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Abstract

Comparative-statics results for financial options are often assumed to hold for real op-

tions. But the effects of higher volatility need not be increased value and postponed

investment. This depends on signs of correlations and what parameters are held con-

stant. For real options, the rate-of-return shortfall may change. The CAPM is commonly

used to determine this. In contrast with widespread assumptions, the empirical analysis

shows that the correlation of the returns on oil and the stock market is nonpositive and

not invariant to changes in volatility. For crude oil during 1993–2008, these changes are

identified as three significant breaks.
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1 Introduction

A central result in option theory is that option values increase with higher volatility

of the price of the underlying asset. Whether this carries over to real options is an

unresolved issue (Davis, 2002).1 The present paper uses oil market data to investigate

two assumptions that are commonly used in applications of the theory, that the correlation

between returns on the underlying asset and the stock market is positive and invariant to

volatility changes. We find that for oil during the most recent decades, the correlation is

in most cases zero or negative, and it is not invariant to changes in volatility. The present

analysis is also relevant for a related issue, how increased volatility affects the optimal

investment strategy,2 which was analyzed by Sarkar (2000) and Wong (2007).

Real options have received interest lately in papers trying to explain empirical failures

of asset pricing models (Grullon et al., 2012; Da et al., 2012). Some authors assume that

real option values are increasing in volatility. Grullon et al. (2012, p. 1500) write that

“One of the main implications of real options theory is that a real option’s value is

increasing in the volatility of an underlying process”. This does not hold in general, as

shown by Davis (2002) and the present paper. More caution is needed when real option

valuation is introduced in asset pricing models.

For most real options, the underlying asset is not an investment asset. Its price process

will exhibit what McDonald and Siegel (1984) call a rate-of-return shortfall, δ. This may

in some cases be observed in markets for forward or futures contracts. The questions is

then whether one should assume that it is invariant to changes in volatility. In other cases

the relevant contracts do not exist, in particular not for the long maturities needed. The

present study does not use data for futures contracts.3 Many authors then recommend

to estimate δ as

δ = µ− α. (1)

These two can be estimated separately, the required expected rate of return, µ, and

an actual expected rate of return (i.e., price growth rate, rp), α. The question is then

whether these are invariant to changes in volatility. Typically it is assumed that α is

unaffected, and the question is then whether µ is.

1For financial options the result holds for both puts and calls. For real options, the question is whether

it holds for calls, cf. Berg et al. (2009, p. 9).
2Some more details and references on this are given towards the end of section 2.
3Most real options relate to investment projects lasting for several years. Most researchers on futures

contracts refrain from using data for maturities longer than one year. According to Alquist and Kilian

(2010, p. 544), “the market remains illiquid at horizons beyond 1 year even in recent years. Trading

volumes fall sharply at longer maturities.” Guo and Kliesen (2005, footnote 5) also restrict their study

to maturities of 12 months and shorter. Schwartz (1997) uses proprietary data with up to nine years

maturity.
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This study clarifies the issues and suggests that empirical studies are needed. Much

of the real options literature has applications to oil assets. Accordingly, data for crude oil

prices are analyzed here. In line with most of the literature, the price process is assumed

to be a geometric Brownian motion (GBM) with drift.

The existing literature is reviewed in section 2. Section 3 presents the model and dis-

cusses the use of comparative statics results for volatility. Section 4 presents an empirical

specification which corresponds to the prevailing practice of comparative statics. Then

the data are presented. Section 5 has empirical results. Section 6 concludes.

2 The previous literature

In their seminal paper on real options, McDonald and Siegel (1986) suggest to use the

CAPM4 to estimate required expected rates of return. In their footnote 14, they ac-

knowledge that their tables “ignore the possibility that changes in” [volatilities] “affect

the required rates of return”. Furthermore, “This assumption would be valid if the un-

certainty is uncorrelated with the market portfolio or if investors are risk neutral.” They

state that the opposite case “can lead to ambiguity in the comparative static results.”

The assumption of uncorrelated uncertainty will be interpreted, not as the underlying

asset being uncorrelated with the market portfolio, but that the additional uncertainty,

the increase to be analyzed, has this property.5

Dixit and Pindyck (1994, p. 148, p. 178) also introduce the CAPM,

µ = r + ϕσpρpm, (2)

where r is the discount rate for riskless cash flows, ρpm is the correlation between the rates

of return of the market portfolio, rm, and “the P asset” (an investment asset perfectly

correlated with the underlying asset), σp is the volatility of the underlying asset, and ϕ is

the market price of risk. They regard r and ϕ as exogenous in their analysis, which seems

reasonable. They state that “when the σ of the P asset increases, µ must increase.”6 This

is at odds with the assumption in McDonald and Siegel (1986) of an unchanged covariance,

which would imply that |ρpm| is reduced as a consequence of the higher volatility.

The presentation of the CAPM equation in (2) may have mislead many to assume that

ρpm is unchanged when σp changes, and, perhaps, vice versa. A simple example shows

4The Capital Asset Pricing Model (Sharpe, 1964; Lintner, 1965; Mossin, 1966) was extended by Merton

(1973) to continuous time. The single-beta version of this extension is used in the real options literature.

A recent textbook, Guthrie (2009), recommends using the CAPM to find δ when other alternatives are

unavailable.
5This interpretation is different from the one in Davis (2002, p. 217).
6There is an implicit assumption that ρpm > 0, in contrast with the empirical results here and

elsewhere, see below.
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that such a procedure is not necessarily correct. Consider what happens to cov(rm, rp)

if rp is multiplied by a noise factor. If a stochastic “multiplicative noise” variable X has

E(X) = 1, var(X) > 0, and is stochastically independent of (rm, rp), then

cov(rm, Xrp) = E(rmXrp)− E(rm)E(Xrp) = E(X) cov(rm, rp) = cov(rm, rp). (3)

This is one natural way to think about increased volatility of rp, and it does not increase

the covariance of rp with another variable rm. Instead, |ρpm| has been reduced. Whether

this is what actually happens, is an empirical question.

The question can be broken into several parts, depending on which of the CAPM

parameters are allowed to change. Equation (2) can be rewritten as

E(rp) ≡ µ = r + ϕσpρpm = r +
σpm
σ2
m

[E(rm)− r] , (4)

since ϕ is defined as [E(rm)− r]/σm, and ρpm = σpm/σpσm, where σpm is the covariance

between rp and rm. The CAPM beta for the return rp is the fraction in the final expression.

Even when it is maintained that α in (1) is invariant to changes in σp, one can ask whether

ρpm is invariant, whether ρpmσp is invariant, and the same question for ρpmσpσm (which

is the covariance), ϕσpρpm, and even r + ϕσpρpm. These successive extensions allow for

the possibility that several parameters change simultaneously with a change in volatility.

If the question is extended to ϕσpρpm, and in particular to r + ϕσpρpm, this is a step

away from the comparative statics analysis which has motivated this study. The risk-free

interest rate is a separate argument in any formula for real option values. A comparative-

statics analysis of a change in volatility assumes that r is constant, implying that an

extension to r + ϕσpρpm would include more possible variation than allowed for by the

original purpose of the analysis. Something similar can be said about ϕ ≡ [E(rm)−r]/σm,
although it is conceivable that r is constant while E(rm) − r changes. Due to these

considerations, the question to be analyzed here is whether the correlation is invariant.

Davis (2002) has an extensive non-empirical discussion of the problem, with a general

formulation indicating that both δ, µ, and α may be functions of σp. After introducing

the CAPM equation identical to (2), Davis (2002) treats the correlation as a constant.

This is also found in Berg et al. (2009) and Kanniainen (2009). They all point out

the implication, that increased volatility now affects the option value both directly and

indirectly via the rate-of-return shortfall. For a call option these effects go in opposite

directions when ρpm > 0. The latter effect may outweigh the former, so that the total

effect is negative.

All five references cited so far in this section assume that the underlying asset follows

a GBM. McDonald and Siegel (1986) has a jump process as an alternative, and Dixit and

Pindyck (1994) discuss several alternative processes, while maintaining the GBM as the

main assumption.
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It is interesting to note the related literature with a somewhat different focus: In real

option models, what is the effect of increased volatility on investment?7 The original

real options literature predicted a decreasing relationship, but there are opposing effects.

Even if the trigger for investment is increased, the probability of reaching it may also be

increased, so that the overall effect is ambiguous. Sarkar (2000), Cappuccio and Moretto

(2001), Lund (2005), and Wong (2007) study this under various sets of assumptions.

Sarkar (2003) extends the analysis to a mean-reverting process. All five rely on the

CAPM for valuation, at least as one possible alternative. While Sarkar and Wong prefer

to keep ρpm constant when σp is increased, the other authors prefer to keep δ constant.

The two assumptions are extreme. It may be more reasonable to invoke an inter-

mediate assumption. Cappuccio and Moretto (2001, p. 11) state that “Which of these

viewpoints is more plausible is, in general, an empirical matter . . . .” To our knowledge

the existing real options literature have no references to empirical studies of the possible

link between changes in volatility and changes in covariance measures of risk. This paper

is a first attempt to link the analysis to such empirics.

Whether the correlation (and covariance) is positive or negative is a separate issue,

which plays a somewhat different role under different invariance assumptions, see sec-

tion 3. Of course, the empirical answer may differ between different underlying assets

and between different stock markets.8 For crude oil the results in section 5 confirm what

has been reported previously in the literature, broadly speaking that ρpm ≤ 0. Schwartz

(1997) finds negative or insignificant values (for the risk premium, λ in his notation) for

oil in his one-factor model. Cifarelli and Paladino (2009, p. 364) summarize that “A

number of studies, based on different data and estimation procedures, find a negative

financial linkage between oil and stock prices i.e. a large negative covariance risk between

oil and a widely diversified portfolio of assets.” Other studies of oil investigate the causal

effects (Kilian and Park, 2009; Miller and Ratti, 2009), distinguish between different pe-

riods and regimes, and find that the correlation varies between negative values and values

that are close to zero. Filis et al. (2011) investigate contemporaneous and lagged time

varying correlations for oil importing and oil exporting countries. The results confirm

that negative correlations are the typical finding for the U.S., although the contempora-

neous correlations are positive in the year 2000. For another asset in a resource exporting

country, Slade and Thille (1997, p. 634) find that “the rate of copper price appreciation

7With a theoretical approach, this refers to the effect on the optimal investment strategy. It has

different interpretations, cf. Lund (2005); the effect on the price at which investment is (optimally)

triggered, or, for some future period, the expected (optimal) investment or the probability that some

real call option is (optimally) exercised.
8For a natural resource, the correlation may be different between an importing country’s stock market

and that of an exporting country, where resource exporting firms will be more prominent.
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is virtually uncorrelated with the return on the Toronto Stock Exchange”.

Most of the non-empirical studies cited above neglect the issue of a negative corre-

lation, even though many mention oil as an important application. Some make implicit

assumptions about a positive correlation. Dixit and Pindyck (1994, p. 155) state that

“each unit increase in σ requires an increase in δ of ϕρxm units,” without mentioning

that the increase could be negative. Sarkar (2000, p. 222) states that “a higher level of

uncertainty will increase the critical trigger level” under the same implicit assumption.

On the other hand, Gutiérrez (2007) and Kanniainen (2009) include the possibility of

ρ < 0 in their analyses, but they do not suggest that it may be a prominent case for an

important underlying asset like oil. Davis (2002, p. 220) explicitly states the condition

that λρ (which corresponds to ϕρpm in the notation of this paper) is positive, but pays

no attention to the opposite case. Wong (2007, p. 2159) considers ρ < 0, but concen-

trates on “the more plausible case that ρ > 0.” With reference to the CAPM, Hart and

Spiro (2011, p. 7837) assume a substantial positive risk premium for crude oil, implicitly

assuming a positive correlation.

For oil in recent decades there is thus a clear dissonance between empirical studies and

assumptions in the non-empirical literature, stronger for some authors, not so strong for

others. None of the theorists have adopted ρpm < 0 as their main case. In combination

with equation (2) and the assumption of an invariant ρpm, this would imply a decreased

µ when σp is increased. While consistent with the CAPM, such an assumption may be

counter-intuitive for many, and is not found in the literature, to our knowledge.

3 The model and the unresolved issue(s)

This section shows that there are two versions of the real options model, one in which

the underlying asset is a cash flow stream. In that version, the opposing effect of an

increased δ is stronger, provided that ρpm > 0. This strengthens the need to reconsider

the traditional view on the value effect of volatility. There is no new theory in this section,

just a clarification of the issues.

The model is the real options model of McDonald and Siegel (1986), which is con-

sidered by all the non-empirical studies cited above. A firm has the option to make an

investment with cost I which creates an asset with value V . For simplicity I is assumed

to be fixed,9 while V is a GBM with drift,

dVt = αVtdt+ σVtdZt, (5)

where t is time, σ is a constant volatility, and dZt is the increment of a standard Wiener

9McDonald and Siegel (1986) also consider the case where both V and I are GBMs.
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process. What is denoted σ in this general formulation corresponds to σp in the previous

section.

The optimal time for the firm to invest is the first time Vt reaches a trigger level V ∗

from below. Defining the constant γ as

γ =
1

2
− r − δ

σ2
+

√(
1

2
− r − δ

σ2

)2

+
2r

σ2
, (6)

the optimal V ∗ is

V ∗ =
γ

γ − 1
I, (7)

cf. equations (14) and (24) in Dixit and Pindyck (1994, pp. 142, 152). They also show

that when Vt is below the trigger, the value of the option is

F (Vt) = AV γ
t , (8)

with the constant A defined by

A =
V ∗ − I

(V ∗)γ
= I1−γ(γ − 1)γ−1γ−γ. (9)

The model describes a perpetual American call option on an asset with a rate-of-

return shortfall, δ. For a financial option, the underlying asset could be a stock with a

continuous dividend yield rate δ, in case the option is not payout protected.

For a real option, the underlying asset may be a completed plant, mine or oil field.

In many cases market values for such assets are not observable. In a subsequent chapter,

Dixit and Pindyck (1994, pp. 177–186) interpret the asset as the present value of a

perpetual revenue stream, the sales value of production, first considered with no operating

cost. The observable price variable is now the output price, Pt, which is assumed to be a

GBM. For simplicity output is assumed to be a constant unit flow, so that the value of

the completed asset is10

Vt =
Pt

δ
. (10)

With this in mind, the trigger level of Pt for investment is the same,

P ∗ =
γ

γ − 1
δI. (11)

The option values before investment are also the same. The difference that occurs when

Pt is assumed to be observable instead of Vt, is in the comparative-statics results on effects

of changes in σ (or δ). In one case, Vt is held constant, in the other, Pt. The partial

derivatives of the two functions

F (Vt, I, r, σ, δ) = AV γ
t =

[
I1−γ(γ − 1)γ−1γ−γ

]
V γ
t (12)

10As shown in Dixit and Pindyck (1994, p. 182).
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and

F0(Pt, I, r, σ, δ) = A

(
Pt

δ

)γ

=
[
I1−γ(γ − 1)γ−1γ−γ

]
P γ
t δ

−γ (13)

are not the same, even though the functions yield the same value when (10) holds.

Davis (2002, p. 220) points out that “the derivative ∂F/∂σ is complex and difficult

to sign”.11 Both he and Dixit and Pindyck (1994) thus resort to numerical examples

in order to illustrate the partial effects. There is a caveat: One cannot be sure to have

covered all parameter combinations that may be of interest.

The examples show that ∂F/∂σ > 0 and that ∂F/∂δ < 0 (Dixit and Pindyck, 1994,

pp. 154, 156). In order to go further into the effects, it is helpful to write out the total

derivatives. In what follows, the definitions of the ten partial derivatives of F and F0 are

standard and the same throughout. The total derivatives will depend on what functions

and arguments are used in each case.

The total effect of σ on F when Vt is assumed constant is

dF

dσ

∣∣∣∣
Vt const.

=
∂F

∂σ
+
∂F

∂δ

dδ

dσ
=
∂F

∂σ
+
∂F

∂δ
ϕρpm, (14)

where the final expression is taken from (1) and (2), with α, ϕ, and ρpm assumed to

be constant. Since ∂F/∂δ is found to be negative (see above), this total effect may be

ambiguous. However, if the covariance is constant because the added risk is independent

of the market portfolio, then ρpm is not constant, and dδ/dσ is zero. Then the total effect

of σ on F only consists of the partial effect, ∂F/∂σ, which is positive.

When, alternatively, Pt is assumed constant, the total effect of σ on F0 is

dF0

dσ

∣∣∣∣
Pt const.

=
∂F0

∂σ
+
∂F0

∂δ

dδ

dσ
=
∂F0

∂σ
+
∂F0

∂δ
ϕρpm. (15)

Again, the final expression depends on the fixed α, ϕ, and ρpm. The difference from (14)

is that ∂F0/∂δ ̸= ∂F/∂δ. This can be seen from introducing Pt/δ as argument instead of

Vt in the F function and finding the total derivative for that case:

dF

dσ

∣∣∣∣
Pt const.

=
∂F

∂σ
+

[
∂F

∂δ
+
∂F

∂Vt

d(Pt/δ)

dδ

]
dδ

dσ

=
∂F

∂σ
+

[
∂F

∂δ
+
∂F

∂Vt

(
−Pt

δ2

)]
ϕρpm. (16)

The expression in square brackets is negative and equal to ∂F0/∂δ (when (10) holds),

since both are equal to

V γ
t

[
∂A

∂δ
+ A

(
∂γ

∂δ
ln(Vt)−

γ

δ

)]
.

11“Complex” is used in its everyday meaning, not in the mathematical meaning.
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Accordingly, the total derivatives in (15) and (16) are identical. The new term, compared

to (14), is clearly negative when dδ/dσ > 0.

Summing up the conclusions to this theoretical discussion:

• There is a direct, positive effect of volatility, σ, on the value of the option before it

is exercised.

• If the rate-of-return shortfall, δ, is invariant to changes in volatility, no counteracting

effect to the positive effect has been identified.

• If the rate-of-return shortfall is decreasing in volatility, typically because ρpm < 0

and invariant, then the effect of increased σ would be increases in V or P , reinforcing

the direct, positive effect (Kanniainen, 2009, Figs. 1 and 2).

• If the rate-of-return shortfall is increasing in volatility, one or two counteracting

effects have been identified:

– If Vt is invariant to changes in volatility, there is one counteracting effect.

– If Pt is invariant to changes in volatility, there are two counteracting effects.

The first, direct, positive effect is well known and easily explained. The owner of

the option may take advantage of higher outcomes of the underlying asset price, but is

protected against lower outcomes. More dispersion is then better. The second of the

two counteracting effects is also easily explained. The call option value is increasing in

the value of the underlying asset. When this asset value is Pt/δ, and δ is increasing in

volatility, there is clearly a counteracting effect.

The first counteracting effect, which appears even when Vt is invariant, is perhaps less

obvious. The following intuition is taken from European options with finite maturity, but

seems to carry over: The underlying asset with value Vt has a rate-of-return shortfall. A

replicating portfolio for the option will not include the underlying asset itself, but “the P

asset” (see above), a prepaid forward contract on Vτ (at maturity, τ). Apart from this,

the replicating portfolio has the same composition. Clearly, if δ is increased, the value

of a prepaid forward on Vτ is decreased, and so is the value of the portfolio and thus the

option.

4 Empirical specification and data

While the theoretical literature on real options discusses comparative statics results,

there is less discussion of the interpretation and relevance of these results. The effect

of a higher or lower volatility on the endogenous variables of a real options model will
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have practical relevance in various circumstances. One is that volatility could change

over time for real options on a specific type of assets, such as oil fields. Another could

be a comparison between different assets with different volatilities, but this is hardly the

typical application, and will not be discussed further.

If a volatility changes over time, this is at odds with the theory as specified here.

Valuation and optimal strategy have been derived under the assumption of a constant

volatility. If there is the possibility of a changing volatility, this should have been present

in the model to begin with. The stochastic process for the price of the underlying as-

set should have been specified differently, and the value and strategy would have been

influenced by this.

In the most common interpretation, changes in volatility over time, the comparative

statics results are thus not useful from a purist point of view. A more pragmatic view is

chosen because models with constant volatility are easy to solve. The analytical solutions

have attracted substantial interest, both from theorists and practitioners, and this is also

likely to be the case in the foreseeable future. Thus it is interesting to improve the

practical relevance of the comparative statics results of such models, the purpose of the

present study.

For an empirical investigation, it is necessary to decide what kind of deviation from

a constant volatility one will estimate. One will also have to choose, more generally,

whether to stick to the specification of the stochastic process that is used in the theory,

even if this process can be rejected empirically.

The application here looks at price data for oil, perhaps the most studied underlying

asset in applications of real options theory. There will not be an assumption that the

volatility changes continuously over time, nor that there are probabilities for switching

between various regimes. Instead the volatility changes will be taken from an existing

study of structural breaks in volatility. A structural break is an operational concept

that seems close to the theoretical notion of an unanticipated change, with no specified

probability for any particular magnitude or direction of that change. Under such a process

with breaks, it may be imagined that the market’s valuation and the decision maker’s

strategy may as well rely on models with constant volatility. The deviation from a purist

view is as little as possible.

The breaks are found in the study by Ewing and Malik (2010) of crude oil spot prices

1993–2008. Based on their method, the data lead to an identification of three breaks

in the volatility, i.e., in the standard deviation of relative changes (“returns”) in the oil

price. Apart from dummy variables that allow for these breaks, the oil price returns are

assumed to follow a GARCH process, which is different from the GBM used in most

9



Table 1: Structural breaks in volatility

Time period Standard deviation

July 1, 1993 – August 29, 1994 0.0191

August 30, 1994 – January 8, 1996 0.0142

January 9, 1996 – June 13, 2005 0.0259

June 14, 2005 – June 30, 2008 0.0191

Reproduced from Ewing and Malik (2010).

option pricing models.12 The pragmatic defense of this procedure is that the breaks are

taken to exist irrespective of the detailed assumptions made about the stochastic process.

Unfortunately, this is not quite true: A subsequent study by Vivian and Wohar (2012)

finds fewer breaks in volatility when they allow other parameters of the GARCH model

to have breaks as well. Nevertheless, the break points found by Ewing and Malik (2010)

will be used here. After all, if many parameters change, this does not correspond well

with the theoretical notion of comparative statics, changing σp while holding everything

else constant.

The four periods (i = 1, . . . , 4) delimited by the three breaks are shown in Table 1,

including the volatility estimates. The table is reproduced from Table 3 in Ewing and

Malik (2010). Fifteen years of daily data are used, and the standard deviation is based

on one day as time unit. These are working days, about 250 per year.

The next section is based on oil spot prices and the Standard and Poor’s 500 index

for the stock market. The question is: Is ρpm in period i significantly different from ρpm

in period i−1 (for i = 2, 3, 4)? If the answer is yes, one will have to reject the hypothesis

that ρpm is invariant to changes in volatility. The information here concerns the method

in which the CAPM is used for estimating µ separately. The answers may be different

for different breaks.

Spot prices for crude oil are daily data for West Texas Intermediate (WTI), obtained

from U.S. Energy Information Administration (2012). This is identical to the data in

Ewing and Malik (2010), and the same time period was chosen, July 1993–June 2008.

Data for the return on a market portfolio was taken from the total return index of

Standard and Poor’s 500 from the New York Stock Exchange. These data were obtained

from the company S&P Dow Jones Indices.

12There also exist GARCH real option models, starting with Duan (1995).
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Table 2: Estimates of parameters of the CAPM real options model

Regime Years σ̂p ρ̂pm ρ̂pmσ̂p ρ̂pmσ̂mσ̂p

1 1993− 94 0.0191 −0.17875 −3.4141× 10−3 −1.860 4× 10−5

2 1994− 96 0.0142 −0.030461 −4.3255× 10−4 −2. 333 2× 10−6

3 1996− 05 0.0259 −0.021816 −5.6503× 10−4 −6.678 7× 10−6

4 2005− 08 0.0191 −0.017739 −3.3881× 10−4 −3. 077 9× 10−6

Source: Own estimates, except σ̂p taken from Ewing and Malik (2010).

5 Empirical results

Within each of the four periods defined by the breaks in Table 1, three variables of interest

for the application of the CAPM have been estimated. The results are given in Table 2.

A plot of the point estimates of the values of σp, ρpm and the covariance (scaled up

by a factor of 104) is shown in Figure 1.

The first notable feature of the estimates is the fact that correlations and covariances

are consistently negative throughout the fifteen years. This means that the required

expected return according to the CAPM has been less than the risk free interest rate.

To get an impression of the magnitudes, consider the product of the point estimates,

ρ̂pmσ̂p. This should be multiplied by
√
250 to compare with yearly interest rates, under

the assumption of a GBM.13 With the value of ϕ = 0.4, suggested by Dixit and Pindyck

(1994, p. 148), the reduction in annualized µ below the risk free interest rate, cf. (2),

would be 0.0217 in the first subperiod, i.e., 217 basis points. It would practically vanish

in the second, third and fourth subperiods, fluctuating between 22 and 36 basis points.

For the solutions of the real options model to be valid, δ > 0 is a necessary requirement.

Whether this was the case during 1993–2008 is beyond the scope of this study, since we

do not provide any ex ante estimate of α. More generally, Roberts (2000) suggests

that negative or low correlation is consistent with the flat or downward trend in natural

resource prices. δ can be positive because the ex ante expected price growth, α, may

have been small.

The estimated correlations and covariances, as well as ρpmσp, do not appear to be

invariant to changes in volatility. In particular, there is a sharp increase in both cor-

relation and covariance at the first break point. At the second and third break point,

the covariance changes much more in relative terms than the correlation. For the period

13Our data record about 250 working days per year.
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Figure 1: Values of σ̂p, ρ̂pm and 104 × σ̂pm in the four subperiods
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after the first break point, i.e., during September 1994 – June 2008, one could draw the

preliminary conclusion that the correlation is close to zero and does not change much,

in particular not at the third break point in June 2005. However, a statistical analysis

is necessary to determine whether invariance can be rejected or not. At the first break

point, the preliminary conclusion is quite clearly that none of the three parameters are

constant. In the first subperiod, the correlation is negative with a substantial absolute

value.

Another interesting observation from Table 2 is that the direction of changes in |ρpm|
is not always opposite of the direction of changes in σp. This contradicts the simple

intuition from the example in equation (3).

We must assume a probability distribution for the market return and the oil return.

We (tentatively) assume identical distributions within volatility regimes, so that the rates

of return ∆ ln(SPt) and ∆ ln(OILt) are jointly normal with mean αi and covariance

matrix:

Ωi =

(
σ2
im σipm

σipm σ2
ip

)
.

where subscript i “runs over” regimes.

ρipm =
σipm
σimσip

.
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The first hypothesis we want to test is invariance of the correlation coefficient with respect

to the structural break in market volatility between regime 1 and 2, against the alternative

of a structural break also in the correlation coefficient, formally H0: ρ1pm = ρ2pm, against

H1: ρ1pm ̸= ρ2pm.

Since there are three breaks in volatility, we also want to test H0: ρ2pm = ρ3pm against

H1: ρ2pm ̸= ρ3pm, and H0: ρ3pm = ρ4pm against H1: ρ3pm ̸= ρ4pm.

In our case, although joint normality is a useful reference, there are signs of departures

from normality as well, as the Appendix shows. On the other hand the number of

observations is large for each sub-sample. Together, this makes it attractive to use an

asymptotic test that does not depend on the exact normality of observations. Such a

test is suggested in e.g., Omelka and Pauly (2012) . It is a studentized asymptotic test

that does not require that ∆ ln(SPt) and ∆ ln(OILt) are jointly normal. The statistic is

calculated as:

ψT =

√
T1T2
T

(ρ̂1pm − ρ̂2pm)√
v̂2Z

, (17)

where we use regime 1 and 2 for concreteness, and where T = T1 + T2. Under the null

hypothesis, ρ1pm = ρ2pm, ψT is t-distributed with T degrees of freedom. The variance

term υ̂2 is

υ̂2 =
σ̂2
Z1

T1
+
σ̂2
Z2

T2
. (18)

It is an estimate of the asymptotic variance of the difference
√

T1T2

T
(ρ̂1pm − ρ̂2pm). σ̂

2
Zi

(i = 1, 2) are the empirical variances,

σ̂2
Zi

=
1

T1 − 1

Ti∑
t=1

(Zt − Z̄i)
2, i = 1, 2, (19)

where Z̄i =
1
Ti

∑Ti

t=1 Zit (i = 1, 2) and, for t = 1, . . . , T1, . . . , T1 + T2,

Zt = SmtSpt −
1

2

(
T1

(T1 + T2)
ρ̂1pm +

T2
(T1 + T2)

ρ̂2pm

)[
S2
mt + S2

pt

]
. (20)

Smt and Spt are standardized variables for ∆ ln(SPt) and ∆ ln(OILt) that are constructed

by subtracting the means and dividing by the empirical standard deviations of the pooled

sample. Omelka and Pauly also consider small sample version of the test statistic, but

they conclude that the asymptotic test in (17) is the best option for samples larger than

100. With daily data, our shortest sample has 292 observations.14

14It might be noted that in the simulations provided by Omelka and Pauly, the size distortions of

the asymtotic test are never more that 1–2 percentage points, even for small sample sizes (< 40). This

suggests that p values of 0.025 and lower are likely to be significant a the 5 % level when the test is

applied to our weekly and monthly data sets.
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Table 3: Test of invariance of correlation. Daily data

Regime Dates σ̂p ρ̂pm ψT [p value]

1 1993.07.01− 1994.08.29 0.0191 −0.17875

2 1994.08.30− 1996.01.08 0.0142 −0.030461 −21.907[0.0000]

3 1996.01.09− 2005.06.13 0.0259 −0.021816 −2.7410[0.0062]

4 2005.06.14− 2008.06.30 0.0191 −0.017739 −2.0756[0.0380]

Table 3 gives the ψT scores and the p values. Details of the calculations are shown in

the appendix. At a 5 percent significant level, the null hypothesis of invariance is rejected

for all three break points.

To check the results for robustness, we also did the same empirical investigation and

test on weekly data. These were constructed from daily data by two alternative methods,

averaging the level data for each calendar week, or using only Wednesday data. Both

methods produced similar results.

The main results are that correlations are again negative and vary across the subperi-

ods, but with one exception: In weekly data the correlation with the stock market returns

is positive for the first period. This is ρ̂pm = 0.0610 based on averages, and ρ̂pm = 0.0986

based on Wednesday data, as opposed to ρ̂pm = −0.1788 from daily data. This raises

doubts about the assumption of the returns being correlated GBM’s. If they had been,

the weekly returns for Wednesday data would also be correlated GBM’s with the same

correlations.

For subperiods 2–4, however, the results are similar. The point estimates from

Wednesday data are summarized in table 4, with annualized estimates to allow com-

parisons.

Again, the value ϕ = 0.4 is used, and the columns that include this factor show

the CAPM risk premium in the annual required expected returns, annualized ϕρpmσp.

For the latter three subperiods these are small in absolute values, also when computed

from weekly data. For the second and third period, the annualized estimates for the two

alternative frequencies are very similar. For the last period, 2005–08, there is again a

divergence between estimates based on daily and weekly data. But in this case, both are

significantly negative.

A priori one would expect negative correlations in periods when supply variations

dominate, but positive correlations when demand variations dominate. Much more detail

on this is found in Kilian and Park (2009) and Filis et al. (2011). Even though positive

correlations were rejected in daily data for all four subperiods, we have done a further

test of robustness of this result by considering correlations for rolling windows of shorter

14



Table 4: Comparing annualized estimates from weekly and daily data

Daily data Weekly data

Regime Years
√
250ρ̂pmσ̂p 0.4

√
250ρ̂pmσ̂p

√
52ρ̂pmσ̂p 0.4

√
52ρ̂pmσ̂p

1 1993− 94 −0.0540 −0.0215 0.0290 0.0116

2 1994− 96 −0.0068 −0.0027 −0.0057 −0.0023

3 1996− 05 −0.0089 −0.0036 −0.0099 −0.0040

4 2005− 08 −0.0054 −0.0021 −0.0225 −0.0090

lengths, 80 working days.15 Among the 3677 windows, 57.8 percent have negative point

estimates for ρpm, while the remaining 42.2 percent have positive point estimates. For

most windows (89 percent of them, to be precise), 95 percent confidence intervals for

ρ̂pm include both positive and negative values. But 9.4 percent of the windows have only

negative values in the confidence interval, while 1.6 percent of the windows have only

positive values. This suggests that nonpositivity of correlations in daily data is a fairly

robust result for these 15 years. An interpretation is that if there were periods with high

demand fluctuations, these periods typically also had high supply fluctuations, so that

the overall correlation was almost never significantly positive.

Finally, to get an idea of the magnitudes of the estimated changes, consider the

numerical effects on call option values and triggers. While a comparative-statics analysis

typically looks at changes in one variable at a time, there will now be changes in two

variables simultaneously, σp and ρpm. For these two, use the point estimates from daily

data during each of the four subperiods defined in Table 1, but keep the other variables

fixed. Equations (1) and (2) will be applied to compute the change in δ that follows from

a simultaneous change in σp and ρpm.

In the first model mentioned in section 3, with Vt as observable, the call option value is

defined by (12). The variables Vt, I, r, α, and ϕ are held fixed. The trigger value for V , V ∗,

is defined by (7) and (6). Numbers similar to those in Dixit and Pindyck (1994, p. 153f)

will be used as an example. With annual rates, the numbers are r = 0.04, ϕ = 0.4, and

I = 1 is the required investment. The call option considered here has Vt = I, i.e., it is “at

the money.” Moreover, α is chosen to be 0.01, so that δ is always positive, although very

small when systematic risk is negative. The last term in (2), the product of the three

factors ϕσpρpm, will have the negative numerical annualized values found in the fourth

column of table 4. This leads to a value of δ from (1). The annualized volatility numbers

are
√
250 times the estimates in table 3. The resulting values are given in table 5, all

15With data for 3757 working days, there are 3757−80 = 3677 such partly-overlapping windows. Some

windows include data from two adjacent subperiods among the four original subperiods.
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Table 5: Example of at-the-money call option values and triggers

Regime σp ρpm δ V ∗ F (Vt) P ∗ F0(Pt)

1 0.3020 -0.1788 0.0084 10.7389 0.7107 0.0903 1.8481

2 0.2245 -0.0305 0.0273 2.8826 0.3722 0.0786 0.2316

3 0.4095 -0.0218 0.0264 5.4067 0.5557 0.1429 0.3948

4 0.3020 -0.0177 0.0279 3.6830 0.4481 0.1026 0.2843

All data are converted to annual rates. Source: Own calculations.

columns except the last two.

The last two columns are computed from the second model, with Pt fixed instead of

Vt. Since δ varies between 0.0084 and 0.0279, the fixed Pt value is chosen to correspond

to an approximate average of these, δ = 0.02, together with the previously fixed Vt = 1.

That is, Pt is now fixed at 0.02. The trigger is computed as P ∗ = δV ∗ (but only one

of the two triggers is relevant for a particular decision). This results in the call option

values shown in the last column. As mentioned above, the changes in δ result in strong

variations in call option values when the underlying asset is a cash flow stream and Pt is

assumed to be fixed.

For all three breaks and both models, the triggers and the call option values do indeed

move in the same directions as the changes in volatility. Clearly, this is related to the

corresponding changes in δ. For all three breaks, δ moves in the opposite direction of

σp. As noted in the summing-up in section 3, this would have followed from a constant,

negative ρpm, but here it coincides with a changing, negative ρpm. But, as noted the same

place, the negative correlation means that there is no counteracting effect to the positive

effect of volatility on option value. In these data, higher volatility coincides with lower

systematic risk, thus a lower rate-of-return shortfall. One could say that this rescues

the standard assumption, that higher volatility results in, or at least coincides with,

higher triggers and option values. The results should nevertheless warn researchers to be

more careful about assumptions underlying comparative statics. In particular, the robust

negative correlations contradict what is often assumed in the real options literature.

6 Conclusion

This paper has tested two important assumptions underlying a number of studies of real

options, that the correlation of the returns on oil and the stock market is positive and

invariant to changes in oil price volatility. The theoretical discussion has shown the role

of the assumptions when the CAPM is used to estimate the rate-of-return shortfall.
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During the 15-year period July 1993 – June 2008, the study by Ewing and Malik

(2010) has found three breaks in volatility, i.e., four subperiods with different levels of

the volatility of the change in the logarithm of the oil price. We interpret these breaks

as the empirical counterparts of the “change in volatility” which is a topic of theoretical

comparative statics results. Accordingly, the question about invariance has been, is the

correlation invariant to such changes? This is clearly rejected in the tests.

Consistently with previous empirical studies, this study finds that the correlation has

been negative in daily data for each of the four subperiods. This indicates that during

these periods, there has not been a counteracting (negative) indirect effect of volatility

on a real call option on oil. The estimates show that the absolute value of the correlation

has fallen both between the first and second subperiod (and also between the third and

fourth), when volatility has decreased, and between the second and third, when volatility

has increased. As a robustness check, weekly data were also tested. Only for the first

subperiod, 1993–94, the results were not confirmed. A positive correlation estimated

suggests that the GBM assumption does not hold for that subperiod.

For valuation of real options, a negative correlation removes one source of ambiguity

in comparative statics results. But the empirical results indicate that changes in volatility

can lead to changes in the same or opposite direction in the correlation, so the ambiguity

is still there. An assumption that the covariance is invariant to volatility changes is also

not confirmed in the data. Theoretical discussions need to hold all possibilities open.
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A Calculation of test statistics from (17)

Results for first regime-break:
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v̂2 =
1.34

292
+

0.893

341
= 7. 207 8× 10−3

ψ633 =

√
292 · 341

633
× (−0.17875 + (0.030461))√

7. 207 8× 10−3
= −21.907

Results for second regime-break:

v̂2 =
0.835

341
+

1.21592

2360
= 2. 963 9× 10−3

ψ2701 =

√
2360 · 341

2701
× (−0.030461 + (0.021816))√

2. 963 9× 10−3
= −2.7410

Results for third regime-break:

v̂2 =
1.21664

2360
+

1.30751

764
= 2. 226 9× 10−3

ψ3124 =

√
2360 · 764

3124
× (−0.021816 + (0.017739))√

2. 226 9× 10−3
= −2.0756

B Test of distributional assumptions

In Table 1 we show two diagnostic tests based on the residual vector. They test for 12th

order residual autocorrelation (FAR(1−12)), and for departure from normality (χ2
normality).

The tests are bivariate versions of the well known single equation diagnostics, see Doornik

and Hendry (2009). The respective p-values are in brackets. We also give the number of

outliers (larger than 3.5 estimated standard deviations for each variable). In the three

first regimes there is no evidence of autocorrelation, but for regime 4 the test is significant.

The normality test is significant in all regimes. Although the number of large outliers is

relatively small (compared to samples sizes) it is nevertheless clear that a statistical test

that allows for departures from normality is relevant for our purpose.

Table 1: Diagnostics for bivariate distribution of market and oil real returns. Daily data

Regime # of obs FAR(1−12) χ2
normality # of outliers (percent)

1 292 1.2049[0.1697] 34.348[0.0000] 3 (1.0%)

2 341 1.1967[0.1764] 133.26[0.0000] 2 (0.6%)

3 2360 1.3621[0.0494] 1061.4[0.0000] 34 (1.5%)

4 764 1.8466[0.0004] 117.06[0.0000] 6 (0.8%)
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Berg, T., Mölls, S.H., Willershausen, T., 2009. (Real-)Options, Uncertainty and Com-

parative Statics: Are Black and Scholes Mistaken? Working Paper 645, Institute for

Business Administration, University of Kiel, Germany.

Cappuccio, N., Moretto, M., 2001. Comments on the Investment-Uncertainty Relation-

ship in a Real Option Model. Discussion Paper 23–2001, Department of Economics,

University of Padova, Italy.

Cifarelli, G., Paladino, G., 2009. Oil price dynamics and speculation; a multivariate

financial approach. Energy Economics 32, 363–372.

Da, Z., Guo, R.J., Jagannathan, R., 2012. CAPM for estimating the cost of equity capital:

Interpreting the empirical evidence. Journal of Financial Economics 103, 204–220.

Davis, G.A., 2002. The impact of volatility on firms holding growth options. Engineering

Economist 47, 213–231.

Dixit, A.K., Pindyck, R.S., 1994. Investment under Uncertainty. Princeton University

Press, Princeton.

Doornik, J.A., 2009. An Introduction to OxMetrics 6. Timberlake Consultants, London.

Doornik, J.A., Hendry, D.F., 2009. Empirical Econometric Modelling PcGive 13. Volume

1. Timberlake Consultants, London.

Duan, J.C., 1995. The GARCH option pricing model. Mathematical Finance 5, 13–32.

Ewing, B.T., Malik, F., 2010. Estimating volatility persistence in oil prices under struc-

tural breaks. The Financial Review 45, 1011–1023.

Filis, G., Degiannakis, S., Floros, C., 2011. Dynamic correlation between stock market

and oil prices: The case of oil-importing and oil-exporting countries. International

Review of Financial Analysis 20, 152–164.

Grullon, G., Lyandres, E., Zhdanov, A., 2012. Real options, volatility, and stock returns.

Journal of Finance 67, 1499–1537.

Guo, H., Kliesen, K.L., 2005. Oil price volatility and U.S. macroeconomic activity. Federal

Reserve Bank of St. Louis Review 87, 669–683.

19



Guthrie, G.A., 2009. Real Options in Theory and Practice. Oxford University Press,

Oxford.
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