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Abstract: While it is common knowledge that portfolio separation in a continu-
ous-time lognormal market is due to the basic properties of the Gaussian
distribution, the usual textbook exposition relies on dynamic programming
and thus Itô stochastic calculus and the appropriate regularity conditions.
This paper shows how Ross-type distributions-based separation properties in
continuous-time and discrete-time models, are easily inherited from a single-
period model, generalizing and simplifying an approach of Khanna and Kull-
dorff (Finance Stoch. 3 (1999), pp. 167–185) down to multivariate distributions
theory, stochastic dominance and the definition of the Itô integral. In addition
to (re-) covering the classical cases of elliptical distributions (with or with-
out risk-free opportunity) and symmetric α-stables/substables, this paper also
gives separation results for non-symmetric stable returns distributions under
no shorting-conditions, this including new cases of one fund separation with-
out risk-free opportunity. Applicability of the skewed cases to insurance and
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1 Introduction

The concept of portfolio separation can be briefly formulated as follows: under what con-
ditions can a market of a large number of investment opportunities be replaced by a few
market indices («funds») without the investors being worse off? The prototypical result is
two-fund separation (Tobin, [54]) which is the property that two market indices suffice; it
is frequently referred to as two-fund monetary separation if one can choose one of them as
an risk-free investment opportunity (i.e. with certain return). Tobin’s work builds on the
mean–variance approach by Markowitz [24]; as a historical note, Markowitz was predated
by more than a decade by de Finetti [7] (see Pressaco and Serafini [41] and Markowitz’
account [25] where he also credits Roy [45]). Tobin obtained the result in a single-period
model with either Gaussian returns or quadratic utility, and since then, the results on
portfolio separation have mainly fallen into these categories:

(i) Characterization of the agents who – for «any» market (some modeling paradigma
of course has to be chosen) – are satisfied with a fixed set of funds, irrespective of
their wealth. Separation in this sense is a property of a given preference (typically, a
utility function for expected utility). The funds will be common to those agents who
share this utility function, so that changes in wealth due to profits and losses will not
change the funds, only the allocation among them – this assuming that preferences
and parameters are invariant over time.

A characterization of those utility functions which admit two-fund separation for a
single-period model, was given in 1970 by Cass and Stiglitz [5]. Cass–Stiglitz type
portfolio separation is still a topic of research, see e.g. Schachermayer et al. [50] in a
continuous-time model using modern probabilistic methods.

(ii) Characterization of the returns distributions for which «any» agent under considera-
tion will be satisfied with the same (few) funds – again, under some model paradigma,
like expected utility maximization.

A characterization of those returns distributions which yield k-fund separation over
all (greedy) expected utility maximizers in a single-period model, was given in 1978
by Ross [44] in terms of first-order stochastic dominance. As it is not trivial which
distributions admit the construction, this Ross-type portfolio separation is still a topic
for research; this author’s recent contribution [13] does in essence boil down to the
work of verifying the Ross criteria.

Portfolio separation properties may also be deduced from other types of models or assump-
tions, e.g. through the application of risk measures , as pointed out by this author [11] and
recently independently by De Giorgi et al. [15]. Ross-type two-fund separation is used to
establish CAPM under the appropriate distributional assumptions, but one can for that
purpose take the portfolio separation property as an assumption by itself, without founding
that one in precise conditions on distributions or choice.
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1.1 Ross-type portfolio separation

This paper is about the distributions-based portfolio separation property, but in dynamic
models. The setup is a consumption–portfolio optimization problem where there are either
insurance profits/losses modelled by additive strong Markov processes – Lévy processes in
continuous time – or there are traded opportunities, whose prices (assumed exogenously
given, so the agents are (small) price takers) are geometric processes with such additive
strong Markov / Lévy processes as driving noise. The market is free from transaction
costs, although certain constraints on the portfolios will be a main focus of interest. The
returns distributions will be assumed elliptical, α-stable or an independen scaling of the
latter (generalizing so-called sub-stability). The portfolio separation results will be valid
for any expected utility maximizer which can satisfy the portfolio constraints; some of the
constraints may implicitely require e.g. nonnegative net wealth.

As it turns out, portfolio separation in continuous time may be derived by way of
an analogous discrete-time model of the same distributions. The literature on the single-
period model is therefore highly relevant to this paper, and we mention a few references,
both before and after the aforementioned characterization by Ross [44], showing that it has
certainly been a bumpy road. When Tobin [54] established the property for the Gaussian
distribution, he conjectured that any two-parameter distribution would do – counterex-
amples were given by Samuelson [48], Borch [2] and Feldstein [10]. In the meantime, the
α-stable distributions case was treated already by Fama’s 1965 paper [9] in the case with
mutually independent and symmetric noise sources, and the result can also be recovered
from the Samuelson’s treatment [47]. The defining properties of those distributions led
Cass and Stiglitz to suggest that they were necessary for monetary two-fund separation (in
the «Ross» sense), a conjecture rectified by Agnew [1]. In 1983, Owen and Rabinovitch
[40] showed that any elliptically distributed vector would satisfy the Ross conditions, while
Chamberlain [6] established that under square integrability, these would be precisely those
distributions for which every risk-averse agent would be a mean–variance-optimizer – hence
tying the knot back to the original mean–variance approach (indeed, the key properties
were to be found as far back as Schoenberg [51], [52] in 1938, before modern portfolio
theory).

For the continuous-time setup, two-fund separation in a continuous-time complete
geometric Brownian (lognormal) market was obtained by Merton [26] (cf. [27]) by means
of dynamic programming, which has prevailed as the standard tool. Fast-forwarding nearly
two decades, Khanna and Kulldorff [20] employed a technique which turns out to be a clever
way of fitting the Ross-type criteria more directly to continuous-time models. The Khanna
and Kulldorff approach does, by remarkably simple methods, remove the completeness
(which, as it turns out, should hardly be any issue for the matter) and risk aversion
assumptions from the Merton approach, and also allows for «no short positions» constraints
on the opportunities or on a subset of them. Khanna and Kulldorff do however assume
geometric Brownian prices and the existence of a risk-free investment opportunity.

This paper removes a few of the assumptions of Khanna and Kulldorf [20], simplifying
the approach, covering both discrete and continuous time, and admitting more general
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portfolio restrictions and probability distributions. This includes cases without risk-free
investment opportunity, also adaptable to different lending and borrowing rates, as well
as a wider class of distributions for the underlying stochastic process, most notable the α-
stable ones as treated by Fama and Samuelson, although in more generality; we allow for
stochastic dependence between the investment opportunities, which in the non-Gaussian
case is a highly non-trivial matter. Due to some confusion in the literature, it should
be noted that iid coordinates does not imply ellipticity (nor the converse), except the
Gaussian case. Ellipticity means – modulo an affine transformation – rotational invariance
(see e.g. [46, Proposition 2.5.2]), this fact answering an issue raised by Owen and Rabinovich
[40, footnote 4] (see also e.g. also Ortobelli et al. [37] and [38], focusing on the elliptical
stable distributions). We shall see that under no shorting restrictions, even the skewed
α-stable distributions admit separation – however, a condition of «common skewness»
must (usually) be satisfied, effectively constraining the portfolio except for the symmetric
laws. It is common to disregard the skewed distributions, like in Bradley and Taqqu [3];
Fama makes a remark that the separation result still holds if the agents disregard skewness
– however, that might be highly unreasonable, as in the most extreme cases it implies
indifference between a positive and a negative excess return. In our case, the appropriate
portfolio restrictions will lead to further separation results, including a one fund separation
theorem which to the best of this author’s knowledge is unpublished.

1.2 α-stable laws in empirical and practical applications

Although portfolio separation theorems are historically considered to be in the pure theory
side of finance, the α-stable distributions have indeed been used as modeling alternative
to the Gaussian – being precisely the distributions obtainable from the generalized cen-
tral limit theorem, they are natural candidates when the Gaussian exhibits a too light
tail. Historical references indicating tails heavier than the Gaussian in financial returns
include works by Mandelbrot and Fama (see the collection [21, Chapters E1, E14 and
E16]). Further contributors on α-stable distributions in finance include Rachev, Mittnik
and coauthors ([32], [33], cf. also the collection [43]). It should be noted though, that while
this paper, like Fama [9] and Ross [44], consider absolute returns, the empirical studies
cited above concern log-returns. Unlike the Gaussian-noise case, where the exponential of
a Brownian motion with drift and a geometric differential equation with Brownian noise,
both lead to Gaussian log-returns, a geometric differential equation with stable driving
does not yield stable log-returns. Works relating absolute returns to stable distributions
include Mantegna [22], estimating α-values ranging from 1.00± 0.04 to 1.40± 0.04 for re-
turns on the Milan stock exchange (assuming symmetry, hence zero expected return, which
may be considered objectionable). Janicki et al. [19] treat the problem of pricing options
on assets following geometric differential equations (as we do) with symmetric stable input
noise, to explain the smile effect. As for skewness, empirical studies have indicated that
skewnesses do vary considerably, even for returns distributed with close to similar α’s, see
e.g. [34] and [31].

The non-Gaussian α-stables do certainly have questionable properties; not only are
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they unbounded like the Gaussian (meaning e.g. no lower bound on absolute return), they
also lack moments of order α and above. Furthermore, the associated geometric Lévy
process changes sign, unlike the geometric Brownian, and could lead to losses exceeding
the holdings in the opportunity (contrary to limited liability, but certainly desirable for
other investments!). However, as long as the model is not taken to such an extent that
objectionables are applied, they need not be any issue. For example, quantile measures are
widespread in financial risk management (the so-called «value-at-risk»), despite theoretical
shortcomings (e.g. [53] and the references therein). A quantile completely disregards the
portfolio return distribution’s far tail, and objections based on unboundedness (for the
Gaussian) and lack of moments (for the α-stables) are less crucial. Indeed, there is no reason
for a limited liability firm to worry over the distributional properties beyond bankruptcy
per se, only to the extent that it affects e.g. their funding costs (as lenders may care for
the losses given default).

1.3 Organization of the paper, and notation

The model for portfolio value will be a controlled Itô stochastic process of the form

dY (t) = v(t)>
[
µ(t) dt+Σ(t) dZ(t)

]
− dC(t) (for t ≥ t0, with Y (t0) given) (?)

and section 2 will justify this from the standard points of view (insurance profits and loss,
or consumption-financing trading portfolio) – without any rigor, as it is textbook material,
at least if Z were assumed to be a Brownian motion. Then it will review (subsection 2.1)
the concept(s) of first-order stochastic dominance, then motivate which of them to use in
the dynamic setup. Section 3 will then give a model with full assumptions, and the main
proof technique to be applied in the subsequent two sections; section 4 and 5 will establish
the separation results for the elliptical, resp. the α-stable laws. Section 6 will discuss the
differences between these distribution classes’ separation properties, discuss applicability
and limitations of the new results obtained in the paper, and conclude.

To clarify the title, which promises an exposition with hardly any Itô calculus, we shall
employ the Itô integral as the limit in probability of step integrals. We shall do without
the calculus that involves the second-order term of the Itô change of variables rule, which
in textbook expositions like e.g. [28] or [36] enters in the second-derivative term(s) in the
Hamilton–Jacobi–Bellman equation – analogously, we will avoid the change of variable rule
for α-stable Lévy processes (which in the integrable case requires a compensation term and
cannot readily be treated using a piecewise ordinary chain rule). We shall from formula
(1) alter the «consumption» choice process in order to avoid the change of variable, but
that would be doable without the second-order term as long as we stick to the standard
assumption of locally risk-free numéraire. In subsection 4.3 we will however need an aux-
illiary market state M(t) to be well-defined in terms of a stochastic differential equation
(??), and thus, in the canonical existence and uniqueness proof by way of Picard iteration,
a quadratic variation term from Itô calculus.

The paper will employ the following notation: Matrices will be denoted with capital
Greek letters. Superscript > denotes transpose. Vectors – by default columns – will be
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denoted in boldface (1 will be the vector of ones), and only random vectors and vector-
valued stochastic processes will be boldface capitals – however, the portfolio v which can
be controlled at any time, in minuscle. The reader can note the agent can not influence
anything in Greek letters unless specified as a function of choice variables. Stochastic
processes will be denoted with or without the time argument. We shall use X or X for
the generic random variable (not for processes!), and x or x for the generic free variable
for e.g. static optimization. The ∼ symbol will denote equality in probability law (i.e.
distribution, or for processes: finite-dimensional distributions). Sets will be denoted in
blackboard bold, with Rn

+ and Rn
− denoting the closed positive, resp. closed negative,

orthant. The differential « d» always denotes Itô type differential – there will be no other
concept of stochastic integration.

We shall use the following terminology: a random vector X is symmetric iff it is
distributed like −X, and symmetric about µ iff X − µ is symmetric. As negative (semi-)
definiteness will not be of any relevance to this paper, we shall use semidefinite for positive
semidefinite matrices, and merely semidefinite for matrices that are positive semidefinite
but not positive definite. We shall denote the positive semidefinite square root of a semi-
definite Γ by Γ 1/2. A set V is radial if ∀a > 0, ax ∈ V iff x ∈ V.

2 The tradet market and insurance models

Central to our analysis will be the controlled stochastic process Y given by (?). We
shall outright assume this model from the next section on, but will give a non-rigorous
discussion here. The reader familiar with the basics of mathematical finance – not restricted
to geometric Brownian motions which remain positive! – can easily skip the rest of this
section.

The arguably simplest model leading to (?), is based on insurance policies/subportfolios
with profits and loss flows dĞi, scaled up by the agent’s exposure ui; these are called risky
opportunities. With i = 0 denoting the opportunity of a risk-free investment with interest
ρ, and extracting dividends or consumption, cumulatively denoted C̆, the agent’s wealth
will develop according to

dY̆ (t) = v(t)> dĞ(t) + (Y̆ (t)− v>1)ρ dt− dC̆(t) (1)

where we have stacked up the opportunities from i = 1 in vector form, and put the
remaining amount Y̆ − v>1 risk-free. Now if we represent Ğ as dĞ(t) = µ̆ dt + Σ dZ
(motivated by the usual approach of assuming Z to be a martingale – this assuming
integrability conditions which may not hold in this paper!), we arrive at (?) by putting

dC = dC̆ − ρY̆ dt, and dG(t) = µ dt+Σ dZ with µ = µ̆− ρ1 (2)

and allowing C to be subject to the agent’s choice. Thus we avoid the theory of stochastic
differential equations – this is just a controlled Itô process. Furthermore, working with
excess drifts µ removes ρ from the model, and we shall treat cases where no risk-free

6



opportunity exists – corresponding to imposing v>1 = Y for each agent. Also, discounting
away the ρ accounts for the insignificance of the common additive risk component found
elsewhere in the literature, e.g. the «y» in Ross [44, Theorems 1 to 3].

For applicability, the insurance model could reasonably have Gi evolving quite asym-
metrically, for example with large (but rare) negative jumps – with amplitude possibly
< −1, leaving the agent to cash out the loss. However, we shall assume that the portfolio
lives on memoryless (strongly Markov) – the agent can only choose her exposure to it.

Now for a traded model, one assumes the investment opportunities having prices Pi.
With Ni units held at time t, at market value NiPi, one assumes the self-financing property,
defined by the ansatz that the value of the position evolves as Ni(t) dPi (we shall assume
N left-continuous, i.e. Ni(t) = Ni(t

−)). With the canonical form dPi(t) = Pi(t
−) dĞi for

price fluctations, market value of the position obeys Ni(t)Pi(t
−) dĞi, and putting vi = NiPi

– the value exposed – we can aggregate up to (1), again assuming a risk-free opportunity
at interest rate ρ. Formally, we are done. However, if Gi may have jumps of amplitude
< −1, we are in a situation which violates limited liability. That is not a problem per se,
as we have not made any assumption of limited liability, but one may for example ask: if
Gi develops asymmetrically, yielding for Pi a high positive rate of return between jumps,
but jumps by, say, −200 percent to Pi(t) = −Pi(t−) – is it reasonable that keeping holding
the position will now incur high expenses but with possibly large positive jumps? The
interpretation that resolves this, is to imagine it works like the insurance case: an event
triggers a claim on you, and you unwind the position; however, the investment opportunity
remains, memoryless, and you can immediately choose to invest in it again.

It should be noted, however, that the investment opportunity would have to live on
after such jumps in order not to interfere with the separation properties this paper is all
about. If it were not, then the opportunity set would change in a way that would be
correlated with the returns, and the agent would have to optimize with regard to the joint
distribution of return and change in optimization problem. That model feature is prone
to destroy portfolio separation properties (cf. [12]).

2.1 Stochastic dominance and the Ross argument

This section will review first-order stochastic dominance (the key argument of Ross [44]) for
random variables and point out what is the natural generalization to stochastic processes ,
for the purposes of this paper.

Recall that a real-valued random variable X∗ first-order (weakly) stochastically domi-
nates another, X, if any of the three following equivalent criteria hold:

(i) there exists some nonpositive random variable X− such that X ∼ X∗ +X−.

(ii) CDFX ≥ CDFX∗

(iii) E[u(X∗)] ≥ E[u(X)] for every bounded nondecreasing function u.

A recent article by Østerdal [39] elaborates on the various concepts in more general frame-
works. An ordering of probability distributions «preferring more to less» should rank X∗
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at least as good as X; conversely, if neither of X and X∗ first-order dominates the other,
then there exist two expected utility maximizers which rank them oppsitely – indeed, by
(ii) there are numbers x̄1 and x̄2 such that 1x≥x̄1 and 1x≥x̄2 disagree on the orderings. Note
that if we were only to require (iii) to hold for concave functions, we would be led to what
Ross [44] calls weak separation. However, concave functions are inconvenient for our pur-
poses, as we consider possibly distributions with non-integrable negative part, for which
expected concave utility must diverge.

2.2 Heuristics on dominance and separation in a single period

This subsection will review how stochastic dominance leads to separation in a single-period
model, without specifying the model in full detail; the assumptions needed for proper
theorems will be given in section 3, and for the purpose of the illustration, the reader
can imagine returns being multinormal. For a single period, consider (?) with constant
coefficients on time [0, 1], constrained to the portfolio being constant and chosen at time 0,
and consumption only at time 0, consuming C(0) and at time 1 where Y (1) is consumed
so that C(1) = C(0) + Y (1). Suppose that for two portfolios v∗ and v we have

v∗>Σ[Z(1)−Z(0)] ∼ v>Σ[Z(1)−Z(0)] and v∗>µ ≥ v>µ. (3)

Now define C∗ by C∗(0) = C(0). Then any greedy expected utility maximizer will prefer
to use (C∗,v∗) over (C,v), as the return from using the portfolio v∗ will dominate the
return from using v (just choose X− = −(v∗ − v)>µ); the agent can consume the same
initially, and more – in distribution – at time 1. (Note the reason why we do not consume
the excess up front; that would require borrowing before it accumulates up at the end of
the period, and that will violate some of the portfolio restrictions we will treat later.)

Let us see how this works under the assumption of jointly Gaussian returns. Without
loss of generality, assume Z to have zero mean and let µ take care of the expected return
– then the first part of (3) will hold if v∗ and v have the same seminorm (v∗>Γv∗)1/2 =
(v>Γv)1/2, where Γ is the covariance matrix of Σ[Z(1)−Z(0)]. Assuming Γ to be positive
definite, then monetary separation stems from the fact that if the risky fund f is chosen
to maximize f>µ subject to f>Γf = 1, then for every v, the return using (v>Γv) f
will dominate. That means that anyone who orders known probabilities consistent with
first-order stochastic dominance – in particular, every greedy expected utility maximizer
for which expectation converges – can do with investing only in f (common to all agents)
and the risk-free opportunity, without any welfare loss. (As a note: it is common in the
literature to minimize variance for given value of drift; that gives a nice interpretation of the
Lagrange multipliers, and disposes of a one-line argument on the constraint qualification
– but makes an assumption of risk aversion, which is unnecessary.)

Now the above construction yields (C∗, Y ∗) equivalent in law to (C, Y ) + (K, 0) where
dK ≥ 0. This exhibits the mass transfer definition (i) of stochastic dominance as the one to
apply in the dynamic model. To that end, we shall first establish the dominance property
in finitely many periods; those step strategies form a subset of (Itô) integrands, and we
can pass to the limit for continuous time. The case of discrete time with infinitely many
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periods could be established by a similar procedure using somewhat simpler mathematical
machinery, but we will not go that route – that case will automatically be covered as a
special case of continuous time, by restricting to infinite-step strategies.

3 The dynamic model

The modelling framework will be a filtered probability space, with right-continuous filtra-
tion complete at initial time t0. This formal framework will be notationally suppressed
throughout the paper, using terms like «td-conditionally» to refer to the sigma-algebra of
events known at time td – and also even «τ -conditionally» for conditioning on the events
known at a stopping time τ . All differentials will be notation for Itô type stochastic in-
tegrals; whenever needed, we shall apply the full semimartingale-based definition as in
Protter [42], in terms of the dense set of predictable simple (that is, with a nonstochastic
bound on the number of steps!) integrands and semimartingale integrators. In order to
apply Riemann sums, we shall for convenience make a standing assumption of piecewise
continuity of the sample paths:

3.0.1 Assumption. All processes will be assumed adapted to the underlying filtration,
all stochastic integrators – in particular the driving semimartingale noise Z – are right-
continuous with left-hand limits, while all integrands are predictable (in particular, the
control) and left-continuous with right-hand limits.

On this space, we shall take as model the controlled (through cumulative consumption
C and Rn-valued portfolio v) stochastic process

dY (t) = v(t)>
[
µ(t) dt+Σ(t) dZ(t)

]
− dC(t) (with Y (t0) given) (?)

where the driving noise Z takes values in Rm, µ in Rn, while Σ takes matrix values in
Rn×m.

As we shall utilize the limit transition from discrete to continuous time in the defini-
tion of the Itô integral, we shall consider both discrete and continuous time for the driving
process Z. Combinations of discrete and continuous dynamics will only introduce unnec-
essary notational unconvenience, and is left to the reader. Any (adapted) process living
on discrete time, is a semimartingale when considered as objects on continuous time, and
so the differential is indeed an Itô integral on continuous time as well – but compared to
simply constraining the continuous-time case, the discrete-time assumptions do then do
then allow for fixed jump times and for distributions which are not infinitely divisible:

3.0.2 Assumption. Z, always common to all agents, is a strong Markov process with
increments independent of the past and present; if the agent is permitted to trade on
continuous time, we also assume it to be a Lévy process. We shall say that the process
lives on a subset of [t0,∞) if those are the only times under consideration and (C,v) is
required to be constant outside these times. Phrases like all times , every time, each time,
etc. will only refer to the time set the process lives on. If the process does not, live beyond
a (stopping) time τ , that is referred to as the horizon.
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The following assumption of constant coefficients will be applied in proofs, as the
time-dependent version can be approximated by piecewise constants:

3.0.3 Assumption. The market coefficients µ and Σ, and V defined in Defnition 3.0.4
below, will be nonrandom and constant in time, and common to all agents.
This assumption can however be relaxed to allow for deterministic time-dependency.

The possibility that the market or opportunity set need not be the same for everyone,
covers for example cases where there is no risk-free opportunity (v>1 = Y , where Y is
individual) or where interest rates are different, for example that agents who wish to be
net borrowers could face a higher rate (cf. Corollary 4.2.5). It should be noted that while
Definition 3.0.4 does not restrict the dynamics of the set-valued process Vt, the next section
will assume specific forms that enable the separation results.

Now we make assumptions on the opportunity set; recall that we only consider the
times the process lives on.

3.0.4 Definition. Consider for each t a given nonempty control region V = Vt ⊆ Rn,
henceforth also referred to as a portfolio constraint ; the unconstrained case will refer to
when V = Rn. A strategy is a predictable Rn+1-valued stochastic process (C,v) such that
(?) is well-defined as an Itô integral. No shorting shall mean that V ⊆ Rn

+. Implicitely
relaxing Assumption 3.0.3 by wealth being individual, no borrowing shall mean that v>1 ≤
Y on V and no risk-free opportunity shall mean that v>1 = Y on V.

Now for the agents’ choices, the following assumption adapts the stochastic dominance
concept to our framework – although with a minor simplification which for our purposes
turns out only to be an insignificant technical issue for the very particular case of Theorem
5.2.6 at the end of section 5. Again, recall that we only consider the times the process lives
on:

3.0.5 Assumption. Each agent’s set of preferences form a partial ordering for each stop-
ping time τ ≥ t0, predictable, such that whenever there is a predictable nondecreasing K
for which two wealth–consumption pairs (Y ∗, C∗) and (Y,C) satisfy

{(Y ( · ), C( · )− C(τ) +K( · )−K(τ))}t≥τ ∼ {(Y ∗( · ), C∗( · )− C∗(τ))}t≥τ (4)

for the τ -conditional probability laws – then the agent (weakly) prefers, at time τ , the
wealth–consumption pair {(Y ∗, C∗)}t≥τ to {(Y,C)}t≥τ .

In words, this means that an agent will accept an offer of additional future consumption
(i.e. higher dC, not merely higher C) for the same future wealth (i.e. Y ) – this interpreted
in probability law, and viewed from any stopping time τ . We shall largely suppress τ in
the notation. Furthermore, we shall allow for the ambiguity of terminology in ordering
strategies, inherited from the wealth–consumption process laws:

3.0.6 Definition. Consider two strategies (C∗,v∗) and (C,v) with corresponding wealth
processes Y ∗ and Y . We say that (Y ∗, C∗) is preferred to (Y,C) (i.e. stated without regard
to τ), if it is preferred at any stopping time τ ≥ t0. In this case we also say that (C∗,v∗)
is preferred to (C,v).
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Free disposal can be interpreted as a special case, re-interpreting «consumption» ac-
cordingly. The term optimal we will used loosely whether as to mean a solution to an
optimization problem at a given time, or for a given agent.

3.0.7 Remark. Risk aversion is not a main focus of this paper, but will be mentioned
to relate some of the results to literature based on risk-aversion. However, as we consider
possibly non-integrable distributions, we cannot readily employ the definition in terms of
rejecting any conditionally zero-mean noise. The natural analogue for our purposes, will
be rejecting any conditionally symmetric (about zero) noise, i.e. weakening Y ∼ Y ∗ into
the property dY ∼ dȲ + dỸ and dY ∼ dȲ + r(t) dỸ where dỸ ∼ − dỸ is conditionally
independent and |r| ≤ 1 (everything viewed τ -conditionally, all stopping times τ). This
will become more intuitive after Proposition 3.1.2, but we shall keep risk-aversion on an
intuitive level and leave rigor to the interested reader.

Note that in Definition 3.0.4, we can do without the common assumption that (?)
should possess a «solution» – as the strategies are merely stochastic processes, not feed-
back functions, there is no Y on the right-hand side. Yet, the term strategy as above, is
not sufficiently restrictive to be applied to finance, if the full definition of the Itô integral
is applied; then doubling strategies will lead to arbitrages (cf. Dudley’s theorem [8] which
shows that the Itô integral over Brownian motion could evaluate to any random variable
measurable wrt. the sigma-algebra generated by the Brownian path – on a related note,
see also subsection 3.2 concerning free lunches with vanishing risk). Thus one will in ap-
plications make some suitable kind of restriction admit only sufficiently «tame» portfolios.
Portfolio separation is however not about solving for optimal strategy, but about restrict-
ing without welfare loss the opportunity set, and if an admissibility restriction rules out
certain strategies in the first place, they simply need not be removed by the separation
property. We shall therefore merely specify a property that an «admissibility» restriction
should possess, in order to make sure that, cf. Definition 3.0.6, the strategy (C∗,v∗) is
admissible whenever (C,v) is:

3.0.8 Assumption. Given a restriction of strategies (in the sense of Definition 3.0.4) to a
subset called admissible (possibly individual to each agent), the restriction is assumed to
have the property that whenever (C,v) is admissible, C∗ ∼ C +K for some nondecreasing
K and the processes

∫ t
t0
v>Σ dZ and

∫ t
t0
v∗>Σ dZ have the same law then (C∗,v∗) is

admissible as well.

The reason for not specifying one single admissibility concept, is that we wish to
establish a theorem valid for several of the definitions applied in the literature to ensure
«tame» portfolios that do not lead to doubling strategy arbitrages. For example, the
classical L2 framework for the Itô integral is maybe the most technically convenient for
Brownian motion, but not so when we shall consider even non-integrable driving noise –
then we cannot even ad hoc assume the martingale property. And the assumption of an
a.s. lower bound on wealth is natural with continuous processes, but requires more thought
with unbounded jumps. Therefore, this paper is better off leaving admissibility flexible.
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It will not be a problem for us to consider a strategy which in some application will be
considered «not admissible»; the preference assumptions to be made next, will enable us
to compare pairwise to falsify optimality of given strategies – which makes it uninteresting
for any Assumption 3.0.8-compliant admissibility concept.

For this reason, we do not need to worry that the following assumption can not elim-
inate doubling strategy arbitrages, only immediate single-periode «static» arbitrages – a
term that will be used subsequently – and also redundant opportunities. By the strong
Markov property, we need not invoke the general approach of stochastic intervals where
the agent waits for a stopping time when a free lunch occurs:

3.0.9 Assumption. The market parameters and the control region V are assumed to be
such that, no non-null admissible strategy with dC = 0 has the property that dY (a.s.,
on a positive set in time) is

• ≥ 0 if there is risk-free opportunity

• ≥ 0 for any ρ if not.

Furthermore, we assume that if there is no risk-free opportunity and µ = µ01, then µ0 =
0.

The last part shall turn out convenient for those degenerate but classical cases appli-
cable, and the reader can verify that it represents no loss loss of generality for the purposes
of this paper. Notice that the second bullet point ensures that no «free lunch» can be
scaled up to a.s. match every fictitious interest rate. It does not make sense to call it
an «arbitrage» just because the economy admits a «yardstick» positive minimum return
(e.g. due to growth). This will only be relevant in Theorem 5.2.6, which is arguably not
the most interesting parameter range. Notice furthermore the rationale behind forbidding
even Y constant on an interval: if this is generated by a non-null portfolio, then this is a
risk-free opportunity. If no such is assumed to exist, then that very assumption is violated;
if there is on, then we have another and hence a redundant opportunity, and we should
rebuild the model without it.

Thus far, the term «agent» has been used loosely. We now restrict the use of the
phrase:

3.0.10 Definition. From now on, the term agent will be reserved to those for which an ad-
missible strategy exists (cf. Assumption 3.0.8 and Definition 3.0.4), and whose preferences
satisfy Assumption 3.0.5.

This restriction may be substantial if for example if V is defined by no shorting and
no borrowing; with positive prices, then Y ≥ 0 is necessary in order to be an «agent». We
simply assume everyone else to be removed from the market.

We are now ready to define separation. Let us note that we do not assume existence
of an optimal strategy (only, tautologically, one admissible for each agent). In return, we
have to stick to a slightly weaker concept of portfolio separation than usual, but in the
presence of an optimal strategy, it coincides with the usual definition:
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3.0.11 Definition (k-fund separation). Suppose that there exist k − 1 predictable Rn-
valued f 1(t), . . . ,fk−1(t) (common to all agents), such that for each strategy (C,v) and
each agent for whom this strategy is admissible, there exists an admissible (C∗,v∗) which
every agent prefers to (C,v), and with v∗(t) spanned by f 1(t), . . . ,fk−1(t) for every t.
Then we say that the market admits

• k − 1 fund separation if v∗(t)>1 = Y (t) identically for every agent, and

• k fund separation – in this case also k fund monetary separation – otherwise.

This is Ross-type portfolio separation – a property not of the agents’ specific utility
functions, but one of the market and the probability law of the underlying process dG =
µ dt+Σ dZ.

3.0.12 Remark. A few notes:

(a) Definition 3.0.11 does not require the funds to be linearly independent – k-fund sepa-
ration is a special case of k + 1-fund separation (although it is vacuous to speak of n
fund separation in a market with n opportunities including if applicable the risky).

(b) The way Definition 3.0.11 is formulated, it allows for the funds to vary, even stochas-
tically as function of the state of the market – this is what Merton [28, section 15.7]
refers to as generalized separation, to be covered in subsection 4.3.

(c) We shall also speak of «separation over risk-averse agents» in the same loose manner
as of risk aversion.

3.1 The main proof technique

We now give a key tool to the proofs for portfolio separation. We state it in terms of
finite-step integrands on finite horizon – more specifically, simple predictable integrands
– but we are going to apply it by starting with some given portfolio v for which the
Itô integral (?) is well-defined; convergence of the approximation will hold by the very
definition of the Itô integral as the limit in probability of sums over the steps of a simple
predictable; our integrators are assumed to be semimartingales, which form precisely the
class of «good integrators», see Protter’s book [42]. (As a note: This functional analysis
view of semimartingales was the «new approach» subtitle of the first edition of the book.
Arguably, the book has helped establish this approach so much that it was only apt to
drop the subtitle. The machinery is somewhat hi-tech compared to the Wiener–Poisson
integral, and the reader who wants merely a brief introduction to the idea, could read the
AMS Bulletin review [55] of the first edition.)

The following might require V to be the entire space, but in subsequent applications
we shall apply it merely for step strategies that approximate admissible portfolios. Note
that Assumption 3.0.8 makes the strategies either both admissible or none of them.

3.1.1 Lemma. Fix a D ∈ N, a bounded horizon τD and a partition τD ≥ τD−1 ≥ · · · ≥
τ1 ≥ τ0 = t0, relax Assumption 3.0.3 to coefficients constant on each (τd−1, τd), and impose
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the restriction that on these open intervals, v is constant. Fix a strategy (C,v). Then for
any portfolio process v∗ with{

v∗(τd)
>Σ[Z(τd+1)−Z(τd)]

}
d=0,...,D−1

∼
{
v(τd)

>Σ[Z(τd+1)−Z(τd)]
}
d=0,...,D−1

(5)

and there are τd-measurable Kd ≥ 0, d = 0, . . . , D − 1 such that{
v∗(τd)

>µ(τd)
}
d=0,...,D−1

∼
{
v(τd)

>µ(τd) +Kd

}
d=0,...,D−1

(6)

then is a C∗ with such that every agent prefers (C∗,v∗) to (C,v); in continuous time,
dC∗ ∼ dC∗ + Kd d t, while if the process only lives on the partition, the excess Kd is
consumed at τd+1.

The proof uses the characteristic function E exp
∫∞
t0

iϑ(t)Y (t) dt of the process. This
function takes as argument any sufficiently nice (smooth, bounded, compactly supported)
deterministic function ϑ. Now for the vector-valued process Σ dZ we would have used
a vector-valued function, still deterministic; the key property in passing to a merely pre-
dictable ϑv, is the strong Markov property. Note that in order to prove the equivalence
of process pairs (C, Y ) and (C∗, Y ∗), we could use the characteristic function of that pair;
however, having proved equivalence up to td, we will see that we can just proceed one step
forward with Y only, as controls are predictable:

Proof. With horizon τD, and agents having preferences over terminal wealth, we can with-
out loss of generality disregard terminal consumption. Suppose first D = 1. If (5) holds
at initially, then put K0 = (v∗(τ0) − v(τ0))>µ(τ0), as the quantities are known (τD−1-
measurability is the relevant property to generalize). Now use induction on D: Assuming
true for a given D, then for D + 1 consider the characteristic function of the process Y .
Rewrite E exp

∫ τD+1

τ0
iϑ(t)Y (t) dt as

E exp

(
i

∫ τD+1

τ0

ϑ(t)Y (t ∧ τD) dt+ i

∫ τD+1

τD

ϑ(t)
[
Y (t)− Y (τD)

]
dt

)
(7)

The first integral is τD-measurable. Condition and consider

EτD exp

(
i

∫ τD+1

τD

ϑ(t)
[
Y (t)− Y (τD)

]
dt

)
(8)

= exp

(
i

∫ τD+1

τD

ϑ(t)
[
C(τ−D )− C(t) + (t− τD)v(τD)>µ(τD)

]
dt

)
× EτD exp

(
i

∫ τD+1

τD

ϑ(t)v(τD)>Σ(τD)
[
Z(t)−Z(τD)

])
dt

(9)

For the first line of (9), we note that the excess to consume in continuous time is the flow(
v∗(τD)−v(τD)

)>µ(τD) dt, which is positive by assumption; in discrete time, consume the
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excess at the end of the period except the last. By the strong Markov property of Z, the
latter line of (9) is the characteristic function of the increment, evaluated at the vector-
valued function θ(t) = ϑ · (t − τD)v(τD)>Σ(τD). We have thus written the characteristic
function of Y in terms of τD-measurable quantities. Now use the induction hypothesis, and
we are done.

For most distributions, Lemma 3.1.1 will not be applicable. The question is, what dis-
tributions admit the construction to such an extent that it leads to the portfolio separation
result? The canonical example is the Gaussian, which is the case covered by Khanna and
Kulldorf [20]. If Z is a Brownian motion, with possibly correlated coordinates through
a (constant) instantaneous covariance matrix ∆ = ( dZ dZ>)/ dt, then for any constant
vector x, t 7→ x>Z(t) is a univariate Brownian motion with variance x>∆x dt. This case,
with geometric Brownian prices, is the canonical one, and let us therefore use that one to
show how continuous trading reduces to Lemma 3.1.1. Now there is the Σ matrix which
makes the ∆ redundant, but let Σ take care of any time-variation and suppose ∆ constant;
for any vector x ∈ Rn, put

Qx(t) =
√
x>Σ(t)∆Σ>(t)x (10)

The next lemma easily follows for Brownian motion by equivalence in law from textbooks
(e.g. [36, Section 8.4]), but the key for the next sections is those properties that are shared
by elliptical and stable distributions. We therefore include a proof, which invokes only
those features.

3.1.2 Lemma. Suppose Z is a Brownian motion, with constant covariance matrix ∆ =
( dZ dZ>)/ dt. Relax Assumption 3.0.3 to allow for deterministic time-dependent µ and
Σ and Vt. Consider an arbitrary admissible strategy (C,v), and let v∗ be any strategy such
that for each t, v∗(t) solves the problem

max
x∈Vt

x>µ(t) s.t. Qx = Qv(t) (11)

Then there is a C∗ such that (C∗,v∗) is preferred.

Proof. Suppose not; let v∗ satisfy v∗(t) ∈ Vt, K̇(t) := (v∗ − v)>µ(t) ≥ 0, K not constant
(putK(0) = 0), and Qv∗(t)(t) = Qv(t)(t). Consider the characteristic function of the process
Y : for any continuous ϑ with bounded support it is

E exp

∫ ∞
t0

iϑ(t)Y (t) dt = exp

(
iYt0

∫ ∞
t0

ϑ(t) dt

)
E exp

∫ ∞
t0

iϑ(t)

∫ t

t0

dY (t′) dt (12)

The innermost integral is an Itô integral, and by definition the limit in probability of
integrals over simple predictables. Consider such a partition $; since ϑ(t) has bounded
support by, say T , we can truncate the stopping times by T . For the step strategies v$
and v∗$, Lemma 3.1.1 applies, as the τd-conditional characteristic function of the increment
v>(t)Σ(t) dZ(t) only depends on Q(τd). By assumption, the consumption from the (C∗,v∗)
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strategy dominates. Then up to the arbitrary T , (C∗ − K,Y ∗) ∼ (C, Y ), because this
equivalence holds on each partition, thus in the limit, and the limit transition also shows
that the strategy is admissible by Assumption 3.0.8.

3.1.3 Remark. Risk-aversion, though not rigorously defined herein, would require the
agent to shun dispersion and in addition to restricting themselves to the maximizers in
(11), also to the subset that minimizes Qx given x>µ.

3.2 A recipe for dominating strategies, Brownian Z

Consider now the following regularity condition of «definiteness on V»:

Qx(t) > 0 for all non-null x ∈ Vt (13)

If this fails on a positive set, then there will either be a redundant investment opportunity
(if the null is attained only for portfolios that yield zero drift) or an arbitrage.

Now suppose that (13) holds for each t. Then Lemma 3.1.2 gives a recipe for eliminat-
ing strategies by constructing dominating improvements. For simplicity, assume constant
coefficients.

• For each number Q ≥ 0, solve the (static!) maximization problem

max
x∈V

x>µ subject to x>Γx = Q2. (14)

(Under (13) and closed radial V such that the value Q2 is attained for at least one
x ∈ V, the extreme value theorem will apply – see however Remark 4.2.3.)

• For each strategy (C,v), calculate Qv(t)(t) = (v(t)>Γv(t))1/2. Construct the strategy
(C∗,v∗) by a v∗(t) which for each t solves (14) for Q = Qv(t)(t) – and consume the
excess.

• Then applying Lemma 3.1.2 cf. Lemma 3.1.1: every agent will then prefer (C∗,v∗)
to (C,v).

In other words, there is for Brownian Z no welfare loss to rule out strategies which do not
for every fixed time solve problem (14). This mean–variance optimization problem deviates
from the frequently occurring procedure of minimizing variance for given expected return,
which would be the (possibly more restrictive) approach of risk-averse agents. Problem (14)
leads to two-fund monetary separation in the unconstrained case, with the risky portfolio
being a scaling of Γ−1µ. We shall see in the next section that this is the case for all
elliptically distributed Lévy processes Z, and exploit a few forms of V generated by a
radial constraint (recovering Khanna and Kulldorff [20]) and by linear constraints. Then
section 5 will exploit the α-stable case, which does require some modifictions to fit into
Lemma 3.1.1.
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3.2.1 Remark. The above recipe assumes absence of «static» arbitrages, but disguises
the issue that condition (13) is not sufficient to eliminate arbitrages by doubling strate-
gies. And, even if those are ruled out by the admissibility definition in question (e.g.
imposing some large upper bound on Q is mathematically convenient however artificial),
condition (13) and Assumption 3.0.9 still do not rule out free lunch with vanishing risk:
if x>µ(t)/Qx(t) tends to infinity, say, as t ↗ t̄, then we can construct a sequence which
over a small interval yields a drift of 1 for arbitrarily low variance – and by scaling up, an
arbitrary high drift (to consume) for a given variance. This is an inconvenient situation,
which could be remedied (if coefficients are non-random) by requiring that (13) holds for
every t, and

sup
v(t)∈Vt,t∈(t0,T )

v(t)>µ(t)

Qv(t)(t)
<∞, all T > t0 (15)

On the surface, this looks like an admissibility restriction on V, but as we have assumed
that every simple predictable portfolio is admissible, this is effectively a restriction on the
coefficients.

Note that both Lemma 3.1.2 and our definition of separation, are mathematically valid
in the presence of free lunches with vanishing risk and even arbitrages; we can still try to
look for basis vectors spanning set of dominating strategies. Again, it is not necessary for
the purposes of this paper to do the job of restricting the construction to what is practically
interesting.

4 Separation with elliptical distributions

An elliptical distribution is characterized nicely by «mean» and «covariance» (suitably
interpreted), and a univariate radial variable. The ellipticals constitute the class of distri-
butions to do proper mean-variance trade-off on, and they are also the class of distributions
for which regression is linear in dimension 3 and above (Hardin [18]). We will first review
the essentials of the distribution class, before proceeding to the separation theorems.

4.1 Review of the basic properties

From e.g. Cambanis et al. [4], recall that an elliptical , also known as an elliptically contoured
random vector X is one for which the characteristic function can be written as

E[exp(iϑ>X)] = exp(iϑ>µ) h(ϑ>∆ϑ) (16)

where ∆ is usually assumed to be a positive definite matrix; in Remark 4.2.3, we shall
allow for the extension to semidefinite ∆. The notational similarity between the location
µ and the drift term in the wealth process, is deliberate and will be clear below. Such a
distribution can be represented as

X ∼ µ+ ΞW
√
R (17)
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where Ξ is a nonrandom matrix, not necessarily square,W is uniform on the unit sphere in
the appropriate-dimensional Euclidean space, and the radial variable

√
R is independent –

then∆ = ΞΞ>. For example, the multinormal distributions are generated by taking
√
R to

be the absolute value of a standard normal (equivalent to scaling with the standard normal
itself; taking the radial to be nonnegative, is merely a convention as W is symmetric).
Within the theory of elliptical distributions, it is common to refer to µ and ∆ as «mean»
and «covariance» regardless of integrability; we have E[X] = µ iff X ∈ L1, and E[(X −
µ)(X − µ)>] is a scalar multiple of ∆ iff X ∈ L2.

The key to the separation property is the distribution of linear combinations. By
rotational invariance, the distribution of x>ΞW depends only on the Euclidean norm of
x>Ξ. So is also the case after scaling by the independent R; the distribution is fully
determined by x>∆x, if µ = 0; otherwise we get a translation by x>µ.

4.2 Separation properties

In this section, we shall assume that the increments of Z are elliptical about the origin, i.e.
with a mean of null. Then, speaking loosely in terms of infinitesimals (this is no problem
under infinite divisibility!) like in the Brownian case, we will have the increments

µ dt+Σ dZ elliptical, with mean µ dt and covariance matrix Γ dt = Σ∆Σ> dt, (18)

(again, Remark 4.2.3 will discuss the merely semidefinite case); and, the distribution of
v(t)>Σ(t) dZ is completely characterized by instantaneous drift v(t)>µ(t) and instanta-
neous variance v(t)>Γ (t)v(t).

4.2.1 Remark. We shall, without mentioning it explicitely, allow for the «relaxed» ver-
sion of Assumption 3.0.3 where coefficients are time-dependent deterministic (requiring, of
course, that the assumptions of the theorems hold for each t), but suppress this generality.
The notational modifications required in the proofs, will be left to the reader.

For the construction analogous to the Gaussian example given in subsection 3.2, it
therefore suffices in the unconstrained case that the portfolio v∗(t) maximizes x>µ given
that x>Γx equals v(t)>Γv(t) – the existence of maximizer is granted if there is no arbitrage
(i.e. if no investment opportunity can be written in terms of the others plus excess drift). A
precise condition for absence of arbitrage is not equally straightforward when e.g. shorting
is forbidden on one or more of the opportunities, which is a special case of part (a) of the
following theorem; we assume for sake of simplicity positive definite Γ and leave the more
general case to Remark 4.2.3.

4.2.2 Theorem (Two-fund separation). Consider the dynamic model (?) with Z hav-
ing elliptical increments as in (18) with Γ positive definite. Assume precisely one of the
following three conditions:

(a) V is closed and radial and common to all agents, or

(b) V = {v; v(t)>1 = Y (t)} (agent-dependent), i.e. no risk-free opportunity, or
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(c) V is the intersection of a convex cone common to all agents (and with vertex at 0),
and the agent-specific hyperplane in (b), and µ = µ01 = 0 cf. Assumption 3.0.9 last
part.

Then the market admits two-fund separation.

Proof. We shall apply the very same recipe of section 3.2 as in the Gaussian case. The
transition to continuous time works by merely observing that the equivalence in law es-
tablished in Lemma 3.1.2, cf. the approximation in Lemma 3.1.1, only uses the ellipticity
property of the Gaussian distribution, i.e. that the distribution of the increments is deter-
mined by drift and the quadratic form: Qv∗(t)(t) = Qv(t)(t) we have v∗ dZ ∼ v> dZ, and
we have a dominating strategy as long as (v∗(t)− v(t))>µ(t) ≥ 0, each t.

So we are left with solving the static problem (14). In the radial case (a), the extreme
value theorem grants a solution f for the case Q = 1, and Qf will solve for general Q ≥ 0;
construct then the portfolio v∗ by v∗(t) = [v(t)>Γv(t)]f . In the no risk-free case (b), (14)
is the Lagrange problem

max x>µ subject to x>Γx = Q2, x>1 = Y, (19)

where we only have to consider those Q for which there is a feasible point. When Q2 = Y 2

there is only one feasible point, namely the «minimum variance portfolio»

Y f 1 = Y argmin
x>1=1

x>Γx (20)

and this is the only point where the constraint qualification for the Lagrange problem may
possibly fail. The Lagrange first-order condition reads

µ = 2`0Γx+ `π (21)

Γ is assumed invertible, so as long as `0 6= 0, we have x spanned by Γ−1µ and f 1 =
Γ−11/(1>Γ−11). Should `0 vanish, we cannot use Γ−1µ for f 2, as µ must be = µ01; then
the maximization degenerates, and one can choose the second fund to be any vector f 2

such that f 2
>Γf 1 = 0 and f 2

>Γf 2 = 1. So the funds can be chosen invariant over Y and
Q. Case (c) works like the latter except that we cannot merely choose any f 2. If f 2

>Γf 2 is
bounded, choose the the maximizer (by convexity, f 1 + f 2 · q/(f 2

>Γf 2) will be admissible
for all ∈ [0, 1]); if unbounded, choose one in a linear direction from f 1 where arbitrary high
volatility is attained.

4.2.3 Remark. We make a couple of remarks to variants of the problem:

(a) For the two latter cases, the ones without risk-free opportunity, the f 2 fund is not
often mentioned in the literature, as it is «pure volatility» not contributing to expected
return. Indeed, the classical case referred to as «one fund separation» (e.g. Ross [44,
section 1]) – i.e. the special case of (c) where the «cone» is the entire space – is valid
for risk-averse agents, who are satisfied with the minimum-variance portfolio as there
is no additional return to higher volatility. The «pure volatility fund» will be needed
to achieve equivalence in law in our construction, and satisfy risk takers.
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(b) If the market is arbitrage-free but Γ is merely semidefinite, we can reduce the problem
by passing to the eigendecomposition Γ = ΠΛΠ>, and for convenience we order Λ
with the nonzero eigenvalues for the n′ first main diagonal entries, and zeroes on the
bottom-right n − n′ main diagonal entries. If we rephrase problem (14) in terms of
x̃ = Π>x, µ̃ = Π>µ, we notice that the set Π>V is radial if V is; in case (b), the
absence of risk-free opportunity translates to the hyperplane constraint x̃>π̃ = Y ,
where π̃ = Π>1. The constraint set will still keep this form after transforming again
by by scaling the first n coordinates by the square root of the respective eigenvalues,
and then split by coordinates, letting the « ˆ » accent signify vectors with zeroes on
the last n − n′ coordinates and « ˇ » denote vectors with zeroes on the first n′, and
normalize the n first by scaling with the square roots of the eigenvalues; problem (14)
can then be written on the form

max
x̂+x̌∈U ′

(x̂>µ̂+ x̌>µ̌) subject to x̂>x̂ = Q2.

for a suitable set V′ which is radial in case (a) and a hyperplane in case (b). For the
radial case (a), the appropriate arbitrage-forbidding constraint is then

x>µ ≤ 0 for all x ∈ V for which x>Γx = 0. (22)

Applying this condition to choose x̌ = 0, the problem in x̂ is positive definite.

We merely sketch how the case (b) can be treated with this transformation: the static
problem becomes

max (x̂>µ̂+ x̌>µ̌) subject to x̂>x̂ = Q2, x̂>π̂ + x̌>π̌ = Y. (23)

The conditions for finite drift for each Q now follow by routine calculations, which will
lead to portfolio separation. It is necessary that µ̌ is a scaling aπ̌, otherwise there is
unbounded drift for the minimal variance. We skip the details.

(c) The following is a curious (arti-)fact stemming from the generality of preferences com-
patible with first-order stochastic dominance. A constant will not first-order dominate
a full-support variable, so consider a market with a «static» arbitrage opportunity, in
the sense of a zero-variance portfolio with positive drift violating Assumption 3.0.9.
Then, a transaction of borrowing to buy this, will be a safe positive amount, but not
first-order stochastially dominating one with positive variance. To satisfy agents who
reject the opportunity to trade away a fixed volatility for any finite size of a risk-free
lunch, the construction of Lemma 3.1.1 will actually require a third fund – namely,
one of positive variance.

Having once and for all established the connection between the single period and the
dynamic model, we shall from now on proceed by treating only the static optimization
problems. We can cover no-borrowing constraints, or even different lending and borrowing
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interest rates, at the cost of additional funds. Let the «0» symbol denote either ≤ or =,
and assume that the portfolio constraint V is given in terms of linear constraints

v(t)>ζj 0 zj, j = 1, . . . , k̄ (24)

where the ζj are common to all agents, but the zj may be individual (and time-dependent).
The Lagrangian associated to the static optimization problem now becomes

x>(µ−
∑
j≥1

`jζj)− `0x
>Γx. (25)

If the constraint qualification fails, then analogously to Theorem 4.2.2 we must be at the
singleton where the ellipsoid is tangent to the convex polyhedron defined by the linear
constraints. Again, this will be a limiting case in Q for the formula for the stationary point
of the Lagrangian. If the Lagrange conditions hold, and Γ is definite, we have

`0x = Γ−1(µ−
∑
j≥1

`jζj), (26)

which leads to:

4.2.4 Theorem (k+2-fund separation). Assume the dynamics to follow (?), with Z being
elliptical about the origin, and the portfolio constrained to satisfy (24), with the zj allowed
to be individual. Suppose furthermore that Γ is positive definite, and let k+1 be the number
of linearly independent vectors in {µ, ζ1, · · · , ζ k̄} linearly independent (otherwise, remove
constraints). Then we have k + 2-fund separation (k + 1-fund separation if (24) forbids
risk-free opportunity).

Proof. Consider the k+1 vectors Γ−1µ and Γ−1ζj on the right-hand side of (26); these are
common to all agents. Unless `0 = 0, then any portfolio not in the span of these vectors,
can, using the construction of Lemma 3.1.1, be improved upon by one which is. This gives
k + 2-fund separation, with the last fund being the risk-free. In the case where `0 = 0,
the Lagrangian reduces to 0 and there is no optimization, merely a requirement to fulfill
v(t) ∈ V and the volatility level Q2; the fund Γ−1µ will be redundant, as it must be in
the span of the {Γ−1ζj}j, and we replace it by a vector orthogonal to the span in order to
achieve the full range of possible volatility levels.

In order to accommodate different rates for lending and borrowing, corresponding to
v(t)>1 being ≤ resp. ≥ than Y , we simply assume an excess interest premium ρ̂(b) on
b = x>1; this is of course just an extra constraint. Leverage-dependent interest rates are
obtained by putting ζ0 = 1 in the following, which is phrased slightly informally, as it is
an adaptation of Theorem 4.2.4. As it admits ρ̂(b) to vary over agents, it also covers the
cases where different agents see different interest rates in the market:

4.2.5 Corollary (Different interest rates require one more fund). Consider the setting of
Theorem 4.2.4, but with a cost rate ρ̂(b(t)) dt (possibly individual function ρ̂ to each agent)
for the agent’s choice b(t) = v(t)>ζ0. We then have k + 3-fund separation (in particular,
3-fund separation if there are no constraints in (24)).
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Proof. Again, a static argument suffices. Suppose the agent chooses b, thereby obtaining
an instantaneous drift after cost of x>µ−ρ̂(b)x>ζ0 = −bρ̂(b)+x>µ to maximize, subject to
(24) augmented with x>ζ0 = b, which gives just another fund with b-dependent Lagrange
multiplier.

This result is of course also applicable for the case with leverage constraints applying
to some of the agents – say, if only some of the agents are allowed to borrow, and some of
these only up to b̄ times their net wealth.

4.3 Generalized separation; market parameters driven by Z

Thus far we have relaxed Assumption 3.0.3 no longer than to deterministic time-dependence.
Khanna and Kulldorff [20] point out that coefficients may be stochastic, as long as stochas-
tically independent of Z. The reason why dependence is prone to destroy separation prop-
erties, is that the agent will have to consider the joint distribution of the (tomorrow’s
wealth, tomorrow’s maket) pair. Indeed, the dynamics of the underlying investment op-
portunities assumed so far – geometric for the traded market justifiction – ensures that
neither wealth nor state of the market, depends on any of the prices levels Pi. If one
parameter were to depend on the cardinal level of prices, then we would have to enter this
as a state variable.

Merton [28, section 15.7] allows for a single state variable and deduces the need for
another fund. His choice of the interest rate as this state variable is done for interpretability,
and as we shall see, we can pick an arbitrary state variable – but not an arbitrary driving
noise. To see how the setup can be adapted, one could assume it to be one of the investment
opportunities opportunities – however, if we like, with V imposing null exposure to it.
For notational convenience, we shall give it a letter, M(t), and denote its parameters by
overbars; it is not necessary to introduce any new noise sources, as we have not made any
assumptions on the dimensionality of Z. Thus, we assume (wealth, state) to obey the
dynamics

d

(
Y (t)
M(t)

)
= (v>, 1)

[(
µ(t,M(t))
µ̄(t,M(t))

)
dt+

(
Σ(t,M(t))
σ̄>(t,M(t))

)
dZ

]
−
(

dC(t)
0

)
(??)

For given time and state the conditional increment using a step portfolio x is given by the
drift and the instantaneous covariance, the latter taking the form(

x>Γx x>γ
x>γ σ̄>σ̄

)
dt (27)

where all entities are allowed to depend on time and M . The analogue to Lemma 3.1.2
will now have to ensure that the agent is indifferent over identical joint distributions, but
prefers more consumption; the maximization problem therefore gets another constraint
x>γ = z̄ where z̄ is the value of v>γ for the strategy to be dominated. Linear constraints
were treated in Theorem 4.2.4, which we adapt to the following, skipping the proof and
noting that the generalization to higher-dimensional M is straightforward:

22



4.3.1 Theorem (Generalized separation). Modify the setup of Theorem 4.2.4 by assuming
(??) in place of (?). Then Theorem 4.2.4 applies as if (24) is augmented with the additional
constraint x>γ = z̄ (where z̄ is subject to the agent’s choice), and with funds depending on
(t,M(t)) as well.

Notice that even if M is uncorrelated with the return (not necessarily independent!),
the additional fund vanishes – this in line with the properties we have used of elliptical
distributions.

To sum up, the following generalizations behave quite uncomplicated under ellipticity:
Introducing a(nother) linear constraint  another fund. Introducing a common (corre-
lated) risk factor  another fund. It is also shown in [13] – in a single period model –
that partial information on one of the univariate projections (i.e. linear combinations of
coordinates) of Z, also leads to one more fund being required.

5 Separation with α-stable distributions

As in the previous section, we shall first review the basics of the distribution class, before
proving separation. We largely follow Samorodnitsky and Taqqu [46, Chapter 1], but as of
writing, the reader can also consult Nolan’s online chapter [35] for a brief introduction to
the univariate case; for an exposition within the theory of Lévy processes and infinite divis-
ibility, see Sato’s book [49, chapter 3]. Throughout this section, disregarded distributions
with a marginal being a Dirac point mass.

5.1 Review of the basic properties

Recall that a stable Rn-valued random variable X is one for which for two independent
copies X1 and X2 of X, and any two positive numbers a1 and a2, there exist non-random
a ≥ 0 and d ∈ Rn such that

a1X1 + a2X2 ∼ aX + d. (28)

The variable is strictly stable if one can take d = 0. There exists a unique index of stability
α ∈ (0, 2] such that a = (aα1 + aα2 )1/α. The Gaussian is of course when α = 2; otherwise,
E[
∑
|Xi|p] < ∞ for p < α but not for p = α. The stable laws are precisely the ones

attainable through the general(ized) CLT. They are unimodal, absolutely continuous with
infinitely differentiable densities – and infinitely divisible, hence can be the distribution
of Lévy processes. Simple closed-form formulae for densities are known only in a few
cases: the Gaussian, the Cauchy (α = 1, the distribution of a (Gaussian)−1) and the
Lévy distribution (the distribution of a (Gaussian)−2 and for the hitting time of Brownian
motion – this has α = 1/2; notice that the phrase «Lévy distributions» is sometimes in
the literature used to denote the full class of stable distributions.)
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Let us first give some properties for the univariate case, where the stable distributions
form a 4-parameter family Sα

(
σ, β, µ

)
, parametrizing the characteristic function by

lnE exp(iϑX) = iµϑ− |σϑ|α
[
1 + iβw(|ϑ|, α) signϑ

]
, where (29a)

w(|ϑ|, α) =
2

π
ln |ϑ| if α = 1, and = tan(−απ/2) otherwise. (29b)

(with 0 ln 0 interpreted as 0). σ > 0 is called the scale parameter; X/σ has scale parameter
1. µ ∈ R is called the location parameter; X − µ is located at zero, and the integrables
have mean equal to µ. We have a skewness parameter β ∈ [−1, 1]; a0 + a1X has skewness
β sign a1. A non-Gaussian stable is then symmetric about µ iff β = 0. This parametrization
has a fairly intuitive interpretation for α > 1 (beware though that the standard Gaussian
has σ = 1/2, not 1!) and the symmetric cases. It has a somewhat different interpretation
when α < 1, when a variable with β = 1 is supported by [µ,∞) and the general variable
is a linear combination of one such and one symmetric about µ. (All other cases than
α < 1 = |β|, have support = R.) The skewed 1-stable case is an oddball for which «scale»
and «location» might be somewhat confusing terminology; it is the only which can not be
made strictly stable by translating. Also, the above parametrization has a discontinuity
in distribution there, while it is continuous in distribution when the skewed 1-stables are
removed. The reader should be warned that there are numerous parametrizations, leading
to what Hall [17] called a «comedy of errors»; see also the discussion by Nolan [35, Section
1.3] who chooses to enumerate the parametrizations and index by four parameters plus the
parametrization number (the above is his number 1).

For the multivariate α-stables, we have the representation analogue to (29a), cf. (29b):

lnE exp(iϑ>X) = iϑ>µ−
∫
S
|ϑ>s|α

[
1 + iw(|ϑ>s|, α) sign(ϑ>s)

]
κ( ds) (30)

in terms of a finite spectral measure κ, living on the unit sphere S in Rn, and which is
unique for α < 2, and so is the vector µ – the notational similarity to the drift vector is
intentional. X is strictly stable iff every component is, and X is symmetric iff both κ is
symmetric and µ = 0. µ equals the vector of the marginals’ location parameters except
for the non-symmetric 1-stables. See [46, Sections 2.3–2.4]. Any non-degenerate linear
combination x>X is then univariate α-stable:

x>X ∼ Sα
(
σx, βx, µx

)
with (31a)

σx =
( ∫ ∣∣x>s∣∣α κ( ds)

)1/α
, (31b)

βx = σ−αx

∫
(x>s)<α> κ( ds) (31c)

µx = x>µ− 2

π

∫
x>s · ln

∣∣x>s∣∣ κ( ds) χ{α=1}, (31d)

where x<α> denotes the signed power |x|α signx.
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In the Gaussian case α = 2, where σ2
x =

∫ ∣∣x>s∣∣2 κ( ds) = x>
( ∫
ss>κ( ds)

)
x, the

dependence structure reduces nicely to the covariance matrix, and the ellipticals behave the
same although a non-Gaussian vector spherical about the origin is not a vector of iid’s. Also,
covered by the previous section, there are symmetric α-stable elliptical vectors (just take the
radial

√
R of (17) to be the absolute value of a symmetric α-stable). With zero location, this

has characteristic function of the form exp(−iσα||ϑ||α2 ), where the subscript «2» denotes
the Euclidean norm. Contrast this with a vector of iid’s, with characteristic function of
the form exp(−iσα||ϑ||αα), involving the Lα (quasi-) norm – indeed, the literature does not
agree on which one is the natural multivariate extension, leaving terms like «multivariate
Cauchy» ambiguous. The dependence structure of stable vectors is in the general case a
highly non-trivial matter. For this reason, there is hardly any use for the Σ matrix used
in the model, except to introduce time-inhomogeneity.

5.1.1 Remark (Sub-stable distributions). The radial scaling in the elliptical distribution
has an analogue here as well: we can make a radial scaling R1/α of an α-stable and still
have the projections characterized by the same parameters:

E exp(iϑx>XR1/α) = E exp
(

iϑµxR
1/α − |ϑσx|α ·

[
1 + iβxw(α, ϑ) signϑ

]
R
)

(32)

These distributions are more general than what is usually called «sub-stability» in the
literature, where typically one assumes symmetry, i.e. µx = βx = 0 ∀x ∈ Rn ([46, Section
3.8] also assumes the radial variable to be positive stable (i.e. with index < 1 = skewness)
and located at zero). For the purposes of separation, this will lead to easy ramifications
provided one can fit those distributions to our framework. With µx = 0, (32) yields infinite
divisibility if R is infinitely divisible. Additional results concerning infinite divisibility is
given by for Misiewicz [29] and [30] (assuming symmetry). The α-stables themselves are
infinitely divisible, and it easily follows by adding up increments that the scale parameter to
the power α aggregates like dt (the so-called self-similarity property), directly generalizing
the «

√
dt » behaviour of Brownian motion.

5.2 Separation properties

For convenience we shall – analogous to the elliptical case – only carry out the analysis for
the case where the driving noise Z has α-stable increments (disregarding the ellipticals,
which are already covered):

5.2.1 Remark. Although theorems will be stated proven assuming that

x>
(
µ+Σ[Z(t+ 1)−Z(t)]

)
∼ Sα

(
σx, βx, µx

)
, as in equations (31), (33)

the results will admit the independent radial scaling R1/α under the following conditions:

x>
(
µ+Σ[Z(t+ 1)−Z(t)]

)
∼ x>XR1/α where x>X ∼ Sα

(
σx, βx, µx

)
(34a)
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or alternatively: (α− 1)βx = 0 ∀ x, and

x>Σ[Z(t+ 1)−Z(t)] ∼ x>XR1/α where x>X ∼ Sα
(
σx, βx, 0

)
(34b)

provided, in continuous time, infinite divisibility. The results will also allow for the «re-
laxed» version of Assumption 3.0.3 where coefficients are time-dependent deterministic
(requiring, though, that the assumptions of the theorems hold for each t); notice though
that the Lévy process assumption requires α constant (although relaxing this assumption
too – to so-called stable-like additive processes – would be straightforward). The notational
modifications required in the proofs, will be left to the reader.

Under the notational assumptions just made, we can and will without loss of generality
assume Z to be n-variate and

Σ = the identity. (35)

In order to approach like in subsection 3.2, we give an analogue of Lemma 3.1.2. It
should be noted though, that the free lunch issue addressed in Remark 3.2.1 calls for a
condition like (15) – indeed, the analogue follows by using σx(t) in place of Qx(t). However,
in the case α < 1, we must also assume location of the opposite sign of βx whenever |βx| = 1;
should then location hit zero, then we are facing a not only an arbitrage (a «static» one),
but, even, one with infinite mean. The following result is nevertheless true even when a
free lunch makes it less interesting:

5.2.2 Lemma. Consider the dynamic model (?) with Z having stable increments satisfying
(33). Consider an arbitrary admissible strategy (C,v), and let v∗ be any strategy such that
for each t, v∗(t) solves the problem

max
x∈V

{
x>µ− 2

π

∫
x>s · ln

∣∣x>s∣∣ κ( ds) χ{α=1}
}

s.t. σx = σv(t) and βx = βv(t)

(36)

Then there is a C∗ such that (C∗,v∗) is preferred.

Proof. The proof goes like Lemma 3.1.2 except that the increment – now v> dZ – depends
on both σv and βv, both of which are now given.

So, compared to the elliptical case, there is one more parameter to fix, namely the
skewness of the portfolio return. The usual treatment in the literature assumes symmetry,
and that is the only case in which all unconstrained portfolios yield the same skewness,
as β−x = −βx. However, a construction like Theorem 4.2.2 will work if V restricts to
portfolios which lead to skewness being one common number. This might actually be
meaningful; the simplest non-symmetric example might be iid coordinates with common
skewness and V ⊆ Rn

+, forbidding shorting. More generally, observing that {x; βx = β} is
– disregarding the origin – closed and radial (possibly empty), a one-line calculation yields
the following:
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5.2.3 Lemma. Suppose that H is an orthant (possibly rotated about the origin) that κ̂
is a finite measure supported by the unit sphere intersected with H, and that the spectral
measure κ of X takes the form

κ(G) =


γ+κ̂(G) for G ⊂ H
γ−κ̂(−G) for G ⊂ −H
0 if G ∩ (−H ∪H) = ∅

(37)

where −H denotes {x; −x ∈ H} and likewise for −G. Then

βx =
γ+ − γ−
γ+ + γ−

∀ x ∈ H (38)

so that βx is constant on H, and constant on −H.

Restricting portfolios then facilitates separation for nonsymmetric distributions. The
following includes those results applicable for integrable returns:

5.2.4 Theorem (Two-fund separation). Consider the dynamic model (?) with Z having
stable increments satisfying (33), let βx = β (constant) on some closed radial V(β) common
to all agents, and assume that one of the following conditions applies:

(a) V = V(β)

(b) V(β) is a convex cone, V = V(β) ∩ {x>1 = Y } and µ = µ01 = 0 cf. Assumption 3.0.9
last part, and the distribution is symmetric if α = 1.

(c) α = 1 and V = V(β) ∩ {x>λ ∈ A}, where A is a possibly agent-dependent set and

λ =

∫
s dκ. (39)

Then the market admits two-fund (monetary) separation.

Proof. Lemma 5.2.2 takes care of the transition from the static to the dynamic model,
just as in the elliptical case. We can therefore consider merely the static location–scale
optimization problem. Assume the distribution is not nonsymmetric 1-stable. For part (a)
consider the corresponding static problem

max
x∈V

x>µ subject to σx = 1 (40)

– involving no skewness parameter, as it is by assumption constant on V. Like for the
elliptical distributions, this problem has a solution f . For an arbitrary strategy (C,v)
define (C∗,v∗) by v∗(t) = σv(t) f (having the same skewness), and Lemma 5.2.2 applies.
For part (b), choose f 1 to minimize σx. If V is bounded, choose f 2 − f 1 to maximize. As
x 7→ σx is continuous (by dominated convergence), {f 1 + rf 2}r∈[0,1] will attain all possible
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returns distributions. If V is unbounded, then just as for the elliptical distributions, we
choose f 2 such that {f 1 + rf 2}r≥0 attains every possible value of scale in [σf1

,∞).
Assume now α = 1 and non-symmetry. For part (a), the instantaneous optimization

problem – for arbitrary scale q > 0 – now becomes

max
x∈V

{
x>µ− 2

π

∫
x>s · ln |x>s| dκ

}
s. t.

∫
|x>s| dκ = q (41)

Replace x by qx, and note that qx ∈ V ⇔ x ∈ V since V radial and q > 0:

qmax
x∈V

{
x>µ− 2

π

∫
x>s · (ln q + ln |x>s|) dκ

}
s. t.

∫
|x>s| dκ = 1 (42)

Now q
∫
x>s dκ is in fact the skewness, constant by assumption, so qf solves (41) iff f

solves it for the particular value q = 1. Finally, for part (c), then by the assumption of
fixed level of skewness, the additional constraint only restricts the possible choices of scale
level q.

5.2.5 Remark.

(a) In part (b), then risk-averse agents will only want to use f 1 if α > 1, recovering
the classical degeneracy of one-fund separation for those agents. The same is true if
α = 1 = 1 − βv, and if α < 1 and the skewness imposed for βv is ≤ 0. However if
α < 1 and βv > 0, then increased scale is equivalent in law to adding an independent
symmetric noise and and independent positive infinite-mean variable. See Theorem
5.2.6 below.

(b) The two-fund separation result prevails if we restrict a radial V by simply disallowing
certain scales, and the proof of Theorem 5.2.4 shows that such a condition is not
necessarily too farfetched for α = 1 – see the one-fund separation result in Theorem
5.2.7 below.

(c) The cases α ≤ 1 distinguish themselves from the integrable ones also for the symmetric
case. The α-unit ball is not convex for α < 1, and parallel-shifting out a hyperplane
x>µ to the maximum extent possible, would lead to corner solution. α = 1 will have
corner solution as well. If we assume symmetry, V = Rn and independent marginals of
dZ; then the agents will not diversify. They can do with one coordinate only, namely
the one with highest absolute value of the drift, shorting it if negative. If shorting is
forbidden and we have symmetry or, more generally, Lemma 5.2.3 applying (pinning
down skewness), the highest drift will be chosen. Notice however that this does depend
on the (in-) dependence structure; an elliptical vector yields diversification even when
the radial variable is stable with α < 1.

As noted in Remark 5.2.5, the totally skewed distributions with index α < 1 are some-
what special in many respects. On the surface our preference assumptions are unreasonably
general and fail to order variables that first-order dominance does order: if drift is fixed
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in part (b), and skewness is +1 on V, the prospect of increasing scale leaves the agent
with the choice of accepting / rejecting an independent wealth increase – positive, but not
instantaneously, so our strategy of consuming excess is strictly speaking not applicable.
We could modify the preference assumption 3.0.5 to cover this particular case, but the
following is likely even simpler: for α < 1 = βx, the process x>Z is an increasing pure
jump process, for which we are controlling the jump intensity (the Lévy measure). There-
fore, in the choice of intensity ν and intensity ν∗ ≥ ν, the agent can draw an independent
lottery at jump time as to whether consume it immediately (with probability (ν∗ − ν)/ν)
or accumulate it to wealth. Then the wealth increments corresponding to ν and to ν∗

follow the same law. Technically, as we require adapted strategies, we have to assume that
these draws are measurable. We can then follow the lines of Lemma 5.2.2 to eliminate
suboptimal strategies which do not maximize skewness for given symmetric contribution
to scale (this contribution should be positive in the absence of arbitrage). A variable with
skewness β and scale σ, can be decomposed into a symmetric of scale (1 − |β|)1/ασ and
one of skewness sign β and scale |β|1/ασ. Thus for fixed value of symmetric contribution
(1 − |βx|)σαx to scale, the agent will then have to trade-off skew scale contribution βxσ

α
x

vs. drift – for both of which more is better. The trade-off may of course degenerate, and
the following result contains some of those cases, arguably less interesting than Theorem
5.2.4:

5.2.6 Theorem (Two-fund separation, α < 1). Assume α < 1 and that the agent can at
each jump time draw a uniform [0, 1] variable independent of everything else. Let V be a
closed radial set (common to all agents), such that µx = 0 on V or |βx| = 1 on V. Then
the market admits two-fund separation.

Proof. The agent will maximize β<1/α>
x σx subject to precisely one of the respective con-

straints (1− |βx|)σαx = qα or x>µ = d. In any case the problem is homogeneous.

For α ≤ 1 we have cases of one-fund separation which in contrast to the classical
results mentioned in Remark 5.2.5 part (a) do not assume risk aversion. To the best of
this author’s knowledge, Theorem 5.2.7 is new to the literature:

5.2.7 Theorem (Some nonintegrable cases of one-fund separation and two-fund separation
without risk-free opportunity).

(a) Assume α = 1, and that the conditions of Theorem 5.2.4 part (c) to hold, that the
skewness imposed is nonzero, that λ = λ01 6= 0 (cf. (39)) and that A is the singleton
{Y/λ0}.

(b) Assume α < 1 and that the agent can at each jump time draw a uniform [0, 1] variable
independent of everything else. Let βx = 1 on some closed radial V(1) common to all
agents, and suppose that µx constant on V = V(1) ∩ {x>1 = Y }.

Then we have one-fund separation: for some f , each agent holds Y f/f>1. If the conditions
on βx are relaxed by replacing βx by |βx|, we have two-fund separation where all positive-
wealth agents hold Y f 1/f 1

>1 and all negative-wealth agents hold Y f 2/f 2
>1.
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Proof. For part (b) – note we can assume µ = 0, cf. Assumption 3.0.9 last part – the
agent simply wants to maximize σx subject to budget. The maximand is is proportional
to Y . Consider part (a). By assumption, we have only one possible level β of skewness
in the first place, and as λ is a non-null scaling of 1, the absence of risk-free opportunity
is a restriction of the form v>λ ∈ A with A being a singleton. (As V imposes non-zero
skewness, zero-wealth agents must choose the null portfolio.) So Theorem 5.2.4 part (c)
applies.
For the last assertion consider β and −β separately. E.g. for part (b) the agent who faces
βx = −1 wants to minimize σx subject to budget.

Notice that in particular, the skewness assumption of part (a) holds if V(β) = Rn
+ and

Lemma 5.2.3 applies with γ+ 6= γ− – and for part (b) if furthermore γ+γ− = 0. These
constraints require nonnegative wealth if dictated by the imposed value of βx, which is the
rationale behind stating the two-fund version of the theorem.

We conclude this section by pointing out, for completeness, that we cannot hope to
allow skewness as a free choice at the cost of merely one additional fund, except in special
cases (e.g. blockwise independence, to be discussed in the next section):

5.2.8 Counterexample (No three-fund monetary separation with skewness free of choice).
Assume we have risk-free opportunity and three independent risky α-stable with common
α ∈ (1, 2), all with positive drift, all normalized to unit scale, and their respective skew-
nesses being 1, 1/2 and 0. Obviously, agents who want skewness ±1, must invest solely
in #1. It is easy to verify that agents who want skewness = 1/2 will choose a scaling of
(1, 1, 1)> if µ1 + µ3 = 2(2−α)/αµ2 holds. For three-fund separation to apply, all agents must
therefore choose v2 = v3. Now assume µ2 > 0, normalize it to 1 and write µ1 = η · 2(2−α)/α

and µ3 = (1 − η) · 2(2−α)/α, where η ≤ 1 (possibly negative). The agent who wants scale
= 1 and symmetry, must choose v1 = −2−1/αv2, and maximize (1− η)x3 + (1− 2−1/αη)x2

subject to 3
2
|x2|α + |x3|α = 1. The solution has x2 = x3 only iff η = (3 · 21/α − 2)−1.

Notice though that if we introduce yet another independent symmetric opportunity,
with the same α, the agent can replace the two symmetrics by one «fund». This example
also shows that, while it may be tempting in order to stick to «one skewness», we have
no hope that rewriting all opportunities as differences between totally skewed (β = 1)
variables could resolve the situation even for those vectors which admit decomposition into
a matrix times a vector of iid’s.

6 Discussion

This section will first discuss cases that do not, at least not easily, generalize from ellipticals
to stable distributions, and then possible applications of generalizations that do carry over.

6.1 Cases not covered: why not?

For each separation theorem valid for the ellipticals, it is natural to ask whether it general-
izes to the stables, symmetric or not. However, som have no straigthforward counterparts.
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First, the reader might have noticed that there was no general two-fund separation the-
orem stated for the stable returns without risk-free opportunity, nor with general linear
constraints. Not only does the matrix algebra-based proof fail, but the result also fails
to carry over to the stable distributions, except special cases. A result of [14] implies the
counterexample that with iid coordinates, then three funds do not suffice when α = 3/2
(while e.g. four funds do when α = 4/3).

For the analogous reason, there is no straightforward generally valid generalized sepa-
ration theorem in the sense of subsection 4.3, as that was also based on the dependence
structure being conveniently representable by matrix algebra and a linear constraint.

A different point to make, is that we have have not explicitely used α-stability of the
increments of Z; we have only used the characterizations of their projections’ univariate
distributions in terms of three parameters. Disregarding the radial scaling, what about
merely assuming univariate α-stability of the portfolio return? As established by Marcus
[23], there are non-stable distributions with all projections stable; however, none of these
examples can be integrable, none infinitely divisible (hence fit for Lévy processes), none
symmetric stable and none can have the property that the projections x>X possess location
on the linear µx = x>µ form. See [16, Theorem 2.3] and [46, Section 2.2, Theorem 2.1.5
and Theorem 3.1.2].

6.2 Possible consequences for applications

The extension of two-fund monetary separation to α-stability, can be regarded as a ro-
bustness result; if one is reasonably close to applying the central limit theorem, and the
distributions are symmetric, we could expect the mutual fund property to be a reasonable
model; as shown herein, the property is robust to skewness as long as that is one and
the same number (implying, under asymmetry, the appropriate portfolio constraint). This
makes the theorem possibly applicable to insurers who do not see symmetry; for example
assume that profits and loss follow totally skewed distributions with a light upper tail
and a heavy downside tail, and the assumption that insurance companies do not reinsure
themselves short might be reasonable. Likewise, for a loan portfolio might we might get
a better fit by a light upper and a heavy lower tail, than by a Gaussian. Loan portfolios
deviate from the usual interpretation of the mutual fund theorem, in that the agents do
not hold fractions of each separate opportunity – while large corporates do issue bonds to
be traded, a home owner will keep mortgage and home insurance concentrated on a few
firms. Nevertheless, a separation theorem is consistent with agents choosing portfolios that
– modulo scale – have the same distribution; say, that financial conglomerates consisting
of an insurance company and a bank (in the traditional savings/lending business) would
choose more or less the same risk profile when it comes to exposure to home insurance, car
insurance, corporate lending, retail lending etc. – modulo scale and capital base, as they
may have different risk appetites.

Now what about an insurance company’s asset/liability management? What about a
financial conglomerate exposed also to market risk, trading in assets which have plausibly
symmetric returns, and plausibly with different tail heaviness / index of stability? Say,
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there is an insurance portfolio with asymmetric profits/loss as above, and the firm invests
its assets in part in a stock market with symmetric returns, and holding the rest risk-
free? From Counterexample 5.2.8 we have no hope for a two-fund theorem even if these
markets have the same α, but we have «two-fund monetary separation in each marke» if
they are stochastically independent and the theorems given apply on each block. With
stochastic dependencies, on the other hand, we are in difficulties already for non-elliptical
α-stable vectors (i.e. one single α), and it is certainly no simpler if e.g. the stock market is
a geometric Brownian Black–Scholes market while the insurance portfolios is non-elliptical.

6.3 Concluding remarks

This paper has shown how Ross-type portfolio separation in dynamic models is easily
inherited from static models without dynamic programming. For Lévy processes we have to
make the additional assumption of infinite divisibility, making it in some sense less general
than the static case. This model bases preferences on first-order stochastic dominance, thus
avoiding issues of convergence of expected utility. The transition from static to dynamic
model to dynamic model can be done with little if any stochastic calculus – not even
the second-order term from the Itô formula needs to be introduced. Rather, one utilizes
basic tools of probability theory: the theory of the distributions in question, characteristic
functions for stochastic processes, simple manipulation of double expectations, and, from
analysis, the standard way of defining an integral by simple functions and extension by
analytic continuation. If one for the purposes of an exposition is willing to make a shortcut
like, e.g. « v> dZ ∼

√
v>Γv dZ0 for a standard Brownian Z0 », then one can do without

subsection 3.1 (which proves this equivalence!) and then the classical two-fund separation
theorem for geometric Brownian Black–Scholes markets is shown with quite a minimum
of machinery. The modest requirements are in part due to the modest level of ambition,
of merely reducing the dimensionality of the portfolio optimization problem rather than
solving it completely.

In this paper, we have used the method to easily recover the separation property for
classical cases, and extend these under no-shorting portfolio restrictions, making it possible
(and easy!) to allow for certain non-symmetric returns distributions. While this may be of
interest for modelling other financial activities than the trading portfolio perspective (like,
lending and insurance), there are also challenges due to the rich dependence structures
possible, and possibilities for future research on generalizations of this celebrated theorem.
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