Nξ+1,

[B]: ∆yi,t+τ for τ ∈ (Z∆y•w ∩ S∆y•q) =⇒ −Nξ≤τ≤−2.

Potential IVs for yi,t−1:

[C]: ∆qi,t+τ for τ ∈ (Z∆q•w ∩ S∆q•y(−1)) =⇒ τ = . . . ,−3,−2,−1, 2, 3, . . . , Nξ,

[D]: ∆yi,t+τ for τ ∈ (Z∆y•w ∩ S∆y•y(−1)) =⇒ τ≤−2.

Equation in differences, IVs in levels. No error memory case

Potential IVs for ∆qit:

[A]: qi,t+τ for τ ∈(Zq•∆w ∩ Sq•∆q) =⇒ τ = −(Nξ+1), . . . ,−3,−2, 1, 2, . . . , Nξ,

[B]: yi,t+τ for τ ∈(Zy•∆w ∩ Sy•∆q) =⇒ −(Nξ+1)≤τ≤−3.

Potential IVs for ∆yi,t−1:

[C]: qi,t+τ for τ ∈(Zq•∆w∩Sq•∆y(−1)) =⇒ τ = . . . ,−4,−3,−2, 1, 2, . . . , Nξ−1,
[D]: yi,t+τ for τ ∈(Zy•∆w ∩ Sy•∆y(−1)) =⇒ τ≤−3.

For several (N,T ) combinations, the number of orthogonality conditions may be very

large, which suggests that some potential IVs should be omitted. The ‘weak instrument’

problem for AR(1) panel data models using variables in differences, combined with what

Roodman (2009) characterizes as ‘instrument proliferation .... an underappreciated prob-

lem .... in the application of difference and system GMM’, give reasons for ‘curtailing’ the

IV sets. Aspects of the problem, related, inter alia, to small-sample bias and estimation

efficiency, are also discussed by Altonji and Segal (1996) and Ziliak (1997). The way the

IV set is ‘curtailed’ in the empirical application will be described in Section 4.

Let xit=(qit, yi,t−1), γ=(β′, λ)′ and write (2.2) and (2.4) as

yit = αi + xitγ + wit,(3.10)

∆yit = ∆xitγ +∆wit.(3.11)
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After stacking by periods,
yi1
yi2
...
yiT

 =


αi

αi
...
αi

+


xi1

xi2
...

xiT

γ +


wi1

wi2
...

wiT

 ,


∆yi2
∆yi3
...

∆yiT

 =


∆xi2

∆xi3
...

∆xiT

γ +


∆wi2

∆wi3
...

∆wiT

 ,
the equations, in system format, subscripts L and D denoting Level and Difference, re-

spectively, read

yLi = αi +XLiγ +wLi,(3.12)

yDi = XDiγ +wDi.(3.13)

For xit in (3.10), we use an IV vector in differences, and for ∆xit in (3.11), we use an IV

vector in levels, defined as respectively,

zDi(t) = Qt∆xit,(3.14)

zLi(t,t−1) = P t,t−1xit,(3.15)

where Qt and P t,t−1 are selection matrices which comply with the above conditions. The

implied IV matrices for XLi and XDi are, respectively,

ZDi = diag[x ′
Di(1),x

′
Di(2), . . . ,x

′
Di(T )],(3.16)

ZLi = diag[x ′
Li(2,1),x

′
Li(3,2), . . . ,x

′
Li(T,T−1)],(3.17)

where ‘diag’ denotes block-diagonalization.

The estimators for γ in (3.12) and (3.13) considered are ‘step-two’ GMM, of the form

γ̃L = {[
∑

iX
′
LiZDi][

∑
iZ

′
DiŵLiŵ

′
LiZDi]

−1[
∑

iZ
′
DiXLi]}−1(3.18)

× {[
∑

iX
′
LiZDi][

∑
iZ

′
DiŵLiŵ

′
LiZDi]

−1[
∑

iZ
′
DiyLi]},

γ̃D = {[
∑

iX
′
DiZLi][

∑
iZ

′
LiŵDiŵ

′
DiZLi]

−1[
∑

iZ
′
LiXDi]}−1(3.19)

× {[
∑

iX
′
DiZLi][

∑
iZ

′
LiŵDiŵ

′
DiZLi]

−1[
∑

iZ
′
LiyDi]}.

where ŵLi and ŵDi are residuals from ‘step-one’ GMM estimators; see Davidson and

MacKinnon (2004, Sections 9.2-9.3).

The present application of GMM can be specialized to a standard ARMAX model and

to a static EIV model. The similarities in and the differences between the way GMM is

applied in these boundary cases can be summarized as follows:

Common features: (a) GMM exploits orthogonality and rank conditions delimiting poten-

tial IVs, and can be implemented on the equation in differences with IVs in levels, or on

the equation in levels with IVs in differences. At least one should be in differences to

account for the heterogeneity represented by the fixed effects. (b) In choosing level IVs

for an equation in differences, values for periods other than those defining the differences
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should be selected, while in choosing difference IVs for an equation in levels, the periods

represented by the levels should be excluded. (c) When memory of the errors or distur-

bances are allowed for, the IV set should be diminished to ensure that all IVs ‘get clear

of’ the memory of the composite error processes, while the IVs are correlated with the

variables for which they serve.

Discrepancies: (a) For the ARMAX model, only lagged exogenous and endogenous vari-

ables are potential IVs. Their validity follows from the model’s memory pattern. For

the static EIV model, lagged and leaded values of endogenous and exogenous variables

can serve as IVs, provided that certain mild additional conditions are satisfied. (b) The

ARMAX model has a memory pattern which rationalizes the orthogonality and rank con-

ditions, while the static EIV model has no such ‘intrinsic’ memory pattern. (c) While for

the static EIV model, (leaded or lagged) y-values may serve as IVs for other ys, for the

ARMAX model, no y-values can be valid IVs for other ys.

4 An illustration

Empirical example

For our illustrative application we utilize data from N=136 Norwegian firms in the Pulp

& Paper/Chemicals/Basic Metals industries, observed in T = 10 years (1984–1993). We

consider a relationship between an assumed endogenous measure of capital in machinery,

k, and an assumed exogenous measure of the sector’s output, q, both log-transformed

(K = 1) and believed to be error-ridden. The capital-output relationship is particularly

relevant for this purpose. First, it exemplifies well dynamic modelling with panel data, in

a case where it is disputable whether to express the relationship in levels or in changes

– contrast the acceleration principle in some business-cycle theories with the constant

capital coefficient (elasticity) assumption in certain economic growth theories. Second,

both capital stocks and output flows are notoriously difficult to measure. To prevent an

excessive number of potentially weak lagged y-IVs, only the q- and y-IVs listed under [A]

and [B] in Section 3 are included.6 The results are presented in Tables 1 through 4.

Four constellations of memory length for the errors are considered: (Nν , Nη, Nξ) =

(0, 0, 4), (0, 1, 4), (1, 1, 4), (0, 2, 4); for the disturbance a zero memory (Nu=0) is assumed

throughout. The latter is no essential limitation, as Nω =max[Nu, Nν+1], For each con-

stellation, parallel results when including only q-IVs and including both q- and y-IVs as

described above, are provided – giving a total of eight variants. In columns 1–2, only the

latent regressor ξ is assumed to have a 4-period memory, in columns 3–8 error memory,

shorter than the regressor memory, is also allowed for. For each set of results are reported

p-values for Sargan-Hansen J -tests for orthogonality, confer Hansen (1982), Newey (1985),

and Arellano and Bond (1991); and p-values for F-tests for IV validity/strength based on a

‘concentration measure’, confer Staiger and Stock (1997) and Bun and Windmeijer (2010).

Standard R2 indexes of goodness of fit, are supplemented by R2 measures based on pre-

6A computer program in the Gauss software code, version 7.0, cf. Gauss (2006), constructed by Xuehui Han in
cooperation with the author, is applied. The reported standard errors are calculated from the GMM formulae as
described in Biørn and Krishnakumar (2008, Section 10.2.5).
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diction errors for equations estimated by IVs, as proposed by Pesaran and Smith (1994),

the latter denoted as PSR2 in the tables. The orthogonality J -test statistics are, for the

level version and the difference version, respectively,

JL = [
∑

i ŵ
′
LiZDi][

∑
iZ

′
DiŵLiŵ

′
LiZDi]

−1[
∑

iZ
′
DiŵLi],

JD = [
∑

i ŵ
′
DiZLi][

∑
iZ

′
LiŵDiŵ

′
DiZLi]

−1[
∑

iZ
′
LiŵDi].

Under the null hypotheses they are asymptotically distributed as χ2 with degrees of free-

dom equal to the number of overidentifying restrictions, i.e., the number of orthogonality

conditions less the number of coefficients estimated under the null.

Consider first estimation from a static equation in levels. All estimates of the capi-

tal elasticity β exceed one (Table 1). Introducing a one- or two-period memory in the

measurement errors, while retaining the four-period memory of the latent regressor, has

a small impact on the coefficient estimates, and the p-values of the J -test indicate non-

rejection of the orthogonality conditions when only qs are included in the IV set (p-values

above 0.1). Including also y-IVs (columns 2, 4, 6 and 8), both R2 measures are increased,

while the p-values of the J -tests are below 5%, when zero or one-period memory of the

measurement error in output is assumed (Nη = 0 or 1), which indicates rejection. How-

ever, if the measurement error memory is increased to 2, non-rejection of the (diminished)

set of orthogonality conditions follows for both selections of IVs (column 8, p-values 28 %

and 43 %, respectively).

For a corresponding AR(1) equation in levels (Table 2) we get β estimates which depart

substantially from those for the static equation, while the λ estimates are close to one,

which – not surprisingly – signalizes substantial persistence in the capital adjustment.

Overall, the β estimates are negative although not significantly different from zero. The

conclusions from the J -tests are similar to those for the static equation when only q-IVs

are included. A notable difference between the AR(1) equation and the static equation,

is that for the memory constellation (Nν , Nη, Nξ) = (1, 1, 4) when both q- and y-IVs are

included, the orthogonality conditions are not rejected in the former case and rejected in

the latter (p-value 17.0% against 2.7%).

For the static equation in differences (Table 3)7 all β estimates are positive, but none

exceed 0.04, and only a few are significantly positive (5% one-sided test). The estimates

are higher when error memory is allowed for than when it is neglected. The goodness of fit,

according the PSR2, is poor, and markedly worse than indicated by standard R2. As all

J -tests have p-values less than 5%, rejection of the orthogonality conditions is indicated.

For memory constellations (Nν , Nη, Nξ) = (0, 1, 4), (1, 1, 4), however, the p-values are only

slightly below 5%.

The corresponding results for an AR(1)-equation in differences (Table 4) depart sub-

stantially from the estimates based on the level equation: the λ estimates are in the range

0.6–0.8 and depart significantly from both 0 and 1. Both the β and the λ estimates are

higher when error memory is allowed for than when it is neglected. Overall, the p-values

7Because of (3.5), Nξ−Nν ≥3 must hold to ensure an IV set sufficiently large to make GMM estimation

feasible.
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for the J -tests when only q-IVs are used, suggest non-rejection of the orthogonality con-

ditions, but when they are supplemented with y-IVs, rejection is indicated. Unlike the

corresponding results for the level version of the equation (Table 2), the p-values of the

F-tests for IV strength in Table 4 clearly signalize a ‘weak IV’ problem. The latter comes

as no surprise, however, since capital stock time series usually have strong persistence.

Blundell and Bond (1998), discussing GMM estimation of a more restrictive AR(1) equa-

tion, transformed to first-differences, in a non-EIV context, conclude that this procedure

can have very poor finite sample properties in terms of bias and estimator precision when

the series considered are persistent, because then the IVs are weak predictors for the

differenced endogenous variable.

The two overall conclusions with respect to IV-validity we can draw from the capital-

output example in Tables 1–4 then become: (i) Inclusion of y-IVs tends to violate the

orthogonality conditions. The tendency is clearest for the static equation in differences

with IVs in levels. (ii) Among the four model versions, the IV-set seems to be weakest for

the AR(1)-equation in differences. This holds both when only q-IVs are used and when

they are combined with y-IVs.

Simulation experiments

To examine finite sample properties of the GMM estimators considered, we supplement

the above results with Monte Carlo (MC) simulations. Basic statistics are collected in

Tables 5 and 6. The experiments relate to a panel design with dimension parameters

K=1, N =100, T =10, rather similar to the empirical example in Tables 1–4. The num-

ber of replications is set to R= 200. Two coefficient sets resembling the estimates from

the empirical example are considered, where part A mimics a static equation and part B

an ARX(1) equation with the same unitary long-run coefficient:

A: β = 1, λ = 0,

B: β = 0.3, λ = 0.7.

The latent regressor ξit is generated as the sum of two independent components, a time

invariant, normally distributed part with expectation 5, and an MA(4)-process with zero

mean. For the measurement error in the exogenous variable, ηit, both a white noise, an

MA(1) process, and an MA(2) process are considered. For the measurement error in the

endogenous variable νit and the disturbance uit, white noise is assumed in all experiments.

The individual heterogeneity (assumed fixed in the model in Section 2) is generated by

a similar process. The memory parameters, the other distributional assumptions and the

parameter values are given below (IIN denoting i.i.d. normal):8

χi ∼ IIN(5, 0.1), αi ∼ IIN(0, 0.1), uit ∼ IIN(0, 0.1), νit ∼ IIN(0, 0.1),

Nξ = 4 : ξit = χi+ψit+0.8ψi,t−1+0.6ψi,t−2+0.4ψi,t−3+0.2ψi,t−4, ψit∼ IIN(0, 0.1),

Nη = 0 : ηit = ϵit,
Nη = 1 : ηit = ϵit+0.5ϵi,t−1,
Nη = 2 : ηit = ϵit+0.5ϵi,t−1+0.25ϵi,t−2, ϵit∼ IIN(0, 0.1).

8This implies: var(ξit) = 0.32 and var(ηit) = 0.1, = 0.125, = 0.13125 for Nη = 0, 1, 2, respectively.
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Simulations: Equation in levels. The means of the simulated β-estimates from the static

equation in levels (Table 5, part A) are lower than the values assumed, i.e., negative finite

sample bias in E(β̂). The bias is smallest in the no error memory case (mean of estimates

0.9573 and 0.9479 in the q-IV and the qy-IV cases, respectively, roughly 5% below the

assumed value of 1.) When data are generated from the static equation (λ=0), the means

of the simulated λ-estimates are negative, although with so large standard errors that ‘non-

rejection’ of λ=0 at conventional significance levels is indicated. In the ARX equation in

levels (Table 5, part B), the mean of the simulated β-estimates, in the range 0.32–0.34,

exceed, for all six combinations of error memory and IV selection, the value assumed, 0.3,

indicating positive finite sample bias in E(β̂) of about 10%. The counterpart is that the

means of the simulated λ estimates, in the range 0.65–0.68, indicate an underestimation

of 3–6%, as the assumed value is 0.7. The bias is smaller when both q-IVs and y-IVs are

included than when only q-IVs are used.

The means of the standard error estimates of both the β and the λ estimates are for

both the static and the ARX-equation very close to the empirical standard deviations

of the estimates. Which measure is used to assess estimator precision hence seems to

be of minor importance. Supplementing q-IVs with y-IVs reduces the standard errors

both when the data are generated from the static equation (panel A) and from the ARX

equation (panel B). For the former, both the orthogonality J -test statistics and the F-

test statistics for IV-strength are satisfactory, as judged from the mean values of their

respective p-values. While for the ARX equation the orthogonality J -test statistics are

satisfactory, the overall strength of the IV-set, as indicated by the F-test statistics, seems

weak. We can interpret this as indicating that adding y-IVs to q-IVs ‘weakens’ the IV set

when the AR parameter is a large as 0.7, even for the equation in levels.

From Table 5 we also see that the range of the 200 simulated estimates (‘MAX’ minus

‘MIN’) increases when the IV set is diminished following from an increased memory of the

‘noise’ in the exogenous variable (Nη). This result may also reflect the increased variance

of the ‘noise’ relative to the variance of the ‘signal’ (Nξ).

Simulations: Equation in differences. Considering the equation in differences (Table 6),

we find for both the static equation (part A) and the ARX-equation a sizable negative

finite sample bias for both β and λ. For the static equation, the means of standard error

estimates come out with values which are very close to the empirical standard deviations

of the estimates for both β and λ. Adding y-IVs to q-IVs for the equation in differences,

reduces the standard errors of the estimates both when the data are generated from the

static equation (panel A) and from the ARX equation (panel B). In this case, however, the

means of se(β̂) lie somewhat below the empirical standard deviations of the β̂ estimates

(0.1425 against 0.1701 for Nη = 0, 0.1574 against 0.1605 for Nη = 1, and 0.1775 against

0.1903 for Nη = 2). On the other hand, for the λ estimates, we find no similar discrepancy

between the two ways of computing standard errors.

The bias, indicated by the difference between the mean of the estimates and the value

assumed, is overall larger when using the equation in differences than when keeping it in

levels. When neither disturbances nor measurement errors are assumed to have a memory,
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Nu =Nν =Nη =0, we obtain, for example, a mean equal to β̂ = 0.65 when the data are

generated by (β, λ)=(1, 0) (panel A) and a mean equal to β̂ ≈ 0.2 when (β, λ)=(0.3, 0.7)

is assumed in the data generation (panel B), i.e., a negative bias exceeding 30%. When

the data are generated from (β, λ) = (1, 0), the negative bias when using q-IVs is larger

when the measurement error in the exogenous variable is an MA process than when it is

white noise (mean β̂ = 0.65, 0.54, 0.53 for Nη = 0, 1, 2, respectively). Also for λ there is a

negative bias, as the mean of the λ estimates is negative (the two last columns of part A).

Also with respect to IV-quality, the test statistics show a marked difference between the

static equation and the ARX-equation. For the static equation (Table 6, panel A), both the

orthogonality J -test statistics and the IV-strength F-test statistics for IV-strength come

out with satisfactory values when only q-IVs are included, again as judged from the means

of their respective p-values. Including also y-IVs a ‘weak IV problem’ is indicated. For the

ARX equation (Table 6, panel B), the p-values of the orthogonality tests seem acceptable

only when q-IVs are used alone. The means of the p-values for the F-tests based on the

concentration measure indicate a ‘weak IV problem’ even when only q-IVs are considered.

Overall, these simulations suggest ‘poor IV quality’ of the chosen procedures for GMM

estimation of an ARX equation in differences.

Again, the range of the 200 simulated estimates (‘MAX’ minus ‘MIN’) increases when

the IV set is diminished, following from the increased memory of the noise.

Overall, these Monte Carlo simulations indicate that when performing GMM estimation

of a panel data equation with individual heterogeneity, it is preferable to keep the equation

in levels and using IVs in differences rather than transforming the equation to differences

and using IVs in levels. This is the recommendation both with regard to finite sample

bias – in both cases there is a non-negligible underestimation of the coefficients in the

mean – and with regard to instrument validity and reliability. The results also suggest

that one should be careful not to rely too strongly on y-IVs as supplements to q-IVs and

to select y-IV candidates with care. It therefore seems that our decision of curtailing, in

a somewhat informal way, the potential set of y-IVs when constructing the actual set of

q- and y-IVs, and hence restricting ‘IV proliferation’, is well founded.

5 Concluding remarks

In this paper we have considered an application of the GMM that can handle jointly the

heterogeneity problem and the measurement error problem in static and dynamic panel

data models under different assumptions for the error memory. These problems are often

intractable when only pure (single or repeated) cross section data or pure time series data

are available, in the sense that consistent estimators are unavailable because of lack of

identification. Estimators using either equations in differences with level values as IVs,

or equations in levels with differenced values as IVs seem a priori useful candidates when

panel data are at hand. GMM exploits certain orthogonality conditions and certain rank

conditions, which jointly delimit a class of potential IVs. Transformation to differences

is performed to eliminate fixed heterogeneity (or random heterogeneity correlated with
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regressors). GMM estimation can be implemented: (a) on the equation transformed to

differences with IVs in levels, or (b) on the equation in levels using IVs in differences. It

is important that at least one of the two are in differences in order to get clear of the

nuisance created by the individual effects.

For the pure ARMAX model, only a selection of lagged endogenous and exogenous

variables can be IVs. For the static EIV model a selection of lagged and leaded endogenous

and exogenous variables are potential candidates. For the mixed ARMAX-EIV model

here considered it is convenient to let index sets represent the leads and the lags in the

observed endogenous and exogenous variables which jointly satisfy the orthogonality and

rank conditions. AR, ARX, ARMA, and ARMAX models have a memory pattern which

rationalizes both the orthogonality condition and the rank condition for the IVs. For the

special case with a static EIV model, a memory pattern which satisfies the rank condition

must be postulated as a supplement. For the present mixed model a trade-off exists

between the memory lengths of the latent regressors, the errors and the disturbances.

Long memory of errors or disturbances may make the number of valid IVs insufficient.

There is, however, an asymmetry between the memory of the errors of the endogenous

and of the exogenous variables in this respect.

Using levels as IVs for differences or vice versa as a general strategy for GMM esti-

mation, is known to raise ‘weak instruments’ problems in pure AR or ARX models with

no measurement errors. The same is true for the more complex model considered here,

but not to the same extent when using the equation in levels and when using the version

in differences. Operationalizing procedures to identify such weak IVs within the potential

IV set, the number of which may be a large even for moderate time series length, is a

challenge for future research. The simulation experiments performed, considering their

obvious limitations, suggest that a GMM estimation strategy in which the equation in

kept in levels and the IVs used in differences performs far better than the frequently used

difference transformation, not least with respect to finite sample bias and IV strength.

Also for the capital-output relationship example considered, the former seems to outper-

form the latter by a considerable margin. The results again indicate that care should be

taken not to rely too strongly on lagged values of endogenous variables as IVs even if they

satisfy IV-requirements on a priori grounds. A strategy curtailing the set of potential IVs

is well founded.
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Biørn, E. (2000): Panel Data with Measurement Errors. Instrumental Variables and GMM Estimators
Combining Levels and Differences. Econometric Reviews 19, 391–424.

Biørn, E. (2003): Handling the Measurement Error Problem by Means of Panel Data: Moment Methods
Applied on Firm Data. Chapter 24 in Econometrics and the Philosophy of Economics, ed. by B.
Stigum. Princeton: Princeton University Press, 2003.

Biørn, E., and Krishnakumar, J. (2008): Measurement Errors and Simultaneity. Chapter 10 in The Econo-
metrics of Panel Data. Fundamentals and Recent Developments in Theory and Practice, ed. by L.
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Table 1: Static capital adjustment equation in levels. IVs in differences
N = 136, T = 10. Different memory pattern and IV selection. Standard errors in parenthesis.

Memory constellation: Nu = 0, (Nν , Nη, Nξ) =

(0, 0, 4) (0, 1, 4) (1, 1, 4) (0, 2, 4)

q-IV qy-IV q-IV qy-IV q-IV qy-IV q-IV qy-IV

β= coef. of q 1.1378 1.1716 1.1408 1.1862 1.1408 1.1750 1.1405 1.1996
(0.0368) (0.0284) (0.0387) (0.0272) (0.0387) (0.0295) (0.0405) (0.0262)

R2 0.0944 0.1412 0.0619 0.1077 0.0619 0.0931 0.0388 0.0868
PSR2 0.0926 0.1390 0.0606 0.1061 0.0606 0.0916 0.0379 0.0855
J-test,p= 0.1182 0.0433 0.1499 0.0434 0.1499 0.0270 0.2791 0.4276
F -test,p= 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0005 0.0001
# IVs 52 70 36 54 36 47 22 40

J-test = Hansen-Sargan orthogonality test.
F -test = Staiger-Stock IV Validity test based on concentration parameter

Table 2: AR(1) capital adjustment equation in levels. IVs in differences
N = 136, T = 10. Different memory pattern and IV selection. Standard errors in parenthesis.

Memory constellation: Nu = 0, (Nν , Nη, Nξ) =

(0, 0, 4) (0, 1, 4) (1, 1, 4) (0, 2, 4)

q-IV qy-IV q-IV qy-IV q-IV qy-IV q-IV qy-IV

β= coef. of q -0.0020 -0.0059 -0.0031 -0.0079 -0.0031 -0.0059 -0.0057 -0.0095
(0.0049) (0.0053) (0.0064) (0.0065) (0.0064) (0.0061) (0.0056) (0.0056)

λ= coef. of y−1 1.0014 1.0063 1.0015 1.0081 1.0015 1.0060 1.0039 1.0100
(0.0040) (0.0045) (0.0052) (0.0055) (0.0052) (0.0051) (0.0050) (0.0049)

R2 0.0709 0.1231 0.0452 0.0966 0.0452 0.0790 0.0282 0.0806
PSR2 0.0709 0.1231 0.0452 0.0966 0.0452 0.0790 0.0282 0.0806
J-test,p= 0.1840 0.0282 0.5283 0.0407 0.5283 0.1699 0.4306 0.0080
F -test,p= 0.0039 0.0012 0.0058 0.0009 0.0058 0.0016 0.0409 0.0039
# IVs 44 59 30 45 30 39 18 33

J-test = Hansen-Sargan orthogonality test.
F -test = Staiger-Stock IV Validity test based on concentration parameter
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Table 3: Static capital adjustment equation in differences. IVs in levels
N = 136, T = 10. Different memory pattern and IV selection. Standard errors in parenthesis.

Memory constellation: Nu = 0, (Nν , Nη, Nξ) =

(0, 0, 4) (0, 1, 4) (1, 1, 4) (0, 2, 4)

q-IV qy-IV q-IV qy-IV q-IV qy-IV q-IV qy-IV

β= coef. of ∆q 0.0152 0.0167 0.0260 0.0312 0.0260 0.0286 0.0248 0.0346
(0.0106) (0.0101) (0.0153) (0.0151) (0.0153) (0.0151) (0.0194) (0.0199)

R2 0.1260 0.1661 0.0754 0.1192 0.0754 0.1032 0.0542 0.1012
PSR2 0.0042 0.0053 0.0046 0.0077 0.0046 0.0061 0.0030 0.0073
J-test,p= 0.0226 0.0080 0.0462 0.0009 0.0462 0.0004 0.0044 0.0000
F -test,p= 0.2311 0.0476 0.0001 0.0000 0.0001 0.0000 0.0045 0.0000
# IVs 52 70 36 54 36 47 22 40

J-test = Hansen-Sargan orthogonality test.
F -test = Staiger-Stock IV Validity test based on concentration parameter

Table 4: AR(1) capital adjustment equation in differences. IVs in levels
N = 136, T = 10. Different memory pattern and IV selection. Standard errors in parenthesis.

Memory constellation: Nu = 0, (Nν , Nη , Nξ) =

(0, 0, 4) (0, 1, 4) (1, 1, 4) (0, 2, 4)

q-IV qy-IV q-IV qy-IV q-IV qy-IV q-IV qy-IV

β= coef. of ∆q 0.0126 0.0098 0.0214 0.0169 0.0214 0.0178 0.0168 0.0149
(0.0121) (0.0111) (0.0131) (0.0106) (0.0131) (0.0104) (0.0163) (0.0129)

λ= coef. of ∆y−1 0.6117 0.6007 0.6943 0.6330 0.6943 0.6453 0.7749 0.6384
(0.0795) (0.0841) (0.1088) (0.0938) (0.1088) (0.0834) (0.0826) (0.1044)

R2 0.1367 0.2007 0.0804 0.1572 0.0804 0.1158 0.0563 0.1396
PSR2 0.0535 0.0908 0.0455 0.0916 0.0455 0.0662 0.0323 0.0820
J-test,p= 0.2034 0.0409 0.0878 0.0099 0.0878 0.0181 0.0420 0.0058
F -test,p= 0.7564 0.6255 0.0825 0.0934 0.0825 0.0556 0.1596 0.1530
# IVs 44 62 30 48 30 41 18 36

J-test = Hansen-Sargan orthogonality test.
F -test = Staiger-Stock IV Validity test based on concentration parameter
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Table 5: MC simulations of GMM. Equation in levels, IVs in differences

A. β = 1, λ = 0, N = 100, T = 10, R = 200

(Nu, Nν , Nη , Nξ) = (0, 0, 0, 4)

q-IV qy-IV q-IV qy-IV
β̂ se(β̂) β̂ se(β̂) λ̂ se(λ̂) λ̂ se(λ̂)

MEAN 0.9573 0.0568 0.9479 0.0525 0.0397 0.0540 0.0484 0.0511
STDEV 0.0593 0.0550 0.0566 0.0540
MAX 1.1313 1.1002 0.1783 0.1943
MIN 0.7952 0.8129 -0.1330 -0.1138

J-test, mean p = 0.4313 0.4136
F -test, mean p = 0.0174 0.0017

(Nu, Nν , Nη , Nξ) = (0, 0, 1, 4)

q-IV qy-IV q-IV qy-IV
β̂ se(β̂) β̂ se(β̂) λ̂ se(λ̂) λ̂ se(λ̂)

MEAN 0.8309 0.1276 0.8238 0.0990 0.1685 0.1265 0.1736 0.0983
STDEV 0.1422 0.0976 0.1398 0.0968
MAX 1.3060 1.1155 0.5305 0.3937
MIN 0.4495 0.5983 -0.2530 -0.1147

J-test, mean p = 0.4850 0.4572
F -test, mean p = 0.0002 0.0000

(Nu, Nν , Nη , Nξ) = (0, 0, 2, 4)

q-IV qy-IV q-IV qy-IV
β̂ se(β̂) β̂ se(β̂) λ̂ se(λ̂) λ̂ se(λ̂)

MEAN 0.8417 0.1762 0.8304 0.1180 0.1511 0.1758 0.1631 0.1178
STDEV 0.1873 0.1230 0.1865 0.1240
MAX 1.3328 1.1165 0.8391 0.4874
MIN 0.1607 0.5139 -0.3170 -0.1149

J-test, mean p = 0.5393 0.4822
F -test, mean p = 0.0023 0.0001

B. β = 0.3, λ = 0.7, N = 100, T = 10, R = 200

(Nu, Nν , Nη , Nξ) = (0, 0, 0, 4)

q-IV qy-IV q-IV qy-IV
β̂ se(β̂) β̂ se(β̂) λ̂ se(λ̂) λ̂ se(λ̂)

MEAN 0.3296 0.0515 0.3189 0.0354 0.6591 0.0651 0.6786 0.0399
STDEV 0.0531 0.0367 0.0664 0.0410
MAX 0.4797 0.4175 0.8141 0.7724
MIN 0.2011 0.2378 0.4896 0.5645

J-test, mean p = 0.4838 0.4150
F -test, mean p = 0.0003 1.0000

(Nu, Nν , Nη , Nξ) = (0, 0, 1, 4)

q-IV qy-IV q-IV qy-IV
β̂ se(β̂) β̂ se(β̂) λ̂ se(λ̂) λ̂ se(λ̂)

MEAN 0.3306 0.0670 0.3186 0.0395 0.6577 0.0849 0.6784 0.0443
STDEV 0.0712 0.0371 0.0926 0.0418
MAX 0.6307 0.4513 0.8492 0.7695
MIN 0.1273 0.2356 0.3219 0.5310

J-test, mean p = 0.4840 0.4136
F -test, mean p = 0.0027 1.0000

(Nu, Nν , Nη , Nξ) = (0, 0, 2, 4)

q-IV qy-IV q-IV qy-IV
β̂ se(β̂) β̂ se(β̂) λ̂ se(λ̂) λ̂ se(λ̂)

MEAN 0.3358 0.0936 0.3174 0.0433 0.6508 0.1190 0.6808 0.0484
STDEV 0.0874 0.0458 0.1097 0.0507
MAX 0.7242 0.5148 0.8851 0.8144
MIN 0.0968 0.1908 0.2289 0.4640

J-test, mean p = 0.5392 0.4501
F -test, mean p = 0.0139 1.0000
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Table 6: MC simulations of GMM. Equation in differences, IVs in levels

A. β = 1, λ = 0, N = 100, T = 10, R = 200

(Nu, Nν , Nη , Nξ) = (0, 0, 0, 4)

q-IV qy-IV q-IV qy-IV
β̂ se(β̂) β̂ se(β̂) λ̂ se(λ̂) λ̂ se(λ̂)

MEAN 0.6504 0.1641 0.6708 0.1348 -0.0954 0.0707 -0.0554 0.0441
STDEV 0.1502 0.1267 0.0707 0.0464
MAX 1.1245 1.0097 0.0665 0.0746
MIN 0.2265 0.3537 -0.3039 -0.1766

J-test, mean p = 0.4069 0.3811
F -test, mean p = 0.1488 0.9995

(Nu, Nν , Nη , Nξ) = (0, 0, 1, 4)

q-IV qy-IV q-IV qy-IV
β̂ se(β̂) β̂ se(β̂) λ̂ se(λ̂) λ̂ se(λ̂)

MEAN 0.5375 0.1863 0.6116 0.1497 -0.3408 0.1628 -0.0498 0.0472
STDEV 0.2007 0.1609 0.1397 0.0500
MAX 1.1840 1.0376 0.0031 0.0741
MIN 0.0050 0.1675 -0.7168 -0.2013

J-test, mean p = 0.5028 0.4134
F -test, mean p = 0.0005 0.9999

(Nu, Nν , Nη , Nξ) = (0, 0, 2, 4)

q-IV qy-IV q-IV qy-IV
β̂ se(β̂) β̂ se(β̂) λ̂ se(λ̂) λ̂ se(λ̂)

MEAN 0.5349 0.2448 0.6217 0.1729 -0.3390 0.2150 -0.0336 0.0496
STDEV 0.2404 0.1795 0.1890 0.0470
MAX 1.4225 1.0134 0.1765 0.1003
MIN -0.1379 0.0779 -0.8865 -0.1616

J-test, mean p = 0.5161 0.4397
F -test, mean p = 0.0053 1.0000

B. β = 0.3, λ = 0.7, N = 100, T = 10, R = 200

(Nu, Nν , Nη , Nξ) = (0, 0, 0, 4)

q-IV qy-IV q-IV qy-IV
β̂ se(β̂) β̂ se(β̂) λ̂ se(λ̂) λ̂ se(λ̂)

MEAN 0.2054 0.1820 0.1853 0.1425 0.6392 0.0298 0.5379 0.0302
STDEV 0.1863 0.1701 0.0270 0.0305
MAX 0.6243 0.6747 0.7037 0.6245
MIN -0.3033 -0.3058 0.5616 0.4132

J-test, mean p = 0.2215 0.0310
F -test, mean p = 1.0000 1.0000

(Nu, Nν , Nη , Nξ) = (0, 0, 1, 4)

q-IV qy-IV q-IV qy-IV
β̂ se(β̂) β̂ se(β̂) λ̂ se(λ̂) λ̂ se(λ̂)

MEAN 0.1953 0.2155 0.1605 0.1574 0.6549 0.0300 0.5549 0.0305
STDEV 0.2250 0.1893 0.0282 0.0284
MAX 0.9139 0.7928 0.7260 0.6126
MIN -0.6706 -0.5070 0.5856 0.4759

J-test, mean p = 0.2857 0.0128
F -test, mean p = 1.0000 1.0000

(Nu, Nν , Nη , Nξ) = (0, 0, 2, 4)

q-IV qy-IV q-IV qy-IV
β̂ se(β̂) β̂ se(β̂) λ̂ se(λ̂) λ̂ se(λ̂)

MEAN 0.2006 0.2849 0.1777 0.1775 0.6729 0.0302 0.5678 0.0309
STDEV 0.2737 0.1903 0.0315 0.0330
MAX 0.9096 0.7465 0.7621 0.6345
MIN -0.4063 -0.4825 0.5729 0.4644

J-test, mean p = 0.3530 0.0048
F -test, mean p = 1.0000 1.0000
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