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1 Introduction

The ‘Age-Cohort-Time (ACT) problem’ in individual data, following from the identity

cohort+age= time is much discussed in social and medical research. Ways of handling it

are considered in Rodgers (1982), Portrait, Alessie, and Deeg (2002), Hall, Mairesse and

Turner (2007), McKenzie (2006), Winship and Harding (2008), Yang and Land (2008),

and Ree and Alessie (2011). The potential identification problems it induces has moti-

vated inclusion of additional assumptions to reduce the parameter space. The nature of

the ACT identification problem depends critically on the functional form chosen. It is

notorious in linear models, but may also arise when using more flexible functional forms,

say polynomials, logarithmic functions or ‘non-parametric’ specifications.

In this paper the ACT problem when explaining a continuous variable by age, cohort

and time, also treated as continuous, is reconsidered. The challenges in quantifying

marginal effects of age and cohort are, inter alia, related to the functional form chosen.

Starting from a linear, benchmark model, we extend it to polynomials in age, cohort

and time up to order four. The role of interactions between the three variables and their

possible effect on identification is explored. Illustrations based on a large Norwegian

data set containing sickness absence records, measured in sickness absence days, from

1.7 million persons in the Norwegian labour force are given.

A general specification of the theoretical regression, with a continuous endogenous

variable y explained by (a, c, t), denoting age, cohort, time, and satisfying a+c= t, is

(1) E(y|a, c, t) = f(a, c, t),

where the function f is parametric, but so far unspecified. Eliminating one of the three

explanatory variables, we can write the equation alternatively, as

E(y|a, c) = f(a, c, a+c) ≡ F1(a, c),
E(y|c, t) = f(t−c, c, t) ≡ F2(c, t),(2)
E(y|a, t) = f(a, t−a, t) ≡ F3(a, t).

An additive subclass of (1) has the form

(3) E(y|a, c, t) = fa(a) + fc(c) + ft(t),

which can be rewritten as

E(y|a, c) = fa(a) + fc(c) + ft(a+c) ≡ ϕ1(a, c),
E(y|c, t) = fa(t−c) + fc(c) + ft(t) ≡ ϕ2(c, t),(4)
E(y|a, t) = fa(a) + fc(t−a) + ft(t) ≡ ϕ3(a, t).

Which of the parameters of f , or of fa, fc, ft, can be identified depends on its func-

tional form. If f is linear, or a monotonically increasing transformation of a linear

function, not all parameters can be identified. This is, loosely speaking, due to the fact

that the linearity of f ‘interferes with’ the linear definitional identity. If f , possibly

after a monotonic transformation, is the sum of a linear and a non-linear part, the linear

part still creates identification problems, while similar problems may not arise for the

coefficients of the non-linear part.1 If g is a non-linear function, we have for example

1Fisher (1961, p. 575) indeed refers to the “the frequent claim that non-linearities aid identification or even (the claim)
that the identification problem does not arise in many non-linear systems”.
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g(a)+g(c) ̸= g(t). If g is restricted to be a polynomial we can be more specific: while t3

and (a3, c3) are not collinear, t3 is collinear with (a3, c3, a2c, ac2), etc. This example in-

dicates that when linear functions are extended to polynomials, coefficient identification

may crucially depend on whether interactions between age, cohort and time are included

and how their coefficients are restricted. This is a main issues of the paper.

The paper proceeds as follows. In Section 2 the ACT problem for the simple model

with f (and fa, fc, ft) linear is reconsidered as a benchmark. In Section 3 we extend f ,

or in the additive subcase (3), fa, fc, ft, to polynomials, and show that an ACT problem

for the coefficients of the linear terms still exists, but that the second- and higher order

coefficients of fa, fc, ft can be identified. The identifiability of coefficients of higher-order

terms when we turn to the more general polynomial version of (1) depends on which

interactions between the ACT variables are included and on their parametrization. The

distinction between full polynomials and additive polynomials is crucial. In Section 4,

alternative definitions of marginal effects for such models are elaborated. Illustrations

for polynomial of orders up to four, based on a large set of sickness absence records for

individuals in the Norwegian labour force, are discussed next, in Sections 5, 6 and 7.

We conclude that long-term sickness, in absence days, is clearly non-linear in cohort and

age, and that the model fit is significantly improved and the curvature changed when

polynomial additivity is relaxed by including interactions between cohort and age, at

least for polynomials up to order four.

2 The Age-Cohort-Time problem in a linear model revisited

Assume that observations from n individuals on the response variable yi, and three

explanatory variables, birth cohort, time and age of individual i, (ci, ti, ai), are available.

The regression equation is

(5) E(yi|ci, ti, ai) = α+ γci + δti + βai, i = 1, . . . , n.

Other explanatory variables are suppressed, but could be absorbed by extending the

intercept, α. Since in any realistic data set

(6) ai + ci = ti, i = 1, . . . , n,

neither of γ, δ, β represents partial effects. If, however, there is reason to believe that say

δ=0, γ and β will be identifiable as pure cohort and age affects. We have in general

∆E(yi|∆ci,∆ti,∆ai) = (γ+δ)∆ci + (β+δ)∆ai(7)
= (γ−β)∆ci + (δ+β)∆ti
= (β−γ)∆ai + (δ+γ)∆ti,

which exemplifies (2).

The first-order conditions for the OLS problem for (5), subject to (6), exemplifies the

mathematical problem of solving a system of linear equations subject to linear variable

restrictions. We first comment on this problem, describe how the data type impacts

identifiability and consider the regressor covariance matrix in some typical cases.
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Formally, the problem minα,δ,β,γ

∑n
i=1 u

2
i , where ui = yi−E(yi|ci, ti, ai) subject to

ai+ci= ti has three independent first-order conditions:
∑

i ui=0 plus equations among∑
i uici =

∑
i uiti =

∑
i uiai = 0. Therefore only two linear combinations of the slope

coefficients can be identified: either (γ+δ), (β+δ) or (δ+γ), (β−γ) or (γ−β), (δ+β).

Boundary cases are:

1. Data from one cohort : ci=c, ai= ti−c. Only β+δ can be identified,
and either ai or ti can be included as a regressor.

2. Data from one period : ti= t, ai= t−ci. Only β−γ can be identified,
and either ai or ci can be included as a regressor.

3. Data from individuals of one age: ai=a, ci= ti−a. Only γ+δ can be identified,
and either ci or ti can be included as a regressor.

In general, Xi=(ci, ti, ai) has a variance-covariance matrix of rank at most 2:

ΣX =

 σcc σct σca

σct σtt σta

σca σta σaa

 =

 σcc σct σct−σcc

σct σtt σtt−σct

σct−σcc σtt−σct σtt−2σct+σcc

 ,

where column (row) 3 is the difference between columns (rows) 2 and 1. The correlation

pattern of (ci, ti, ai) determines the kind of inference obtainable. Letting ρct, ρca, ρta
be the respective correlation coefficients, the three cases, with rank(ΣX) = 1, can be

described as:

Case 1. One cohort: σcc = σct = 0, ρta = 1, ΣX =

 0 0 0
0 σtt σtt

0 σtt σtt

 .

Case 2. One period: σtt = σct = 0, ρca = −1, ΣX =

 σcc 0 −σcc

0 0 0
−σcc 0 σcc

 .

Case 3. One age: σtt = σct = σcc, ρct = 1, ΣX =

 σcc σcc 0
σcc σcc 0
0 0 0

 .

Generalizations for which rank(ΣX) = 2 are

Case 4. Cohort and Age uncorrelated: σtt > σcc = σct, ρ2ct + ρ2ta = 1,

ΣX =

 σcc σcc 0
σcc σtt σtt−σcc

0 σtt−σcc σtt−σcc

, ρct =

[
σcc

σtt

] 1
2

, ρta =

[
1−σcc

σtt

] 1
2

.

Case 5. Period and Age uncorrelated: σcc > σtt = σct, ρ2ct + ρ2ca = 1,

ΣX =

 σcc σtt −(σcc−σtt)
σtt σtt 0

−(σcc−σtt) 0 σcc−σtt

, ρct =

[
σtt

σcc

] 1
2

, ρca = −
[
1− σtt

σcc

] 1
2

.

Case 6. Cohort and Period uncorrelated: σcc ̸= σtt, σct = 0, ρ2ca + ρ2ta = 1,

ΣX =

 σcc 0 −σcc

0 σtt σtt

−σcc σtt σcc+σtt

 , ρca =

[
σcc

σcc+σtt

] 1
2

, ρta =

[
σtt

σcc+σtt

] 1
2

.

Cases 4, 5 and 6 generalize Cases 1 & 3, 2 & 3 and 1 & 2, respectively.
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3 Extension to polynomial models

We consider two extensions of (5), one with the additive form (3) and one with the more

general form (1). In addition, a third hypothetical reference model is outlined.

Sum of Pth order polynomials in age, cohort and time

First, consider a sum of P th order polynomials in ai, ci, ti. We call this an additive P th

order polynomial. Eliminating, by (6), alternatively ti, ai and ci, we get an equation,

being a special case of (4), as respectively:

E(yi|ai, ci) = α+
∑P

p=1 β
∗
pa

p
i +

∑P
p=1 γ

∗
pc

p
i +

∑P
p=1 δ

∗
p(ai+ci)

p,(8)

E(yi|ci, ti) = α+
∑P

p=1 β
∗
p(ti−ci)

p +
∑P

p=1 γ
∗
pc

p
i +

∑P
p=1 δ

∗
pt

p
i ,(9)

E(yi|ai, ti) = α+
∑P

p=1 β
∗
pa

p
i +

∑P
p=1 γ

∗
p(ti−ai)

p
i +

∑P
p=1 δ

∗
pt

p
i .(10)

Since from the binomial formula,

tpi = (ai+ci)
p =

∑p
r=0

(
p
r

)
ari c

p−r
i ≡ cpi +

∑p−1
r=1

(
p
r

)
ari c

p−r
i + api ,

api = (ti−ci)
p =

∑p
r=0

(
p
r

)
tri (−ci)

p−r ≡ (−ci)
p +

∑p−1
r=1

(
p
r

)
tri (−ci)

p−r + tpi ,

cpi = (ti−ai)
p =

∑p
r=0

(
p
r

)
tri (−ai)

p−r ≡ (−ai)
p +

∑p−1
r=1

(
p
r

)
tri (−ai)

p−r + tpi ,

(8)–(10) can be reparametrized to give equivalent regressions with 3P−1 regressors:

E(yi|ai, ci)=α+β1ai+γ1ci+
∑P

p=2βpa
p
i +

∑P
p=2γpc

p
i +

∑P
p=2δp

∑p−1
r=1

(
p
r

)
ari c

p−r
i ,(11)

E(yi|ci, ti)=α+δ̄1ti+γ̄1ci+
∑P

p=2δ̄pt
p
i +

∑P
p=2γ̄pc

p
i +

∑P
p=2β̄p

∑p−1
r=1

(
p
r

)
tri (−ci)

p−r,(12)

E(yi|ai, ti)=α+β̃1ai+δ̃1ti+
∑P

p=2β̃pa
p
i +

∑P
p=2δ̃pt

p
i +

∑P
p=2γ̃p

∑p−1
r=1

(
p
r

)
tri (−ai)

p−r,(13)

with coefficients defined as, respectively,

δp = δ∗p, βp = β∗
p+δ∗p, γp = γ∗

p+δ∗p, p = 2, . . . , P,
β1 = β∗

1+δ∗1, γ1 = γ∗
1+δ∗1,

(14)

β̄p = β∗
p , δ̄p = δ∗p+β∗

p , γ̄p = γ∗
p+(−1)pβ∗

p , p = 2, . . . , P,
δ̄1 = δ∗1+β∗

1 , γ̄1 = γ∗
1−β∗

1 ,
(15)

γ̃p = γ∗
p , δ̃p = δ∗p+γ∗

p , β̃p = β∗
p+(−1)pγ∗

p , p = 2, . . . , P.
δ̃1 = δ∗1+γ∗

1 , β̃1 = β∗
1−γ∗

1 ,
(16)

All these coefficients are identifiable without additional conditions being needed.

Hence, although a sum of three P th order polynomials seemingly has no interac-

tions, its reparametrization that forms (11) from (8) etc., creates interactions between

the (powers of the) two remaining variables and reduces the number of identified coef-

ficients to C1P = 3P −1. The interaction terms have a particular structure, however.

The starred coefficients of the linear terms in (8)–(10), (β∗
1 , γ

∗
1 , δ

∗
1), cannot be identified

unless restrictions are imposed, while (β∗
p , γ

∗
p , δ

∗
p) for p≥2 can be identified as follows:

δp=δ∗p is the coefficient of
∑p−1

r=1

(
p
r

)
ari c

p−r
i in (11);

(β∗
p , γ

∗
p) can be derived from βp and γp as prescribed by (14).

β̄p=β∗
p is the coefficient of

∑p−1
r=1

(
p
r

)
tri (−ci)

p−r in (12);
(δ∗p, γ

∗
p) can be derived from δ̄p and γ̄p as prescribed by (15).
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γ̃p=γ∗
p is the coefficient of

∑p−1
r=1

(
p
r

)
tri (−ai)

p−r in (13);
(δ∗p, β

∗
p) can be derived from δ̃p and β̃p as prescribed by (16).

This describes compactly the ACT identification problem for an additive P th order

polynomial model of type (3)–(4).

Full polynomials in two variables

The above additive ACT polynomials, which exemplify (3)–(4), have an ‘asymmetry’.

To obtain a model exemplifying (1)–(2) they can be extended to polynomials with a

full set of interaction terms for all powers of orders 2, . . . , P−1 in, respectively, (ai, ci),

(ti, ci) or (ti, ai). The increased flexibility has the potential to improve the fit to data.

We elaborate this extension only for (8), reparametrized as (11). Consider then

(17) E(yi|ai, ci) = α+
∑P

p=1βpa
p
i +

∑P
p=1γpc

p
i +

∑P
p=2

∑p−1
r=1 δpra

r
i c

p−r
i .

This increases the number of (identifiable) coefficients to C2P =2P+1
2P (P−1) = 1

2
P (P+3),

which, since C2P −C1P = 1
2
P (P−3)+1, is an effective increase when P > 2. Model (17)

specializes to (11) for

(18) δpr =
(
p
r

)
δp, p = 2, . . . , P ; r = 1, . . . , p−1.

A third model with all interactions between (a, c), (a, t), (c, t) [although not the (a, c, t)

interaction] included, would have had C3P = 3P +3 1
2P (P −1) = 3

2
P (P +1) coefficients.

Hence C3P −C2P = P 2, and if P > 2 we have C3P > C2P > C1P .
2 However, this model

is hypothetical, since the inescapable restriction (6) precludes identification of all its

coefficients.3

The number of coefficients in the three models is exemplified in Table 1, which also

shows the difference between the number of coefficients (columns 5 and 8) and their

increase when the polynomial order is increased by one (columns 2, 4 and 7):

C1P = 3P − 1, C2P = 1
2
P (P+3), C3P = 3

2
P (P+1) =⇒

∆C1P = 3, ∆C2P = P+1, ∆C3P = 3P (P ≥ 2).

Table 1: Three versions of polynomial models. No. of coefficients

Polyn. order Additive polynomials Full polynomials in 2 vars. Full polynomials in 3 vars.
P C1P ∆C1P C2P ∆C2P C2P −C1P C3P ∆C3P C3P −C2P

1 2 - 2 - 0 3 - 1
2 5 3 5 3 0 9 6 4
3 8 3 9 4 1 18 9 9
4 11 3 14 5 3 30 12 16
5 14 3 20 6 6 45 15 25
6 17 3 27 7 10 63 18 36

2Further extensions to multinomial models, which, in our three-variable case, would have included also terms in

ari c
q
i t

p−r−q
i and therefore would have been ‘still more hypothetical’, are not considered.

3Hall, Mairesse and Turner (2007, p. 162), with reference to Heckman and Robb (1985), comment on this kind of
model as follows (apparently implying all interaction terms included when using the term ‘polynomial’) : “... for the
linear model, only two of the three linear coefficients are identified. For a quadratic model, only three of the six quadratic
coefficients are identified, and so forth. So, although low-order polynomials seem to be an attractive way to model these
effects because of their smoothness, in practice, they have not been much used because the lack of identification is so
obvious.” Hall, Mairesse and Turner disregard the more parsimonious additive polynomial parametrization represented
by (11)–(13), in which only one first-order coefficient is unidentified.
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An example

Consider a fourth-order polynomial (P =4), for which (17) gives

E(yi|ai, ci) = α+ β1ai + γ1ci + β2a
2
i + γ2c

2
i + β3a

3
i + γ3c

3
i + β4a

4
i + γ4c

4
i

+ δ21aici + δ31a
2
i ci + δ32aic

2
i + δ41a

3
i ci + δ42a

2
i c

2
i + δ43aic

3
i .

When imposing, see (18),

δ21 = 2δ2, δ31 = δ32 = 3δ3, δ41 = δ43 = 4δ4, δ42 = 6δ4,

which implies the C2P−C1P =3 effective restrictions δ31=δ32, δ41=δ43=
2
3
δ42 and replace

(δ21, δ31, δ32, δ41, δ42, δ43) by (δ2, δ3, δ4), we get the additive polynomial

E(yi|ai, ci) = α+ β1ai + γ1ci + β2a
2
i + γ2c

2
i + δ22aici

+ β3a
3
i + γ3c

3
i + δ3(3a

2
i ci+3aic

2
i )

+ β4a
4
i + γ4c

4
i + δ4(4a

3
i ci+6a2i c

2
i +4aic

3
i ).

Writing (17) as F (ai, ci)=E(yi|ai, ci) and letting Fa(ai, ci)≡∂E(yi|ai, ci)/∂ai, Fc(ai, ci)≡
∂E(yi|ai, ci)/∂ci, the corresponding partial derivatives become

Fa(ai, ci) = β1+δ21ci+2β2ai+3β3a
2
i +4β4a

3
i

+ 2δ31aici + δ32c
2
i + 3δ41a

2
i ci + 2δ42aic

2
i + δ43c

3
i ,

Fc(ai, ci) = γ1+δ21ai+2γ2ci+3γ3c
2
i +4γ4c

3
i

+ δ31a
2
i + 2δ32aici + 3δ43aic

2
i + 2δ42a

2
i ci + δ41a

3
i .

In the additive polynomial case (11) we have

Fa(ai, ci) = β1+2δ2ci+2β2ai+3β3a
2
i +4β4a

3
i

+3δ3(2aici+c2i )+4δ4(3a
2
i ci+3aic

2
i +c3i ),

Fc(ai, ci) = γ1+2δ2ai+2γ2ci+3γ3c
2
i +4γ4c

3
i

+3δ3(a
2
i +2aici)+4δ4(3aic

2
i +3a2i ci+a3i ).

Increase P from 1 to 4 implies replacing in (7) γ+δ and β+δ with Fc(ai, ci) and Fa(ai, ci):

∆E(yi|∆ai,∆ci) = Fc(ai, ci)∆ci + Fa(ai, ci)∆ai.

4 Marginal effects

In the OLS regressions to be considered, demeaned observations of cohort, year and age

will be exploited. The primary intention of this transformation is to facilitate comparison

of results across models with different polynomial orders.

A basis for interpreting the coefficient estimates is obtained by looking at some math-

ematical expressions for ‘marginal effects’ of cohort and age. Some notation for central

moments will then be needed. Let a=a−E(a), c=c−E(c) and define

µa(p) = E[ap], µc(q) = E[cq],
µa|c(p) = E[ap|c], µc|a(q) = E[cq|a],

µac(p, q) = E[apcq],
p, q = 1, 2, . . . ,

where, obviously
µa(1)=µac(1, 0)=µc(1)=µac(0, 1)=0,
µac(p, 0)=µa(p), µac(0, q)=µc(q).
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Corresponding to the non-additive polynomial equation (17), after having deducted

from cohort and age their expectations, we have4

(19) E(y|a, c) = α+ β1a+γ1c+
∑P

p=2βpa
p+

∑P
p=2γpc

p+
∑P

p=2

∑p−1
r=1δpra

rcp−r.

The law of iterated expectations gives

E(y|a) = α+β1a+
∑P

p=2βpa
p+

∑P
p=2γpµc(p)+

∑P
p=2

∑p−1
r=1δpra

rµc|a(p− r),(20)

E(y|c) = α+γ1c+
∑P

p=2βpµa(p)+
∑P

p=2γpc
p+

∑P
p=2

∑p−1
r=1δprµa|c(r)c

p−r,(21)

E(y) = α+
∑P

p=2βpµa(p) +
∑P

p=2γpµc(p) +
∑P

p=2

∑p−1
r=1δprµac(r, p−r).(22)

Two kinds of marginal effects ‘at the mean’ can be defined. They are obtained by

taking the expectation and the differentiation operations in opposite succession.

Expected marginal effects: Definition 1 (Differentiation prior to expectation): The marginal

expectations of the derivatives of y, with respect to (demeaned) age, a, and with respect

to (demeaned) cohort, c – taken across the age-cohort distribution – can be expressed

in terms of population moments as5

(23)

E

[
∂y

∂a

]
= β1+

∑P
p=3 βppµa(p−1) +

∑P
p=2

∑p−1
r=1 δprrµac(r−1, p−r),

E

[
∂y

∂c

]
= γ1+

∑P
p=3 γppµc(p−1) +

∑P
p=2

∑p−1
r=1 δpr(p−r)µac(r, p−r−1).

Since the coefficients of the quadratic terms in (11), β2 and γ2, do not enter these

expressions, linear and quadratic functions simply give E[∂y/∂a]=β1 and E[∂y/∂c]=γ1.

If P ≥3 second and higher-order moments of a and c will interact with the coefficients

of the cubic and higher-order terms. When P =3, (23) gives for example

E[∂y/∂a] = β1 + 3β3µa(2) + δ31µc(2) + 2δ32µac(1, 1),

E[∂y/∂c] = γ1 + 3γ3µc(2) + δ32µa(2) + 2δ31µac(1, 1).

Expected marginal effects: Definition 2 (Expectation operation prior to differentiation):

Two versions of the effects thus defined can be obtained from (19). First, by conditioning

on both age and cohort and differentiating with respect to one of them, we get

(24)

∂E(y|a, c)
∂a

= β1 +
∑P

p=2 βppa
p−1 +

∑P
p=2

∑p−1
r=1 δprra

r−1cp−r,

∂E(y|c,a)
∂c

= γ1 +
∑P

p=2 γpp c
p−1 +

∑P
p=2

∑p−1
r=1 δpr(p−r)arcp−r−1.

Second, if we condition the expectation on the variable which is subject to differentiation

only, (20) and (21) yield

(25)

∂E(y|a)
∂a

= β1 +
∑P

p=2 βppa
p−1 +

∑P
p=2

∑p−1
r=1 δprra

r−1µc|a(p− r),

∂E(y|c)
∂c

= γ1 +
∑P

p=2 γpp c
p−1 +

∑P
p=2

∑p−1
r=1 δprµa|c(r)(p−r)cp−r−1.

4For simplicity we do not change the coefficient notation here. Expressions corresponding to (11) can be obtained by
substituting δpr=

(p
r

)
δp in the following expressions.

5These expressions are obtained by first writing (19) as y = E(y|a, c)+u, where E(u|a, c) = 0, ∂u/∂a = ∂u/∂c = 0 =⇒
∂y/∂a = ∂E(y|a, c)/∂a, ∂y/∂c = ∂E(y|a, c)/∂c.
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In (24) and (25), unlike (23), the second-order coefficients β2 and γ2 always occur, except

when the derivatives are evaluated at the expected cohort and age (a= c= 0). When

P =3, we have for example

∂E(y|a, c)/∂a = β1 + 2β2a+ 3β3a
2 + δ21c+ δ31c

2 + 2δ32ac,
∂E(y|c,a)/∂c = γ1 + 2γ2c+ 3γ3c

2 + δ21a+ δ32a
2 + 2δ31ac,

∂E(y|a)/∂a = β1 + 2β2a+ 3β3a
2 + δ21E(c|a) + δ31E(c

2|a) + 2δ32aE(c|a),
∂E(y|c)/∂c = γ1 + 2γ2c+ 3γ3c

2 + δ21E(a|c) + δ32E(a
2|c) + 2δ31cE(a|c).

5 An illustration: Sickness absence

We now illustrate the above results by using a large panel data set for long-term sickness

absence of individuals in the Norwegian labour force. Sickness absences of length at

least 16 days are recorded in the data set, while shorter absences, labeled short-term

sickness absence are (for institutional reasons) recorded as a zero number.6 The full

data set, including individuals with no recorded absence, is unbalanced, covers 14 years,

1994–2007, and contains 40 592 638 observations from 3 622 170 individuals. This gives

an average of 11.2 observations per individual. The individuals in the full sample have,

on average, 12.6 absence days, while the mean number of absence days in the truncated

sample, with zero absence entries removed, is 112.7. Only for 1 786 105 individuals at

least one sickness absence of at least 16 days is recorded during these 14 years. It is the

truncated sample, which has 4 502 991 observations, that will be used in the illustrations.

We restrict the illustrations to polynomials of order at most P =4.

Table 2: Correlation matrices

All observations Observations with abs > 16
abs coh yea age abs coh yea age

abs 1.0000 1.0000
coh -0.0376 1.0000 -0.1004 1.0000
yea 0.0251 0.2275 1.0000 0.0247 0.2744 1.0000
age 0.0456 -0.9630 0.0435 1.0000 0.1123 -0.9509 0.0367 1.0000

Cohort and year are measured from the year 1920, giving yea and coh. Their ranges

extend from 74 to 87 (calendar years 1994 and 2007) and from 5 to 71 (birth years 1925

and 1991), respectively. The age variable, age(=yea-coh), varies from 16 to 69 years.

Correlation matrices are given in Table 2. Unsurprisingly, abs is positively correlated

with age and negatively correlated with coh (correlation coefficients 0.0456 and −0.0376

in the full sample, 0.1123 and −0.1004 in the truncated sample). The correlation is

stronger after truncation than before because of the omission of all zero absence spells.

As expected, age and coh show strong negative correlation, with correlation coefficients

−0.9630 and −0.9509 before and after truncation, respectively.7 We are very far from

having a data set like Case 4 in Section 2, although, with corr(age, yea)= 0.0367, it is

not far from resembling Case 5.

6Sickness absence are, for part-time workers, measured in full-time equivalents, and the number of absence days
recorded in a year refers to absence spells starting in that year and possibly extending to the next year. For more details
on definitions and institutional setting See Biørn (2013) and Biørn et al. (2013).

7In a corresponding cross-section this correlation would, of course, have been −1; confer Case 2 in Section 2.
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Model-tree: Table 3 specifies 18 polynomial models of orders 1 through 4. They are la-

beled as d.k, where d and k indicate, respectively, the polynomial order and the collection

of power terms included (for models with k=1, 2, 3) and interaction terms (for models

with k=4). From now on we let c, t, a symbolize demeaned variables. The model-tree

can be described as follows:

• The three linear models, 1.1, 1.2 and 1.3, are equivalent, which exemplifies the ACT problem

outlined in Section 2.

• Models 2.k, 3.k and 4.k (k = 1, 2, 3) include linear and power terms in two variables and have 5,

7, and 9 coefficients (including intercept), respectively.

• Models 2.0, 3.0, and 4.0, with 6, 9, and 12 coefficients, respectively, include linear terms in (a, t)

and powers in (a, t, c). They exemplify (11) – see also (8) and (14) – and have as special cases,

respectively, 2.k, 3.k, and 4.k (k = 1, 2, 3).

• Models 2.4, 3.4, and 4.4 extend Models 2.k, 3.k, and 4.k (k = 1, 2, 3), respectively, by adding

interaction terms to the power terms. This extension exemplifies (17) and increases the number

of coefficients to 6, 10, and 15 (including intercept), respectively.8

Table 3: Models. Overview

Model label Polynomial order Regressors No. of coef.
(d.k) Linear Power Interaction (incl. intercept)

terms terms terms

1.1 1 c, a 3
1.2 1 c, t 3
1.3 1 t, a 3

2.0 2 c, a c, t, a 6
2.1 2 c, a c, a 5
2.2 2 c, t c, t 5
2.3 2 t, a t, a 5

3.0 3 c, a c, t, a 9
3.1 3 c, a c, a 7
3.2 3 c, t c, t 7
3.3 3 t, a t, a 7

4.0 4 c, a c, t, a 12
4.1 4 c, a c, a 9
4.2 4 c, t c, t 9
4.3 4 t, a t, a 9

2.4 2 c, a c, a ca 6
3.4 3 c, a c, a ca, ca2, c2a 10
4.4 4 c, a c, a ca, ca2, c2a, c2a2, ca3, c3a 15

Model 4.4 nests 4.1 & 3.4. Model 4.0 nests 4.1, 4.2, 4.3 & 3.0.
Model 3.4 nests 3.1 & 2.4. Model 3.0 nests 3.1, 3.2, 3.3 & 2.0.
Model 2.4=2.0 nests 2.1, 2.2, 2.3 & 1.1=1.2=1.3.

While Model 2.4 reparametrizes Model 2.0, Model 3.0 imposes one restriction on

Model 3.4, and Model 4.0 imposes 3 restrictions on Model 4.4. See the example with P =4

in Section 3. Models 2.k (k = 1, 2, 3) are nested within Model 2.0, Models 3.k (k = 1, 2, 3)

are nested within Model 3.0, and Models 4.k (k = 1, 2, 3) are nested within Model 4.0,

while Models d.1, d.2, d.3 (d = 2, 3, 4) are non-nested.9

Goodness of fit: Table 4 contains fit statistics for OLS estimation of the 18 models based

on the (truncated) data set: sum of squared residuals (SSR), standard error of regression

(σu) and squared multiple correlation (R2). The fit, measured by the σu estimate, is

about 1.1 × 10−4 in all models (column 2). Measured by R2 the fit varies between

0.013 and 0.020 (column 3). Hence, even with as many as 14 coefficients and intercept,

8The equivalent models obtained from (12) and (13) for P =4 are omitted from this survey. Restricting attention to
(11) and (17) in estimation, has the advantage that no sign-shifts for the binomial coefficients will have to be dealt with.

9See the footnote of Table 3.
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Table 4: Estimated models. OLS fit statistics

Observations with abs > 16 only

Model SSR×10−14 σu × 10−4 R2

1.1 5.4667 1.1018 0.013041
1.2 5.4667 1.1018 0.013041
1.3 5.4667 1.1018 0.013041

2.0 5.4385 1.0990 0.018146
2.1 5.4532 1.1005 0.015480
2.2 5.4387 1.0990 0.018099
2.3 5.4414 1.0993 0.017612

3.0 5.4306 1.0982 0.019567
3.1 5.4457 1.0997 0.016848
3.2 5.4331 1.0984 0.019111
3.3 5.4338 1.0985 0.018989

4.0 5.4279 1.0979 0.020049
4.1 5.4438 1.0995 0.017188
4.2 5.4311 1.0982 0.019474
4.3 5.4314 1.0983 0.019427

2.4 5.4385 1.0990 0.018146
3.4 5.4304 1.0982 0.019602
4.4 5.4276 1.0979 0.020104

Table 5: Equivalent linear models. OLS estimates

Standard errors below coefficient estimates.

All coefficients and standard errors multiplied by 100

Observations with abs > 16 only

Model 1.1 Model 1.2 Model 1.3

c 58.788114 -102.576460
1.337988 0.430708

t 161.364574 58.788114
1.390470 1.337988

a 161.364574 102.576460
1.390470 0.430708

Table 6: Additive quadratic models. OLS estimates

Standard errors below coefficient estimates.

All coefficients and standard errors multiplied by 100

Observations with abs > 16 only

Model 2.0 Model 2.1 Model 2.2 Model 2.3

c 42.380340 60.585173 -101.940029
1.345203 1.336902 0.429819

t 144.536227 41.477363
1.396276 1.345445

a 144.231486 161.751842 101.924793
1.396398 1.389262 0.429966

c2 2.715114 1.971366 3.385272
0.054864 0.054524 0.030284

t2 -40.724031 -41.220886 -38.489725
0.368281 0.366725 0.365603

a2 0.946568 1.604667 3.613155
0.064619 0.064432 0.035677
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Model 4.4, the most parameter-rich model, which includes as covariates only power and

interaction terms in the ACT variables, has an explained variation in sickness absence

that accounts for a minor part of the total.

Among the models with linear and power terms in two of the three variables, those

including (c, a) (omitting t) [Models 2.1, 3.1, and 4.1] give somewhat poorer fit than

the corresponding models which include (c, t) [Models 2.2, 3.2, and 4.2] or (t, a) [Models

2.3, 3.3, and 4.3]. The improved fit, indicated by a reduced SSR, when the regressors

include both second, third, and fourth powers of all the three variables – also powers

of the variable which are omitted from the equation’s linear part to escape the ACT

problem – is clearly significant: The p-values of the F -tests for Model 2.1 against 2.0,

Model 3.1 against 3.0, and Model 4.1 against 4.0 are all close to zero. The small increase

in the respective R2s, less than 0.003 (confer Table 4), is ‘compensated’ by the large

number of observations in the F -statistics, and together they lead to a clear rejection of

the restrictive model.10

Coefficient estimates: Tables 5–9 give coefficient estimates for the 18 polynomial models

listed in Table 3.11 For the linear models we find, when controlling for cohort, that a

one year increase in age (equivalent to a one year increase in the calendar time) gives an

estimated increase in long-term absence of 1.61 days (Table 5). Likewise, controlling for

calendar year, an increase in birth-year by one (equivalent to being one year younger)

gives an estimated reduction of long-term absence length of 1.03 days. Equivalently,

controlling for age, an increase in birth-year by one (equivalent to increasing calendar

time by one year) gives an estimated increase in long-term absence of 0.59 days. The

interpretation of these estimates in terms of the coefficients in (5) follows from (7).

For the quadratic, cubic, and fourth-order polynomial regressions, we conclude from

Tables 6, 7 and 8 that the estimated marginal cohort and age effects at the empirical

mean – corresponding to γ1 and β1 in (24) at the expected age and cohort – are not

invariant to the polynomial degree assumed. A certain pattern is visible, however: The

estimates of γ1 and β1 from the quadratic Model 2.1 are close to the estimates from the

linear Model 1.1 (year omitted): (0.61, 1.61) days versus (0.59, 1.61) days. This may

be interpreted as an empirical counterpart to Definition 2 of Expected marginal effects,

(23), which implies that γ1 and β1 measure equally well the marginal cohort and age

effects for P = 1 and P = 2. Contrasting, however, Model 2.2 with 1.2 (age omitted)

and Model 2.3 with 1.3 (cohort omitted), larger discrepancies are obtained. Likewise,

the estimates of γ1 and β1 from the fourth-order Model 4.1 are close to those from the

cubic Model 3.1 (year omitted). The estimates are (0.86, 1.21) days versus (0.84, 1.20)

days. On the other hand, contrasting Model 4.2 with 3.2 (age omitted) and Model 4.3

with 3.3 (cohort omitted), larger discrepancies emerge. The closeness of the γ1 and β1

estimates for the third and fourth order polynomials as well as the discrepancies between

the γ1 and β1 estimates from Models 3.1 and 2.1 cannot, however, be easily explained

from either of the definitions of the expected marginal effects, (23) or (25).

10The rejection conclusion is also indicated from Tables 6–8 by the t-statistics of t2 in Model 2.0, the t-statistics of t2

and t3 in Model 3.0 and the t-statistics of t2, t3 and t4 in Model 4.0.
11The Stata software, version 12, is used in the computations.
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6 Curvature and interactions in the quadratic case

In this section we take a closer look at the curvature and interactions implied by the

quadratic models. The illustrations specifically contrasts the quadratic additive three-

variable model, Model 2.0 – which is equivalent to the quadratic non-additive two-

variable model, Model 2.4 – and three quadratic additive two-variable models, Models 2.1,

2.2 and 2.3, which are all special cases of Model 2.0=Model 2.4.

Curvature inferred from Model 2.0: Consider first the estimates from the full quadratic

model, first column of Table 6. This estimated model can be written in several forms:

(26)

̂E(y|a, c, t) = constant+42.380 c+ 144.231a+ 2.715 c2 − 40.724 t2 + 0.947a2,̂E(y|a, c, t) = constant−101.851 c+ 144.231 t+ 2.715 c2 − 40.724 t2 + 0.947a2,̂E(y|a, c, t) = constant+42.380 t+ 101.851a+ 2.715 c2 − 40.724 t2 + 0.947a2.

By manipulating the second-order terms, eliminating, respectively, t2, a2, c2, and, by im-

plication, including interaction terms in the two remaining variables, we get the following

equivalent expressions

(27)

̂E(y|a, c,a+ c) = constant + 42.380 c+ 144.231a− 38.009 c2 − 81.448ac− 39.777a2,̂E(y|t− c, c, t) = constant− 101.851 c+ 144.231t+ 3.662 c2 − 1.894 ct− 39.777 t2,̂E(y|a, t− a, t) = constant + 42.380 t+ 101.851a− 38.009 t2 − 5.430 ta+ 3.662a2.

Since for neither version of (27) the Hessian matrix is positive or negative definite, neither

of the estimated regressions derived from this equation are convex or concave in the two

variables included.

However, controlling for one variable, the curvature and marginal effect of the other

variable can from (27) be described as follows:12̂E(y|a, c,a+c): Positively sloping (around mean) and concave in c, when a is controlled for:

mc|a ≡ ∂ ̂E(y|a, c,a+c)/∂c = 42.4− 76.0c− 81.4a.

Strictly, this is a marginal cohort+year effect; confer (2) and (7).

Positively sloping (around mean) and concave in a, when c is controlled for:

ma|c ≡ ∂ ̂E(y|a, c,a+c)/∂a = 144.2− 79.5a− 81.4c.

Strictly, this is a marginal age+year effect; confer (2) and (7).̂E(y|t−c, c, t): Negatively sloping (around mean) and convex in c, when t is controlled for:

mc|t ≡ ∂ ̂E(y|t−c, c, t)/∂c = −101.9 + 7.3c− 1.9t ≡ −101.9 + 5.4c− 1.9a.

Strictly, this is a marginal cohort−age effect; confer (2) and (7).

Positively sloping (around mean) and concave in t, when c is controlled for:

mt|c ≡ ∂ ̂E(y|t−c, c, t)/∂t = 144.2− 79.5t− 1.9c ≡ 144.2− 79.5a− 81.4c.

Strictly, this is a marginal year+age effect; confer (2) and (7).̂E(y|a, t−a, t): Positively sloping (around mean) and convex in a, when t is controlled for:

ma|t ≡ ∂ ̂E(y|a, t−a, t)/∂a = 101.9 + 7.3a− 5.4t ≡ 101.9 + 1.9a− 5.4c.

Strictly, this is a marginal age−cohort effect; confer (2) and (7).

Positively sloping (around mean) and concave in t, when a is controlled for:

mt|a ≡ ∂ ̂E(y|a, t−a, t)/∂t = 42.4− 76.0t− 5.4a ≡ 42.4− 76.0c− 81.4a.

Strictly, this is a marginal year+cohort effect; confer (2) and (7).

12Recall that the sample mean corresponds to a=c=0, and that the coefficients of the quadratic terms are invariant
to changing the origins from which the variables are measured from origo to the respective sample means.
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We see that mc|a ≡ mt|a, ma|c ≡ mt|c and mc|t ≡ −ma|t.

The interaction terms in the three versions of (27) are not equally important. We have:

1. Omitting the cohort-age (ca) interaction in the first version of (27), we get a result

very different from that obtained from Model 2.1 (Table 6, column 4). The omitted vari-

able bias seems to be large. The interaction has coefficient estimate 81.4 with standard

error 0.7.

2. Omitting the cohort-year (ct) interaction from the second version of (27), we get a

result largely similar to that obtained from Model 2.2 (Table 6, column 3). The omitted

variable does not seem essential.

3. Omitting the year-age (ta) interaction from the third version of (27), we get a result

largely similar to that obtained fromModel 2.3 (Table 6, column 2). The omitted variable

bias does not seem essential.

Conclusions 1–3 concur with the results in Table 4 that Models 2.0, 2.2 and 2.3 have

approximately the same fit (although, as remarked, the R2 of the former, according to

F -tests, is significantly larger than that of the two latter, which reflects the large sample

size). This fit is markedly better than the fit of Model 2.1. A message from our data is

thus that an additive quadratic model in cohort and age is inferior in terms of fit.

Curvature inferred from Models 2.1, 2.2, and 2.3: Consider now the estimated curvature

when instead using, respectively, Models 2.1, 2.2 and 2.3. We find from Table 6:

Model 2.1 is obtained from Model 2.0 by deleting the squared time variable,

i.e., deleting from Model 2.4 the cohort-age interaction.

Relying on Model 2.1 we would get an absence equation showing convexity in both c and a:

m̃c|a ≡ ∂ ̂E(y|a, c)/∂c = 60.6 + 3.9c,

m̃a|c ≡ ∂ ̂E(y|a, c)/∂a = 161.8 + 3.2a.

Model 2.2 is obtained from (the reparametrized) Model 2.0 by deleting the squared age,

i.e., deleting from Model 2.4 (reparametrized) the cohort-time interaction.

Relying on Model 2.2 we would get an absence equation showing convexity in c, concavity in t:

m̃c|t ≡ ∂ ̂E(y|c, t)/∂c = −101.9 + 7.8c,

m̃t|c ≡ ∂ ̂E(y|c, t)/∂t = 144.5− 82.4t.

Model 2.3 is obtained from (the reparametrized) Model 2.0 by deleting the squared cohort,

i.e., deleting from Model 2.4 (reparametrized) the age-time interaction.

Relying on Model 2.3 we would get an absence equation showing convexity in a, concavity in t:

m̃a|t ≡ ∂ ̂E(y|a, t)/∂a = 101.9 + 7.2a,

m̃t|a ≡ ∂ ̂E(y|a, t)/∂t = 41.5− 77.0t.

To conclusions 1–3 we can therefore add:

4. Curvature in year: The conclusion that the number of sickness-absence days is con-

cave in year is robust: The coefficient estimate of t in mt|a, mt|c, m̃t|a and m̃t|c is around

−77 to −82 (i) irrespective of which is the other conditioning variable in the equation

(Model 2.0) and (ii) irrespective of whether age or cohort is excluded and hence not

controlled for (Models 2.2 and 2.3).
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5. Curvature in cohort: Model 2.0 implies that the number of sickness-absence days is

concave in cohort when age is controlled for, while it is convex when year is controlled

for. However, from Model 2.1 we find convexity in cohort (age included, year omitted

and hence not controlled for), and the finding from Model 2.2 also suggests convexity in

cohort (year included, age omitted and hence not controlled for). The omitted variables

bias in Models 2.1 and 2.2 relative to Model 2.0 is severe: convexity of absence in cohort

is spurious.

6. Curvature in age: Model 2.0 implies that the number of sickness-absence days is

concave in age when cohort is controlled for, while it is convex when year is controlled

for. However, from Model 2.1 we find convexity in age (cohort included, year omitted

and hence not controlled for), and the finding from Model 2.3 also suggests convexity in

age (year included, cohort omitted and hence not controlled for). The omitted variables

bias in Models 2.1 and 2.2 relative to Model 2.0 is severe: convexity of absence in age is

spurious.

7 Higher-order polynomials – a few remarks

Table 9 shows that cohort-age interactions are important also for cubic and fourth-order

models. On the one hand, the coefficient estimates of ac, a2c, ac2 are all significantly

non-zero in both Model 3.4 and 4.4, while the coefficient estimates of the fourth-order

terms, a3c, a2c2, ac3, are also significant in Model 4.4. On the other hand, the coefficient

estimates of a3, c3 and a4, c4 are severely distorted when the interaction terms are omit-

ted from the regression. In Table 10, columns 1–3, the results for the full cubic Model

3.4 and the cubic age-cohort Model 3.1 are contrasted with Model 3.0 when the power

terms of t and their coefficient estimates are ‘translated into’ interaction terms in c and

a. A similar comparison for the fourth-order Models 4.4, 4.1 and 4.0 is given in columns

4–6. Also here notable discrepancies emerge. Since the coefficient estimates of all sec-

ond and higher-order coefficients in Models 3.4 and 3.0 are negative, the conclusion of

concavity of sickness absence in age and in cohort is supported from the cubic models.

The Model 3.1 estimates seem spurious.
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Table 7: Additive cubic models. OLS estimates

Standard errors below coefficient estimates.

All coefficients multiplied by 100. n = 4502 991

Model 3.0 Model 3.1 Model 3.2 Model 3.3

c 76.724597 84.154151 -57.250737
3.502955 1.903298 0.785178

t 172.191865 56.729322
3.296704 3.272278

a 112.836102 120.779528 37.426928
3.582489 2.040247 0.919296

c2 2.606039 1.853019 3.251259
0.055052 0.054712 0.030333

t2 -41.479595 -41.732512 -39.388832
0.379800 0.378365 0.377246

a2 0.947838 1.615172 3.513737
0.064734 0.064545 0.035675

c3 -0.046064 -0.048655 -0.134421
0.002895 0.002897 0.001977

t3 -0.430361 -0.317642 -0.517828
0.105797 0.105793 0.105763

a3 0.173579 0.166503 0.222032
0.004094 0.004098 0.002798

Table 8: Additive fourth-order models. OLS estimates

Standard errors below coefficient estimates.

All coefficients multiplied by 100. n = 4502 991

Model 4.0 Model 4.1 Model 4.2 Model 4.3

c 52.548887 86.106813 -55.494873
3.595653 1.905275 0.787608

t 147.973838 31.604168
3.392777 3.370314

a 87.286686 121.089294 36.231839
3.673045 2.041224 0.919756

c2 2.827748 3.561605 5.253592
0.117953 0.117917 0.079526

t2 -79.275911 -78.487626 -77.398579
1.295017 1.295017 1.294423

a2 4.284753 3.736192 6.736655
0.146429 0.146550 0.105084

c3 -0.048009 -0.055384 -0.141296
0.002917 0.002919 0.001991

t3 0.899624 0.992847 0.817227
0.114244 0.114254 0.114216

a3 0.178171 0.166682 0.228063
0.004106 0.004110 0.002803

c4 -0.000181 -0.002447 -0.003440
0.000162 0.000161 0.000126

t4 0.955973 0.957372 0.961728
0.031188 0.031196 0.031195

a4 -0.007641 -0.005475 -0.007123
0.000274 0.000274 0.000218
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Table 9: Cubic and fourth-order full polynomials in cohort and age

OLS estimates

Standard errors below coefficient estimates.

Coefficients multiplied by 100

Model 3.4 Model 4.4

c 80.688492 56.505550
3.516609 3.610363

a 122.216542 95.949950
3.656929 3.745537

c2 -38.845045 -76.273126
0.377275 1.339883

ac -83.049804 -160.563765
0.759619 2.696105

a2 -40.638468 -77.181161
0.390953 1.390827

c3 -0.434736 0.885162
0.105785 0.114250

a2c -1.934940 2.210794
0.321363 0.346461

ac2 -1.534567 2.520752
0.317957 0.343230

a3 -0.614528 0.802044
0.109428 0.117710

c4 0.950453
0.031204

a3c 4.059271
0.126792

a2c2 5.961552
0.188265

ac3 3.888539
0.124868

a4 1.028033
0.032210

Table 10: Additive vs. non-additive cubic and fourth-order models in cohort and age

Pairwise comparison of coefficients multiplied by 100

Model 3.4 Model 3.0 Model 3.1 Model 4.4 Model 4.0 Model 4.1

c 80.688 76.725 84.154 56.506 52.549 86.107

a 122.217 112.836 120.780 95.950 87.286 121.089

c2 -38.845 -38.874 1.853 -76.273 -76.452 3.562

ac -83.050 -82.959 -160.564 -158.559

a2 -40.638 -40.532 1.615 -77.181 -74.995 3.736

c3 -0.435 -0.476 -0.049 0.885 0.852 -0.055

a2c -1.935 -1.291 2.211 2.699

ac2 -1.535 -1.291 2.521 2.699

a3 -0.615 -0.257 0.162 0.802 1.078 0.167

c4 0.950 0.956 -0.002

a3c 4.059 3.824

a2c2 5.962 5.736

ac3 3.889 3.824

a4 1.028 0.943 -0.005
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