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Behavioral Multistate Duration Moddls:

What should they look like ?

by
John K. Dagsvik

Research Department, Statistics Norway and thel-@entre
for Economic Research

Abstract

This paper discusses how specification of prolsthilimodels for multistate duration data generated
by individual choices should be justified on a gritheoretical grounds. Preferences are assumed
represented by random utilities, where utilities wiewed as random also to the agent himself.,First
the paper proposes a characterization of exogemaisrences, (that is, in the special case with no
state dependence effects). The main assumptiomtsagkat when preferences are exogenous the
current and future indirect utilities are uncortethwith current and past choices, given unobséggab
that are perfectly known to the agent. It is demrasd that under rather weak and general regylarit
conditions this characterization yields an explisitucture of the utility function as a so-called
Extremal stochastic process. Furthermore, from thilgy representation it follows that the choice
process is a Markov Chain (in continuous- or digctame), with a particular functional form of the
transition probabilities, as explicit functions thie parameters of the utility function and choieé¢ s
Subsequently, we show how the model can be extermwedlow for structural state dependence
effects, and how such state dependence effectbeadentified. Moreover, it is discussed how a
version of Chamberlain’s conditional estimation Inoet applies in the presence of fixed effects.
Finally, we discuss two examples of applications.
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1. Introduction

The issue of functional form in behavioral relasan the social sciences is a problematic one. In
contrast to physics where the theory of the phemameunder study often yields a complete
characterization of the corresponding quantitasitrectural relations, the theories in social sadsnc
are typically qualitative and imply little guidanas regards explicit mathematical functional form.

This paper discusses how to justify functionalnforelations of duration models. More
precisely, we consider how hazard functions andstt@n probabilities generated by individual
choice behavior in continuous-or discrete time #hdoe modeled. We assume a probabilistic
formulation in which preferences are representedtiiies that not only are perceived as random to
the researcher, but are also viewed as randometitlividual agent. Psychologists have found that
preferences often appear to be random to the &geself, cf. Thurstone (1927) and Tversky (1969).
The explanation is that the agent may express smroertainty in their evaluation of alternatives and
consequently assess different values to the sameeemingly equivalent alternative, at different
points in time. This includes updating of prefendue to information that arrives at random points
in time (as perceived by the ageht).

In general, preferences may be serially correlaleel to habit persistence, structural state
dependence and unobserved heterogeneity. Unobsketerbgeneity stems from unobservables that
may be perfectly known, or partly uncertain, to #gent. See Heckman (1981a) for a lucid discussion
within a multivariate probit framework. In sevemahalyses it is of interest to separate the genuine
effect on preferences (or choice constraints) duehbice experience on one hand (structural state
dependence), from the effect from unobserved hgesimity and habit persistence on the other. It is
known that this identification problem cannot bétled by statistical methods alone. Additional a
priori theoretical restrictions are needed, seeekxample Heckman, (1981a,b, 1991), Jaggia and
Trivedi (1994) and Magnac (2000). The theory pregos this paper implies an explicit functional
form characterization of the model that brings wstep further towards resolving the identificatafn
state dependence effects.

We first provide a characterization of the indivadls preferences and the implied choice
model in the special case with no state dependeoceljitional on the information of the agent. That
is, we propose a characterization of the utilitpresentation and the corresponding choice model,
conditional on unobservables that are perfectlyknito the agent. Sometimes it may be reasonable to

represent unobservables by fixed or random efféictsllows from the setting described above that

! For an overview of duration model with particulaference to economics, see van den Berg (2001).

2 This type of uncertainty is thus different frone lottery setting with uncertain outcomes, becalsmugh the utilities may
vary from moment to moment in a manner that isfulbt predictable to the agent, the decision preaamnsists of selecting
the alternative with the largest momentary utilapd, at the moment of choice, the utilities arevian to the agent.



since preferences may contain elements that adomario the agent himself the conditional utility
representation given the agents (current) inforonatnay be random (to the agent). Moreover, even in
the case with no state dependence there may bé¢ peaisistence implying that the conditional
preferences are serially correlated (given thermédion of the agent). Subsequently, we extend the
characterization to the case that allows for stmattstate dependence. Let the “reference case” be
defined as the special case with no state depeadénthis case we propose an intuitive definitdn
what one should understand by random preferences l@xogenous. Specifically, this definition
asserts that in the reference case, the indirddly Wtonditional on unobservables known by the
agent) at any current or future point in time isldpendent of current and previously chosen
alternatives (states). The underlying intuitiorthiat since the utility function represents the eaf
the respective states, once maximum utility has ksshieved, it should (in the reference case) be
irrelevant for level of maximum utility which of ¢hstates that yields the maximum. This assumption
seems almost inescapable: In fact, if this weresptot all relevant aspects of the states woald b
captured by the utility function since knowledgeatthe actual choice and the choice history would
represent relevant information about the level ted titility of the current choice. However, this
contradicts the notion of utility as an “ideal” exlwhich by definition is meant to capture the eatd
all relevant aspects of the states.

Under suitable regularity assumptions, it follofsam this definition of exogenous random

preferences that the utility),; (t) of statej at timet, viewed as a stochastic process in time (and

conditional on unobservables known to the ager@olmes a so callextremal process(possibly
with deterministic drift). The Extremal processasalogous to the Brownian motion. Whereas the
updating algorithm for the Brownian motion has fineperty that the realization in the current period
is obtained as the sum of the realization at thewipus period plus an independent increment, the
realization of the Extremal process in the currpatiod equals the maximum of the previous
realization (possibly depreciated) and an indepentiecrement”. Current utilities may depend on the
utilities in the previous period due to habit pstesnce. The corresponding conditional choice poces
(given the unobservables known to the agent) tuwuisto be a Markov chain with a particular
functional form of the transition probabilities @sad functions) in terms of parameters of the
underlying utility function.

Evidently, the assumption of the reference cas#ten too restrictive. We therefore discuss
how the framework may be extended to allow forcdtiral state dependence. In this case the Markov
property will no longer hold. As mentioned abougistextended modeling framework allows us to
separate structural state dependence effects fatnh persistence provided we know the distribution

of unobservables than are known to the agent.



Dagsvik (2002) has provided an alternative axiara@ipn of behavioral duration models.
Specifically, he proposed an intertemporal versabnlA and demonstrated that it implies extremal
utility processes. In contrast to Dagsvik (200B)s tpaper allows the utilities to be interdependent
across alternatives, with multivariate extreme eallistribution. Also the regularity conditions
assumed by Dagsvik (2002) are considerably strotiigerthe ones postulated in this paper. It follows
that the results of Dagsvik (2002) are special €a$¢he results of this paper.

Whereas the results referred to above are obtainddr the assumptions of choice sets being
constant over time, we also consider the case wtteieze sets may be non-decreasing over time. A
general treatment of time varying choice sets ésydver, rather complicated, and the analysis &f thi
case is left for another occasion. However, in fizadt may not be evident how interesting it is in
applications to allow for time varying choice ssisce one may always approximate the case where
some alternatives disappear by weighting down thidéas of the respective alternatives so thatythe
become very unattractive and consequently will strm@ver be chosen although they formally belong
to the choice set.

In many applications it is of interest to allow falternative-specific fixed or random effects.
Recall that the model structure is derived cond#dloon unobservables that may sometimes be
represented by random- or fixed effects, and ithexefore of particular interest to allow for such
effects in our framework. We discuss identificatiarthis case and we indicate how one can derive
conditional maximum likelihood estimation proceduri these cases, similarly to Chamberlain
(1980).

Another interesting challenge is the potential esien of the framework developed in this
paper to models for discrete dynamic programmimngjlar to Rust (1987). A full treatment of the
case with uncertainty and stochastic dynamic progrmg is, however, beyond the scope of the
present paper and will be discussed elsewhere.

The paper is organized as follows: In section 2pn@pose a characterization of the utility
function as a random function of time (utility pess) and we derive their implications for the
stochastic structure of the utility process. Inteec3 we derive implications for the corresponding
probabilistic choice model for the case with nordasing choice sets. In section 5 we discuss how
one can allow for structural state dependence misédtion 6 we deal with identification. In section
we discuss how to apply the modeling frameworkrtalgze labor supply and sectoral mobility in a

static and a life cycle setting, respectively.



2. Characterization of preferences

We shall now assert assumptions with the purposebtdining a theoretical justification of the
gquantitative structure of the model. L®be the universal set of alternative, that is,rtteximal set of
available alternatives, and let it be representethb index set {1, 2, ..., m}. The actual choice Bet
may be equal t& or be a proper subset §f In this section we assume that the actual cheete do
not vary over time. LeU, (t) denote the agent’s utility of being in staf@lternative) at time (or age

t), jOS, utility function is assumed to be a random functitn the context of life cycle analysis it
may be thought of as a reduced form value functiepresenting current and future uncertain
prospects. Letl(t) denote the chosen alternative (state) f®at timet, Z,(t) a vector of exogenous
and observable alternative-specific attributes, &1{t) an exogenous random variable that represents

the unobservables characterizing alternafivat time t that are perfectly known by the agent.

Moreover, leth(t)={J) 3, s<} and U(t)={Uj(9, s<t j=1,2,...mhThat is, h(t) represents the

choice history prior ta and U(t) represents all the agent’s utilities prior to tilmeAnalogous to

Heckman (1981a), a fairly general utility represdioh of preferences may be written as
(2.1) U; (1) =g;(Z;®).€ ©)ht),UE).7;0)

where g, (] is a suitable deterministic function. Wherefst) is known to the agent, the variable
n7,(t) is random to the agent, in the sense of Thurs{d827). Since utility is random, the function

{J(9, t>0} will be a random process. Thurstone’s argumengafiowing tastes to be random to the

agent himself was that agents are viewed as haliffigulties with assessing a precise and defieitiv
value of the respective alternatives. Evidence fraimoratory experiments as well as everyday
observations indicate that, (i) the agents may tiasee for variation, (i) they may find it hard to
assess the value of the alternatives because thgypeunsure about their tastes and their pereeptio
may be influenced by fluctuating moods and whirig,they may have limited information about the
alternatives and may receive unanticipated infoignadver time.

Let {U(D),t=20} s{(U(), U{)},...,U.(D), t =0} denote the utility function (vector of utilities)

of the agent.



Assumption 1 (definition of exogenous random pr efer ences)

Conditional on the agent’'s informatiothe value procesdmax, U, (7),t =7 >s}, restricted
to the time interval[s f], is independent of the choice history prior to{d(7),7<§, for any

O<s<t

Note that the assertion in Assumption 1 is onlgpssed to hold conditional on the agent's
information. It asserts that the indirect utility ttme t is independent of current and past choices.
Recall first that in the standard deterministic ldyaheory the indirect utility is fully determinkby
income, prices and possible constraints. Thus, keaye of which alternative is the most preferred
does not represent additional information of refeeafor the determination of the indirect utility
function. Consider the stochastic setting. For $icitp, consider the special case of choice belhaato

one point in time. As in the deterministic casee timdirect utility max U, ¢) is completely

determined by preferences and choice constrainisef) income and choice set). Thus, when
preferences are exogenous, and consequently uteafféy previous choice experience, knowledge
about J(t) will not represent information that is relevamr fassessing the value of thevel of

max U, ¢). If max U, t) were correlated with the choidé) it would mean that not all information

that is relevant for the agent’s indirect utilisy gaptured by the utilities, which means that ttikéyu
function would be ill defined. To further facili@tinterpretation consider a large number of
independent replications of a choice experimemidépendent” means here that the respective random
terms are drawn independently across experimentdifferent replications the choices and the
indirect utilities may be different due to diffetesiraws of the random terms. However, if the inclire
utility and the choice were correlated it would mehat the c.d.f. of the indirect utility, givenath
state 1 (say) was chosen would be different froencrresponding c.d.f. given that state 2 (say) was
chosen. This appears inconsistent with the fadt tthe agent’'s perception about the value of each

alternative is fully represented by the utility @ion.

Assumption 2
At each given point in time t, and conditional e tagent’'s information, the utility process

has the following properties:

0] U (t) =v(t) + (1),

v(t) is a deterministic vector andj(t) is a random vector that is independentuf). Moreover, v(t)
can attain any value iR",

(i) {U,(9,t=0} is independent of the procesgéd (1), U (1),...,U,(t)),t =0}



and

(i) {U(?),t =0} is continuous in probability

Note that the separability condition in (i) ishet weak. For example, the GEV (Generalized
Extreme Value) model fulfils this condition. Dags\.994) has demonstrated that within the class of
random utility models the GEV model implies no @gfal) restrictions on the choice probabilities.
Note that the assertion thaft) is independent of(t) doesnot necessarily imply that the stochastic

process{&(1),t =0} is independent of the deterministic procgsst), t=0}. For example, even if

£(t) and v(t) are independent(t) may depend on(s) for somes < t. Using the notation of eq. (2.1)
we note thatg, (t) = g; (L](t),/]j (t)). Condition (ii) does not seem to be an essentliotion due to

the fact that at most utility differences can beniified (in a distributional sense), see Strad$59,
Corollary 1, p. 40). This condition is necessary &hieving central theoretical results. However,
some results obtained in this paper will continudald even if assertion (iii) is dropped, as wallsh
discuss below. Condition (iii) is a regularity pesty and the concept “continuity in probability”

means that the probability thdy; (s)-U, (1) J, for any >0, tends towards zero astends

towardst. In our context continuity in probability is a ngr weak condition, and it does not imply that
the sample paths of the process (), t=0} are necessarily continuous. For example, a sttichas
process with jumps may still be continuous in phility. The continuity-in-probability condition oyl
implies that the jumps of the process cannot ottoar frequently”.

Although the additive separability conditions ¢f)Assumption 2 is a typical one that is often
routinely invoked, it is nevertheless ad hoc froteoretical perspective. It can however, be giaen

theoretical interpretation and justification, whieke shall now address.

Assumption 2' (Product rulg
Let R(j,k)=P(U,(t)>U,(t). At any point in time t, and conditional on the age
information, the Product rule
RUKR(kNR(r, )= R(.rR (k)R (k, j),
holds, for any distinctj,k,r O0S.

The intuition behind the product rule goes asofefi: Suppose that an individual is making

choice from the setj, k, r}. Provided the choices are independent, the lefd lséde is the probability

of the intransitive chairnj >~k >r > j, whereas the right hand side is the probabilitthefintransitive



chain j>r >~k > j, where = means “preferred to”. This assertion is called Bneduct rule The

Product rule can thus be interpreted as assettiigan intransitive chain in one direction is nairen
probable than an intransitive chain in anotherddiom. One can demonstrate that the Product rule
holds if and only if
: exp{; (t))
R(j.k)= J :
exp{y; (t)+ expl €))

for distinct j,k OS, where{v,(9} are deterministic terms that are unique up todaliti@e constant,

see Luce and Suppes (1965, p. 350). It is well kntmat the binary choice probabilities can be

rationalized by thedditively separableandom utility modelJ; (t) =v; (t) + ¢, (t), where the random
error termse; (t), jUS, are independent with c.d&xp(- expEx )) This result proves that under the

Product rule the utility function admits an add#iy separable structure. Moreover, for binary césic
there is no loss of generality by letting the ramderror terms be independent. Thus, the Produet rul
has a nice theoretical interpretation (in that depa from transitivity is random) and it implidsat

one can represent preferences by additive randditieat® Before we introduce the next assumption
we need an additional definition. Byationaryenvironmentve mean that the observed covariates that

influence the utility processes are constant aves.t

Assumption 3
In a stationary environment the utility vector pess converges to a stationary process as

time increases.

This is an intuitively plausible assumption. Thasen why we require time to be large is that
there may be possible “upstarting” effects, whichyrgradually fade away.

The axioms above have important implication whighshall discuss below.

Theorem 1
Assumptions 1 to 3 hold and only if the updating equation for the utiliprocesses
{U, (t),t =0} is given by

2.1) U, () =max(U; 6)-(t-96,W( s})

% In principle, the Product rule can also be tesimut-parametrically. In the present setting suctirtgss however not
straight forward in the case of habit persistenmu@observables.



for 0<s<t, where  W(s)=(W(s) W( sk... W( s) is  independent  of
U(s) =(U,(9, U,(9,..., U, (9) and has standard multivariate type Ill extremeueat.d.f. given by
(2.2)

P(W(s 9= >§=exr{—j Hlexp(w ¢ > x).exp@ 1 ¥ X )....exply (9 x)) exp( €7 6) 91}

whered is a positive constanty, (t), j =1,2,...m  are deterministic terms,

2.3) H(Y) =exp(y,) + H( o, % )

His a positive decreasing function onR™with the properties; H(0,0,...,0F

lim H (yz, Yarees ym) =00, when ytends towardso, for any j > 2 and for any real z,

(2.4) H(zy, 2y4,... 2%)= z{ ¥, ¥ ),

and H(Y,,¥,,....Y,) satisfies conditions that ensures that €Xp(y,, ¥s,-..,¥,)) is a well defined
multivariate c.d.f. MoreovefU (1),t 3} is a strictly stationary Markovian process.

Conversely, (2.1), (2.2) and (2.4) imply that Asgtiom 1 holds, (even if (2.3) does not hold).

The proof of Theorem 1 is given in Appendix A. Bldhat Theorem 1 states that the structure
in (2.1), the distribution function oN(s 1),as well as the independence propaftys §) 0 W s, 1),
when (s,t) n (s, t)=0,are implied by Assumptions 1 to 3. This is indeetharkable and far from
intuitive.

The term@ may be interpreted aspaeference discourfactor. This parameter plays a crucial
role in the developments below because it is adetgrminant of habit persistence, to be discussed
further below. We note that a particular multivégisype Il extreme value distribution function yda
a major role her&This distribution is well known within the theoof discrete choice and it implies
the so-called GEV model (Generalized Extreme Valseg McFadden (1978). As regards conditions
that ensure thatx{- H(yz, Yas-- Y, ) IS @ multivariate c.d.f. we also refer to McFad@978). By
standard multivariate type Il extreme value disition we mean that the corresponding marginal

distributions are equal texp(— expEx ))

The next result follows readily from Theorem 1.

4 McFadden (1978) calls this distribution the Gelized Extreme Value distribution.



Corollary 1
Assume that time is discrete. Then under the gssumof Theorem 1 the utility functions

have the structure,
(2.5) U =max(U; (t-)-6w t)+7, ¢)
where 7(t) = (7,(t),n,t),....7,, ¢)).t = 1, 2, ..., are independent and independent ofdéterministic

terms,{w;(9} , and has standard multivariate type Il extremé&seadistributed given by

(2.6) P(7(t) < x) =exp(—H(expEx ), expt X ),....exp(x, ))
where the function H satisfies (2.3) and (2.4) aedessary conditions for the right side of (2.6bh&o

a multivariate c.d.f., with one- dimensional uniae marginal distributions equal tb

(2.7) P(7,(t) < x) =exp(- ex(- X)) .

The proof of Corollary 1 is given in the appendix.

A stochastic process with the property (2.2), aitth &=0,is called anextremalprocess in
probability theory, see for example Resnick (198Vg. shall call the process that satisfies (2.2h wit
6=0, a modified extremal processThus, the modification consists in allowing foreference
depreciation represented I8y Usually, in the absence of state dependencetgffde deterministic

terms{w,(9} depend on time through time-dependent covarigten ¢ is large there would be no
dependence on the past and in this case, so thiasinaseJ; (t) =w, (t) +7, (). If we drop Axiom 3
then we may also allovy to be equal to zero. Note also that in the statprasew,(t) does not

depend or.

The extremal processes belong to a more genass$ df stochastic processes called max-
stable processes. Max-stable processes have therfyrdhat they allow one to apply the maximum
operation without “leaving the class”. That is, theximum of independent max-stable processes is
also a max-stable process. This is analogous toléiss of Gaussian processes, which is closed under
aggregation. The class of modified extremal praeess also closed under the maximum operation.
The modified extremal process is, possibly apapmfrdeterministic depreciation, a pure jump
stochastic process. In our context this meansthgatcurrent” utility has the role of an “anchoring
level such that unless the values of new stimutieex the anchoring level, utility will not be upelgt

The deterministic depreciation means that the “arinly”’ effect at a given point in time gradually

® There seems to be some confusion in the statigitesdture as regards notation. What some auttedtgype 11l extreme
value distributions, others call type |. Here wedadopted the convention of Resnick (1987).

10



fades away as time passes. This interpretatioonsistent with results from psychological research
where it is typically found that individuals do pesd to stimuli only if they are sufficiently strgnin
fact, representations similar to (2.1) or (2.5) énav long history in psychology and measurement
theory and stem from empirical evidence indicatimaf individuals seem not to react to stimuli usles
their intensity exceeds sorsensory thresholdrhis notion of sensory threshold was introducgdhe
philosopher Herbart (1824), see Gescheider (198¥)the present case this means that habit
persistence can be interpreted as a setting wheragent does not pay attention to some “stimuli”,
unless the stimuli exceed some threshold determiiyeprevious utility evaluations. Thus, with this

interpretation, if w,(t) +7,(1)<U;(t-1)-6, the agent will not react to the new stimulus and,

accordingly, will not update her or his preferen¢apart from depreciation). This interpretation is
similar to Fechner's (1860/1966) notion of “justio@able differences” (jnd). The moments of time
updating occurs may not necessarily relate to detwents, but could be due to sudden glimpses of
“insight” at which epochs it is realized that utilre-evaluations are needed because the valugezhjo
from the respective states is not the same asd tsbe. Re-evaluations may of course also happen
due to unanticipated information that arrives. Special case witl#= 0, corresponds to the situation
in which the agent has “perfect” memory and fixedtés in the sense that previous preference
evaluations and tastes are retained perfectly firetthe agents mind. Unless some of the systematic
utility components changes, there will be no chaafjstate in this case. The case with posittve
corresponds to the case with “imperfect” memornythia sense that previous utility evaluations are
depreciated and, as a result, the current arridtigiulus will be taken into account provided
w; (D) +n,()>U,; (t-1)-6.

Although this and similar interpretations are ies#ing, they are by no means crucial for the
theoretical justification of our approach. It idfazient for the rationale of our approach to rely the
intuition of Assumption 1.

Note that it follows from Theorem 1 and Corolldryhat the utilities at any point in time are
multivariate extreme value distributed. To realizis, consider for simplicity the discrete time e&s

which

(2.8) U (t) =maXe,. (WE)+7@)- ¢-7)),
which by Corollary 1 implies that the c.d.f. d{t) has the form

(2.9 P(U(t) < x) =ex —Zt: e’ H( expw( )- x)j

wherew(r) = (W(7), W (7),...,W, €)), X=(X, %,..., %, ) and
H(exp@w ()- x)))= H(expfy € - % ),exp@s £ ¥ % ),....expf 7(9 %))

11



Clearly, the expression in (2.9) is also a mulia@ extreme value distribution as is easily vedfi
The corresponding choice probabilities for being istate at any given point in time follows by @sin

the familiar formula for GEV choice probabilitiesge McFadden (1978).

3. Implicationsfor the choice probabilitiesin continuoustime

3.1. Time-invariant choice sets
We shall now explore the implications from the the@bove for the structure of the choice

probabilities in the case where the choice set dumschange over time, and where potential

unobservable known to the agent are given. #orR"we define H®(y), obtained fromH (y), by

settingy; =0 when jOB. (cf. McFadden, 1978).

Theorem 2

Under the assumptions of Theorem 1 it follows t{lMt),t>0} is a Markov chain. The

corresponding transition-and state probabiliti¢€,(s 3} and{P,(9}, can be expressed as

V. () -V
(3.0 Q (s 9= P( )= 13($=)=%,
fors< j, j=12,..m,i# j,jUB
(3.2) Q(s9)=1- > Q(s)

KOBY }

and

V. (t
(3.9 P.()=P(J()= j):z'v( >
where
(3.4) V,(t) =exp(EY; (t)+ Ht):j expfy € »6r )H? ((expwg ) or+ ¢

and wherec,is a positive parameter that captures the valuebeing in state j at time zero

andH ]B denotes the partial derivative with respect to cormgnt j .

The proof of Theorem 2 follows from Dagsvik (1988¢e Appendix A for details. Reshick
and Roy (1990) has extended the result of Theoreto 2he case where the joint p.d.f. of
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U (t) = U, (1), U,(t),...U,, t)), at each given point in timte does not necessarily exist. This means that
the functionH(y) is not necessarily jointly differentiable.

Recall that the term§w (9, t=0}, which are treated as deterministic in this sectioay

depend on variables that are known to the agennbyserved to the researcher. As mentioned above,
the parameteé is closely linked to the serial dependence ofuiilgy processes, see Dagsvik (2002).
One can show that

ka(s)
(3.5) Corr(manDBUk (), max,sU, ¢ ) ={| &

2 Vi(®)

kOB

where the functior? (x), xD[O,]] , is given by Tiago de Oliveira (1973), and equals

(3.6) Z(x) = —%I%dz.

It can be shown tha{ (x) is continuous and strictly increasing on [0,1]lwi(0)=0 and (1) =1.

Alternatively, one can also show that (Resnick Rog, 1990),

2 V(9
(3.7 Corr (expt- max.gU, 6)),expt may,U, ))='mzsv ®

kOB

As measures of dependence the expressions ing(305)3.7) are equivalent since they differ onlyaby
strictly increasing transformation. From (3.4)atléws that WhenZkDBVk(s)/ZmBVk(b - 0, then

Hence, the corresponding autocorrelation in (3rf8) @.7) tend towards zero in this case, suchithat

the limit there is no serial correlation in tastisfollows readily from Theorem 2 that in this eas
Q(s 9= R(9) where

exp(, ©)H; (expi ¢))
. expln, ¢)H (exp ¢))

kOB

(3.8) ()=

The expression in (3.8) is the familiar formula tbe choice probabilities of the GEV family, see

McFadden (1978). In the other extreme case wélen0,then >~ Vi (9/) "V (9<1 for s<t

and finite fort, but ast tends towards infinity this ratio tends towardsvhjch corresponds to perfect
serial dependence in tastes.
From Theorem 2 we see that an important implicatib(modified) extremal utility processes

is that that the choice proce§d(9), t>0} is aMarkov chainin continuous time (this holds in the

general case with non-stationarity). Thus, in theférence” case with no state dependence effects

Axiom 2 provides a theoretical motivation for asswgn the Markov property. In addition,

13



Assumptions 1 to 3 imply a particular structurela# transition- and state probabilities, as exgess
in (3.1) to (3.4).

The next result follows immediately from Theorem 1

Corollary 2
Suppose that S contains at least three alterngtihen the choice set contains more than
two alternatives it follows from Theorem 1 that theice probability given a transition equals
_ Vi expw ()HF (expivt))
ni-j (t) - f - B .
D VO D explw, O)HE (expiv t))

KOBY § kOB Ji

(3.9)

We recognize the formula in (3.9) as a GEV chaomel, that is, the choice probability that

follows from maximizing a utility function of theofm w; (t) +7, (t), subject to the choice s&\{,

where (77,(t),n,(t),...) are multivariate extreme value distributed.

From Corollary 2 it follows moreover that for

Corollary 3

Suppose that S contains at least three alternatinder the assumptions of Theorem 1 the

transition probabilities {Q,(s 3} of the Markov chain{J(t),t>0} have the property that

Q(s)=Q (sdwhenizrjizjr #j.

The result in Corollary 3 is rather intriguing: disserts that under the absence of state
dependence, the transitions to a new state arbasttically independent of the state of origin. Thus
this property is in fact a characterization of teference case of no state dependence.

Next we shall consider the corresponding transitidensities. Recall that the two state case

the hazard rates of a continuous time Markov chaime defined (usually) as

q () =tim 38D
st t-s

fori#j.

Corollary 4

Let T.(s) be the duration of stay in state i, given thatestawas entered at time s. Under the

conditions of Theorem 1 the transition intensitéshe Markov chair{J(t),t > 0} are given by

14



Vi(t) _expw ©)H? (expvt))

(3.10) q; (1) =

2 V(0 ) 2V
fori#j, jOB, and
(3.11) G (1) =ka\” i (V).
Furthermore,
(3.12) P(T(9> y) =ex —S]y q (r)d].

The intensityq, (t) is thehazard functior(hazard rate) at time The formula in (3.12) for the

duration c.d.f. can be simplified a bit. For natagl simplicity, write

V() =D Vi (0.

kOB

With this notation we can express the hazard foncis

_V'()-V (Y

(3.13) g (1) V()

When the expression in (3.13) is inserted intodBvite obtain that

P(T(9> »=&exp{j \(T(TT)) drj.

S

Example 3.1
In this example we consider a choice setting wigdt8rnatives, i.e.S= {1,2,3}. The error terms of

the utilities of alternatives 2 and 3 are allowede correlated. To this end we assume that tim joi

c.d.f. of the error terms of the increment of tyiflunction, (77,(t),77,(t),n,(t)), is given by
P(7, S X,11,< %,,7,S X) = expi-€* = (e*° + &7 f),
where p[0(0,1]. This specification implies that
corr(&,,&,) =1-p%,
and
H(X) = € + (" + &P,

Hence, it follows that

V(1) = [exptw, )+ 10)+ Vi(t) = exp(w (t)+16),
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V()= [ € (exp(w (1) /o + expw € ) o) exply ()p X+ ¢
and

V/(t) = € (exp(w (1)/p+ expw (t)/0)"" expty ¢)p )

forj = 2, 3. The corresponding transition intensities/follow by inserting the expressions above in

(3.10). Similarly, the distribution of the holditignes in the respective states follows from (3.11).
Corollary 5
In the special case where the utility processesimdependent Theorem 2 implies that
t
V(1) :I exp(vvj @)+ rH) dr+g.
0

Furthermore, if B contains at least three alternas, the choice probabilities, given transition ofit

the state occupied reduces to

exp; (1))
Y. expiy ()

OB\ }

(3.14) () =P(I(H)=jlI(t)=i,I(t)# I(t)) =

We note that the conditional transition probabilityCorollary 5, satisfies the IIA property,

see Luce (1959). From Corollary 5 the followiagult follows immediately:

Corollary 6
Under the conditions of Corollary 5 the transitiortensities of the Markov cha{n] (1), t> 0}

are given by
(3.15) Q)= xelw, ) ,
Z[Iexp(wk €)-(t-7)8)dr+e” Qj
fori#j, andfori=j,
(3.16) q; ()= z o (V).
kOB }

The corresponding transition probabilities and theconditional choice probabilities are

given by
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Jexo, @)~ ¢-7)p)r
(3.17) Q(s9=—7r— ,
Z{ [exptw @)~ ¢-1)p)r + € q]

koB\ o

for i # j, and

explw, ()~ t-7)P)r+ec

(3.18) P(t)=—% .
Z( [exptw, @)~ ¢-7)p)dr + € q}

kOB

In Appendix B we have outlined how the transitmobabilities and intensities look like in

the case where the deterministic functi¢ns(9} are step functions that only changes at discheie t

periods. In the case with independent utility peses across alternatives and with time independent

systematic utility componentsv,(9}, andc; = 0, for allj, the result of Corollary 6 reduces to

(3.19) P()=P =

and

5 D1— exp(—(t-s)0)

(3.20) Q(sY=RE—— o)

for s<t,i#j, and

exp(-(t—s)8) - exq-16)

 exp-(t- 3)8).

(3.21) Q(s9= + PO

1-exp(-t6) ' 1~ exgf-t6)
The autocorrelation function in this case reduoes t
1- exp(—(t —S)H)
(3.22) Corr(U,(s).U, (1)) = ((1— (@) |

The corresponding transition intensities are givgn

6P

i

(3.23) g (1) :Tp(—tﬁ)'

From (3.19) to (3.23) we see that the transitiabpbilities and intensities become stationary witen

is large. However, whetd is small this is not so. In fact, the transitiamlpabilities and intensities

17



increase by the factdy/ (1- expttd)) whenté is small. The interpretation is that when the agen

very “young” the choice history is very short aherefore the effect of habit persistence is weak. A
the agent grows older this “upstarting” effect gigears gradually, and becomes negligible when

exp(-t@) is close to zero. This is also seen from the awtetation function in (3.22). Whet® is

large, the autocorrelation function is, apart fr@amstrictly increasing transformation, equal to

exp(td). However, whentfd is “small” the autocorrelation is influenced by ethterm
1/(1- exp€td)) in such a way that it becomes weaker when t deeseaConsider the special case

when@ is close to zero. Then (3.20) and (3.21) are@pprately equal to

t—-s
Qlj(Sit):TDPj1

fori#j, and
s t-s
Qli(sit):¥+T[|iD'

In this case the autocorrelation function becomes,

Corr (max,U, (s), max U, ()=Z(§j=([ 1—@}

Thus, when time is large there are no transitionghis case. However, whenis “small” the
autocorrelation will be less than 1 which means ihdhe beginning the effect of habit persisteisce
reduced because the choice history is short.

In the special case wherg (t) does not depend drandt is large the transition probabilities
and intensities reduce to
(3.24) Q (s 9= R(1-exp(-(t- 96))
for s<t,i#j,and
(3.25) Q (s 1) =exp(-(t- 98)+ A1~ exd-( = 36)).

The corresponding transition intensities, fer j, are given by

(3.26) g, () =6P.

The depreciation effect represented by the paentetan in fact be given an interesting
interpretation, which we shall now explain. In famhe can interpret the depreciation mechanism as a
stochastic device where the habit persistence teffeepresented by means of a particular Poisson
process. The intuition is that, at independent eamgbointsZ, in time, k=1,2,.., (random to the

observer), the agent forgets, or stops, caring tapavious evaluations and only takes into account
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and new stimuli. That is, if for some Z,_, <t<Z,, the agent will, at tim¢, only take into account
previous preference evaluations within the intel(\aj_l,t]. The intensity of this process & which

means that the probability that for sokez, O(t,t+ dt) equalsddt. If the agentddoescare, he will

keep the previous valueithout depreciation. Consider now (3.24). Since no exilany variable
change over time, the agent will never changerneva alternative unless he stops taking the past int
account. Specifically, to change state from tisn® timet the agent must stop taking into account

previous evaluations of the alternatives at some tin the interval(s, t). Since the interval between

two events in a Poisson process is exponentiafiiyiduted withd as parameter, the probability that

this will happen isl-expt ¢—-s)). The conditional probability that the agent shafioase
alternativej, given that he stops caring about the past, edatsnce the corresponding utilities that

govern this choice ar&J, =w +7,(t), where 7,(t), j=12,..m, are independent extreme value

distributed as in (2.7). Hence, by multiplyiRg by the probability that the agent will begin teghect

the past some time withi(s, t), (3.24) is obtained. Similarly, if the agent ocagbtaté at times he

will continue to be in stateat timet if the agent cares about past preference evahgfiwhich has

probability equal toexp-8¢-s)), or if the agent does not care about past evahmtigvith
probability 1-exp6(t —s))) but chooses statie with probability P,. Hence, (3.25) follows. Eq.
(3.26) asserts that the intensity of a transitimmfi to j can happen when the agent stops taking the
past into account ir(t,t+dt), which happens with probabilitgdt. Given that he forgets about the
past he will go to statewith probabilityP,. Hence, we obtain that the probability of goingnfrstate
toj in (t,t+dt) equalsaitP,.

Let us compare the structure of the preferencesttagir implications obtained above with a

formulation based on a multiperiod Probit framewdt@r simplicity we shall only consider the binary

case. To this end assume that
(3.27) U, () =pU; (t —1) +w (t)+7 (t)
where n, ®,j=12t=12,., are i.i. normally distributed random variableghwariance equal to

1/2. The structure in (3.27) is analogous to theexal process given in (2.5). In particular, both

representations have the Markov property. It fola@asily that

(3.28) P(U, (1) > U,(1) :CD[ /%(; P (v, (t= k) = w( t- k))JJ

Not surprisingly, the structure in (3.28) is simila the one obtained in Corollary 6 for the binary

case. The corresponding transition probabilitiesnos, however, be expressed on closed form. The
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multiperiod probit setting with utility as in (3.2 has been discussed by Heckman (1981a, section
3.10).

Although the specification in (3.27) and the cleopzobability in (3.28) are analogous to (2.5)
and (3.18) the implications for the choice procegsr time are qualitatively different. Whereas the
extremal process representation of the utility psses that follows from Assumptions 1 to 3 yields a
Markovian choice process, the first order autoregressives§an process representation in (3.27)
doesnotimply a Markovian choice process. However, the tnmtaportant weakness of the multiperiod

Probit model is the lack of choice theoretic ratitenfor the model structure (in the reference case)

4. Non-decr easing choice sets

Here, we shall consider the situation with timeyirag choice sets. In general, this case is
more complicated and we shall limit our treatmerthie case in which the utility processes are

independent across alternatives and where theekeis{B(1), t >0} are non-decreasing, which

means thaB(s) [0 B(1), whenevers <t. We have the following result.

Theorem 3

Assume thaB(s) 0 B 1), whenever s <t and that the alternative-specifilitytprocesses
are independent across alternatives. Then thecehpiocesgJ(1), t >0} is a

Markov chain with transition- and state probab#isi given by
Vi() -5, (B(9) V(9
2V

KOB(t)

Q(st)=P(XY=jX9= )=

fors< j, j=12,..m,i# ji0B 6),jO0B ()

Q(s9=1- > Q(s?.

KOB(H\{ §
and

V.
RO=P(AD= ) =5 o

KOB(t)

where g, (B) =1,if k belongs to the set B and zero otherwise, and

V(1) =j‘ exp(w, (C)+6r)dr+g .

Theorem 3 is proved in Appendix A. From Theorethe&next result is immediate;
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Corollary 7
If jOB(t)\B(s), then

(4.1) P(3(0=j]3(9)= RII= ).

The result of Corollary 7 asserts that the choicmew” alternatives, that is, alternatives
that are available at the current time epoch buewet available previously, is independent of
previous choices.

Dagsvik (2002) postulated (4.1) as an axiom thatkl hold in the absence of structural
state dependence, and he called it an Intertempersion of the Independence from Irrelevant

Alternatives, property (IlIA). He also proved thalien the utilitieU (1),t =0}, j=1, 2,..., are

independent max-stable processes then (4.1) implédghe utilities are Extremal processes.
Consequently, Corollary 7 follows in this case.
Unfortunately, the case with general time varythgice sets is rather complicated, and will

be discussed elsewhere.

5. Structural state dependence
In the analysis of panel data it is often noted thdividuals who have experienced an event in the
past are more likely to experience the event in fimere than are individuals who have not
experienced the event. Recall that there are twaagtions of this: One explanation is that as a
consequence of experiencing the event preferemzkestaice restrictions are altered. If so, otheewis
identical individuals who did experience the evewduld behave differently in the future than
individuals who did not experience the event. lis tase choice experience has a genuine behavioral
effect that give rise to so-called true state depene. Another explanation is that preference and
choice constraints differ across individuals in ammeasured way. This implies that previous and
future choices will be correlated, since choicegresent information about temporally persistent
unobservables that affect choices. Thus, this oaskls so-called spurious state dependence,
(Heckman, 1981a,b). As Heckman has emphasizedvieralepapers, one cannot without a priori
theoretical restrictions separate spurious frora state dependence. In other words, this identiifica
problem cannot be settled by statistical methoosea(see for example Heckman, 1991).

In this case the structural part of the utilityétion becomes endogenous and it is far from

evident how the corresponding choice probabilisiesuld be specified in this case.
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Suppose initially that no state dependence wersent such that preferences were exogenous
and Assumption 1 to 3 hold. Then the utility reprgation in (2.5) holds. Now suppose that

preferences may be affected by choice behavios fitgans that either the systematic te{mg 9}
or the distribution of the random error terdag(9)}, or both, are influence by choice behavior. Let

h(t) ={ X9, s< } denote the choice history prior to tihand letw; (t,h(t)) and &(h(t)) denote the

structural term of utility of alternativeand habit persistence parameter, respectivelyjfreaddy the

choice history.

Assumption 4

Under structural state dependence the utility fiorcis updated according to
Ut h(t)=maxU; ¢-1ht-1))-6 b t)w t.ht)rn ).
where the vectors;(t),t =1,2,...are independent of the choice history, and withtridlistional

properties as in Theorem 1.

Assumption 4 asserts that when the effect of prechoice experience is properly accounted
for, in the sense that possible behavioral effecishe parameters of the utility function have been
incorporated, then there is no interdependence dagtvihe current and future indirect utility and
previous choices. The motivation for this is analagyto the justification of Assumption 1. Indedd, i
this were not true it would signify that not alletlrelevant information about the value of the
alternatives has been accounted for in the uiiiex. In other words, in this case the indiredityt
would be ill defined since it fails to capture iafflormation relevant for the agent's choice behavio

The next result is an implication of Assumption 4.

Theorem 4

Assume that Assumptions 1 to 4 hold. Then theetisdime version of the transition

probabilities hold with{w,(9, s< } replaced by the corresponding experience depenti&mts,

{w(s 9, <}

The proof of Theorem 4 is given in Appendix A.
The result of Theorem 4 means that one can int@gwevious choice variables into the transition
probabilities or transition intensities as if thexere exogenous. However, the nice formula for the

probability of being in a particular state will langer hold.
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6. Identification and conditional estimation

In this section we shall discuss identification.particular, we shall consider identification irreh
separate cases, hamely the case with fixed effentglom effects and the case with neither random
nor fixed effects. For simplicity, we assume throogt this section that the choice sets are constant
over time and that the utility processes are inddpat over alternatives. In general, it may not be
possible to represent the unobservables (knowhe@gent) by random or fixed effects because they
may not be constant over time. The more genera weaih non-constant unobservables will not be

discussed here.

6.1. Identification in the absence of unobservables that are perfectly known
to the agent.

In this subsection we shall discuss identificatiorthe basic case where there are no unobservables
that are perfectly known by the agent. In particulge shall show that given the transition inteasit

the respective partial derivatives of tHefunction can be recovered. For simplicity, the trresult is
given only for the case with exogenous prefererfnesstate dependence), although it is possible to

extend the result to accommodate state dependence.

Corollary 8
Let A be any proper subset of the choice set BleUthe assumptions of Theorem 2 it follows,

for iOB\ A, jOA, that

(6.1) Iog“ HE (w(r))e" dr +>° Qj+et=j'( q( 3+ g ( )(] dx «,
and
(6.2) logH? (exp@v ¢)) +w )+ 6t= logg (t)+J(Zq (X)+ q (x)) dx k

whered =0 and« are arbitrary constants.

The proof of Corollary 8 is given in appendix A.

Corollary 8 shows thaHjB(exp(w(t)))exp(ij ¢ ¥ t9 ) is non-parametrically identified up to

an arbitrary multiplicative constank. This constant is irrelevant because it cancelthé choice

model. In particular (6.2) implies that
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(6.3) wl(t)+9t:|ogq1(t)+j(z G ()+ qk(»J det K.

4 \kOA KIB\ A

From the transition intensities we have that

(6.4) logH [ (exp@ ¢)) +w, ¢)- w ()= logq (t)- logg, (t)

for i # j,1. The relation in (6.4) are analogous to the cowadmg identifying relations between the
utility structure and the choice probabilities inet GEV model. Under suitable restrictions the

structural termgw,(9} can be identified. Consequently, (6.3) implied thés identified.

Consider the particular case with only two altémes and with utility processes that are

independent across alternatives. In this case (édRjces to

t

(6.5) W (1) + 6t =10g Gy (1) + [ (9 + Gy B) b
and
(6.6) W, (1) + 6t =10g 6, () + [ (G()+ G }) e k.

d
In contrast to the case with more than two altéveaf there are only two transition intensitieghie
binary case. Thus for any pair of intensity funetiay,(t), g,,(t) we can find a paim;(t) and w,(t)
determined by (6.5) and (6.6). In other words, thiplies thatany Markov chain with two states has
an independent Extremal process utility represemtaiVe summarize this property in the corollary

below.

Corollary 9
A Markov chain in continuous time with two statbégays admits an independent Extremal

utility process representation.

6.2. ldentification with additive fixed effects and state
dependence

We assume in this section that the random errongenf the utility functions are independent across
alternatives and that the respective structurahgezontain fixed- or random effects. Consider fingt

case with fixed effects and assume that
(6.7) w; (t, h(t)) = 4 + W (1, h(1),
where 4 and W, (t, h(t)), j = 1,2,..., are, respectively, fixed effects and deteistic functions of

individual characteristics and alternative-speddfitibutes that are assumed known apart from afset
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parameters to be estimated. In general, the stlctarms{w,(t ()} may depend on choice

experience through(t). We normalize by lettingz4 =0. From Corollary 6 it now follows

immediately that

og{q” (th(1) g, (s (3)
g (t, h(t) g (s H 3)

for i#j,1, and j#1. Eq. (6.8) demonstrates that when covariates chamgetime one is able to

(6.8) J=V~Vj (t,h(D)) - W (t h(Y)+ W(s K 9- "W s bk,

identify
W(s h(9)— w(s khp+ W .to)y-"W.tO)}
If, for example, W, (t, h(t)) = Z (t, h())8 where{Z(t (9)} areK-dimensional attribute vectors that

also may be individual-specific, and possibly mizdifby choice experience. This implies that
(6.9) W(9) - W(9+ W()-M\(FZ(%(F— ()t ZO)E LZOXB.

Thus, with standard conditions on the mat{i (9 - Z($+ Z(x- Z()} it follows that the

parameter vectgf is identified.

6.3. Conditional likelithood estimation with fixed and random effects

Assume now that there is no state dependence.(Btijsreduces tav, (t) = 1, + W (1), where z; is a
fixed or random effect. Consider for simplicity thase with discrete time and lgf(t) be the one

step transition probabilities from tintel to t. Chamberlain (1980) and Lee (2002) have demowestrat
that one can form a particular conditional likeliidlofunction in multinomial logit models where the
fixed effects are eliminated. The duration modelhage analyzed in this paper has a similar property
Specifically, it follows that

q, (t-1a, (1) _ 1
A, (t-1,()+ q,(t-1)g, () 1+ exp(y (- 1 W (= r W (O W ()

The expression in (6.10) is the conditional likebid of transitions from state 1 at tim@ to state j at

(6.10)

timet-1 and further back to state 1 at titpgiven that transitions occur either from statie statg, or
vice versa. Thus, similarly to Chamberlain’s coiodial likelihood method and the results above

imply the potential of developing a similar condital likelihood method for estimating the structure

of {W,(9} in a similar way as Honoré and Kyriazidou (200)fortunately, in the presence of state

dependence one cannot apply this method.

Consider next the analogous case with randomtsffeet
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exp(, + (Lh (1))
V(t,h(D | )&

(6.11) 0; (t, h(t) [ ) =
whereu = (44, i4,,...} and
v(t, h(t>|m=2{jexp(uk +W € hE))H 10 ) + q} ‘

From (6.11) it follows that the unconditional trdimn probability of going from stateat timet-2 to

statej at timet-1 and back to staieat timet, i # j, is equal to

E(qj (t=1]x)q; (t|,u)) = expfy - D+ W (t))E( exp + ;) J

V(E=1|uV (t|p)e™™”
which implies that

E(a (t-1140)q, (t|w)) _ 1
E(a (t-112)q, (t1e) + E( g, (- 1w )g, (the ) 1+ exp ¢~ D= ¢ 1+ % ¢)- W ()

Similarly to the case with fixed effects, the exgwmien in (6.12) is the conditional likelihood of

(6.12)

transitions between state 1 and sjaigven that transitions occur between state ltdteg or vice

versa. Thus, also in the case with random effdstpbssible to apply a conditional likelihood nedh

for the estimation of W(9)} that does not depend on the postulated distributfahe random effects.

This is clearly a great advantage since it is Hargustify a priori the class of distributions dfet

random effects.

7. Further Examples

In this section we shall briefly discuss how thechistic framework developed in this paper might be

applied in concrete cases.

7.1. Labor Supply and Sectoral mobility in a static setting

In this example the issue is to analyze panel datsectoral mobility when one allows for habit

persistence. The agent is assumed to have theecheteveen different sectors in the labor market.

Each sector has fixed (sector-specific) hours akvemd wage. Lez; denote the wage at time period

t (discrete time) of sectgr There are no transaction costs and the agensebdo be in the state that
maximizes utility. Assume that the utility of worlg in sectol att, with disposable incom€ and

workloadh, has the structure, (C, h)+y, +¢,(1), where{g (1)} are random error terms (C, h) is a

deterministic term that captures the representatiNigy of disposable incom€ and hours of work,
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and ;is a deterministic term that captures the represiest utility of the tasks to be performed in
occupationj, ceteris paribus. For sectphours of work is fixed and equal ty. Given sectoj, the
budget constraint is given b§ = f(z h, 1), wherel is non-labor income anflis the function that
transforms gross incomg h + 1 to disposable income. Let

(7.1) w O =y(f(zh ). h)+y.

Thus, in the absence of taste persistence we metevy(t) +7,(t) is the conditional indirect utility
function at timet, given alternativg. The termw, (t) is the period-specific representative utility of
occupationj at timet. The termy; could be specified as a function of non-pecunemy sector-

specific attributes. It could also be treated &edior random effect. If we allow for habit persiste
and invoke Assumptions 1 to 3 it follows from Cdaoy 1 that the utility function is given by

(7.2) U;(t) =maxU; t-1)-6w )7 ¢))

where the vectorn(t) = (7,(t).77,(t),...) is serially independent and multivariate extrensue
distributed. The probabilities for going from onecopation to another one, and the probability of
working in a particular occupation are now giventbg formulas in Theorem 2 or Corollary 6 in the

case with independent utilities. Jf is a fixed or random effect one could in fact estienthe model

by the method suggested in sections 6.1 and 6.2.

7.2. Labor supply and sectoral mobility in alife cycle setting

In this section we shall discuss the modeling bbtasupply and sectoral choice and mobility infe li
cycle context, where we in addition allow for habpigrsistence. The approach is analogous to
Heckman and McCurdy (1980). As in the previous g{amnwe assume that time is discrete. However,
the corresponding continuous time version can émtdéd similarly. In this section we assume that the
agent is bounded rational in the sense that sl @ uncertain about the future tastes, inteiasts
wages and is only able to make predictions abautehel of these variables but may revise plans at

each epoch due to unanticipated information. Cetenote consumption in perid@nd z, and h; the
wage and hours of work in sector j in pertodrurthermore, led, be the wealth at the end of period

t—1,andr the interest rate. Length of life Ts Conditional on occupatignin periodt the agent faces

the budget constraint

(7.3) A= hz+(1+1)A-C.

joB,
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Let h =(h,,h,,....h,). Assume that the life time utility is additive sepale with period-specific
utility given by

(7.4) U (G.h)= U (D) + w(D, /).

where {&,,¢,,,V,} are positive random taste shifters and and u,are respectively strictly
increasing and decreasing, concave differentiabietfons. The taste shifters are assumed to be
realizations of random variables. At timeurrent and future taste-shifti§,,¢,,, V., T 27 2 t} are
known by the agent, but at the next point in tithg, the agent draws new current and future taste-
shifters{¢,,,¢,,, V., T 2T 2 t+1}. How these taste-shifters are distributed and Ibedarrelated will

be discussed in a moment. Thus, similarly to thevipus setup in this paper, the agent is assumed to
be uncertain about his preference evaluations andgsmift her or his tastes over time in a mannat th

is not fully foreseeable to her or him. As regafdisire interest rates, wages and prices the agent
behave in each period as if they were known wittiepe certainty but may adjust these at the next
moment in time. The structure in (7.4) implies tabéach moment in time, the occupations are gerfec
substitutes in the sense that by suitably adjudtiegrespective workloads the jobs will be equally
attractive, provided the wages are equal acrosgpations. The agent’s optimization problem in

periodt is to maximize
0GR )+ B A)
subject to (7.3), giverd\ , whereV, (A) is the value function given the agent’s informatai period

t. To facilitate optimization it is convenient tdeemulate the problem as follows: Lef = h, /ytj and

Z; = y; 7 . With this notation the optimization problem catsiin maximizing

75 ()&, + qz[z >g}a2+ﬂv+l( A)

subject to

A= %% +(1+1) A-C.

0B,
Since the modified workloads, represented{ly, enter symmetrically in (7.5), it follows that the

agent will prefer to work at most in one sectonnedy in the sector with the highest value of the

modified wage rate§Zz}. In other words, the indekof the chosen sector is determined by
J=]if g =rrk1Dath;k.

Furthermore, consumption, hours of work and wealéhdetermined such that
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Uyy (Ct )gtl =4

and

—U, (%) 2 A%,
where 4, is the marginal utility of wealth as of period (yet In particular, the agent will not work in
periodt if

“AU,(0)¢; > 3, = maxy,.
The marginal utility of wealth is determined by tGeler condition
(7.6) A =BL+1)A s
where we recall that the interest rat@s the interest rate as of peribdnd is assumed by the agent to

be equal to all future interest rates, ahd, g > t, is the marginal utility of wealth as of periog

(with A, = A,) given the taste shiftefs,

1!

&,V T 2t} From (7.3) it then follows that
(7.7) A=A B @)
Specifically, the termd,; will be assumed to have the structuke = A, «,, where A, is an individual

fixed effect whereas, is a random variable. Recall that in the specisecwith perfect foresight

there are no random variations in tastes as pexddiy the agent. This case is captured by letting

k., =1. Define V,(t)=log7 ,for j > 0, andV,(t) =log(-u,(0),/4). We see that the agent's
behavior at any point in time is completely deterad by maximizing the functiol,(t). Assume
furthermore thatz; has the structure; =7 a;¢;, and y; =y,4;, wherez is a function of observed
variables representing the level of human capitalis an individual and sector-specific effegt, is a

sector specific constant ajj and ¢;; are random terms. It follows that we can write

(7.8) Vj ) =Iog(2j )+ Iogaj + Iog;_/j + Iog@]{tj ),
for j >0, and
(7.9) V, (1) =log(-y,(0))+ logA, — (T - t)log(d+ ¢ )= (T~ t)logB }+ logf, K, )

Recall that the term$J;{;} and {<,/ x} vary over time in a manner that is stochastiche t

individual agent due to the fact that she or haliswed to revise current and future tastes. Now

assume that Assumptions 1 to 3 hold. Then it fallék@m Corollary 1 that the random ter§g; ¢}
and {&,/ k} can be expressed dsg(9;¢;)=7; t)/o and log(¢,, /«,)=1n,(t)/co, where g is a

suitable constant angi(t) = (17,(t),7,(t),...) is standard multivariate type Il extreme valustdbuted
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at each moment in time, and is also serially indepat. The parameter is a dispersion parameter

that serves to normalize such thgf(t) has standard type Il extreme value distributio®nee it
follows from (7.8) and (7.9) that

(7.10) U;@t)=maxU; ¢t -1)-6 oV, t)).

As a result, the choice process, conditional orfitesl effects{a } and/, ,is a Markov process with

corresponding transition probabilities and probaéd of being in the respective states given by

Theorem 2 withaV, (t) = w, () +77, (1), where

(7.11) w, () =olog(z ) +olog@, 7, ).
for j >0, and
(7.10) w,(t) = olog(-y, (0)+ o logh — (T— t)o log(+ ¢ )= (T— t) logB)

Recall that the tern® > 0, is a parameter that represents the degree of pexsilstence.
This example, as well as the previous one, dematest how one can fruitfully apply the
theory developed in this paper to provide theoadlticjustified functional form and distributional

properties of random components in structural nsdel

8. Conclusion

In this paper we have discussed the issue of famaitiform of multistate duration models generated
by discrete choice over time, with particular refeze to random tastes and habit persistence. We hav
proposed a particular characterization of exogenocarsdom preferences conditional on the
information available to the agent. We have demratest that this implies preferences that can be
represented by modified extremal utility processg®m this result a number of important results
follow: First, the choice model under the absericstate dependence and conditional on information
available to the agent, is a Markov chain in cartims time. Second, the transition intensities (fthza
functions) and probabilities of being in a partaustate of this Markov chain model have a traetabl
structure as functions of the parameters of thhtyufiunction. We have furthermore considered
extensions that allow for structural state dependeand we have discussed identification and
estimation in the presence of fixed and randomceffd=inally, we have discussed the application of
the framework for modeling occupational mobilityboth a static and a life cycle setting without and
with uncertainty. The implication of this modelifiggamework is that provided the researcher knows
the distribution of unobservables that are knownhe individual agent, one can separate true state

dependence effects from habit persistence and engda$ heterogeneity. As we have discussed in this
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paper, this is particularly true when the unobdgles (known to the individual agent), can be

represented as fixed or random effects.
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Appendix A

To prove Theorem 1 we need the following lemmas.

Lemmal
Let F(x,X,,...,%, ) be a type Ill multivariate extreme value c.d.fimkd onR™. Then

=logF (x,%,....%, ) IS @ convex function.

Proof of Lemma 1:
From Theorem 5.11" in Resnick (1987, p. 272) iofek that one can write

~l0gF (%, %%, )= [ mave,, (f; €)% )d
0

where fj (9), j=1,2,..m, are nonnegative integrable functions such that
1
j f,(s)ds=1.
0

Since f,(s) e’ is convex as a function of; it follows that max;, (f; (s)e™ )is a convex function in
(X, %,...,%, ) for eachs. Since sums of convex functions are convex a lsleitémit argument yields

: SV _
that the integral ofmax;, (f; (s)e 7 )with respect te is convex.

Q.E.D.
Lemma?2

Under Assumtions 1 and 2 the distribution agf) =U (t) - v(t) is a multivariate extreme

value distribution type 11l which is independentiaie.

Proof of Lemma 2:

From Assumption 2 it follows that at each givennpan timet, £(t)is independent af(t), where
can vary freely on the real line. It will be coniamt to normalize such thdte, (t) =0.577Z (Euler's

constant). Under Assumptions 1 and 2 it followsrfrbindberg et al. (1995) that the joint distributio

of &£(t)has the formy(expH € ,6%,...,6" )))where ¢ a positive and strictly increasing
mapping on[0,1]with ¢(0)=0and¢(1)=1, and I—~|(xl,x2,...,>§n) is a positive increasing and linear
homogenous function defined d0,«)™,and may depend on time. In additioRl must satisfy

suitable regularity conditions that ensures tgexp-H € €% ,....6" ))) is a multivariate c.d.f.
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(McFadden, 1978). Since by Assumption £(t) is independent ofg, (t) for jOS\{1} , the joint
distribution of (&,(t),&; (t)) must be a product of type Ill extreme value disttions, which implies

that
P(max(, ), ¢))< y)= expte’ - €’ Fy (expt He .11,. 1.1

=y(expeYH@LL,...,1))
The last equation implies thap(x) = x*,for x[[0,1], where a is an arbitrary positive constant.
Hence, we have proved that the c.d.faff) is a type lll multivariate extreme value distrilmrti at

each given point in time.
Q.E.D.

Let Abe any subset @& DefineU ,(t) = max, U, t).

Lemma3

Assume that Axioms 1 and 2 holthen the joint distribution ofU ,(s),U,(t)), for s <t, is a

bivariate extreme value distribution (type III).

Proof of Lemma 3:

Let the functionG,(u, u,) be defined orf0,) x[0,0) by

(A.1) exp-G, (€*,€”))= H U, (95 x U (d= y,

for AOS For notational convenience we normalize such tl@&(1,0)=G, (1,0)=1 This

normalization is possible and does not imply angslof generality since, by Assumption 2, the
structural part of the utility function is indepeard of the random part. Letbe an arbitrary real

number. Let now A S\{I} and note that the procesq(U,(t),U,(t) +2,t=0} also satisfies
Assumptions 1 to 3, provided the proc§ds, (1), U ,(1)),t 20} satisfies Assumptions 1 to 3. Lemma 2
implies thatU ,(t) is type Il extreme value distributed. Since th#ity processes associated with
state 1 anglare independent, we obtain that

P(UA(9+ 2< U($.max( (3, Y (3+ ¥ ( xx dkmaf UL (¥ )= )

=P(Un(9+ 2 U(30(x ¢ dxmax Y(X W (H k< Y
(A-2) =P(U,(9= % 2U()s y- zUCT( x % dx LOE )y

=P(U (9= x-zU(< v 2 R W HI( xx dx M)E )y

=exp(-G, €™*.6)-G(e", &) eD, | & ¥)) dx

34



where d, denotes the partial derivative with respect tokitle component. Similarly

P(max(U, (s).U, (9)+ 3< xma{ Y (1), (tF }< Y= ex()— G(& &y ,Q s ,Z“é’)),
which implies that
"9 P(max(U, (5).U, ()+ 30 (x % dy,maf Y (0, Y (- p=< )
=exp(-G € €)- G( & &))(o, a(e, e B, & ® ) ¢

Assumption 1 implies that
P(max(U, 6).U, () 30( x % dk,ma Y)W (o s yJI (¥ }
=P(max(U, (5).U, (9)+ 30( x ¢ dj,maf U Y (B < Yy PU(E M(B ):
When (A.1) and (A.3) are inserted into (A.4) weabt

enf-c (e )= 6 & e o, o €. )

=P(U(9>U,(9+ 3texp(- G &, @)- | =, @))(o, 6 & 4+ B 68 74
which is equivalent to

(A5) 0,G,(e” ) RU(3< U(3+ =8, d & ) (PU)s )s).

(A.4)

Furthermore, sincéJ,(s) and U ,(s) are independentG,(1,0)=G, (1,0)= 1 G,(€*,0)= € G,(1,0),it
follows that

Gu(€,00 _  G(@LOE _ ¢
G,(1,0)+G,(¢,0) G(LO¥ G (LOg & &

When (A.6) is inserted into (A.5) it follows that
(A7) 0,G (e, €)=0,G(¢&* ¢).

(A.6)  PU(9<U,(9+ 3=

By integrating (A.7) with respect towe obtain
(A.8) G(e*,e')=e"g( & &)+ K )
for some function K,(y)that does not depend ox nor z. Since G(0,e”)=G(0,1)e* and

e’‘G,(0,€7)= G(0,eY)= G(0,1)€’, it follows from (A.8), withz =0, that

(A.9) KA(Y) =(G(0,1)- G, (0.1))e”

From (A.8) and (A.9) we therefore get that

(A.10) e7G, (€ €)= G( e &)+ ( §0.)- Fo.1)¢

Eq. (A.10) is valid for any reaand since the right hand side of (A.10) does epedd orz we get
(A.11) e”G, (e &)= G( e\ @),

for all realz. Similarly, it follows from (A.10) and (A.11) that
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e’G(e €)=(Q0)- GOL)E+ € G(%, %

=(Gy(,0)= G, (,0))e” + G (X Y= G(% Y,
which proves that (A.11) also holds far= {1}. But this means that the bivariate c.d.ffided in
(A.1) is a bivariate type lll extreme value distriton for anyAl S, and therefore the proof of Lemma
3 is complete.
Q.E.D.

Proof of Theorem 1:
For AOS let ¢,(2=G,(¢,1) where G, is defined in (A.l). For AOS\{} define
Y.(2) =¢,(2 +¢,( 2. From these definitions it follows that for ayd S,

(A.12) Gu(e*, €)=Y G( &)= eP,( ¥ )»
and

(A13) e70,G,(€% e")= &9, ( y Xand €70,G,(€", €)= & (g ( ¥ Xd.( ¥ N
Moreover, for AOS\{I} andB={L, A,

(A.14) P(max.,U, ()< y)= exptG (08" > G (0€" )y expf &y, o )
Let

Ci=P(L(9=11(Y= Wa(-),
for i,j OB. From (A.12) to (A.14) and Assumption 1 we get that

Cpexple’y e ))e’Ayr dd Y= RJ($=1 J(H AY(H (yya )
= [PUL(9< XxU(30(x x dx Y yY(XI(y yA )

=0y[0,exp-G (€7, €' )- G (&, &)p, A€, €P, J & &
= Dy[expe iy, (y- ) EP (¥ 3@ (¥ X9,y ¥ d

By dividing the last equation bg Ay and lettingAy — 0, we obtain that
(A15)  Cexpl-e’y ()= €[ expt &y, (v Q¥ (¥ M. (¥ ¥ &, (¥ ¥ o
R

Note furthermore that sinag, () =, one can write

(A.16) expe, ()= €” [ expt €y, (2, (I d:

By change-of-variablez = y— x in the integral in (A.15), (A.15) and (A.16) yield
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(A17) Cuu [ expC-ey (W' (2 d= [ expt ey (I, ( Wn (Eh (O

Note next that by Lemma 19,(z), ¢,(z2) and ¢,(z) are increasing and convex functions, which
implies that¢/,(2) is non-decreasing. Define=-w if ¢,(z) >0 for all realz otherwise define
c=max{z:¢/,(2=0}. It thus follows thaty,is strictly increasing and invertible fa > c. Let
Q={w. w=¢,( 3, z20}. Let h be the inverse function af,, defined onQ. By the change of

variable,w=h(2, (A.17), with A =€, becomes
(A.18) C, | expEAW)AW= [ expeA Wi, (W), (H(W)-¢), (K vo)%
which must hold for every positivé. By the uniqueness property of the Laplace transfor
(A.18) implies that

C, = ¢ (h(W)(B, (N W) — @, (H W)

W, (n(w)
for wIQ, which is equivalent to
(A.19) CLW(D=B(AP3-0 .
for z> ¢ Similarly, it follows by symmetry that
(A.20) Cat (D =0\(AB:(2-2:( D,
for z> ¢ By subtracting (A.20) from (A.19) and dividing lp%(z)* we obtain
(A21) ACTAC XET/EAG AN

a2 Y2

When we integrate both sides of (A.21) we get that
$(2) _Ga=Cu, 4

17

wa(2)  Wu(D
for z> ¢ whered, is an arbitrary constant. This is equivalent to
(A.22) $,(2)= G- Cu+ dg (3.
Similarly, it follows by symmetry that
(A.23) Pa()=Cy— Qut d@ (3
where d,is an arbitrary constant. When the equation in 2Ai8 inserted forg, (z) into eq. (A.19) it
follows that
(A24) NCETACEST

1

Similarly, when the equation in (A.23) is inserfed ¢,(z) into eq. (A.20) it follows that
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(A.25) 4,2~ =22.

A

Eq. (A.24) and (A.25) are first order differenteguations that have solutions of the form
(A.26) b, (D=a,+B¢,
forj = 1 andj = A, respectively, and > c,where a; and §, are suitable constants. Singé&(z) =0

for z< cand ¢, (2) is continuous it follows from (A.26) that we caniter

(A.27) ¢,(2) =a; + B, exp(max¢ ,z))
for any realz. Using (A.12) we obtain, as a consequence of (A&t
(A.28) G(e*,€")=a, &'+ [ &exp(max(c y NFa; €+L expt mn(xy 9

forj = 1,A. The equation in (A.28) implies that the utilityopess {U (1), t =0}, jUB, is equivalent
to the utility process generated by
(A.29) U;(t) =maxy; )+ c,W (s 1)),
for j=1A, A0 S\{}, where W,(s 1) is type Ill extreme value distributed and indepamtdof
U;(s). SinceA can be a singleton, we conclude that (A.29) makt for any j OS.

We next prove that = —(s— )8, where@is a positive constant. To emphasize thdepends
on s andt we write hencefortlt = ¢(s, ). Under Assumption 3 it must be true thefs )= ' t— 9.
From (A.29) it follows fors < r < t, that

U@t =maxU; ¢ )+c )W, ¢ 1)) andU,(r) =maxy; 6)+c(s,r)W (s 1),

which, together with (A.31) imply that
(A.30) U,(t) =maxy; )+ c(s, N+ c(r,t),W (s N+ or,t),W(rHF max{y (s} c(s) W(s)
Furthermore, (A,29) and (A.30) imply thaft—s)= d r— 9+ ¢ t— ), which must hold for ang < r
<t.Let x=r-s andy=t-r. The latter equation is equivalent to
(A.31) c(x+y)=d+ ¢V,
which must hold for all positive andy. The equation in (A.31) is a functional equatidérthe Cauchy

type and the only possible solutiondéx) = —x8, where@is a constant, see for example Theorem 3.2
in Falmagne (1985, p. 82). The constéhhust be positive because othervwfgg(1),t =0} cannot be

stationary, as is easily verified. Moreover, Tiage Oliveira (1973) has demonstrated that the
representation (2.1) in fact is a strictly statign@arkovian) stochastic process in continuousetim

Finally, we shall prove that the correspondingteeequationU (t) = max{ (s)+ c,W(s 1)

holds, with the vectoW(s ) independent ofJ(s). Without essential loss of generality and for the
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sake of simplicity we shall only give the proof fre bivariate case, that is, for the case where
U(s) =(U,(9, U;(9) and W(s §=(W(s}) W( s). Recall that we have proved that,(s)is

independent oV, (s f) for anyj, but it remains to prove that, (s 9 is independent ob,(s), and
W,(s 9 is independent ol,(t). Recall that we have demonstrated thaf(s) and W,(s 1) are
independent and type Ill extreme value distributed any AL S Let & (t)=U,(t)-v,(t) and
$(s)=W(sd- w(s} whereeg(s) and §;(s,t) are standard type Il extreme value distributed
variables, and v,(t) and w,(st) are deterministic terms. It follows from (A.29) ath
w; (s 9 =log(exp(y (t))- exply (s)- (= sy )) By Lemma 2 we can write
(A.32) P&, () S X &(t) < y)=expH,, (€*,€Y))
where the functionH,;(u,v) is defined on[0,)x[0,0)and is positive, linear homogeneous and
increasing, and is independent of time. Becaug&.@®) we have, witiA = {2,3}, that
(A.33)  max(e, )+, ()~ (t- 9H.&5(9+ y( 3 (t P, (st .98, (.9 W,9

=max(e, ¢)+Vv, (). ¢+ v; ().
Consider the special case with  v;(9=v(d=vy, implying that
w;(s 9= v +log(l- exp = sP )= y+« Then, in this case (A.33) implies that
(A34) P(ey(9)= y+ (1= 90— v,&,( 3 (& F- ¥ @(.95 ¥ ,¥K.$(,9% -y ;vK)

=P(e,() s y— Vv, &(0) < y- v).
If we combine (A.32) with (A.34) we obtain, by ugithe linear homogeneity property bf,,, that
P(&(s )< y- v -K.&(s)S y- y-K)=expt Hy (87,87 ) H(e (797, (%))

=exp(-H,, €% &7 )+ €497 H, (87, 7))

=expCe H, (€77, €77))= expf Hy (€777 ,€%7))
Sincev;, j = 2,3, can vary freely the latter equation is equivatent
(A.35) P& (s D)< %,¢5(s < y)=expt Hy(e", e°))
where y;, j=2,3, are any real numbers. Hence we have proved teat.thf. of ({,(s,1),{;(s 1) is
independent of time and of the structural termg(s t), j=2,3. Furthermore, sincel,(s)and
W,(s 1) are independent we have that

PUA(9=xW(s)s ¥y= RU(r= XPW .9¢ )
=PE(9=s x—u(9.6( %< x (B B(. 95 ¥y W.94:(.32 -y . p.
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Note that the terms; (s) and w, (s 1), j= 2,3, can vary freely on the real line. Thus the lastagipn is
equivalent to
(A.36) P(£,(9= %,65(95 %&,( SIS Y& (s) Y
=P(6,(95 %, &,(9< %) RE( SIS y&L( SKE Y.
Eg. (A.36) implies that(&,(s),&5(9) and (&,(s,t),,(s b)) are independent, which implies that
U,(s),U;(9) and (W, (s 9, W( s }) are independent. This completes the proof.
Q.E.D.

Proof of Theorem 2:
We shall demonstrate Theorem 2 follows from Dag$¢®88). LetG,(x) be defined as in Dagsvik
(1988), namely byG, (X) =—log P(U(t)< X =-log P(W(0, < X. Then it follows that
TC
OX. x=0

J

V, () =

Furthermore, note that

2 V() =G(0).

kOB
Now the result of Theorem 2 follows from Theorenp334, of Dagsvik (1988).
Q.E.D.

Lemma4

Let{Z(9), t=0} be a standard extremal process defined as follows:
(i) Z(0)= o,
(i) Z(t) =max(Z(s),Y(s 9),for s <t, whereY(s f)is a random variable that is independentA(fs),
(i) Y(s1?) andY(s,t)are independent whenevés, t) n (s, t)=0,
(vi) P(Y(sd< Y=expE(t= 9¢&"),forreal u.
If U;(t), j0S, are independent modified extremal utility proces@es defined in Theorem 1) we have
that
(A.37) U, (1) =2,V (1) -6t

where{Z,(9,t=0}, jOS, are independent standard extremal processes and

(A.38) V(1) :j'exp(vvj @)+or)dr+g,
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where &= 0is a constant andw(7)} are deterministic terms.

Proof of Lemma 4:

Consider the three-dimensional distributiong &), t =0}. It follows from the definition above in the

statement of the lemma that for reqlj = 1, 2, 3, and, <t, <t that

P(Z(t) < %, Z(b) < %, ZH)< x)=exp (&0 = (4= e - (1= 1) &),
Furthermore, it follows from the definition afl in (2.2) that when the utility processes are

independent that

H(Y, Yoo ¥ )= Y+ Y+ Oy,

so that
PW (s 9+t y=ex —é“j'exp(vjv(')ﬁe)dJ: expt € (V(% V(9)

Let U, (t) =U, (t) + 6. The corresponding updating relation is given by
U, (1) =maxU; €)W (s )+ 81).
Moreover, (A.37) is equivalent td ; (t) = Z, (V, (1)). Hence, we obtain that
P(U; (t) < %, U, (L)< %, U, ()< %)
P(U; (t) < %, maxU; @)W (6,6 )+06)< %, maxy €)W G L¥OL W G LF0 t)k %
=exp(V; @)™ = ( (1) Y (1) €M = (Y (9= V(1) @),

It is easy to verify that the last expression imeas
P(Z,(M (D)= % Z(Y()= % Z(V( D)= ¥.
For the higher dimensional distributions the corapiah is entirely analogous. This completes the

proof.
Q.E.D.

Pr oof of Theorem 3:

For any choice se8, let |,(B) =1 if jUB, and zero otherwise. Define independent utilitycesses,

{Ui(1),t=0}, by

(A.39) Uj(t)=Z, (v ()6t
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where {Z,(9,t=0},j =1, 2, .., m, are independent standard extremal processes, and
] — . u] . . . . .

V() =V, (91, (B(). Evidently,V; (t) is a non-decreasing function tinvhen the choice set process

is non-decreasing. Consequently, Lemma 4 implies the utility processes defined in (A.39) are

modified extremal processes. Thus, the results ldofem 2 and Corollary 2 go through with

V, (1) replaced bWJ.D(t). Hence, the result of Theorem 3 follows.

Q.E.D.

Proof of Theorem 4:
Let U,(t,h(t)) be defined as in Assumption 4. Ldf(t, h(t))=(U,(t, h(t)),U,(t,h(t)) and

w(t, h(t)) = (w(t h(1)), w(t (D). For notational simplicity, define

exp(- exf{w (t h¢)- %) - expw(th()- y)) fory= x+8 F 1:
0 otherwise.

(A.40) M, (y|x, h(t)):{

Due to the form of the extreme value distributipfollows that the conditional distribution of

U(t, h(t)) givenU (t -1,h(t — 1)) and given the choice history can be expressed as

(A.41) P(U(t h() < yU(t-1,h(t-1)= = M( y x () for y,2x +6,j=1,2,

and zero otherwise. Lejf(r), 7 =1,2,..., be a sequence of choices and defirfg = (u,(t), u,(t)) and

We have

(A.42) P(I(M)=i(r).7=1.2,..1)= | ﬁer(uﬂu(‘— DA ¢ )
) =

Q) 7=
whereu(0) = (-,—), and
h(r)={3(9=§9,0 =<7r-13.
Let Mi(y|x) be given by (A.40) whemv(t, h(t)) is replaced byw(t) . Define
(A.43) L(h (t+1),w(9), s< )= | - dM ()| &-1).
o) 7=

Clearly, (A.43) is the likelihood function underrpuaste persistence. We know from Theorem 2 that

the likelihood function in (A.43) has a structuhat implies a Markovian choice process under pure

taste persistence. But Wh(zU DU (2),...U ¢ ))DQ ¢ ), then the choice history, including the choice at
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timet, equalsh’(t+1) and consequently the functions(s K s)), $1,2,...,t remain fixed when the
integrand in (A.43) is integrated out ov@r(t). Therefore, we must have that

(A44) P(ID)= @), 7=12,..4)=L(K ¢+ DW6H () s }
Eq. (A.44) implies that state dependence can beesvently accounted for by replacir{gv(s)} by

corresponding "experience-modified" functio§s( s h{ 3)}. Furthermore, conditional on these
experience-modified functions the choice process Markov chain with transition probabilities that
have the same structure as in Theorem 2 {\mts), s< } replaced by{w(s h{ 3), < }

Q.E.D.

Proof of Corollary 8:
From (3.10) it follows that

¢ ¢ k;BVJ(X)dX
_[ (Z G (X) + qjk(x)j dx:d W

4 \kOA KIB\ A

(A.45) kOB
= Iog(z vV, (t)) +K= IogU & H® (expw( )) dr+ > Qj +K,

kOB kOB
which proves (6.1). Also from (3.10) we have that

logV; (1) = logq, (t)+ Iog(z % (t)j .

kOB

When the above equation is combined with (A.46)getthat

logH (expw () +w, ¢)+6t= logg )+ [ (Z G 2 q (X)j d,

4 \kOA KIB\ A

which proves (6.2)
Q.E.D.

Appendix B
In this appendix we outline how the transition @bitities and intensities look like when the
functionswj(t) are step functions that only may change at gtirae units, such as weeks or months.

In this case we obtain that
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j exp(w, @)~ (t-1)6)dr =3 ext{w, ¢)-19) j & ar=Y expw () 6)( & - 670"
(Bl) ° r=s r-1 r=s

(1_ )zexp(w ()-¢-r)9).

As a result of (B.1) it follows from Theorem 2 ttihe transition and state probabilities can betemit

as

Zt:exp(wj (r)—(t—r)é’)
(B.2) Q(st)=——
> (Zexp(wk €)-(t-7)6)dr + @& + expiw, (0)))@“"}

k=0 r=1

for O<s<t,i,j=0,1i#j,and

Zt:exp(wj (r)—(t—r)H)dr+ @ + exply (0)E*

(B.3) P(t)=—2L ,
Z[Zexp(wk )= (t-7)8)dr + @ + expw, (0»)e'9tj
where
N oc;
¢ = .
I 1-g®

The corresponding transition intensities followfr¢3.15) and (B.1) and are given by

@ ()= Bexptw, 1)) |
3 [zexp(wk €)-(t-7)8) dr + (& + exptn <o»>e-ﬂj

k=0 r=1

(B.4)

From (B.2), (B.3) and (B.4) it is evident th@tmay be absorbed iexpfw, (0)), and we can therefore

normalize by setting; = 0.
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