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IDENTIFYING SUSPICIOUS EFFICIENT  

UNITS IN DEA MODELS
 

  

by 

Vladimir Krivonozhko, 

National University of Science and Technology «MISiS», Moscow 

Finn R. Førsund,  

Department of Economics, University of Oslo 

Andrey V. Lychev 

National University of Science and Technology «MISiS», Moscow 

 

Abstract: Applications of the DEA models show that inadequate results may arise in some 
cases, two of these inadequacies being: a) too many efficient units may appear in some DEA 
models; b) a DEA model may show an inefficient unit from the point of view of experts as an 
efficient one. The purpose of this paper is to identify suspicious units that may unduly 
become efficient. The concept of a terminal unit is introduced for such units. It is shown by 
establishing theorems how units can be identified as terminal units and how different 
definitions of suspicious units are related. An approach for improving the adequacy of DEA 
models based on terminal units is suggested, and an example shown based on a real-life data 
set for Russian banks. 

 

Keywords: Data Envelopment Analysis (DEA); Terminal units; Efficiency; Weight 

restrictions; Domination cones 

JEL  classifications: C44, C61, C67, D24 

                                                 
 This paper is an extension of the analysis in Krivonozhko et al. (2011). 
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1. Introduction 

 

After a decade of applications of Data Envelopment Analysis (DEA), originating in Farrell 

(1957) and Farrell and Fieldhouse (1962) and generalised and put into the linear 

programming format we use today by Charnes et al. (1978) (hereafter called the CCR model), 

it was recognised that results both concerning efficiency scores and shape of the frontier 

production function, on which Farrell efficiency measures are based, were not always 

adequate when confronted with expert knowledge of the units to which DEA was applied. 

Types of inadequacies discussed in the literature have been that too many efficient units may 

appear in some DEA models, a DEA model may show an inefficient unit from the point of 

view of experts as an efficient one, too many zeros appear as solutions for the multipliers 

(weights), and units are not properly enveloped.  

The first attempts in the literature (Thompson et al., 1986; Dyson and Thanassoulis, 

1988) to restrict the estimation of the frontier function and consequently the efficiency scores, 

took two different types of failings as their point of departure. The problem of Thompson et 

al. (1986) was that the number of units under investigation was so small (only six) that all but 

one of the units was rated efficient using conventional DEA. In order to increase the 

discrimination restrictions on the so-called weights (appearing in the dual solution if the 

primal model is the envelopment model formulated in the space of inputs and outputs) were 

enforced. This approach was followed up in Thompson et al. (1990), and Charnes et al. 

(1989, 1990), the latter papers introducing the cone-ratio approach of basing the shape of the 

frontier on a few efficient units selected by experts by restricting the weights (multipliers) to 

be within cones in the dual space. 

Dyson and Thanassoulis (1988) were taking a different tack. They were preoccupied 

with the consequence of zero weights (or weights of value  where  is a non-Archimedean 

number) leading to “some DMUs being assessed only on a small subset of their inputs and 

outputs, while their remaining inputs and outputs are all but ignored (p. 563).” Restriction on 

weights should be based on expert opinion, but the purpose was to eliminate zero weights, 

and not to reduce the efficiency of units being 100% efficient within the conventional DEA 

model. 

The development of this literature is reviewed in Allen et al. (1997) and Pedraja-

Chaporro et al. (1997) (a critical assessment of the literature is offered in Førsund, 2012). An 

interesting new line of introducing restrictions directly in the input – output space and not in 
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the dual space started with Bessent et al. (1988) and Lang et al. (1995) of extending the faces. 

This was followed up in Thanassoulis and Allen (1998) by explicitly reducing the number of 

zero weight for inefficient observations by introducing new unobserved units based on expert 

opinions using units called anchor units as point of departure. A formal attempt to define 

anchor units and to introduce ways of finding them was done in Allen and Thanassoulis 

(2004) in the case of constant returns to scale and a single input. This definition was 

generalised in Bougnol and Dulá (2009) to multiple inputs and outputs and variable returns to 

scale. An elaborate algorithm for finding anchor points was introduced. The empirical 

applications gave the somewhat surprising result that almost all extreme efficient units are in 

fact anchor points. The situation of some zeros for weights seems to be the normal situation 

for DEA applications. However, their algorithms may produce units that are just usual 

efficient units (vertices) in DEA models.  

Thanassoulis et al. (2012) elaborated further the super-efficiency approach for finding 

anchor units in a general model exhibiting variable returns to scale. However, their approach 

does not reveal all efficient units that may be the point of departure for improving 

envelopment in the Banker et al. (1984) model of variable returns to scale.  

Edvardsen et al. (2008) suggested an empirical witty method for discovering 

“suspicious” units; they call them “exterior units”. However, their method cannot discover all 

suspicious units. 

An elegant and subtle approach was proposed in the DEA area to deal with the 

problems of inadequacies of the DEA models. This approach is based on incorporating 

domination cones (Yu, 1974) in DEA models. A number of outstanding papers were devoted 

to substantiation, development and applications of domination cones to DEA models 

(Brockett et al., 1997; Charnes et al., 1989; Charnes et al., 1990; Thompson et al., 1997; Wei 

et al., 2008; Yu et al., 1996). Cones are usually determined in the dual space of multipliers. 

It is rather difficult, however, for a manager (the decision-maker) to determine cones in 

the multipliers space that is dual to the space of inputs and outputs where a production 

possibility set is constructed (Cooper et al., 2000). For this very reason only two particular 

DEA models with cones are widely used in practice at present: the assurance region model 

and the cone-ratio model (Cooper et al., 2000).  

The purpose of this paper is to identify units that may unduly become efficient by 

making use of a new concept: a terminal unit. The plan of the paper is to go into the 

background in Section 2, using key elements from the cone-ratio approach developed in 

Charnes et al. (1990), based on the Banker et al. (1984) model of variable returns to scale, 
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and establish necessary definitions. The main results are presented in Section 3, including the 

definition of a terminal unit and illustrating its difference from the term anchor unit and using 

domination cones to establish that terminal production units exist if some production units 

become inefficient if cones are inserted in the model. Some numerical experiments on data 

for Russian banks are carried out in Section 4, showing how to find a terminal unit and how 

to use experts to indicate an artificial efficient unit using a visual interactive graphical 

technique. Section 5 concludes and offer ideas for further research. 

 

 

2. Background 

 

It was shown in the DEA scientific literature (see, Krivonozhko et al., 2009) that the model in 

Banker et al. (1984) exhibiting variable returns to scale (hereafter termed the BCC model) 

can approximate any DEA model from a large family of DEA models. For this reason, we 

consider the BCC model as a basic model in our exposition.  

Consider a set of n  observations of actual production units ),( jj YX , nj ,,1 , where 

the vector of outputs 0),,( 1  rjjj yyY  , nj ,,1 , is produced from the vector of inputs 

0),,( 1  mjjj xxX  . The production possibility set T  is the set { ),( YX  | the outputs 

0Y  can be produced from the inputs 0X }. The primal input-oriented BCC model can 

be written in the form 

 

min  
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where ),,( 1 mjjj xxX   and ),,( 1 rjjj yyY   represent the observed inputs and outputs of 

production units nj ,,1 , ),,( 1
  mssS   and ),,( 1

  rssS   are vectors of slack 

variables. In this primal model the efficiency score   of production unit ),( oo YX  is found; 

),( oo YX  is any unit from the set of production units ),( jj YX , nj ,,1 . 

Notice that we do not use an infinitesimal constant  (a non-Archimedean quantity) 

explicitly in the DEA models, since we suppose that each model is solved in two stages in 

order to separate efficient and weakly efficient units. 

The dual multiplier form of the BCC model (1a) is expressed as 

)(max 00 uYuT   

subject to  

00  uXvYu j
T

j
T ,  nj ,,1     (1b) 

,10 XvT  

0kv ,  mk ,,1 ,  0iu ,  ri ,,1  

where ),,( 0uuv  is a vector of dual variables, mEv , rEu , 0u  is an unconstrained scalar 

variable associated with the convexity constraint. 

The BCC primal output-oriented model can be written in the following form 
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

     (1c) 

The dual multiplier form of the BCC output-oriented model (1c) is written in the form 

 

)(min 00 uXvT   

subject to  
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00  uXvYu j
T

j
T ,  nj ,,1     (1d) 

,10 YuT  

0kv , mk ,,1 , 0iu , ri ,,1 , 

where ),,( 0uuv  is a vector of dual variables, mEv , rEu , 0u  is a scalar variable 

associated with the convex constraint (the same symbols for dual variables are used as for 

models (1b)). 

Definition 1. (Cooper et al. 2000). Unit TYX oo ),(  is called efficient with respect to 

the input-oriented BCC model if and only if any optimal solution of (1a) satisfies: a) 1*  , 

b) all slacks 
ks , 

is , mk ,,1 , ri ,,1  are zero. 

If the first condition (a) in Definition 1 is satisfied, then unit ),( oo YX  is called input 

weakly efficient with respect to the BCC input-oriented model. We denote the set of these 

weakly efficient points by TWEff I . In the DEA literature (Banker and Thrall, 1992; Seiford 

and Thrall, 1990) this set is also called the input boundary. 

Definition 2. (Cooper et al. 2000). Unit TYX oo ),(  is called efficient with respect to 

the output-oriented BCC model if and only if any optimal solution of (1c) satisfies: a) 1*  , 

b) all slacks 
ks , 

is , mk ,,1 , ri ,,1  are zero. 

If the first condition in Definition 2 is satisfied, then unit ),( oo YX  is called output 

weakly efficient with respect to the BCC model. We denote the set of these weakly efficient 

points by TWEffO . In the DEA literature (Banker and Thrall 1992; Seiford and Thrall 1990), 

this set is also called the output boundary. 

Definition 3. Activity TYX )','(  is weakly Pareto efficient if and only if there is no 

TYX ),(  such that 'XX   and 'YY  . We denote the set of weakly Pareto efficient 

activities by TWEffP . 

We denote the set of efficient points of T with respect to the BCC model (1) by TEff . 

Krivonozhko et al. (2005) have proved that the following relations hold: 

TWEffTWEffTEff OI  ,   TBoundTWEffTWEffTWEff POI  , 

where the boundary of T is designated as TBound . 

The production possibility set BT  for the BCC model can be written in the form 

(Banker et al., 1984) 
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)2(.,,1,0,1,,),(
11 1 


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
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

  
 

njYYXXYXT j

n

j
j

n

j

n

j
jjjjB   

In this paper we will mainly consider production possibility sets of this type. 

 

 

3. Main results 

 

The use of cones will play a crucial role in our search for terminal units. The main idea of 

incorporating domination cones in DEA models is to reduce the domain of multipliers. For 

this purpose, additional constraints on multipliers are incorporated in the DEA models. 

In the assurance region method, constraints on the multipliers are added to the CCR 

model in the following manner; see Charnes et al. (1990), 

1 1
1

1 1
1

, ( 2, , ),

, ( 2, , ),

i
i i

s
s s

v
l k i m

v

u
L K s r

u

  

  




     (3) 

where il1 , ik1 , sL1 , sK1  are given low and upper bounds on the ratios of multipliers. 

Assertion 1. There exist polyhedral cones in multidimensional space rmE   that cannot 

be described by relations (3). 

Thus, formulas (3) describe only some subset of possible polyhedral cones in 

multidimensional space rmE  . The next model enables one to use more general form of 

domination cones in the DEA models. 

The dual multiplier form of the cone-ratio model is expressed as (Charnes et al., 1989; 

1990; Yu et al., 1996) 

)(max oo uuY   

subject to 

,,

,,,1,0

,1

VvUu

njuYuXv

Xv

oj
T

j
T

o
T







    (4a) 

where variables mEv , rEu , 1Euo   and rEU  , mEV   are given polyhedral cones.  

The primal problem of (4a) is written as 
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min  

subject to 
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1
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VXX
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    (4b) 

where *V  and *U  are negative polar cones of sets V  and U , respectively.  

In practice (Charnes et al., 1990; Cooper et al., 2000), polyhedral cones U  and V  are 

constructed as follows: a) some excellent units are chosen from the point of view of experts; 

b) averages of the optimal multipliers *
iu , *

iv  are computed for every excellent unit Exi , 

where Ex  denotes the set of excellent units (a subset of Eff T). Vectors *
iu , *

iv , Exi  form 

polyhedral cones U  and V . 

Cones U  and V reduce the feasible domain of multipliers, while the feasible domains 

of inputs, see Fig. 1, and outputs, see Fig. 2, are expanding. 

Now, we make an attempt to reveal the causes of inadequacies in DEA models. 

Assumption. Let the cone-ratio method allows one to reduce the number of 

“suspicious” production units, i.e. the units that are efficient, but should be inefficient from 

the point of view of experts. 

 

 

Fig. 1. Transformation of the frontier in the output subspace in the cone-ratio method  
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Fig. 2. Transformation of the frontier in the input subspace in the cone-ratio method 

 

Production possibility set BT  (2) is a convex polyhedral set. According to the classical 

theorems of Goldman (1956) and Motzkin (1936) any convex polyhedral set can be 

represented as a vector sum of convex combination of vertices and the non-negative linear 

combination of vectors (rays). 

Before going further, let us recall some notions from convex analysis. Faces are formed 

by an intersection of the supporting hyperplane and the polyhedral set. In the DEA models, 

the dimension of face may vary from 0 up to )1(  rm , the maximal dimension. Faces of 

maximal dimension are called facets. Faces of 0-dimension are known as vertices, 

1-dimension as edges. 

Definition 4. We call an efficient (vertex) unit terminal unit if an infinite edge is going 

out from this unit.  

We denote the set of terminal units with respect to the production possibility set (2) by 

termT . 

Definition 5. We call a face   TWEffTWEff OI   of set BT  a terminal face if this 

face contains an infinite edge. 

Then the following assertion can be proved if the Assumption above is valid. 

Theorem 1. If some efficient production units in model (1) become inefficient in model 

(4) as a result of inserting cones in the BCC model (1), then it is necessary that there exist 

terminal production units among such inefficient units.  

Proof. See the proof of Theorem 8 in Appendix A for a more general case.  
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Observe that the results of Theorem 1 was proved for the cone-ratio model at first, 

since this model was thoroughly elaborated from theoretical and practical points of view in 

the scientific literature on the DEA models, see Charnes et al. (1990), Brockett et al. (1997) 

and Cooper et al. (2000). However, the cone-ratio model cannot cover all possible cases 

where inadequate results may appear in the DEA models. Therefore theorem 6 is proven in 

this paper for the generalized DEA model with domination cones. 

Thus, Theorem 1 shows that terminal points are the first “suspicious” units which may 

cause inadequate results in the DEA models. 

The following optimization models enable us to find terminal units or units belonging 

to terminal faces of the production possibility set. Let EF designate the set of observed 

efficient units (vertices) of the BCC model (1). For this purpose two types of models are 

solved for every efficient unit (vertex) EFq .  

Problem )(qPk  ( mk ,,1 ) 
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
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
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
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n

j
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q

n

j
jj
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n

j
jj

k

YY

dXX

J

    (5) 

where m
k Ed  )0,,1,,0(  , the unity is in k -th position.   

Variable  τ provides that ray ),( qkq YdX   going out from  unit  ),( qq YX belongs to the 

feasible set of the model (5). 

Theorem 2. If in problem (5) the optimal value 1*
1 kJ , then unit ),( qq YX  is a terminal 

one or belongs to a terminal face   TWEffO . 

Proof. Under any 0  ray ),( qkq YdX   is a feasible subset for production 

possibility set BT  (2) due to monotonicity of BT . As it follows from model (5), if 1*
1 kJ , 

then this ray belongs to the set BOTWEff . Hence this ray is an unbounded edge or belongs to 

an unbounded face of set BT . 

This completes the proof. 

The following models determine infinite edges emanating along direction ig , where 

r
i Eg  )0,,1,,0(   (the unity is in i -th position). 
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Problem )(qRi  ( ri ,,1 ) 
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     (6) 

Theorem 3. If in problem (6) the optimal value 1*
2 iJ , then unit ),( qq YX  is a terminal 

one or belongs to a terminal face   TWEff I  . 

The proof of Theorem 3 is very similar to the proof of the previous theorem and is 

therefore skipped. 

Thus, models (5) and (6) enable us to reveal terminal units or efficient units belonging 

to unbounded faces and also directions of infinite edges going out from efficient units. 

The following problems enable one to discover only terminal units. 

Problem )(qPk ( mk ,,1 )  
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    (7) 

Theorem 4. Unit ),( qq YX  is a terminal one if the optimal value of problem (7) 

1**
1  qiJ  . 

Proof. Observe that solution 0j , nj ,,1 , qj  , 1q , 0  is a feasible 

solution of problem (7). So, if 1* q , this implies that any interior point belonging to the ray 

),( qkq YdX   cannot be represented as a convex combination of some other points of 

production possibility set BT . Hence this ray is an infinite edge and point ),( qq YX  is a 

terminal unit. 
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However, if 1* q , this implies that some interior points of the ray ),( qkq YdX   can 

be represented as a convex combination of some other points of set BT .  

This completes the proof. 

The following problems allow one to find only terminal units and infinite edges 

emanating along directions ig , ri ,,1 . 

Problem )(qRi ( ri ,,1 ) 

,0;,,1,0
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    (8) 

Theorem 5. Unit ),( qq YX  is a terminal one if the optimal value of problem (8) 

1**
2  qiJ  . 

The proof of Theorem 5 is very similar to the proof of Theorem 4 and is therefore 

skipped. 

Corollary 1. Unit ),( qq YX  is a terminal one if and only if it turns out to be terminal at 

least in one of the problems )(qPk , mk ,,1  in (7) and )(qRi , ri ,,1  in  (8). 

Bougnol and Dulá (2009) determined an anchor point as an efficient vertex belonging 

to an unbounded face of set BT . They proposed algorithms for discovering anchor points. 

However, their algorithms may produce units that are just usual efficient units (vertices) in 

the DEA models. Moreover, such units are not suitable as points of departure for considering 

improving the frontier. Indeed, consider the following illustrative example. In Figure 3, a 

two-inputs/one-output BCC model is depicted. Units A , B , C , D , E  are the observed 

efficient production units that determine set BT .  
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Fig. 3. Unit B  is an anchor point, but not a terminal point 

 

Units M , A , B , C , L  form the face of set BT . This face belongs to the orthant 

OYX1 . Hence efficient unit B  belongs to the unbounded face. However, unit B  is just a 

common vertex of the BCC model. Increasing an input or decreasing an output of unit 

B generates a new inefficient point that does not belong to set )( TWEffTWEff OI  . This unit 

cannot be used to reduce the DEA-inefficient part of the production possibility set, see Allen 

and Thanassolius (2004), hence this unit is not suitable for the frontier improvement, and 

contradicts the notion of an anchor point.  

Let us denote the set of anchor units in the BCC model (1) with respect to the definition 

of Bougnol and Dulá (2009) by 1
ancT . 

Theorem 6. Unit ),( qq YX  belongs to the set 1
ancT  in the BCC model (1) if and only if 

the optimal value 1*
1 kJ  and/or 1*

2 iJ  at least in one of the problems )(qPk , mk ,,1  in  

(5) and )(qRi , ri ,,1  in (6). 

Proof. The result follows from Theorems 2 and 3. Indeed, if 1*
1 kJ  and/or 1*

2 iJ  at 

least in one of the problems )(qPk , mk ,,1  (5) and )(qRi , ri ,,1  (6), then unit 

),( qq YX  belongs to an edge or to a terminal face of the production possibility set BT  (2). 

Remember from the convex analysis that an edge of the polyhedral set represents also a face 

of 1-dimension. Hence unit ),( qq YX  is an anchor point with respect to the definition of 

Bougnol and Dulá (2009). This completes the proof. 
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Thus Theorem 6 gives us a constructive way to reveal whether unit ),( qq YX  belongs to 

the set 1
ancT  or not. For this purpose one has to solve problems )(qPk , mk ,,1  (5) and/or 

)(qRi , ri ,,1  (6). 

Now we can formulate the following result. 

Corollary 2. The set of terminal units termT  of the BCC model (1) belongs to the set of 

anchor points 1
ancT  with respect to the definition of Bougnol and Dulá, i.e. 1

ancterm TT  .  

This result immediately follows from Theorems 2, 3 and 6. 

Edvardsen et al. (2008) suggested an empirical method for discovering “suspicious” 

units, they call them “exterior units”. Let extT  denote the set of exterior units in the BCC 

model (1). However, their method cannot discover all suspicious units. Indeed, consider the 

following illustrative example, Figure 4, panel (a). The three dimensional BCC model is 

determined by units A , B , C , D . Again consider the BCC model with the same units, but 

now y  is an input variable, 1x  and 2x  are output variables, see Figure 4, panel (b), points E 

and F are projections of points B and C onto planes  Oyx1  and Oyx2 , respectively. Point D  

is not efficient in this case. Hence this point is not exterior. At the same time this point is a 

“suspicious” unit, since it may cause inadequacy in the DEA model. 

  

 

 

(a)      (b) 

Fig. 4. Point D  is not an exterior unit in the three-dimensional BCC model 
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Units, like point D, belonging to unbounded faces and not being terminal units are also 

“suspicious” points. These units may also cause inadequate results in the DEA models. 

However our computational experience shows that the number of such units in real-life data 

sets is very small in comparison with the number of terminal units. 

The next theorem establishes that the set of terminal units includes the set of exterior 

units. 

Corollary 3. The set of terminal units termT  of the BCC model contains the set of 

exterior units extT , i.e. termext TT  . 

Proof. See Appendix A. 

However some terminal units may not belong to the set of exterior units. Indeed, 

consider the following illustrative example. Figure 5 depicts a three-dimensional BCC model, 

points A-F (efficient units) determine the production possibility set BT .  

 

 

Fig. 5. Three-dimensional BCC model, units D and E are not exterior ones 

 

Units D  and E  are terminal ones since these units belong to unbounded edges. 

However these units are not exterior ones since these units will be inefficient after “reversing 

the inputs and outputs”. 

The following theorem summarizes the results of Corollary 2 and 3. 

Theorem 7. For BCC model (1) the following relations hold 1
anctermext TTT  . 

Its proof is based on previously stated results. 
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Thanassoulis et al. (2012, p.178) proposed a new definition of anchor units for efficient 

units, “which with reference to the extreme-efficient DMUs [vertices] but excluding the 

evaluated DMU itself, can be rendered class F [weakly efficient units] by contracting radially 

their output levels, while keeping their input level constant OR by increasing inputs and 

keeping their output levels constant”. However, their approach does not reveal all efficient 

units that may be used for improving envelopment in BCC models. 

Consider again an illustrative example in Figure 5. Units D  and  E  are not anchor 

units with respect to the definition of Thanassoulis et al. (2012). Figure 6 depicts an input 

isoquant for unit D. Unit G  is inefficient. Its projection will be point 'G  on some slack face. 

However, their approach cannot improve this part of the boundary, unit D  is not identified as 

an anchor unit, since unit D can be moved to the efficient part of the frontier by contracting 

radially its output level while keeping its input levels constant or by increasing inputs and 

keeping its output levels constant.  So, their approach is incomplete. 

The cone-ratio model (3) cannot help in every case where suspicious units appear in the 

DEA models. In Figure 5, point B  is a terminal unit. However, it is impossible to transform 

the frontier with the help of cones U  and V  in such a way that terminal point B would be 

inefficient, see Fig. 6. 

Only simultaneous transformation of the frontier in the space of inputs and outputs 

enables one to make suspicious unit B  inefficient, see Fig. 7. 

 

 

Fig. 6. Input isoquants for units B and D 
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Fig. 7. Production function for unit B  

 

Yu et al. (1996) proposed the following generalized DEA (GDEA) model that unifies 

and extends most the well-known DEA models based on using domination cones (see, e.g. 

Yu, 1974) in their constraint sets. 
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The optimization dual problem to (9a) is written in the form (Yu et al, 1996): 
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where ),,( 1 nXXX   is an m  n matrix, 0),,( 1  mjjj xxX   is the input vector for the jth 

production unit nj ,,1 ; ),,( 1 nYYY   is an r  n matrix, 0),,( 1  rjjj yyY   is the 

output vector for the jth production unit nj ,,1 . Parameters 321 ,,   are binary ones 

assuming only the values 0 and 1. Vector e is determined as nEe  )1,,1(  . Sets 

rmEW  and nEK   are the closed convex cones, where rmE   and nE  are Euclidean 
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spaces of the dimensions )( rm   and n , respectively. *W and *K  are the negative polar 

cones (Charnes et al, 1989; Yu et al, 1996) of sets W and K, respectively. It is usually 

assumed in the DEA models that the polyhedral cones rmEW 
  and nEK   and Wint Ø 

and Kint Ø, then we get *W Ø and *K Ø. 

Theorem 8. If some efficient units in model (1) become inefficient in model (9) as a 

result of inserting cones in the BCC model, then it is necessary that there exist terminal 

production units among such inefficient units. 

Proof. See Appendix A. 

It is rather difficult for a manager (expert) to determine cones in the multipliers space 

that is dual to the space of inputs and outputs where a production possibility set is 

constructed. 

For this very reason it is difficult to use the GDEA model in practice. 

Krivonozhko et al. (2009) proposed a model that is more general than the GDEA 

model, on the one hand, as it covers situations that the GDEA model cannot describe. On the 

other hand, this model enables one to construct step-by-step any model from a large family of 

the DEA models by incorporating artificial units and rays in the space of inputs and outputs 

in the BCC model, which makes the process of model construction visible and more 

understandable. 

The production possibility set of this model is written in the form 
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  (10) 

where ),( ii GD , Ii , I  is a set of artificial production units, ),( kk BA , Jk  , J  is a set of 

vectors (rays) added to the model. 

Figure 8 shows the transformation of the frontier of the two-dimensional BCC model 

with the help of artificial units and rays. In the figure, cone Q is formed by artificial rays, 

point 'B  is an artificial unit. 
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Fig. 8. Transformation of the frontier with the help of artificial units and rays 

 

In addition to problem (7) and (8), we can also discover terminal (suspicious) 

production units with the help of constructions of two-dimensional and three-dimensional 

sections of the frontier. 

Define three-dimensional affine subspace in space rmE   as 

,),(),,,,(Pl 321321 dddYXdddYX oooo     (11)  

where Boo TYX ),( ,  ,   and   are any real numbers, directions rmEddd 321 ,,  are not 

parallel to each other. 

Next, define intersections of the frontier with three-dimensional affine subspace 

},,,);,(
),,,,(Pl),(|),({),,,,(Sec

321

321321
rm

P

oooo

EdddYXTWEff
dddYXYXYXdddYX




 (12) 

where TWEffP  is a set of weakly Pareto-efficient points. Krivonozhko et al. (2005) have 

proved that set TWEffP  coincides with the boundary of BT  (2). 

By choosing different directions 1d , 2d  and 3d  we can construct various two-

dimensional and three-dimensional sections going through point ),( oo YX  and cutting the 

frontier. Parametric optimization algorithms for construction of sections of the type (11) are 

described in detail by Krivonozhko et al. (2004) and Volodin et al. (2004). 

Moreover, thanks to our package FrontierVision, one can add to the DEA model any 

artificial units and rays on the computer screen interactively. 

Assertion 2. There always exists a section (11) that reveals any terminal unit and/or 

efficient units belonging to an unbounded face. 
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However, the specific section may not reveal some terminal units. In the three-

dimensional BCC model, see Figure 5, unit B  is a terminal one. In Figure 6, unit B  does not 

look like a terminal one. The section in Figure 7 reveals this unit as a terminal point.  

Generally speaking, a two-dimensional section of the type (11) consists mainly of a 

number of segments and two rays. The first and the last vertices in the chain of segments are 

usually terminal units. 

Next, a user (expert) can control the changes of efficiency scores of inefficient units as 

a result of inserting artificial rays and units with the help of our package FrontierVision. 

Indeed, the following assertion is valid. 

Assertion 3. There always exists a  vicinity for any terminal unit such that any change 

of this unit’s position within this vicinity will change only efficiency scores of some inefficient 

units within some small range. 

So, if some changes in efficiency scores are unacceptable according to expert’s opinion, 

he/she can move artificial units closer to some small vicinity of a terminal unit just on the 

screen of the computer. Our computational experiments showed that it is sufficient to make 

two or three such iterations in order to adjust his/her model and obtain reliable computational 

results. 

 

 

4. Computational results 

 

In order to illustrate consequences of letting experts choose one unit from the terminal units 

and change data to more reasonable values we used a dataset for 920 Russia banks’ financial 

accounts for January 1 of 2009. The following inputs and outputs for the BCC output-

oriented model were used: 

Inputs: working assets; time liabilities; demand liabilities. 

Outputs: equity capital; liquid assets; fixed assets. 

Max, min and mean statistics for banks are shown in Table 1. 
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Table 1. Data for banks Russia 2008 

Variables Mean St. deviation Min Max 

Outputs     

Liquid assets, ths roubles 4 279 490 30 304 201 73 717 402 532 

Equity capital, ths roubles 2 205 806 23 572 632 423 632 286 730 

Fixed assets, ths roubles 608 481 7 414 069 42 221 058 541 

Inputs     

Demand liabilities, ths roubles 11 318 997 140 641 585 0 4 184 548 095 

Time liabilities, ths roubles 18 289 244 162 725 433 1 4 213 176 749 

Working assets, ths roubles 24 587 080 230 385 425 0 6 233 536 293 

 

The data were financial accounts of Russian banks for the year 2008. Remember that 

this year was the first year of the world crisis. It was important at that time for financial 

experts to have reliable tools for forecasting the behavior of financial institutes and for 

warning about possible bankruptcies. 

Figure 9 represents the dependence of the number of units on the range of efficiency 

scores according to the BCC output model (1c, 1d).  

Notice that the number of efficient banks is very low; 42 units out of 920. The majority 

of banks have efficiency scores less than 50%. This situation is different from the situation 

reported in Charnes et al. (1990). 

 

Fig. 9. Distribution of efficiency scores before the frontier transformation 
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However, financial experts expressed doubt about the result of full efficiency of some 

banks. For example, Figure 10 presents a cut of the frontier in a six-dimensional space by the 

two-dimensional plane for bank A ; certainly we use legends instead of real names of banks. 

The directions of the plane are determined by two inputs: demand liabilities and working 

assets. 

 

 

Fig. 10. Input isoquant for bank A  

 

The scale is such that point )1,1(  in the figure corresponds to bank A . According to the 

BCC model bank A  is 100% efficient. However experts did not agree with this evaluation, 

and they were right, since bank A  was bankrupted in six months. In fact point A  is a typical 

terminal unit, since unbounded edges go out from this unit. However, Figure 10 cannot help 

us to improve the frontier.  

 

For this purpose we should use another section. Figure 11 shows a cut of the frontier in a six-

dimensional space by the two-dimensional plane for bank A . The horizontal axis in the 

figure is determined by input vector oX  and the vertical axis corresponds to output vector oY  

of bank A , respectively. The scale is such that point )1,1(  corresponds to bank A . The solid 

line outlines the production function (the cut of the production possibility set) of the model. 

The balls in the figure denote projections of some other banks on the two-dimensional plane. 

Again, according to the model, bank A  is efficient, which contradicts experts’ opinion.  
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Fig. 11. Production function for bank A  

 

However, Figure 11 can help us to improve the frontier. Experts were asked to insert an 

artificial efficient unit on the screen by phrasing the question how much outputs should be 

expected from an efficient unit using the observed inputs of unit A  (implicitly assuming a 

proportional increase of the outputs). This artificial unit is denoted by B . In the figure, the 

dotted line together with the solid line after it shows the frontier of the modified model. 

After the frontier transformation the efficiency score of bank A  became 48.3%. Some 

other banks also changed their efficiency scores after inserting artificial unit in the model. 

Table 2 shows efficiency scores of some banks, which were bankrupted during six months, in 

the BCC model before and after frontier transformation. 

After the second run of the model, the experts recognized the modelling results to be 

adequate and reliable. 

 

Table 2. Changes of efficiency scores after the frontier transformation 

Name 
Efficiency score before frontier 

transformation, in % 
Efficiency score after frontier 

transformation, in % 
Date of 

bankruptcy 
С 1.79 1.50 30.03.2009 

D 46.34 41.87 16.04.2009 

H 11.49 9.16 21.05.2009 

A 100.00 48.36 25.06.2009 

K 7.43 6.35 25.06.2009 
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We have presented an investigation for only one terminal unit, but demonstrated that 

the choice of terminal units as units that should be investigated using expert information 

worked out satisfactorily; reducing the efficient unit to an inefficient one and also reducing 

several other units’ scores and improving the realism of the results. However, the working out 

of a more formal procedure for eliciting expert help in providing more realistic efficient units 

based on terminal units is still to be done. 

 

 

5. Conclusions  

 

In this paper, we proposed tools for discovering units which may cause inadequate results in 

the DEA models. It was shown that terminal units constitute “suspicious” points in the first 

place. If the graph of intersection of the frontier with a two-dimensional plane is constructed, 

then the first and the last vertices of the graph are usually terminal units. However, it is not 

necessarily the case that terminal units may cause inadequate results in the DEA models, such 

units may be quite normal efficient points. Only experts in the specific area can evaluate the 

adequacy of efficiency scores of terminal units.  

Terminal units arise because a non-countable (continuous) production possibility set T  

is determined on the basis of a finite number of production units; some of these units turn out 

to be terminal ones. A gap between derivatives may take place at these points. For example, 

the left-hand side scale elasticity takes infinite value, and the right-hand side scale elasticity 

takes zero value at some terminal points, see Førsund et al. (2007). 

Let us remember that Farrell (1957) introduced artificial units at infinity in order to 

smooth his model, see also Førsund et al. (2009). 

We also propose how to deal with inadequacies in the DEA models with the help of 

incorporating artificial units and rays interactively on the screen of the computer by experts 

into some BCC model. This makes the DEA models more adequate and adjustable. 

Only one case of eliciting information from experts suggesting artificial units that 

should be efficient based on terminal units has been shown. However, several other 

experiments were carried out. Carrying out systematic experiments on new real-life datasets 

will be attempted in a further research, together with developing more formal procedures for 

eliciting information from experts on the activities under investigation constructing artificial 
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efficient units based on terminal units. The use of interactive graphical representation in a 

space of sufficiently reduced dimensions to be readily understandable and recognizable by 

experts seems a promising approach. 
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Appendix A 

Proof of Corollary 3. Take any point extqqq TYXZ  ),( . Assume that qZ  is not a 

terminal unit. Consider the following ray 
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Since qZ  is not a terminal unit, some part of ray (A.1) goes through the interior of the 

set 













 


exts
Ts

s
Ts

ssext TsZZZT
extext

,0,1,  .   (A.2) 

Consider some point *Z  that belongs to set (A.1) and to set (A.2). 

After “reversing the inputs and outputs” according to the procedure of Edvardsen et al. 

(2008) point *Z  will dominate point qZ . Hence point qZ  cannot belong to the set of exterior 

points, contradicting the assumption. 

This completes the proof. 
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Proof of Theorem 8. Consider efficient unit ),( 11 YX  in model (1) under evaluation, that 

remains efficient in model (9) after inserting domination cones, and efficient unit ),( 22 YX  in 

model (1) that becomes inefficient in model (9) after inserting domination cones. Assume, at 

first, that nEK  , this implies that cone K coincides with the first non-negative orthant. 

If unit ),( 22 YX  is a terminal point, then the theorem is proved. Assume that unit 

),( 22 YX  is not a terminal unit. 

Let ),( 11 uv be optimal dual solution in model (9) and ),( 22 uv  be optimal dual solution 

in model (1) for units ),( 11 YX  and ),( 22 YX , respectively. It is known that dual optimal 

solution ),( 11 uv  is an orthogonal vector to some face of the frontier at point ),( 11 YX  (see 

Cooper et al., page 120, theorem 5.1). Notice that we do not write here the third part 0u  of 

the dual vector, because we need only an orthogonal vector for our purpose. 

Dual optimal solution ),( 11 uv  for problem (9) is also optimal solution for problem (1) 

since the inclusion of cones in model (1) may only decrease the feasible set of dual variables 

(Yu et al., 1996). 

Denote vector of dual variables by rmEuvw  ),( . Next, let 
2

w  be the quadratic 

norm of vector w . 

Consider the following linear programming problem with a parameter α in the objective 

function (see Dantzig 1997, 2003) 
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here  

2111 wuu  ,  
2222 wuu  ,  

2111 wvv  ,  
2222 wvv  , (A.4) 

where ),( 111 uvw   and ),( 222 uvw  . 

According to the theory of linear programming with a parameter in the objective 

function when   is increasing, the optimal solution of problem (A.3) moves along the 

frontier from one face to another face. 
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It follows from (A.4), that some components of ),( 111 uvw   will be greater than the 

corresponding components of ),( 222 uvw   and vice versa. Some components of vector 

 )(),( 12
*

112
*

13 uuuvvvw    will be equal to zero under some 1*  . 

Since vector 3w  is orthogonal to some face BT , this face contains at least one 

unbounded edge and one terminal point. 

Points of face   are not efficient in model (9) with domination cones. Let us dwell on 

this in detail. 

According to the assumption, unit ),( 11 YX  is efficient in model (1) and in model (9). 

Optimal dual variables ),( 111 uvw   are associated with efficient unit ),( 11 YX  in both model 

(1) and model (9). Hence vectors 1w , 1w  belongs to some cone 1W  that is included in 

problem (1) in order to get problem (9a). Unit ),( 22 YX  is efficient in problem (1) and 

inefficient in problem (9). Hence vector ),( 222 uvw   associated with unit ),( 22 YX  does not 

belong to cone 1W . 

Since vectors 2w , 2w  and cone 1W  are convex sets, we can construct a hyper-plane 

bw ),( ,      (A.5) 

where rmE  , rmEw  , b  is a scalar, that separates these two vectors and cone 1W , or, in 

other words, 

bw ),( , under 1Ww ,    (A.6) 

bw ),( 2 . 

It follows from (A.6), that 

  bbbwwwwww TTT  **
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13 )1()1(),(   

under 1*  . 

Hence vectors 3w  and 
2333 www   do not belong to cone 1W . 

Thus, points of face   associated with dual vector 3w  are inefficient in model (9), and 

among units of face   there exist terminal points. 

Now, let nEK  . The inclusion of cone K in model (9) may only expand the 

production possibility set BT , therefore the number of efficient units in model (1) that become 

inefficient in model (9) may only increased. 

This completes the proof. 
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