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Abstract

The aim of this study is to determine optimal migration policies for an indi-
vidual of known age-dependent mortality who accumulates capital by com-
pound interest and also by skill-dependent income. By a continuing choice of
several environments, which vary in intrinsic preference and in the rates at
which they improve and reward skills, the individual have the option of devel-
oping skills, current earnings and residential preference by moving between
the environments. Specifying the expected future utility which recognizes
the preference for residence as well as for consumption, the corresponding
dynamic programming (DP) equations are derived. The optimality of return
migration is particularly investigated by studying the movement between
two environments. The analysis is then extended to allow for several en-
vironments. The DP-equations are also modified to examine the effect of
monetary as well as non-monetary (psychic) costs. In combining the essen-
tial causes motivating migration in a tractable dynamic control model that
can be used for analysing the impacts of the various factors, this paper is
believed to be an contribution to the migration literature.

Keywords: Residential preferences, development of skills, reward of human
capital, optimal migration, dynamic programming.

JEL Classification C61, J24, R23
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1 Introduction

Human migration is an issue of increasing topicality and has now an exten-
sive mainly empirical literature (see e.g. Borjas [1], Borjas and Bratsberg
[2]). Reviewing the extensive data sets now available, the following patterns
are clearly discernible. It is quite possible to have migration flows simulta-
neously in opposite direction; not all, but a large proportion of those who
emigrate, will return to their home country after some years; some of the the
migrants are multiple movers in that they do not settle in a single destination
permanently, but are constantly moving on. It is very natural to conjecture
that this regularity of migration data reflects a degree of optimization in mi-
grants’ choice of domicile. Although several one-period (static) optimization
models purposing to explaining particular features of migration data have
appeared (see e.g. Stark [14]), fully specified dynamic behavioral models
studying migration are scarce. McCall and McCall [9], Pessino [12] study
migration and job search by applying multi-armed bandit theory. Although
their studies are interesting, in order that the migrant’s problem of choice
can be represented as a bandit problem, it is has to be simplified to such a
degree that it hardly remains true to life. An extensive review of the present
migration literature is given by Constant and Zimmermann [3].

In this paper we study migration, not as a social issue for the commu-
nities concerned, but from the point of an individual who wishes to better
himself. Its dynamic character indicates that the migration process is best
studied in a life-cycle model where the drive for better earnings, the desire
for developing ones’ human capital and the locational preferences are explic-
itly recognized and whose impact on the individual choice are determined by
optimization. In addition to raising interesting problems in control theory
a detailed dynamic analysis of the migration process is also helpful in inter-
preting conflicting empirical results. Statistical analysis of migration data
often give empirical findings pointing in different directions.

Note that we use the terms ’region’, ’environment’, ’location’, and also
’country’ interchangeably to designate areas, regarded as both economi-
cally distinct and economically homogeneous, between which migration takes
place.

The individual is labeled by his current wealth, skill level (’human cap-
ital’) and age. Age enters the model in that the expected mortality and
skill-retention rates are age-dependent and that the individual’s choices con-
cerning consumption and migration are shaped very much by the conscious-
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ness that life is finite. Reliable theoretical modeling of migration processes
requires an explicit awareness of the essential motives initiating this process
as well as the factors explaining the shifting between the environments. This
is the concern of the present paper.

2 Formulation of the model

Although most studies on migration consider earnings to be the driving force
behind the migration process, recent research recognizes the influence of other
factors. Research on migration data by economists and historians recognized
at an early date that as important as earnings is the acquisition of skills and
competence (Dustman [4], Grönberg [5]). The movement between different
environments often exposes migrants to new production technologies and
practices and is a way of acquiring such skills, and so of self-investment. By
striving for better earnings and betterments of competence, people are able
to sustain a higher long run level of consumption. But environments also
differ regarding living conditions for their inhabitants, e.g. climate, social
institutions and regulations, the opportunities for leisure activities etc. which
affect peoples’ quality of life. Thus, it is almost self-evident that people also
have locational preferences. Indeed, Myrdal [10] emphasized ”all sorts of
social ties” to explain the delayed black South-to-North migration after the
Civil War despite a large North-South income gap.

Migration can be a demanding process requiring efforts which are more
easily coped with by younger people. Thus, a notion of mortality and age is
also important: that the migrant faces an unknown but finite horizon. The
stage reached in one’s life, roughly specified by age, is then also a significant
variable. Hence, in addition to consumption an adequate model of migration
should explicitly allow for the elements: locational preferences, the oppor-
tunities for migrants to develop skills and competence, the reward of the
human capital acquired and finally that the migrant faces an unknown but
diminishing horizon.

We specify a dynamic control model in which the individual optimises
over the feasible consumption paths. The situation is then compounded in
that the model is assumed to hold for each of several environments (regions)
over which the individual may have varying locational preferences and which
may also differ in their opportunities for the individuals to build up skills and
the rates they reward these skills. A switching policy will usually affect all

3



these variables. By the dynamic programming principle we want to derive an
optimal migration policy. An optimal policy may prescribe switching from
one region to another at any time, so it is natural to consider continuous
time. Unfortunately, the Bellman equation for this problem turned out to
be a non-linear partial differential equation for which there does not exist a
general solution (Zauderer [18]).

In order to overcome this problem it proved convenient to start with
a discrete-time formulation, in which the time variable t labels the age of
the individual, and takes integer values. We assume that the age at death
is a random variable governed by a known age-dependent mortality rate.
Variables wt, vt and bt denote the individual’s wealth, human capital and the
rate of return on human capital at age t. The rate of return is environmentally
dependent, and so age-dependent if an environmental sequence has been
specified. The individual’s state-variables at age t is specified by t itself, by
his wealth wt and (later) also by his human capital vt. If ct denotes the level
of consumption at age t the wealth evolves by the forward recursion

wt+1 = awt + btvt − ct (2.1)

Here a is the factor by which compound interest multiplies wealth over unit
time. The sequence {vt} of human capital is assumed to evolve by known
deterministic rules. This facilitates the solution of the dynamic programming
equation. Later we return to this point. In our model btvt represents the level
of the individual’s current earnings and is simply the return on his human
capital. This decomposition allows both the actual return rate bt and the
rules governing the the evolution of of human capital vt to be environmentally
dependent. This is natural and makes the model more versatile. We shall
suppose that the utility associated with consumption ct is logct, implying that
ct must be positive. We shall also suppose that there is a further component
of utility denoted ht which is ’enjoyment of life’ at age t. First we suppose
that this variable takes prescribed values, later it will be used to reflect the
intrinsic preferences for living in the different environments and thus become
a variable to be determined by optimisation (section 4). No further utility
can be enjoyed once the individual dies.

Death is a random event, and the only random element of the model. We
shall assume that an individual alive at age t has a probability pt of surviving
to age t+ 1. We shall find it convenient to use the notation

Pts = ptpt+1pt+2...ps−1 (s ≥ t) (2.2)
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for the probability that an individual alive at age t survives at least to age
s, with initial condition Ptt = 1.

Let π = πs, (s ≥ t) denote an arbitrary future consumption and switching
policy. Under this policy the expected future utility is given by

Gπ(w, t) =
∞∑
s=t

Pts(log(cπss ) + hπss ) (2.3)

Let F (w, t) denote be the value function for this problem; i.e. the maximal
expected future utility which an individual of age t and wealth w can enjoy
over the remaining random lifetime. The value function is given by

F (w, t) = sup
π
Gπ(w, t) (2.4)

We shall derive the optimal strategy π by using the dynamic programming
principle Krylov [8], Whittle [17]. This course quickly reveals certain reg-
ularity properties of the solution which then expose the solution of the
continuous-time DP-equation.

3 The dynamic programming equation and

its solution

We shall suppose initially that the sequences {bt}, {ht} and {vt} are pre-
scribed and known, so that we are in effect working in a single environment
with age-dependent parameters. We shall later see the age-dependence of b
and h as being brought about by environmental switching, which must be
optimized, and we shall also see the sequence {vt} as being generated by dy-
namics which are also environmentally dependent. The variable v will then
become a component of the state variable. The value function (2.4) satisfies
the DP-equation

F (w, t) = max
c

[logc+ ht + ptF (aw + btvt − c, t+ 1)], (3.1)

the maximizing value of c being the optimal value of ct. By solving (3.1)
we determine the optimal consumption sequence {ct} for prescribed age-
dependencies of the parameters h, p, b and v. The probability terms Pts
appearing in the following theorem are defined in (2.2).
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Theorem 3.1 The unique proper solution of the dynamic programming equa-
tion (3.1) is given by

F (w, t) = Atlog(w +Bt) +Ht + Ct (3.2)

where

At =
∞∑
s=t

Pts (3.3)

Bt =
∞∑
s=t

a−(s−t+1)bsvs (3.4)

Ht =
∞∑
s=t

Ptshs (3.5)

Ct = −AtlogAt + Atlog(a) +
∞∑
s=t

Pt(s+1)As+1log(aps) (3.6)

provided that these sums are convergent.
The optimal rate of consumption at state (w, t) is

ct = A−1
t [awt + btvt +Bt+1] (3.7)

Proof. One verifies that (3.2) satisfies equation (3.1) if the coefficients At,
Bt, Ht and Ct satisfy the backward recursions

At = 1 + ptAt+1 (3.8)

Bt = a−1(btvt +Bt+1) (3.9)

Ht = ht + ptHt+1 (3.10)

Ct = Atlog(aA−1
t ) + (ptAt+1)log(ptAt+1) + ptCt+1 (3.11)

The expressions (3.3)-(3.6) are what would be obtained by solving these
relations from a finite horizon value. Expression (3.7) is just the maximizing
value of c in (3.1).

More explicitly, suppose that the survival rate pT is zero for some T , so
that lifetime can not exceed T , implying F (w, T + 1) = 0 since no further
utility can be enjoyed once the individual dies. That is, T is an effective hori-
zon for the problem. Then the sums (3.3)-(3.6) terminate at a finite value,
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and the expression (3.2) is just what one would obtain by solving the back-
ward equation (3.1) recursively with the starting condition F (w, T + 1) = 0.
This solution is unique and the decision rule (3.7) associated with it is opti-
mal. If there is no such T , but the sums (3.3)-(3.6) converge, then one can
arbitrarily set pT = 0 and determine the associated solution, which will then
converge to that asserted in the theorem as one lets the horizon T tend to
infinity. Note that this procedure expresses a regularity condition implied in
the model itself: that the contribution to the solution from events after age
T should converge to zero with increasing T . �

The array of equations (3.3)-(3.6) look rather intimidating but they have
all natural interpretations. At is the expected residual lifetime of an individ-
ual being alive at time t, Bt is the present value of the return from future
incomes bsvs, (s ≥ t). Further, Ht is the expected value of the future ’resi-
dential’ utility and finally Ct is the expected utility of future consumption.
Expression (3.7) for the optimal consumption rate has an immediate inter-
pretation: as the ratio of the present value of all anticipated assets to the
expected lifetime given that one is alive at time t.

Consider now the continuous-time version of the problem. Utilities in-
curred at each stage becomes utility rates and, if we consider the progression
in infinitesimal small time steps ∆, then a and pt are respectively replaced
by (1 + r∆) and 1 −m(t)∆, where r is the interest rate and m(t) the age-
dependent death rate. We shall now write the time (or age) variable t as the
argument of a function rather than as a subscript, so that, for example ht will
now be written h(t). A subscript i will later be used to label environment.
We shall also be more specific about the evolution of the skill variable v(t)
in that we shall introduce it explicitly among the state variables. Hence, in
addition to the individuals age the state variables are now

ẇ = rw(t) + b(t)v(t)− c(t) (3.12)

v̇ = d(t) (3.13)

The dynamic programming equation (3.1) now becomes

max
c

[log c+h(t)+(rw(t)+b(t)v(t)−c)Fw+d(t)Fv +Ft−m(t)F ] = 0 (3.14)

Here Fw, Fv and Ft denote the partial differentials of F(w, v, t) with respect
to the variables indicated. The expected effects of the mortality rate is
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represented in (3.14) by the term −m(t)F. We allow d(t) to be age-dependent
and so later environmentally dependent. From (3.14) we find that the optimal
value of consumption is now

c(t) =
1

Fw
(3.15)

Using (3.15), (3.14) reduces to

−log(Fw) + (rw + b(t)v)Fw − 1 + d(t)Fv −m(t)F = 0 (3.16)

The term log(Fw) makes this non-linear and equation (3.16) will resist general
methods of solving partial differential equations (Zauderer [18]). However,
we know the solution of this by analogy from (3.2). The solution becomes

F (w, v, t) = A(t)log[w(t) +B(t)] +H(t) + C(t) (3.17)

where

A(t) =

∫ ∞
s=t

P (t, s)ds (3.18)

B(t) =

∫ ∞
s=t

e−r(s−t)b(s)v(s)ds (3.19)

H(t) =

∫ ∞
s=t

P (t, s)h(s)ds (3.20)

C(t) = −A(t)logA(t) +

∫ ∞
s=t

P (t, s)A(s)[r −m(s)]ds (3.21)

and

P (t, s) = e−
∫ s
t m(v)dv (3.22)

Expression (3.17) is a valid solution of (3.16) provided that the integrals
(3.18)-(3.21)are convergent. From (3.15) and (3.17) we deduce directly that
the optimal consumption rate is given by

c(t) =
w(t) +B(t)

A(t)
(3.23)

The co-state variable

λ(t) = Fw =
A(t)

w(t) +B(t)
(3.24)
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turns out to be an important variable. Using the equations (3.12), (3.18)
and (3.19) one can show that λ(t) obeys thee differential equation

λ̇ = (m(t)− r)λ(t) (3.25)

whose solution is given by

λ(t) = λ(0)e
∫ t
0 (m(s)−r)ds (3.26)

for some constant λ(0). (3.26) implies that

λ(s) =
e−r(s−t)

P (t, s)
λ(t) (s ≥ t). (3.27)

Equation (3.25) in fact holds generally as a consequence of the Pontryagin
formalism. This indicates that the continuous-time case can be treated by
the maximum principle. The explicit solution (3.17)-(3.22) of (3.16) makes
such recourse unnecessary.

Since c(t) = λ(t)−1 under an optimal consumption policy, relation (3.27)
can be written

c(t) =
e−r(s−t)

P (t, s)
c(s) (s ≥ t). (3.28)

Since relation(3.28) is independent of the time-dependent quantities b, d, h, w
and v it holds, remarkably enough, whatever the switching policy. That is,
the switching policy affects consumption c(t) only by the time-independent
multiplicative factor c(0). Equation (3.23) shows that the equation for c(0)
is given by

c(0) =
w(0) +B(0)

A(0)
(3.29)

where w(0) is the given initial capital, A(0) is the expected value of residual
lifetime at time 0. However, we note from (3.19) that the present value of an-
ticipated future earnings B(0) depends crucially on the future migration pol-
icy. Thus, although the relation (3.28) is independent of the time-dependent
quantities, the quantityB(0) relies heavily on these variables. That is, the op-
timal migration policy adjusts the overall level of the consumption-path but
leaves it otherwise time-invariant. This is a feature well known to economists
as ’consumption smoothing’. Thus, relation (3.28) makes sense.

It also states that c(s) is inflated by relative to c(t) by a factor exp[r(s−t)],
reflecting the growth of capital by compound interest, but that c(t) is inflated
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relative to c(s) by a factor 1/P (s, t). An increase in the death rate seems
to have the effect of lowering consumption which is counter-intuitive. The
prospect of approaching death would surely encourage immediate consump-
tion. However, the point is that an increase in future death rate affects the
whole course of the process, since A(0) will be decreased and thereby c(0)
increased. If the mortality rate m(t) is constant and is equal to the inter-
est rate r, the consumption process (3.28) reduces to (c(s) = c(t) (s ≥ t)
reflecting the ’martingale’ feature of optimal consumption.

4 Environmental dependence

Suppose now that the individual can move between n environments E1,
E2,...,En. We shall make the environmental dependence explicit by assuming
that b(t), h(t) and d(t) adopt constant values bi, hi and di when the individ-
ual is in Ei. The valuation of hi and di are personal to the individual showing
the attachment and the individual’s ability to develop his/her human capital
while bi reflects the level of reward of skills in Ei.

Thus for environment Ei the state equations become

ẇ(t) = rw(t) + biv(t)− c(t) (4.1)

v̇(t) = di − f(t)v(t) (4.2)

Equation (4.2) summarizes the fairly realistic assumptions that human cap-
ital improves at a constant rate di which is assumed to be environmental
dependent, but also declines at an age-dependent rate f(t)v which is inde-
pendent of the environment one is staying. Later when the i-dependence of
policy is in the forefront we often set f(t) = 0 to simplify expressions.

Above we have solved the optimal consumption process in the case of
a single environment, now we wish to optimise also with respect to the
migration pattern. Starting the state variables w(t) and v(t) at w and v
respectively, the DP equation (3.14) modifies to

max
i

max
c

[logc+hi+(rw+biv−c)Fw+(di−f(t)v)Fv+Ft−m(t)F ] = 0 (4.3)

We now have a double optimization, with respect to the consumption path
c(t) and then with respect to choice of environment Ei. The first yields
the rule (3.23) as before, while the second gives the rule for optimising the
migration pattern.

We have the theorem
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Theorem 4.1 The dynamic programming equation for the optimization of
environment is equivalent to choosing the environment with the largest value
of the criterion Di(t) given by

Di(t) = hi + bivλ(t) + diµ(t) (4.4)

where λ(t) = Fw and µ(t) = Fv.

Proof. It follows from (4.3) that the DP equation for optimizing environ-
ment is given by

max
i

[−log(Fw) + rwFw− f(t)vFv +Ft−m(t)F − 1 + (hi + bivFw + diFv)] = 0

(4.5)
Maximizing (4.5) with respect to environment i is equivalent to maximizing
the expression Di(t) �

From the general solution (3.17) we see that there is a definite relation
between the partial derivatives Fv and Fw. We find Fv = k(t)Fw where

k(t) =
∂B(t)

∂v
=

∫ ∞
s=t

R(s)

R(t)
b(s)ds (4.6)

and

R(t) = exp[−rt−
∫ t

0

f(τ)dτ ] (4.7)

Thus, k(t) is the marginal change of the present value of future earnings B(t)
generated by a marginal change of human capital at time t. It is natural to
interpret k(t) as a future marginal value of human capital (skills).

Since µ(t) = λk(t) the criterion (4.4) reduces to

Di(t) = hi + [bivi(t) + dik(t)]λ(t) (4.8)

The expression [biv + dik(t)] is the sum of current wages (biv) plus the
marginal effect of increases in future reward dik(t) offered in environment
Ei. Thus the choice criterion of environment Ei depends on its residential
utility (hi) but also on an economic quantity combining current wages with
the present value of increases in future reward.
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Theorem 4.2 Let us assume that the depreciation rate of human capital f(t)
is non-decreasing with age and that the reward rate of skill b(t) is bounded
from above, b(t) ≤ b̄. Then k(t) given by (4.6) has an upper bound

k(t) ≤ b̄

(r + f(t))
(4.9)

Proof. Since b(t) ≤ b̄ the integral (4.6) satisfies

k(t) ≤ b̄

∫ ∞
t

e−r(s−t)−
∫ s
t f(τ)dτds (4.10)

Since f(τ) is non-decreasing and substituting u = s − t we readily deduce
the inequality ∫ s

t

f(τ)dτ =

∫ u+t

t

f(τ)dτ ≥ uf(t) (4.11)

Putting these details together we attain

k(t) ≤ b̄

∫ ∞
0

e−ru−
∫ t+u
t f(τ)dτdu ≤ b̄

∫ ∞
0

e−(r+f(t))udu =
b̄

(r + f(t))
(4.12)

which proves inequality (4.9) �

The following result explains the rationality of return migration.

Theorem 4.3 Let us assume that the depreciation rate f(t) is non-decreasing
and that the mortality rate m(t) is less than the interest rate r (m(t) < r),
then the decision criterion Di(t)

Di(t) = hi + [biv(t) + dik(t)]λ(t) (4.13)

will converge exponentially fast to hi. That is, for large t the individual will
essentially choose that environment which maximizes hi.

Proof. Since k(t) has a finite upper bound, the terms in the square bracket
of (4.13) are finite for all t. Furthermore, since m(t) − r ≤ −δ for some
positive constant δ, it follows from (3.26) that

λ(t) = λ(0)e
∫ t
0 (m(s)−r)ds ≤ λ(0)e−δt (4.14)
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for some constant λ(0). This means that λ(t) tends exponential fast to zero.
Since an environment’s earning potential [biv+dik(t)] increases linearly while
λ(t) decreases exponentially to zero, the criterion Di(t) will eventually be
dominated by the attachment rate hi. �

The theorems (4.1)-(4.3) provide useful information regarding individuals’
migration behaviour. First, they show that as the migrant gets older the de-
cision criterion is dominated by the locational utility rate (hi). This implies
that the migrant will eventually settle in the environment with largest rate
hi. If we label the most-favoured environment by i = 1; it is likely, although
not necessarily, that this is the home environment (country) from which the
migrant started. Theorem (4.3) thus substantiates the frequently observed
behaviour: that migrants often return to their home countries.

In deriving theorem (4.3) we assumed that the mortality rate is less than
the interest rate. Since m(t) will be increasing in adult life, it is possible that
this assumption is violated at the very end. However, by that stage there
will be no time for further adventures.

5 Optimization between two environments

A considerable part of contemporary migration takes place between coun-
tries which are relatively rich and at a similar level of development. Almost
all statistics on these migrations show the same pattern: that the previous
permanent emigration is replaced by temporary emigration. Of those who
emigrate a decreasing proportion will stay abroad permanently, and an in-
creasing proportion will return to their home country. We call this behaviour
return or circular migration.

Generally, individuals can move between n environments but when we
consider return migration it is sufficient to consider the case n = 2. We shall
now apply the theory developed above to determine the optimal switching
between the environments E1 and E2. In order to be specific we shall regard
E1 as the home country for the individual and E2 as the host country -
’home’ and ’away’. If we assume that the home country is the most-favoured
environment, the ’residential’ utility rates satisfy h1 > h2. For economy we
shall use the notation ∆h = h1 − h2, ∆b = b1 − b2 and ∆d = d1 − d2. Since
we are mainly interested in the effects of the parameters hi, bi and di for the
two environments we put the depreciation rate of human capital f(t) equal
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to zero. Then we shall use the criterion (4.8) to determine the optimal policy
π for different signs of ∆h, ∆b and ∆d

Theorem 5.1 Suppose that the home country is preferred (∆h > 0) and
that the optimal policy prescribes a period in the host country (E2) followed
by an infinite sojourn in the home country (E1). That is, there is a critical
age s, dependent upon capital and skill levels attained, such that one is in E2

for t < s and retires to E1 for t ≥ s. Then: (i) The optimal value of s is
determined the equation

∆h+

[
∆bv(s) +

b1∆d

r

]
λ(s) = 0, (5.1)

(ii) D1(t) < D2(t) before the switch and D1(t) > D2(t) after the switch and
that there is only one switch.

Proof. (i) Optimization of environment requires that for a given value of
the state variables (w, v, t) we shall choose that environment maximizing
the criterion Di(t) given by (4.8). From theorem (4.3) we know that Di(t)
converges to hi as t increases. Since h1 > h2 the individual will eventually
settle down in the home country. Since the optimal policy requires a period
in the host country there is a critical age s, dependent upon capital and skill
level attained, such that one is E2 for t < s and retires to E1 for t ≥ s. Let
B1(t), k1(t) and λ1(t) denote the values of B(t), k(t) and λ(t) when t ≥ s
and by B(2)(t), k(2)(t) and λ(2)(t) when t < s. The choice criteria for E1 and
E2 are respectively

D1(t) = h1 + [b1v(t) + d1k
(1)(t)]λ(1)(t) (5.2)

D2(t) = h2 + [b2v(t) + d2k
(2)(t)]λ(2)(t) (5.3)

so that D2(t) > D1(t) for t < s and D1(t) ≥ D2(t) for t ≥ s. On the
boundary t = s the values of the choice criteria are equal. In order to find
an explicit form of the equation D1(s) = D2(s) we calculate directly the
quantities B(i)(t), k(i)(t) and λ(i)(t) (i = 1, 2).
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For t > s we calculate B(1)(t) by using (3.19) with E1 parameters

B(1)(t) =
b1v

r
+
b1d1

r2
(5.4)

k(1)(t) =
∂B(1)(v)

∂v
=
b1

r
(5.5)

λ(1)(t) =
A(t)

w +B(1)(t)
(5.6)

where w and v denote wealth and human capital at time t ≥ s.
For t < s we calculate B(2)(t) by using (3.19) with E2 parameters on the

interval (t < s) and E1 parameters on the interval [s,∞)

B(2)(t) =
v[b2 + e∆b]

r
+
d2e(s− t)∆b

r
+

[b2d2 + (b1d1 − b2d2)e]

r2

(5.7)

k(2)(t) =
∂B(2)(t)

∂v
=
b2 + ∆b

r
(5.8)

λ(2)(t) =
A(t)

w +B(2)(t)
(5.9)

where

e = exp[−r(s− t)] (5.10)

here w and v denote wealth and human capital at time t < s.
From the equations (5.4)-(5.9) we observe that on the boundary t = s we

have

B(1)(s) = B(2)(s) =
b1v

r
+
b1d1

r2
(5.11)

k(1)(s) = k(2)(s) =
b1

r
(5.12)

λ(1)(s) = λ(2)(s) =
A(s)

w +B(1)(s)
(5.13)

where w and v denote the values of wealth and human capital on the bound-
ary. Inserting these values into the criteria on the boundary D1(s) = D2(s)
we deduce (5.1)

15



(ii) Define the function

L(s) = D1(s)−D2(s) = ∆h+

[
∆bv(s) +

b1∆d

r

]
λ(1)(s) (5.14)

Since ∆h and λ(1)(s) are positive,
[
∆bv(s) + b1∆d

r

]
must be negative at the

switch-point L(s) = 0. Since v̇(s) is positive and λ̇(1)(s) is negative accord-
ing to (3.25) when m(t) < r, the derivative L̇(s) is positive. This means
that L(s) is always increasing which implies that L(s) is negative before the
switch and positive after the switch. This proves theorem (5.1) (ii). �

It follows from this theorem that if it is optimal to spend a period in the
host country one should go immediately. This means that the value of s
solving (5.1) shows the duration in the host country. Equation (5.1) can be
used to show the partial effects of the differential rates ∆b, ∆d and ∆h on
the duration of stay s. We find

∂s

∂(∆b)
=

−v(s)λ(s)

(∆bv(s) + b1∆d/r)λ̇(s)
(5.15)

∂s

∂(∆d)
=

−b/rλ(s)

(∆bv(s) + b1∆d/r)λ̇(s)
(5.16)

∂s

∂(∆h)
=

−1

(∆bv(s) + b1∆d/r)λ̇(s)
(5.17)

Since (∆bv(s) + b1∆d/r) is negative at the switch-point and λ̇(s) is always
negative, the denominator of the above equations are all positive. This means
that a small increase in the differential rates favouring the home country (E1)
tend to shorten the length of time spent in the host country. Remembering
the definitions of the rates ∆b = b1− b2, ∆d = d1− d2 and ∆h = h1− h2 the
results are what we would expect.

Equation (5.1) is also very useful for characterizing optimal migration
behaviour under various signs of ∆h, ∆b and ∆d.

Theorem 5.2 (i) Suppose an individual is characterized by ∆h > 0, ∆b ≥ 0
and ∆d > 0. That is, the home country is intrinsically preferred, values
skills at least as highly, and develops these skills more rapidly. Then it is
optimal to stay permanently in the home country. (ii) Suppose an individual
is characterized by ∆h > 0, ∆b ≥ 0 but ∆d < 0. That is, the home country
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is preferred values skill at least as highly but develops these skill less rapidly.
In this case the optimal migration behaviour depends upon the initial value
of human capital v(0). If v(0) is sufficiently small the optimal policy may
require a period in the host country while if v(0) is sufficiently large it is
optimal to stay permanently in the home country.

Proof. (i) The assertion is obvious and follows directly from (5.1). Under
the stated conditions the left-hand side of this equation is positive for all
values of s implying D1(t) > D2(t) which means that it is optimal to stay
permanently in the home country. (ii) Since ∆d is negative, the square
bracket in (5.1) is also negative for small values of v(0). This implies that for
small values of human capital D1(t) < D2(t) indicating that it is optimal to
stay in the host country for a while. Similarly, if the initial value of human
capital is sufficiently large e.g.

v(0) ≥
[
−b1∆d

r∆b

]
= v̄ (5.18)

the left-hand side of (5.1) is always positive implying that D1(t) > D2(t).
That is, for this individual it is again optimal to stay permanently in the
home country. �

We shall now relate the theory just presented to some well known issues
in the migration literature. Our first example concerns Scandinavia. Inter-
preting Scandinavia as environment E1 and the rest of the world as E2, it is
reasonable to assume that Scandinavians whose education has not been con-
tinued past the compulsory period will be characterized by ∆h > 0, ∆b ≥ 0
and ∆d ≥ 0. This reflects the Scandinavian traits of a benevolent welfare
state, high minimum wages and a generous unemployment benefits, plus the
difficulty that people of limited eduction would experience in gaining skills
on the international labour market. In this case the signs of case (i) of the-
orem 5.1 are fulfilled indicating that for this category of persons emigration
is non-optimal. Statistics on migration show that the propensity to emigrate
in this group is almost negligible (Pedersen et. al. [11]).

As a second example we consider the inflow of people from low-income
countries (collectively denoted E1) to high-income Western countries (col-
lectively denoted E2). With the slackening of restrictions on international
mobility there is growing concern that this inflow will challenge the founda-
tion of the modern welfare state in the high-income countries, not to mention
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the character of the state itself (Boeri, Hanson and McCormick [15]). For
this category of potential emigrants it seems obvious that h1 < h2, b1 < b2

and d1 < d2. Since now ∆h < 0, ∆b < 0 and ∆d < 0 the left-hand side of
(5.1) is always negative indicating that D2(t) > D1(t) for all t. This implies
that it is optimal for people in low-income countries to move to high-income
countries and stay there permanently. In particular, there is no incentive
for these people to return to their home countries. Hence, the high-income
countries can do scarcely anything to control this inflow except try to restrict
it. Which is, in fact, what happens.

Our final application consider an other important issue facing well-developed
welfare states with immigration (Jensen and Pedersen [7]). When the welfare
benefits are based on residence in the country and not on previous labour
market participation, the interaction between the labour market and the wel-
fare system may show that the economic incentives to work may be small or
even negative. In this way a benevolent state may act as a ’Welfare Magnet’
in particular on low-qualified immigrants. If β(t) represents the welfare ben-
efits, our model can easily be adapted to the immigrant’s decision problem.
The wealth equation (3.12) generalizes to

ẇ = rw(t) + b(t)v(t) + β(t)− c(t) (5.19)

The solution (3.17) of the DP-equation still holds, but now with

B(t) =

∫ ∞
s=t

e−r(s−t)(b(s)v(s) + β(s))ds (5.20)

Since this simple situation involves comparing two states: work E1, and not
work E2, we can write the choice criterion (4.8) as

D1(t) = h1 + [b(t)v(t) + d(t)k(t)]λ(t) (5.21)

D2(t) = h2 + β(t)λ(t) (5.22)

where b(t) and d(t) represent the reward and growth of human capital and
k(t) is given by (4.6). The optimal decision is determined by comparing
D1(t) and D2(t) and the immigrant will choose the category whose criterion
is the greater, i.e. the immigrant will work only if D1(t)−D2(t) > 0, or

h1 − h2 + (b(t)v(t) + d(t)k(t)− β(t))λ(t) > 0 (5.23)

If we interpret h1 and h2 as the amount of leisure in the two states and
assume h1 < h2 which is natural, the immigrant will work only if the income
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accruing from work more than compensates for the loss in the amount of
leisure.

The difference (b(t)v(t) +d(t)k(t)−β(t)) shows the sum of current wages
plus a marginal effect of increases in future rewards acquired by working over
receiving social benefits and is naturally interpreted as the ’Welfare Magnet’.
The strength of this ’magnet’ depends on the positive size of this difference. If
it is small or even negative the migrant has hardly any economic incentives
to work. The reward rate b(t) will often show strong cyclical variations,
increasing during cyclical upswings but decreasing in downturns, β(t) on
the other hand is politically decided and will vary much more slowly. The
’Welfare Magnet’ will thus to a great extent mimic the cyclical variation of
b(t) which means that these immigrants will tend to go in and out of the
labour market.

It is fair to admit that the factors at work in these examples are fairly
obvious, as then also are the explanations and conclusions. However, it is
reassuring to see these conclusions as immediate implications of our formal
analysis. We will argue that our analysis can also be used to improve insight
and understanding of empirical results of migration studies in general.

Statistical analyses often show that movers experience a negative income
gain. Stark [14] summarizes the empirical findings of the popular expected-
income hypothesis of the rural-to urban migration by concluding that ”it does
not fare well in terms of either the sign of the coefficients or their statistical
significance”. Tunali’s interesting study (Tunali [16]) of the rural-to-urban
migration in Turkey adds to these results. Taking earnings as the decision
variable and applying self-selection modeling Tunali deduced a variable ’re-
turn to migration’ comparing the earnings for an urban migrant with the
earnings he/she would have earned in a rural district. A thorough analysis
showed that a great majority of the migrants realized a negative return. Tu-
nali is not happy with these results and offers two explanations:”...migrants
engage in a lottery of sorts. If they are lucky, they do extremely well. How-
ever, a very a large majority of them may have to settle for a loss. An-
other possible interpretation is that the individuals are making mistakes and
are moving when they should not”. However, having carefully worked out
testable hypotheses and then finds that three-fourth of the individuals in the
sample do not comply with the main hypothesis, it would be more natural to
discuss the adequacy of the econometric model used than simply concluding
that sampled people do not behave rationally.

To be specific we denote rural districts by E1 and urban areas by E2.
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Figure 5.1: Comparing wages for a return-migrant and a stayer

First, if one has an intrinsic preference for living in an urban area enjoying
the diversity of facilities and social life there, i.e. h2 > h1, it can be optimal
to move from E1 to E2 even though the reward in E1 is higher (b1 > b2). Since
h2 > h1 theorem (4.3) shows that eventually urban areas will be the optimal
environment for these people. Indeed, there is nothing peculiar about such
behaviour, in his old study Sjaastad [13] writes ”some people, for example,
may be indifferent between earnings at one level in Minnesota and a lower
level in California owing to a preference for the latter’s climate”.

Second, if rural districts are the most-favoured environment (h1 > h2)
and one is better paid there (b1 > b2), theorem 5.2 (ii) indicates that it
can still be optimal to spend a certain period in an urban area since one
develops ones skill more rapidly there (d2 > d1). Since h1 > h2 we know that
eventually it is optimal to live in a rural district. Thus, assuming ∆h > 0,
∆b > 0 but ∆d = (d1 − d2) < 0, we know from theorem (5.2) that

D1(s)−D2(s) = ∆h+

[
∆bv(s) +

b∆d

r

]
λ(1)(s) (5.24)

can be negative for suitable small values of v(s) implying that the migrant
is in E2 for s < s∗(the switch-value).

It is instructive to illustrate this situation by a numerical example. We
use the specification: ∆h > 0.04, b1 = 0.15, b2 = 0.1, d1 = 0.1, d2 = 0.2,
m = 0.03, r = 0.05, the initial values of wealth and human capital are
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respectively w(0) = 5 and v(0) = 2. We assume that the mortality rate
m(t) takes the constant value m, implying that A(t) = 1/m. The value
of λ(s) at the switch-point s∗ is given by (5.13). Here A(s) = 1/m, the
wealth w(s) is determined by solving the differential equation (4.1) with
the E2 parameters (b2, d2) and w(0), v(s) is obtained by solving v̇ = d2

implying v(s) = d2s + v(0). Since the expression in the square bracket of
(5.24) is increasing and we know that λ(s) is decreasing, we realize that
(5.24) has only one solution. The value of s solving (5.24) is found by the
’Mathematica’ program, which with the above parameter values gives the
return time s∗ = 17.0542.

Figure (5.1) compares the wages (biv) for a migrant for whom it is optimal
to spend a certain period in urban areas to take advantage of the wider
range of opportunities there for developing ones skills, with a stayer who will
not leave the rural districts. Compared to a stayer the wages of a rural-to-
urban mover start at a lower level but increase faster since the human capital
develops more rapidly in urban areas. Just before the wage lines intersect it
is optimal for the mover to return to rural districts to take advantage of the
higher reward rates there. It is evident from this figure that by using cross-
section data, as is often the case, the sample will often include individuals
reporting wages that are smaller than they would have been if they had
remained in the rural districts. But to say that these people ”..are moving
when they should not” misses the point that a strong motive for people to
move is to develop their skills more rapidly. Return migration is best analysed
statistically by using long panel data.

6 Switching costs

Simple passage from one environment to another may well incur immediate
money as well as non-money costs, representing the expenses and inconve-
niences of the move. These are switching costs that usually all prospective
migrants will have to encounter in one form or another. Now we wish to carry
over the preceding analysis to allow for switching costs. Since the analysis
necessary to handle the two types of immediate costs are different, it is best
to treat them separately.

Since people are often genuinely reluctant to leave familiar surround-
ings, family and friends, moving between environments will usually involve
a penalty in utility. In the old study Sjaastad [13] discussed the effects of
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’psychic’ costs of migration. If a penalty u12 in utility is incurred in the
passage from E1 to E2 at a future time point τ , then a term u12P (t, τ) must
be subtracted from H(t) in the general solution (3.17). The effect of this
as far as optimization is concerned, is to modify h2 to h2 −m(τ)u12. Simi-
larly, if u21 is the penalty in passing from E2 to E1, h1 has to be modified to
h1 −m(τ)u21.

Let assume for simplicity that skills are rewarded equally in the two en-
vironments. Then the decision criterion(4.8) reduces to

Di = hi + dik(t)λ(t) (i = 1, 2) (6.1)

Using (4.6) - (4.7) the future marginal value of skills k(t) become

k(t) = b

∫ ∞
t

e−r(s−t)−
∫ s
t f(τ))dτds = b

∫ ∞
0

e−rx−
∫ x+t
t f(τ))dτdx (6.2)

where we have used the substitution x = s− t.
From the integral on the right-hand side of (6.2) we find

k̇(t) = −b
∫ ∞

0

(f(x+ t)− f(t))e−rx−
∫ x+t
t f(τ)dτdx (6.3)

Since the aging rate of human capital f(τ) is non-decreasing the ’coefficient’
f(x+ t)− f(t) is always non-negative. This implies that the derivative k̇(t)
is almost everywhere negative which means that k(t) is decreasing.

In the absence of switching costs the switching locus for choice between
the environments is

∆h = ∆dk(t)λ(t) (6.4)

where ∆h = h1 − h2 > 0 and ∆d = d2 − d1 > 0. According to (6.1) the
environment to be chosen is E1 or E2 according as the left or the right hand
member of (6.4) is greater.

Let us now bring in switching penalties and assume that the individual
resides in E1. Applying the criterion (6.1) the prospective migrant will stay
in E1 for all t satisfying

(h1 + d1k(t)λ(t) ≥ h2 − u12m(t) + d2k(t)λ(t) (6.5)

i.e. for all t satisfying the inequality

∆h+ u12m(t) ≥ ∆dk(t)λ(t) (6.6)
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Comparing (6.4) and (6.6) we observe that the effect of introducing switching
penalty in utility is to increase the left hand side of (6.4) while the right hand
side is unaffected. Thus the penalty u12 discourages a E1 → E2 transition.

Conversely, if the individual stays in E2, it is optimal to stay there for all
t satisfying the the inequality

∆h− u21m(t) ≤ ∆dk(t)λ(t) (6.7)

That is, if one is considering the transition E1 → E2 the ∆h in (6.4) should
be modified to ∆h + u12m(t), if one is considering the transition E2 → E1

∆h should be modified to ∆h− u21m(t).
If we assume that m(t) increases linearly then the switch points will be

determined as in Figure (6.1). If at time t one is in E1 then one switches
to E2 only if t ≤ t12. Note that this interval may be empty if λ(0) is small
enough. If at time t one is in E2 then one switches to E1 only if t ≥ t21. The
effect of switching penalty is then to rule out the E1 → E2 switch if t > t12.
Figure (6.1) illustrates (6.7) when u21 = 0 i.e. there is no penalty incurred by
moving back to ones home country. The penalty u21 can obviously be both
positive and negative. It is positive if the move back entails inconveniences
of some sorts, it is negative if one feels strongly for returning to ones home
country. From (6.7) it is evident that compared to the case u21 = 0 showed
in the figure, the effect of u21 > 0 is to delay the E2 → E1 switch and to
precipitate the E2 → E1 move if u21 < 0. Penalty in utility due to switching
can thus be incorporated by modifying the preference rate (hi).
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2

3

4

5

t12 t21

hu12mt

h

Figure 6.1: Switching penalties in utilities

It is possible that a switch from Ei to Ej implies not merely the penalty
uij in utility but also a monetary cost σij, so that the capital w changes
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discontinuously to w − σij in the transition. This discontinuity in w implies
that that the analysis must be in terms of the value function F itself, rather
than in terms of λ, which is essentially a differential of F . When monetary
switching costs are involved, a move implies that the migrant have the capital
to cover the necessary expenses. If one does not have this capital one can not
move and have to settle for a less advantageous migration pattern. However,
the situation would be eased if w were allowed to become negative, which
means that the migrant is permitted to borrow.

For simplicity the assumptions above will be retained, so that environ-
ment E1, the home country is intrinsically preferred h1 > h2, but one develops
the skills more rapidly in the host country E2, d2 > d1, and finally the two
environments value skills equally i.e. b1 = b2 = b.

We shall use Fi(x) = Fi(w, v, t) to denote the value function when the
migrant begins and remains in environment Ei. We have then, in the notation
of (3.17)-(3.21)

Fi = A(t)[log(w +Bi) + hi] + C(t) (6.8)

where
Bi = bvr−1 + bdir

−2 (6.9)

and the environment with the larger value function Fi(w, v, t) is the optimal
one.

Theorem 6.1 Suppose that the individual stays in the host country E2. If
passage from E2 to infinite stay in E1 is optimal, then this will happen at the
greatest value of t for which

F2(w, v, t) ≤ F1(w − σ21, v, t) (6.10)

In virtue of (6.8) this can be written

log

(
z + bd2r

−2

z − σ21 + bd1r−2

)
≤ h1 − h2 (6.11)

where z = w + bvr−1

Proof. Inequalities (6.10)-(6.11) follow from (6.8) and the principle of dy-
namic programming. �

For this passage to be possible we must certainly have z > σ21 − bd1r
−2.
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Passage into E1 will then be permanent if the fraction on the left-hand side
of (6.11) is decreasing with t. We find that

ż = (r − A(t)−1)(z + bd1r
−2) (6.12)

implying that the fraction will be decreasing if A(t)r > 1. This will certainly
be so if m(t) is less than r and decreasing.

The transition rule (6.11) does not depend explicitly on age. However,
this is not true when we consider optimal passage into E2 from E1 followed
by a possible later return to E1.

Theorem 6.2 Suppose that the optimal migration prescribes moving into the
host country E2 followed by a later return to E1 at t21 determined by (6.11).
Denote (for notational simplicity) the optimal transition time t21 determined
by (6.11) by τ . Then the optimal time t12 for transition from E1 into E2 is
determined by

log

(
w +B1

w − σ12 +B21(t)

)
≤ (h2 − h1)

∫ τ
t
P (t, s)ds∫∞

t
P (t, s)ds

(6.13)

where
B21(t) = bvr−1 + bd2r

−2 + b(d1 − d2)e−r(τ−t)r−2 (6.14)

B1 is given by (6.9) and B21(t) follows from (5.7) since ∆b = 0.

Proof. By assumption it is optimal to move into E2 at a certain time t.
From the value function (3.17) it follows

A(t)log[w−σ12+B21(t)]+h2

∫ τ

t

P (t, s)ds+h1

∫ ∞
τ

P (t, s)ds ≥ A(t) [log[w +B1] + h1]

(6.15)
Since A(t) =

∫∞
t
P (t, s)ds, (6.13) follows when we solve inequality (6.15)

with respect to the log terms. If inequality (6.15) holds at t = 0 then im-
mediate passage into E2 is recommended. There can be no movement if
w < σ12 −B21(t) �

Condition (6.13) can be seen as determining t in terms of the variable z.
Note that τ is a function of z and t. Figure (6.2) illustrates the contents of
the two theorems when the optimal transition time E1 → E2 is t = t12 = 0.
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Owing to (3.24) this transition will imply a consequent jump in λ(0) from
λ(0) to λ(0+). This jump represents the diminution in w caused by the cost
of passage (σ12). The time the migrant returns to E1 does not occur when
∆dk(t)λ(t) crosses the line ∆h (6.4), but is delayed by the necessity to earn
the cost of moving back. The switch then take place, not when k(t)λ(t)∆d
first falls to the value ∆h, but at the later time t21 of Figure (6.2), when it
would rise to this value after payment of passage.
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Figure 6.2: Monetary travelling costs

7 The case of several environments

Apart from consideration of return migrants, there seem to have been few
empirical studies of multiple movers. However, we know from Da Vanzo’s
[6] study that a large proportion of those moving in a given period have also
moved in the past. For this reason, and also because we believe that our
model has other applications in economics, we extend the analyse above to
the case of several environments.

Suppose that there are n environments, the ith being specified its param-
eters hi, bi and di (i = 1, 2, ..., n). Thus for a given state vector x = (w, v, t)
we have to compare the values of the criterion

Di(t) = hi + (biv + diki(t))λi(t) (7.1)
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for the different environments. Calculating the value of (7.1) for the different
environments and choosing the one with the highest value appears to be
a simple procedure for finding the optimal switching policy. However, the
apparent simplicity of this approach is deceptive. The point is that the
marginal value of human capital ki(t) and the co-state variable λi(t) depends
on the future optimal policy that are generally not known at an arbitrary time
t. Hitherto our discussion of optimization of migration policy has been based
on control arguments that control theorists would call ’open-loop’ control.
Considering movements between two environments this theory turned out
to be simple to use. However, when we wish to extend this analysis to n
environments the determination of ki(t) and λi(t) are much more difficult.

However, when it comes to optimization of the switching policy with n
environments, there is one case for which the results of the previous sections
have a simple and elegant analogue. This is that when all environments value
human skills equally, so that the bi are independent of i and equal to b, say.
In this case the marginal value of human capital ki(t) is independent of future
switching policy. For a given value of human capital v one is paid equally
(bv) in all environments and ki(t) reduces to b/r when we assume that skills
do not deteriorate (f(t) = 0). The criterion Di(t) simplifies to

Gi(λ) = hi +

[
bdi
r

]
λ i = 1, 2, ..., n (7.2)

That is, one is essentially weighing the effect of decreased h (the intrinsic
attachment to an environment) against an increased d (rate of skill acqui-
sition). λ is a function of t and also of i but here we simply view λ as a
variable taking values on the positive half-axis. As a guidance for the choice
of the optimal environment we take the function.

Gv(λ) = max
i
Gi(λ) (7.3)

The value function Gv(λ) picks out the active environments and has the
piece-wise convex form illustrated in figure (7.1). Since the labelling of the
environments is arbitrary, label them so that the first, second, third ... of
these linear segments as λ increases correspond to i = 1, 2, 3, ... If there are p
such linear segments then the values i = p+ 1, p+ 2, ..., n can be assigned ar-
bitrarily to the n−p environments which did not yield the maximiser in (7.3)
for any non-negative value of λ. The fact that the gradient of the function
Gv(λ) increases at the switch-points implies that the sequence {di, 1 ≤ i ≤ p}
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is increasing. Let λ̄i be the value of λ at which the gradient changes from
bdi/r to bdi+1/r. Then

λ̄i =
r(hi − hi+1)

b(di+1 − di)
=

(hi − hi+1)
b
r
(di+1 − di)

(1 ≤ i ≤ p) (7.4)

which we compliment by λ̄0 = 0 and λ̄p = +∞. The interval [λ̄i−1, λ̄i) is
denoted by Λi.

The overall structure of the optimal migration policy is given in the fol-
lowing theorem. The transitions between the optimal environments are illus-
trated in figure (7.1)

Theorem 7.1 (i) If λ(t) ∈ Λi then Ei is the optimal current environment.
Environments for i > p is never optimal. The optimal switch-points occur at
ages t at which λ(t) = λ̄i for some i.

(ii) If the interest rate is larger than the mortality rate (r > m(t)) for all
t, the co-state variable λ(t) will be monotonically decreasing, implying that
λ(t) will progress through sets Λi of decreasing i until it comes to rest in Λ1.
In the opposite case the co-state variable will be monotonically increasing,
implying that λ(t) will progress through sets Λi of increasing i until it comes
to rest in Λp.

Proof. Assertion (i) follows directly from the value function (7.3). Asser-
tion (ii) follows from the shape of the value function. The break-points λ̄i
of the value function divide the value set of λ into disjoint optimal sets Λi.
The monotonicity of λ(t) follows directly from the differential equation (3.25)
implying that λ(t) is a decreasing function of age t in the first case and in-
creasing in the second. �

In this paper we shall always assume that that r ≥ m(t) so that λ(t) moves
through sets Λi of decreasing index i. According to (7.4) this means that
the environments used in the optimal policy has a natural ordering, in which
environments with decreasing utility rate hi is more than compensated for
in early by their increasing growth rates in skill di. The ordering of the en-
vironments indicates that we can determine the optimal switching policy in
’closed-loop’ form. That is, that the optimal decisions are expressed directly
in terms of the current value of the state vector x = (w, v, t). In deriving the
’closed-loop’ control for optimal migration the equations (3.24) and (3.26)
are central, which we state for clarity
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λ(t) = Fw =
A(t)

w(t) +B(t)
(7.5)

λ(t) = λ(0)e
∫ t
0 (m(s)−r)ds (7.6)

When the environments reward skills to the same degree the present value
of future earnings B(t) (3.19) splits into the terms bv/r, i.e. the present
value of a continuing income of bv, and the present value of increases in
future incomes, denoted I(t, s) where s denotes the vector of future switching
times. Since the switching times s depend upon the state vector from which
one starts x = (w, v, t), we write I(t, s) as I(x) with the x-dependence of
the switching times recognized. We can then write the solution for the value
function (3.17) as

F (x) = A(t)log[z + I(x)] +H(t) + C(t) (7.7)

where z = w+ bv/r. The variable zt is the sum of current wealth wt and the
present value of a continuing income (bvt), we call it generalized wealth.

We know that the co-state variable λ has the extremal characterization
λ = Fw, which as a function of the state vector can be expressed

λ(x) = Fw =
A(t)

z + I(x)
(7.8)

Relation (7.8) is the generalization of (3.24) to the case of optimal switching.
We have now to determine expression (7.8) more closely if the switching rule
is to become explicit.

We shall prove that if for a given state vector x = (w, v, t) one is on the
switching boundary λ̄i, i.e. λ(x) = λ̄i, then the increases in future incomes
I(x) is a function of i and t alone.

Theorem 7.2 On the switching boundary λ(x) = λ̄i the function I(x) is a
function Ii(t) of i and t alone, where Ii(t) is determined by the recursion

Ii(t) = bdi

∫ si−1

t

e−r(s−t)(s− t)ds+ e−r(si−1−t)Ii−1(si−1) (7.9)

starting with the initial condition I1 = bd1/r
2

29



Proof. We know from theorem 7.1 that if the migrant starts at λ(x) =
λ̄i, then the co-state variable will progress through the sets Λi, Λi−1,..,Λ1

successively. The switches from one environment to the next take place at
the boundary points λ̄i, λ̄i−1,..,λ̄1, which are determined by (7.4). Assume
the migrant enters environment Ei at time t, then by using (7.6) we know

that λ(t) = λ(0)e−
∫ t
0 (r−m(s))ds = λ̄i. We also know that the individual is

expected to leave Ei (for Ei−1) at the future time si−1 where the value of

the co-state variable is given by λ(si−1) = λ(0)e−
∫ si−1
0 (r−m(s))ds = λ̄i−1. The

switch-points λ̄i and λ̄i−1 are determined by (7.4), so at current time t the
optimal switch-point si−1 > t is determined by

λ̄i = e
∫ si−1
t (r−m(s))dsλ̄i−1 = M(t, si−1)λ̄i−1 (7.10)

where M(t, si−1) = e
∫ si−1
t (r−m(s))ds. The value of si−1 solving (7.10) is a

function of current time t. For the given value of si−1 we next determine the
switch-point si−2 and successively si−3, si−4,...,s1 by the equations

λ̄j = M(sj, sj−1)λ̄j−1 j = i− 1, i− 2, ..., 2 (7.11)

The set of equations (7.11) determine successively si−2, si−3,..., and finally
s1.

Having determined the optimal switching times the calculation of in-
creases in future incomes along the expected migration path is readily ob-
tained by recursions. Starting with the initial condition

I1(s1) = bd1

∫ ∞
s1

e−r(s−s1)(s− s1)ds = bd1/r
2 (7.12)

and progressing backwards we get

Ij(sj) = bdj

∫ sj−1

sj

e−r(s−sj)(s− sj)ds+ e−r(sj−1−sj)Ij−1(sj−1) j > 2 (7.13)

At the switch-point λ̄i this amounts to (7.9) �

That is, on the switching boundary λ(x) = λ̄i, the increases in future in-
comes I(x) reduces to evaluating Ii(t) by the recursion (7.13). The co-state
variable (7.8) depends also upon the wealth variable z = w + bv/r which
is easily determined from state vector x = (w, v, t). Thus, the amount of
the wealth owned by the individual has a considerable impact on the opti-
mal location. We have the following relation between optimal residence in
environments and wealth z.
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Theorem 7.3 The value of i indexing the optimal current environment Ei
is a non-increasing function of wealth z.

Proof. For any index i of environments 1 ≤ i ≤ p let zi and zi−1 be the values
of wealth where it is optimal to enter environments Ei and Ei−1 respectively,
i.e. zi and zi−1 satisfy

λ̄i =
A(t)

zi + Ii(t)
(7.14)

λ̄i−1 =
A(t)

zi−1 + Ii−1(t)
(7.15)

where the increases in future incomes Ii(t) and Ii−1(t) are calculated by the
recursion (7.13). We know that the parameters di increase at the switch-
points. Ii(t) is the present value of the future increases bdi earned in the
environments Ei, Ei−1,..., E1 where di > di−1 >, .., > d1, while Ii−1 is the
present value of the future increases bdi−1 earned in the environments Ei−1,
Ei−2,...,E1. Since Ii(t) includes the the extra term bdi for the time spent in
Ei, we realize that Ii(t) > Ii−1(t). Since λ̄i > λ̄i−1 implies A(t)/(zi + Ii(t)) >
A(t)/(zi−1 +Ii−1(t)) which in its turn implies that (zi−1−zi) > Ii(t)−Ii−1(t).
From this it follows that zi−1 > zi. This means that large values of z corre-
sponds to small of i. This proves the assertion in the theorem. �

In our model migration is a way of developing one’s human capital (skills). If
one has accumulated sufficient wealth there is less need for further migration
and if the wealth z is large enough it is optimal for the individual to reside
permanently in the home country.

We can now formulate the optimal migration policy in closed-loop form.

Theorem 7.4 Define the switching values

zi(t) =
A(t)

λ̄i
− Ii(t) (1 ≤ i ≤ p) (7.16)

Then the optimal switching rule in closed-loop form is: adopt environment
Ei if

zi(t) ≤ z ≤ zi−1(t) (i = 1, 2..., p) (7.17)
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Proof. We have already proved in theorem (7.3) that zi(t) < zi−1(t) for a
given value of t. At these values we know there will switch from Ei+1 to Ei
at zi(t) and from Ei to Ei−1 at zi−1(t), and so the value of z must lie between
these values if Ei is to be optimal. �

Since c = 1/λ we can express the bounds (7.17) in terms of consumption
levels c̄i, i.e.

zi(t) =
A(t)

λ̄i
− Ii(t) = A(t)c̄i − Ii(t) (1 ≤ i ≤ p) (7.18)

The inequalities (7.17) determine the optimal switching in ’closed-loop’ form.
i.e. as a specification in terms of the state vector x. Suppose that for a state
vector x = (w, v, t) we know that Ei is the optimal environment for migrant.
However, we shall require an explicit determination of λ(x) if we are to
have a corresponding closed-loop determination of optimal consumption rate
c(x) = λ(x)−1. It is true that, if c has been determined at one value of t, then
it is determined for all values, by (3.28), but a closed-loop determination must
be determined at some point, and is in any case more robust to disturbances
of the path than the open-loop determination of (3.28).

Theorem 7.5 Suppose that the criterion of theorem 7.4 has indicated that
Ei is the optimal environment for a given value of the state vector x, i.e.
λ(x) ∈ Λi. Then λ(x) is determined by

λ(x) =
A(t)

x+ Ii(t, si−1)
= M(t, si−1)λ̄i−1 (7.19)

where the optimal switch-point si−1 is determined by the second equality of
(7.19).

Proof. Let Ii(t, si−1) be the present value of future increases in v if one
starts from a point x for which λ(x) ∈ Λi and reaches the switching boundary
λ = λ̄i−1 at time si−1 at which the next switch occurs, i.e.

Ii(t, si−1) = bdi

∫ si−1

t

e−r(s−t)(s− t)ds+ e−r(si−1−t)Ii−1(si−1) (7.20)

The values of the co-state variable λ(t) for two points t and si−1 where
λ(si−1) = λ̄i−1 are connected by the relation (7.11))

λ(t) = e
∫ si−1
t (r−m(s))dsλ̄i−1 = M(t, si−1)λ̄i−1 (7.21)
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We also know that λ(x) has the characterization (7.8) where I(x) is deter-
mined by (7.20) when λ(x) ∈ Λi. That is,

λ(x) =
A(t)

z + Ii(t, si−1)
(7.22)

Since the two values of the co-state variable λ (7.21) and (7.22) have to
agree, we derive equation (7.19) where the optimal switch-point si−1 is de-
termined by the second equality of (7.19). �

If s∗ denotes the value of s solving (7.19) the closed-loop determination of
optimal consumption with the state vector x = (z, v, t) is

c(x) =
z + I(t, s∗)

A(t)
(7.23)

i.e. generalized wealth plus the present value of anticipated incomes accruing
from optimal migration divided by residual expected lifetime.

These calculations simplify in the case when the mortality rate m(t) takes
the constant value m. Then A(t) = 1/m and the quantities Ii(t) and zi are
independent of t. The set of switch-points λ̄i, λ̄i−1,..., λ̄1 are determined by
(7.4). If we set τj = sj − sj−1 in (7.11) , then these equations determine τj,
the time needed to progress from switch-point λ̄i to that at λ̄j−1 as

τj = k−1log[
λ̄j
λ̄j−1

] (7.24)

where k = r −m
The incomes generated by the future growth in skills v are calculated

recursively as explained in (7.13), and with τj = sj−sj−1 now takes the form

Ij(τj) = bdj

∫ sj−1

sj

e−r(s−sj)(s− sj)ds+ e−rτjIj−1(τj−1) (7.25)

= bdj(1− e−rτj(1 + rτj)) + e−rτjIj−1(τj−1) (7.26)

Starting with initial condition I1 = bd1/r
2 and τj determined by (7.24),

increases in future incomes are readily calculated by the recursion (7.26). If
we start in Ei, i.e. λ(x) ∈ Λi the quantity (7.20) is calculated by the equation

Ii(t, si−1) =

∫ si−1

t

e−r(s−t)(s− t)ds+ e−r(si−1−t)Ii−1(τi−1) (7.27)

= bdir
−2[1− e−rτ (1 + rτ)] + e−rτIi−1(τi−1) (7.28)
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where we have set τ = (si−1 − t)
Setting Ii(τ) = Ii(t, si−1) the equation (7.19) now becomes

λ(x) =
1

m(z + Ii(τ))
= ekτ λ̄i−1 (7.29)

where the optimal value of τ is determined by the second equality of (7.29).
The extension of these results to the case when b is i-dependent seems a

great deal more difficult. In the case of constant b one is essentially weighing
the effect of decreased h (the intrinsic attractiveness of an environment)
against an increased d (rate of skill acquisition). If one also brings in differing
skill valuations then a great variety of qualitatively different cases can occur
.
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Figure 7.1: Passages between several environments

8 Conclusion

We have developed and analysed a life-cycle models for individuals that have
the option of moving between several environments of differing characteris-
tics. The individuals have a utility depending upon the rate of consumption
and, in addition, are allowed to have locational preferences. The option of
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switching between different environments or categories introduces disconti-
nuities in options that is a characteristic of a number of interesting problems
in micro-economics. International migration is an immediate specimen of
this class. We show how control theory can be applied to deduce the optimal
policy when people are free to move between a finite set discrete locations.
We also work out a number of implications that can be confronted with rel-
evant empirical data. We find that predictions that can be drawn from the
optimal policy agree quite well with the observable data.

We should also note that the multi-environment formulation can be given
other interpretation. Labour market participation is another field of appli-
cation. Suppose, for example, that the individual values leisure and does not
always want to be working at a standard rate. Our model allow for this by
passage to an ’environment’ or position in which the b and d are lower, reflect-
ing slower rates of earning and learning, but the h value is higher, reflecting
the appreciation of increased leisure. Typical categories for the supply of
labour are: (i) working full time, (ii) working part-time, and (iii) not partic-
ipating in the labour market. Married couples may have different preferences
for these categories, because for instance of the up-bringing of children. The
three categories correspond to different environments. The present model
extends the usual life-cycle model in that it explicitly recognizes that an in-
dividual’s choice of labour market career my progress through definite phases
whose length, nature and number are determined by optimization.
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