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Practical correlation bias correction in
two-way fixed effects linear regression

Simen Gaure

The Ragnar Frisch Centre for Economic Research, Oslo, Norway

Abstract

When doing two-way fixed effects OLS estimations, both the variances and covariance of the fixed
effects are biased. A formula for a bias correction is known, but in large datasets it involves inverses
of impractically large matrices. We detail how to compute the bias correction in this case.

Keywords: Limited mobility bias, Two way fixed effects, Linear regression
JEL: C13, C33, C55, C87

1. Introduction

We consider a model of the type:

y = Xβ +Dθ + Fψ + ε, (1)

where y ∈ Rn is an outcome, X is a matrix of covariates, D is an n× kθ matrix resulting from dummy
encoding a factor, F is an n × kψ matrix resulting from dummy encoding another factor, and ε is a
normally distributed error term. This is a perfectly ordinary least squares system, but our assumption
is that kθ and kψ are large, e.g. of the order 105–107. This creates some computational challenges.
The canonical example in the panel data econometrics literature of this kind of model can be found in
[1], where the outcome y is the wage, D is a matrix of dummies for each individual, and F is a matrix
of dummies for each firm. θ are time-constant individual fixed effects, ψ are time-constant firm fixed
effects. They study the correlation cor(Dθ, Fψ) as a way to investigate whether “high wage” workers
tend to work in “high wage” firms.

We assume that β, θ, ψ, and ε are estimated by OLS, e.g. with the methods in [7, 10, 17, 19]. It

is shown in [3] that the variances σ̃2
θ = var(Dθ̂) and σ̃2

ψ = var(Fψ̂) are positively biased, and that the

covariance σ̃θψ = cov(Dθ̂, F ψ̂) is typically negatively biased, and they give explicit formulas for the
magnitude of the biases. The biases can be substantial, and can even change the sign of the correlation
estimate: ρ̃θψ =

σ̃θψ√
σ̃2
θ σ̃

2
ψ

. This particular type of bias is known as limited mobility bias.

A challenge with the bias correction formulas in [3] is that they involve the inverses of large
square matrices, of size kθ and kψ. Given that these quantities can be of the order 105–107, the
method is impractical to use directly with commonly available computing contraptions. Some authors
acknowledge the possible bias, but do not compute it, e.g. [6, 8, 9, 12, 20]. We therefore venture to
evaluate the bias correction expressions in [3] without handling any large matrices. Our contributions
are mainly in section 5, but for completeness and consistency of notation we include a derivation of
the bias expressions from [3] in sections 3 and 4.

In applications there can be other sources of bias than the one corrected by the methods presented
here. To solve such bias problem, other models should be used, as in [5, 16]. It is also pointed out in
the literature, e.g. in [6], that the OLS assumption of independently identically distributed errors is
dubious in some applications, though the bias expressions and the methods in section 5 can probably
be adapted to at least some other error structures.
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2. Preliminaries

We fix some notation and recall some standard facts about (orthogonal) projections. In general,
we let I denote the identity matrix of appropriate size. We assume tacitly that our matrices are of the
appropriate size. For a matrix A we denote by R(A) its column space, or range. We denote by MA

the projection onto the orthogonal complement of R(A). Note that in general, MA = M t
A = M2

A by
the defining property of projections. For A of full column rank, we have

MA = I −A(AtA)−1At, (2)

but MA is defined for any matrix A. For two matrices A and B we denote by MA,B = MB,A the
intersection MA ∧MB , the projection onto the complement of the column space of the block matrix[
A B

]
. In general, MA,BMA = MAMA,B = MA,B , and MA,BA = 0. A standard result in operator

theory is that if R(A) is orthogonal to R(B), or if R(A) ⊂ R(B), then MA,B = MAMB = MBMA. We
denote by 1 = (1, 1, . . . , 1) a vector of the appropriate length where each coordinate equals 1. Thus,
M1 is the projection which subtracts the mean.

We will now and then use the defining property of the trace, tr(AB) = tr(BA), without mentioning.
With this notation, we may state some assumptions for our system in (1). There is no intercept in

X. We have removed a reference group from ψ/F . There are no more collinearities in the system; in
the language of [2], there is a single connected group, or connected component. These assumptions are

necessary for identification of θ̂ and ψ̂. In particular, MF,XD and MD,XF are assumed to be of full
column rank, so that both DtMF,XD and F tMD,XF are invertible. We also have MDM1 = M1MD =
MD. We do not assume that X is small, i.e. X may, among other covariates, contain one or more high
dimensional dummy encoded factors, as in [7].

This lemma will come in handy later:

Lemma 2.1. If A and B are matrices, then MA,B = MAMMAB . If MAB has full column rank, we have
MA,B = MA −MAB(BtMAB)−1BtMA.

Proof. First, note that MA(I −MA,B) is a projection. Let P = I −MMAB . P is the projection onto
the range of MAB, i.e. R(P ) = R(MAB). We show that R(MAB) = R(MA(I −MA,B)). Note that
R(MAB) is spanned by the columns of MAB, i.e. R(MAB) = MA R(B). On the right hand side the
columns of I−MA,B span R(A)+R(B). So that R(MA(I−MA,B)) = MA(R(A)+R(B)) = MA R(B).
Two projections with the same range are equal, so P = MA(I −MA,B) = MA −MA,B . Substituting
P , we obtain I −MMAB = MA −MA,B . Multiplying through with MA yields MA −MAMMAB =
MA −MA,B , which can be rewritten as MA,B = MAMMAB . In the case that MAB has full column
rank, we have from (2) that MMAB = I −MAB(BtMAB)−1BtMA.

Remark 2.2. Given a vector v we note that [10, Algorithm 3.1] gives a procedure by which we can
compute MD,F v. It is not mentioned explicitly in [10] that the same method can be used to compute
MAv for an arbitrary n×k matrix A, not only for matrices arising from dummy-encoding. The theory
and algorithm is the same, but the actual computation of each projection in [10, Algorithm 3.1(2)
and (15)] corresponding to columns of A, is slightly more complicated. Such a procedure has been
implemented in [11] through implementation of interactions between factors and continuous covariates;
one may use a factor with a single level. In the present paper, there is also no intrinsic dependence
on D and F being dummy encoded factors, most of the theory (except we don’t need a reference
group, and M1MD 6= MD) is the same if D and F are interactions between factors and covariates, or
something else; but the author knows of no such application.

3. Variances and covariance bias

When deriving the bias correction formulas, we will follow the exposition in [3], but change the
notation to reflect our emphasis on the projections of the type MA, which we can compute.
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As in [3, (8–10)], we have a biased sample estimate for the variance of Dθ:

σ̃2
θ =

θ̂tDtM1Dθ̂

n
, (3)

for the variance of Fψ:

σ̃2
ψ =

ψ̂tF tM1Fψ̂

n
, (4)

and for the covariance:

σ̃θψ =
θ̂tDtM1Fψ̂

n
. (5)

We take the expectation as in [3, (16)]:

E(σ̃2
θ) = E

(
θ̂tDtM1Dθ̂

n

)
=
θtDtM1Dθ

n
+

tr(DtM1DVar(θ̂))

n
(6)

using the general formula for the expectation of a quadratic form

E(xtAx) = E(xt)AE(x) + tr(AVar(x)) (7)

with A = DtM1D and x = θ̂.
We are interested in the term σ2

θ = (θtDtM1Dθ)/n. We can readily estimate the left hand side of

(6) as σ̃2
θ from the OLS estimate θ̂. To find the bias, i.e. the trace term in (6), we need an expression

for Var(θ̂). The problem is the same for σ̃2
ψ and σ̃θψ, but we detail it only for the θ case.

Remark 3.1. We note that the bias problem is symmetric in θ and ψ, even though not all our formulas
will be syntactically symmetric. Also, σ̃2

θ , σ̃2
ψ, and σ̃θψ do not depend on which reference group we

have picked, neither do they depend on whether the reference group is in θ or ψ. Indeed, M1Dθ̂ and
M1Fψ̂ are independent of where the reference group is. To see this, a change of reference group has
the same effect on Dθ̂ and Fψ̂ as a transformation of the type Dθ̂ 7→ Dθ̂ − α1, Fψ̂ 7→ Fψ̂ + α1. But
we have M11 = 0. That is, in e.g. (6), both σ̃2

θ and σ2
θ are independent of the whereabouts of the

reference group, so the trace term is independent of it as well. For simplicity, we do assume that the
reference group is in ψ.

We may find a formula for Var(θ̂) via the Frisch-Waugh-Lovell theorem. By multiplying through
(1) with MF,X we have

MF,Xy = MF,XDθ +MF,Xε.

By standard OLS assumptions we have

θ̂ = θ + (DtMF,XD)−1DtMF,Xε,

and, by using the i.i.d. assumption Var(ε) = σ2
ε I, we obtain

Var(θ̂) = (DtMF,XD)−1DtMF,X Var(ε)MF,XD(DtMF,XD)−1

= σ2
ε (DtMF,XD)−1. (8)

As usual, σ2
ε can be estimated from the residuals ε̂ when solving (1) by OLS.

That is, the bias term for σ̃2
θ in (6) is

δθ = σ̂2
ε tr((DtMF,XD)−1DtM1D)/n. (9)

It is the kθ × kθ matrix inside the trace term which may be too large to be handled directly, as in [3,
p. 687].
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We may rewrite

tr((DtMF,XD)−1DtM1D) = tr(M1D(DtMF,XD)−1DtM1) = tr(QtQ) ≥ 0,

with Q = (DtMF,XD)−1/2DtM1, so the bias is non-negative. By symmetry between θ and ψ, the
corresponding bias term for σ̃2

ψ is:

δψ = σ̂2
ε tr((F tMD,XF )−1F tM1F )/n. (10)

For the covariance in (5), note the general algebraic formula for a quadratic form with A = At,
sometimes referred to as a polarization identity:

(x+ y)tA(x+ y) = xtAx+ 2xtAy + ytAy.

That is,

xtAy =
1

2

(
(x+ y)tA(x+ y)− xtAx− ytAy

)
.

We use this and (7) on (5), with x = Dθ̂, y = Fψ̂, and A = M1. An algebraic excursion yields:

E(σ̃θψ) =
1

n
(θtDtM1Fψ +

+ σ2
ε tr(M1D(DtMF,XD)−1DtMF,XMD,XF (F tMD,XF )−1F t)).

As in [3], we can use Lemma 2.1 to write: MD,X = MX(I − D(DtMXD)−1DtMX). We obtain
DtMF,XMD,XF = −DtMF,XD(DtMXD)−1DtMXF and rewrite the trace term as:

− tr(M1D(DtMXD)−1DtMXF (F tMD,XF )−1F t),

or, as in [3, (22)]

δθψ = −σ2
ε tr(DtM1F (F tMD,XF )−1F tMXD(DtMXD)−1)/n. (11)

Remark 3.2. We see from the formulas that the magnitude of the bias increases with σ2
ε , ceteris paribus.

Although unobserved heterogeneity does not bias the OLS estimates, it does bias non-linear functions
of them, such as σ̃2

θ . Other error structures than Var(ε) = σ2
ε I can be accomodated by changing

equation (8), provided an estimate for Var(ε) can be found.

4. Independent covariates

In the special case when we have no X, or the columns of X are orthogonal to both D and F , we
may simplify the bias correction formulas (9), (10), and (11) by observing that since R(X) is orthogonal
to R(D) and R(F ), we have MXD = D, and MXF = F . Also, MD,X = MDMX , so that MD,XF =
MDMXF = MDF , similarly MF,XD = MFD. From (2) we also have D(DtD)−1Dt = I −MD.

We then obtain:

δ′θ = σ̂2
ε tr((DtMFD)−1DtM1D)/n,

δ′ψ = σ̂2
ε tr((F tMDF )−1F tM1F )/n,

δ′θψ = −σ̂2
ε tr((F tMDF )−1F t(I −MD)M1F )/n.

Using (I −MD)M1 = M1 −MD, and (M1 −MD)2 = M1 −MD, we note that

δ′θψ = −σ̂2
ε tr((M1 −MD)F (F tMDF )−1F t(M1 −MD))/n

= −σ̂2
ε tr(QtQ) ≤ 0,
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with Q = (F tMDF )−1/2F t(M1 −MD).
We may also rewrite:

δ′θψ = σ̂2
ε tr((F tMDF )−1F t(MD −M1)F )/n

= σ̂2
ε tr((F tMDF )−1F tMDF )/n− σ̂2

ε tr((F tMDF )−1F tM1F )/n

= σ̂2
ε tr(I)/n− δ′ψ

= σ̂2
ε

kψ
n
− δ′ψ.

In particular, we have δ′ψ ≥ σ2
ε
kψ
n .

By Remark 3.1, we also have

δ′θψ = σ̂2
ε

kθ − 1

n
− δ′θ,

where we replace kψ with kθ − 1 in the numerator because of the reference group. This means we can
write δ′ψ in terms of δ′θ:

δ′ψ = δ′θ − σ̂2
ε

kθ − 1− kψ
n

.

That is, when the covariates X are uncorrelated with the factors D and F , the bias corrections are:

δ′θ = σ̂2
ε tr((DtMFD)−1DtM1D)/n ≥ σ̂2

ε

kθ − 1

n
,

δ′ψ = δ′θ − σ̂2
ε

kθ − 1− kψ
n

≥ σ̂2
ε

kψ
n
,

δ′θψ = −δ′θ + σ̂2
ε

kθ − 1

n
≤ 0.

This is a computational advantage, since it suffices to compute a single trace.

5. Computing the trace

Computing the trace of a matrix is simple in theory, it is just to sum the diagonal elements.
However, if the matrices in (9), (10), and (11) are too large to be handled by commonly available
computers, we need some other method. Luckily, quantum physicists and others have studied such
problems for quite some time. The following is one approach.

By using (7) with an x with E(x) = 0 and Var(x) = I, we obtain

tr(A) = E(xtAx).

The right hand side can be estimated by sample means. It is shown in [13] that if we limit ourselves
to real vectors, i.e. x ∈ Rm, the least variance in xtAx with symmetric A is obtained by drawing x as
sign vectors, i.e. uniformly in {−1, 1}m. This method is also described in [4, Proposition 4.1].

That is, to compute the bias term δθ in (9), we estimate the expectation in:

δθ = σ̂2
ε E(xtM1D(DtMF,XD)−1DtM1x)/n, (12)

by sample means. This entails drawing an x ∈ {−1, 1}n, then solve the equation

DtMF,XDv = DtM1x, (13)

for v by e.g. a conjugate gradient method (CG) like the one in [15, Algorithm 3], and compute xtM1Dv.
This will be repeated a number of times and then averaged. The CG method has the advantage that
it does not require a matrix representation of the linear operator DtMF,XD, it is sufficient with a
procedure for computing the matrix-vector product, like the one in Remark 2.2.
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The same method is used to compute the other bias-terms. We then obtain unbiased estimates for
the variances and covariances, and may estimate the correlation.

The bias term for σ̃2
ψ is obtained from the bias term for σ̃2

θ by interchanging F and D in (12):

δψ = σ̂2
ε E(xtM1F (F tMD,XF )−1F tM1x)/n. (14)

The bias term for σ̃θψ becomes, from (11):

δθψ = −σ̂2
ε E(xtM1F (F tMD,XF )−1F tMXD(DtMXD)−1DtM1x)/n. (15)

Each sample requires two steps. We draw an x ∈ {−1, 1}n, and solve

DtMXDv = DtM1x,

for v. Then we solve
F tMD,XFw = F tMXDv,

for w. Finally, we compute xtM1Fw.

Remark 5.1. The operators MD, MF , MF,X , MD,X , and MX are applied repeatedly in the CG iter-
ations described above. The operators MD and MF are just centering on the means, i.e. subtraction
of the group means. In general, by Remark 2.2, given a vector λ, MXλ, MF,Xλ, and MD,Xλ can be
computed by the methods in [10], but unless X contains high dimensional dummy encoded factors, it is
wise to use Lemma 2.1 to write MF,X = MFMMFX , and MD,X = MDMMDX , i.e. to apply two simpler
operators in succession. We can precompute MFX and MDX, and orthonormalize the columns; if the
columns ai of A are orthonormal, then MAλ is easy to compute: MAλ = λ−

∑
i〈λ, ai〉ai, where 〈·, ·〉

is the Euclidean inner product. That is, applying MF,X , MD,X and MX do not involve the possibly
costly iterations of [10]. After orthonormalization we may anyway use that algorithm; with orthogo-
nal columns it will terminate after one iteration. A fast, though numerically unstable, algorithm for
orthonormalizing the columns of A, yielding a matrix Y with the same range as A, is Y = A(Lt)−1

where L is the Cholesky decomposition of AtA = LLt. We clearly have R(A) = R(Y ), and it is readily
seen that the columns of Y are orthonormal: Y tY = L−1AtA(Lt)−1 = L−1LLt(Lt)−1 = I. If AtA is
close to singular a more stable algorithm should be used. However, this happens only if MDX, MFX
or X are close to being column rank deficient, which means that our original system in (1) is close to
collinear. Respecifying the model is then probably a better option.

6. Summary

Given the model (1), and OLS estimates θ̂, ψ̂, and σ̂2
ε . To compute an estimate ρ̂θψ for ρθψ =

cor(Dθ, Fψ), we compute the biased estimates σ̃2
θ , σ̃2

ψ, and σ̃θψ as in eqs. (3), (4), and (5). We then
estimate bias correction terms (12), (14), and (15) with sample means as in Section 5, with uniformly
drawn x ∈ {−1, 1}n:

δθ = σ̂2
ε E(xtM1D(DtMF,XD)−1DtM1x)/n,

δψ = σ̂2
ε E(xtM1F (F tMD,XF )−1F tM1x)/n,

δθψ = −σ̂2
ε E(xtM1F (F tMD,XF )−1F tMXD(DtMXD)−1DtM1x)/n.

(16)

The unbiased variances and covariance are:

σ̂2
θ = σ̃2

θ − δθ
σ̂2
ψ = σ̃2

ψ − δψ
σ̂θψ = σ̃θψ − δθψ

6



We then estimate the correlation ρθψ = cor(Dθ, Fψ) between Dθ and Fψ as

ρ̂θψ =
σ̂θψ√
σ̂2
θ σ̂

2
ψ

.

If there are no covariates X, or they are uncorrelated with D and F , the bias corrections in (16)
can be replaced with the ones from Section 4:

δ′θ = σ̂2
ε E(xtM1D(DtMFD)−1DtM1x)/n,

δ′ψ = δ′θ − σ̂2
ε

kθ − 1− kψ
n

,

δ′θψ = −δ′θ + σ̂2
ε

kθ − 1

n
.

Alternatively, the symmetric equations can be used:

δ′ψ = σ̂2
ε E(xtM1F (F tMDF )−1F tM1x)/n,

δ′θ = δ′ψ − σ̂2
ε

kψ + 1− kθ
n

,

δ′θψ = −δ′ψ + σ̂2
ε

kψ
n
.

Remark 6.1. In some cases kθ or kψ are small enough that matrices of such size can be handled, as in
[3, Section 5]. In that case δ′θ or δ′ψ can be computed directly, e.g. with

δ′ψ = σ̂2
ε tr((F tMDF )−1F tM1F )/n,

and we avoid sampling to estimate the trace.

7. Implementation suggestions

Application of the large matrices D, Dt, F , and F t is simple in the software system R([18]). These
sparse matrices are represented as factors, and are applied by subsetting for D and F , and by the
function ’rowsum()’ for their transposes. Similar mechanisms for handling sparse matrices are often
available in other software systems. Efficient application of the matrix operators MD, MF , MF,X ,
MD,X and MX is described in Remark 5.1. Also, note that, due to the way we have formulated the
computations in section 5, it is actually not necessary to remove a reference group from the factors at
all. The CG-algorithm will converge to one of many possible solutions as in [14], but the ambiguity is
annihilated by subsequent computations.

The CG method for solving an equation Ax = b can easily be used for multiple vectors at the same
time, i.e. with b a matrix of column vectors. The implementation in [11] of the computation MAv can
also use a v which is a matrix, parallelizing over the columns of v, thus speeding up the computation.
That is, when sampling the expectations in (12), (14), and (15), we can draw multiple vectors and use
a matrix x of column vectors.

Since the expectations used to compute the bias corrections are estimated by sample means, they
can be computed to arbitrary precision by taking enough samples. We can monitor the sample standard
deviation and stop sampling when a desired relative accuracy in σ̂2

θ and σ̂2
ψ has been reached. If we

estimate σ̂2
θ and σ̂2

ψ first, we can stop sampling for δθψ when a desired absolute accuracy in ρ̂θψ has
been reached. Also, the termination criterion for the CG algorithm can be set to finish when a solution
just good enough for our expectation tolerance has been found. A suitable termination criterion can
be found in [15]. However, computing a too imprecise solution can introduce bias, and also increase
the variance in the expectation sampling, so that more samples may be needed.
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Preliminary trials with n = 3 · 106, kθ = 3 · 105, kψ = 3 · 104, bias and CG precision at 0.01, a
true correlation of 0.3, and a biased correlation of 0.15, reveal that typically the required number of
samples for the expectations are ≤ 10, which is 1–3 iterations on a 4-cpu computer, decreasing in
n. The time requirements are 2–5 m. However, the number of required samples depends on σ̂2

ε , the
reason is that the larger σ̂2

ε is, the more accurately we have to estimate the traces to achieve the same
precision in σ̂2

θ , σ̂2
ψ, and σ̂θψ. Fortunately, in practice there is typically not much heterogeneity left

in (1) after controlling for β, θ and ψ, i.e. the more covariates in X, the smaller σ2
ε . With large n, a

case could be made for using only a single sample, this is what we do when we estimate θ = E(θ̂) with

the “single sample” θ̂. By using 4 samples, relaxing the CG-tolerance so we only do 6 CG-iterations,
and assuming the covariates X are independent of D and F , we obtain a correlation within 0.02 of the
correct one in about 30 s.

A trial with a real dataset without covariates X, and a biased correlation of ≈ − 0.18, with
kθ = 2.3× 106, kψ = 62000 and n = 18× 106 takes ≈ 35 m. With relaxed precision it finishes in 4 m,
with the corrected correlation differing by 0.03 from the 0.01-precision estimate.

We should however keep in mind that our unbiased estimates σ̂2
θ , σ̂2

ψ, and σ̂θψ still may be incorrect

due to ordinary regression errors in the estimates θ̂, ψ̂, and σ̂2
ε .

An implementation of these bias corrections will be made available in a future version of [11].
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