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Dynamic Win Effects in an All-Pay Auction∗
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Abstract

We investigate a multi-period contest model in which a contes-
tant’s present success gives an advantage over a rival in the future.
How this win advantage affects contestants’efforts, and whether the
laggard gives up or keep on fighting are key issues. We find that the
expected effort of the laggard will always be higher than the rival at
some stage in the series of contests, and this is most likely to happen
when at a large disadvantage or at a late stage in the series.
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1 Introduction

Winning a competition may result not only in a prize, but also an advan-
tage in subsequent competitions. Consider, for example, competitions for
research grants. While the successful applicant for a grant may harvest
all the direct benefits that the research money awarded provides, there
may also be an extra benefit from winning: carrying out the research that
the original grant facilitated makes for increased chances to win in future
grant competitions. In this way, an early competition for a prize implies
that there will be advantaged and disadvantaged participants in subsequent
competitions. The question is how contestants’incentives to put in effort
in such sequential competitions vary over time as successes and failures are
recorded.
In order to understand the dynamics of competitions with win advan-

tages, we develop in this paper a two-player, multi-period contest model
where, in each period, there is a prize to win. In this model, a win in
today’s contest implies a headstart in future contests. We point out two
forces that interact in explaining contestants’incentives across time. On
one hand, starting from a symmetric situation, a win to one contestant
lowers both players’incentives to put in effort, but more so for the disad-
vantaged player —the laggard. This is because the headstart enables the
advantaged player —the leader —to lay back a bit and still stand a good
chance to win again, so that also the laggard pulls back somewhat.
On the other hand, there is an extra value of winning for the leader,

since a win means he will also be a leader in the future, while a win for the
laggard will at best even the score. This extra value dampens the laggard’s
incentives to put in effort. However, the value of winning falls over time in a
finite game, simply because there are fewer future contests left. Eventually,
therefore, the disincentives for the leader from having headstart dominates
the laggard’s disincentives from facing an opponent with an extra value
from winning, so that, towards the end of the sequence of contests, the
laggard will be the high performer.
Above, we mentioned one instance of a dynamic win advantage, one

that occurs in competitions for research grants: Winning an early grant
enhances the chance to win again in the competition for later grants. But
such win advantages can also be expected to occur in a number of other
contexts. In sales-force management, it is customary to give awards to
the Seller of the Month and the like. And in such sales forces, it is not
uncommon for the more successful agents to be given less administrative
duties, better access to back-offi ce resources, more training than the less
successful, and better territories; see, e.g., Skiera and Albers (1998), Farrell
and Hakstian (2001), and Krishnamoorthy, et al. (2005). Another source
of win advantage could be successful agents having access to different prizes
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than less successful ones (Megidish and Sela, 2014). A further source of win
advantage may be psychological (Krumer, 2013). Experimental studies by
Reeve, et al., (1985) and Vansteenkiste and Deci (2003) show that winners
feel more competent than losers, and that winning facilitates competitive
performance and contributes positively to an individual’s motivation.1

The sequence of contests that we model in this paper gives, as noted, rise
to the creation of a leader and a laggard based on dynamic win advantages.
Another model of multi-period contests featuring leaders and laggards is
that of a race, or a best-of-t contest. In a race, the overall winner is the
first to win t stage contests; see Harris and Vickers (1987) for an early
analysis and Konrad (2009) for an overview.2 Naturally, the winner of the
first stage becomes the leader in the second, in the sense of having fewer
stages left to complete the game. This leader has a much firmer grip on the
rest of the game than the leader has in our context. Results differ in the
two set-ups, not surprisingly. While the laggard is strongly discouraged in
a race, he is much more interested in staying and keep on fighting in our
setting.3

Two particularly relevant analyses of races are by Konrad and Kovenock
(2009) and Krumer (2013). Both these studies include prizes in the stage
game, in addition to the grand prize to the overall winner, and show how
such stage prizes mitigate the laggard’s discouragement, a result which is
in line with what we find here. Krumer (2013) introduces, in addition, a
win advantage in that the loser of the first contest gets handicapped in the
second.4

In Clark, et al. (2015) we explore the consequences of dynamic win ad-
vantage, similar to the one we study here, when players meet in a sequence
of Tullock contests. In Clark and Nilssen (2013), the advantage in future
contests does not stem from winning today, but rather from efforts exerted
today.
The paper is organized as follows. Section 2 presents the model, whereas

Section 3 looks at a single-stage contest with an advantaged player. With
the help of the preliminary results in Section 3, the equilibrium is then char-
acterized in Section 4. In Section 5, we go on to discuss various aspects

1Note also empirical evidence indicating that laggards can exert more effort than
leaders: Tong and Leung (2002) on experiments and Berger and Pope (2011) on basket-
ball games.

2Another interesting multi-period contest creating a leader and a laggard is the in-
cumbency competition, where the leader at contest t is the winner of contest t− 1; see
Ofek and Sarvary (2003) and Mehlum and Moene (2006, 2008).

3But see Section 6.4, where we discuss how long games in our set-up have race-like
features, in the sense that the laggard might get discouraged towards the end.

4In Section 6.1 below, we extend our model to discuss a win advantage that is in part
a headstart for the winner in future contests, as we have in our main analysis, and in
part a handicap on the loser, as in Krumer (2013).
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of how the equilbrium play evolves in this game. In Section 6, we present
a number of extensions to our analysis. In particular, we discuss win ad-
vantages as headstarts versus handicapping in Section 6.1, the effect of
players’discounting future payoffs in Section 6.2, games where stage prizes
vary across time in Section 6.3, and long games in Section 6.4. Section 7
concludes. The proofs of most of our results, as well as some elaborations,
are relegated to an Appendix.

2 Sequential contests

There are two identical players, i = 1, 2, who compete in a series of T ≥ 2
all-pay auctions for a prize of v in each contest by making irreversible
outlays xi,t ≥ 0, t = 1, 2, ...., T . The probability of winning for player
1 in contest t depends on current effort as well as on the history so far,
summarized by the number of wins that player 1 has in the previous t− 1
contests. Every previous win makes it possible for him to win the current
contest with less effort. In particular, the score for player 1 in contest t is
given by the sum of his current effort x1,t and his cumulated win advantage
that winning previous contests confers on him. Denote the win advantage
from winning a previous contest by

s ∈
(

0,
v

T − 1

)
. (1)

The upper bound is there to make sure that no subgame can occur in which
no effort is exerted.5

After having won mt of the previous t − 1 contests, player 1 has a
current contest score of x1,t + mts, whilst the other player has a score of
x2,t + (t− 1−mt)s. The contestant with the larger score wins the current
contest; in particular, player 1 wins if x1,t +mts > x2,t + (t−1−mt)s. The
win probability for player 1 in contest t can thus be written as:

p1,t =


1 if mts+ x1,t > (t− 1−mt) s+ x2,t
1
2
if mts+ x1,t = (t− 1−mt) s+ x2,t

0 if mts+ x1,t < (t− 1−mt) s+ x2,t

where m1 = 0. The probability of player 2 winning is defined similarly.
For the analysis that follows, it is convenient to think of the net number

of wins that a player has achieved. For player 1, define this as Mt :=
mt− (t−1−mt) = 2mt− t+1. Without loss of generality, we shall assume
that Mt ≥ 0. Now the probability that player 1 wins contest t can be
written

5See Sections 6.3 and 6.4 for discussions of some cases where this restriction is lifted.
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p1,t =


1 if Mts+ x1,t > x2,t
1
2
if Mts+ x1,t = x2,t

0 if Mts+ x1,t < x2,t

(2)

Thus, having the larger number of net wins in the past gives player 1 a
headstart in contest t, and increasingly so the more net wins he has.
At contest t, the maximum number of net wins for player 1 is t − 1,

meaning that this player has won all of the previous t − 1 contests. If
player 1 has won all but one of the previous t−1 contests, then his net win
advantage is t − 3, whereas the net win advantage is t − 5 if player 1 has
won all but two of the previous contests, and so on.

3 A single contest with advantage

To get to grips with the series of contests, it is instructive to first look
at one. Consider a single all-pay auction contest in which one player is
advantaged in the double sense of achieving a probability of winning with
a lower effort than the rival and having a larger value of the prize if he
wins. Two players compete over a prize of value v1 = v+a for player 1 and
v2 = v for player 2, where v > 0 and a ≥ 0, by making irreversible outlays
xi, i = 1, 2; the marginal cost of an outlay is fixed at 1. The probability
that player 1 wins is given by

p1 =


1 if z + x1 > x2
1
2
if z + x1 = x2

0 if z + x1 < x2

, (3)

where z ≥ 0 is a bias parameter indicating a headstart to player 1. The
expected payoff for player 1 is then given as

Eπ1 =

[
Pr (z + x1 > x2) +

1

2
Pr (z + x1 = x2)

]
v1 − x1,

with that of player 2 defined similarly.
Let Fi(xi) be the cumulative distribution function of player i’s mixed

strategy, i = 1, 2. The following Proposition characterizes the unique Nash
equilibrium (Clark and Riis, 1995; Konrad, 2002).

Proposition 1 i) If z ≥ v, then x1 = x2 = 0.
ii) If z < v, then the unique mixed-strategy Nash equilibrium of the

game is

F1(0) =
z

v
; F1(x1) =

z + x1
v

, x1 ∈ [0, v − z] ; (4)

F2(0) =
z + a

v + a
; F2(x2) =

x2 + a

v + a
, x2 ∈ [z, v] . (5)
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In this equilibrium, the expected amounts of effort of the players are

Ex∗1 =
(v − z)2

2v
, andEx∗2 =

v2 − z2
2(v + a)

; (6)

expected net surpluses are

Eπ∗1 = z + a, and Eπ∗2 = 0; (7)

and probabilities of winning are

p∗1 = 1− v2 − z2
2v (v + a)

, and p∗2 =
v2 − z2

2v (v + a)
.

Quite unsurprisingly, we see from (7) that the advantaged player has
more to gain from the contest. More interestingly, we see from (4) and
(5) that the disadvantaged player 2 on one hand has a higher probability
of being inactive but that he, conditional on being active, has a higher
expected effort. This translates, by way of (6), into the following:

Corollary 1 The disadvantaged player has the larger expected effort of the
two if and only if

a <
2vz

v − z . (8)

This says that the laggard has more effort than his rival when his dis-
advantage in terms of the value of winning is suffi ciently weak relative to
the prize and the disadvantage in terms of the win probability. This is
evident from (4) and (5): whereas v and z affect the two players more or
less in the same manner, a affects the disadvantaged player’s effort only —
the more disadvantaged he is in terms of the value of winning, the higher
is the probability that he is inactive.
These results are used in the next sections to solve and analyze our

model. In terms of the series of contests, z relates to the win advantage in
a particular contest, whilst a will be the extra amount that the leader can
win in the continuation of the game.

4 Equilibrium

The model is solved by backwards induction to find a Nash equilibrium at
each stage of the game, using the results from the previous section. We
present the structure of the solution for contest T , and then for a contest
t ≥ 2, before solving for the first contest, and thus for the full game.
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Consider first the final contest T . Let expected payoff be given by the
function ui,T (MT ). Since this is the end of the game, expected payoffs for
the leader and laggard, respectively, are

u1,T (MT ) = p1,Tv − x1,T ;

u2,T (MT ) = (1− p1,T )v − x2,T .

In the language of Proposition 1, this is a case where a = 0 and z =
MT s. Thus, expected efforts and payoffs in equilibrium are

Ex∗1,T (MT ) =
(v −MT s)

2

2v
, Ex∗2,T (MT ) =

v2 − (MT s)
2

2v
; (9)

Eu∗1,T (MT ) = MT s, Eu∗2,T (MT ) = 0.

Note that, from (9) — and in line with Corollary 1 — we can state the
following:

Corollary 2 The laggard has the higher effort in the last contest for any
MT ≥ 1.

Furthermore, total expected effort in contest T is

Ex∗1,T (MT ) + Ex∗2,T (MT ) = v −MT s.

If MT = 0, so that each player has won equally many of the previous
contests, then the game in this last contest is symmetric and we have

Ex∗1,T (MT = 0) = Ex∗2,T (MT = 0) =
v

2
;

Eu∗1,T (MT = 0) = Eu∗2,T (MT = 0) = 0.

Consider next any contest t ∈ {2, ..., T − 1} in which Mt ≥ 1, i.e.,
player 1 has at least one more win than player 2 so far. The expected
payoff for player 1 is now given by:

Eu1,t(Mt) = p1,t
[
v + Eu∗1,t+1 (Mt + 1)

]
+(1− p1,t)

[
Eu∗1,t+1 (Mt − 1)

]
−x1,t;

That is, either he wins, receives the prize v for this contest, and improves his
score; or he loses, receives no prize, and worsens his score. Quite straight-
forwardly, we can rewrite this as

Eu1,t(Mt) = Eu∗1,t+1 (Mt − 1) + p1,t (v + at)− x1,t,

where
at ≡ Eu∗1,t+1 (Mt + 1)− Eu∗1,t+1 (Mt − 1) . (10)

Note that, ifMt = 1, then Eu∗1,t+1(Mt−1) = 0, since contest t+1 becomes
symmetric if the advantaged player 1 loses contest t in this case.
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Player 2 is at a disadvantage, being at least one net win down. If he
wins the current contest, then he gains the stage prize v and improves his
score, or rather worsens the score of his rival. But even with a win, he will
continue as the disadvantaged player earning zero, or at best —if winning
at Mt = 1 —getting even, but still earning zero. Thus, the payoff to player
2 is given by

Eu2,t(Mt) = (1− p1,t) v − x2,t.
At contest t, z = Mts measures the bias in the probability of winning,

and a = at is the extra prize that player 1 has, relative to player 2, from
winning the current stage. Note that the advantaged player has an expected
gross payoffof Eu∗1,t+1 (Mt − 1), no matter the outcome of the stage contest.
If Mt = 0, then the game is symmetric. Neither player has a bias in

the win probability, implying that the expected equilibrium payoff from the
current stage is zero. In this case, the expression for player i’s payoff needs
to be modified to

Eui,t(Mt = 0) = pi,t [v + Eu1,t+1 (1)]− xi,t, (11)

since the continuation payoff of losing from this state is 0. In this case,
the contest is symmetric over a prize of v+Eu1,t+1 (1) for each player, and
each player has an expected effort of

1

2
[v + Eu1,t+1 (1)] ,

with an expected payoff of 0. Since, by definition, M1 = 0, (11) holds for
the first contest at t = 1.
Proposition 2 summarizes the equilibrium expected efforts and expected

payoffs of the T sequential contests. The proof, which is based on Propo-
sition 1, is in the Appendix.

Proposition 2 In a contest t ∈ {2, ..., T} with Mt ≥ 1, equilibrium ex-
pected efforts of the players are

Ex∗1,t(Mt) =
(v −Mts)

2

2v
, (12)

Ex∗2,t(Mt) =
v2 − (Mts)

2

2 [v + 2s (T − t)] ; (13)

with equilibrium expected payoffs

Eu∗1,t(Mt) = s (T − t+ 1)

[
Mt +

1

2
(T − t)

]
, (14)

Eu∗2,t(Mt) = 0.
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In a contest t with Mt = 0, including contest 1, equilibrium expected
efforts and payoffs are

Ex∗i,t(0) =
1

2

[
v +

1

2
s (T − t) (T − t+ 1)

]
; (15)

Eu∗i,t(0) = 0; i = 1, 2. (16)

Note, from (15), that there is a hard fight to win the first contest, where
total expected efforts are v + 1

2
sT (T − 1).

5 Analysis

Below, we present a number of results on the equilibrium established in
Proposition 2. Our first results concern equilibrium behavior at or near
symmetry, whereas subsequent results focus on equilibrium play in various
cases of asymmetry.
At the outset, t = 1, the contest is symmetric. As is clear from (15), the

contestants have expected efforts that far exceed the value of the stage prize
v, since they both want to become the advantaged player in contest 2, with
the possibility of compounding this early win advantage. The expected
payoff in equilibrium for the game as a whole is zero, so that the players
compete away the whole surplus in the course of the game. This leads to
the following Corollary to Proposition 2.

Corollary 3 Total expected efforts over the T contests are vT .

In any symmetric state, where Mt = 0, equation (15) indicates that
there is intense competition to get the game onto a favorable track. The
winner of the contest in a symmetric state will enter the continuation a
leader, while the loser becomes laggard. With these roles being assigned in
this manner, incentives to provide efforts fall. In fact, we have the following.

Corollary 4 Suppose there is symmetry in contest t ∈ {1, ..., T − 1}, i.e.,
Mt = 0. Then
(i) total expected efforts in contest t are greater than v; and
(ii) total expected efforts in contest t+ 1 are less than v − s.

Actually, there can be symmetry only in odd-numbered contests: It is
only when t− 1 is even that the gross number of previous wins can be the
same for the two players at contest t so that symmetry entails. As time
goes by, symmetry means less expected efforts. This is seen directly from
(15) which is decreasing in t. We have:

Corollary 5 Total expected efforts in symmetric contests, where Mt = 0,
decrease over time.
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Intuitively, the less future there is after a contest, the less value there
is to becoming the leader. To illustrate this, consider an example.

Example 1 v = 1, T = 8, s = 0.05

Write EX∗t (0) = Ex∗1,t(0) + Ex∗2,t(0). This gives the following table of
total expected effort for tied states:

Contest EX∗t (0)
1 2.4
3 1.75
5 1.3
7 1.05

We turn next to asymmetric contests. When asymmetry occurs, two
factors play a role: the bias in the probability function, zt = Mts, and the
difference at in the value of winning between the two players. As shown in
the Appendix, the latter equals6

at = 2s(T − t). (17)

Remarkably, it does not depend on how big the lead of the leader is, i.e., on
Mt. But it does increase in both the time left at t and the win advantage
s. Whereas an increase in the bias zt decreases the expected efforts of both
players, increasing the value difference at only affects the expected effort of
the laggard, and negatively so, according to Proposition 1. Hence, the lead
in contest t, as measured by Mt, reduces the expected effort of both the
leader and the laggard; whereas the fact that the leader has more to gain
due to a positive continuation payoff only reduces the effort of the laggard.
The expected payoffof the advantaged player from contest t has a simple

form, as indicated by (14). In this expression, T − t + 1 is the number of
contests remaining when we reach contest t. Hence, the expected payoff in
equilibrium to the player with a net win advantage is conveniently expressed
as a function of the number of remaining contests, the number of net wins
at that stage, and the size of the advantage per win.
When it comes to the relative expected efforts of the leader and the

laggard, we can use Proposition 2 together with Corollary 1 to show the
following two results:

Corollary 6 In any contest t ≥ 2 where Mt ≥ 1, the laggard has higher
expected effort than the leader if and only if

T − t < vMt

v −Mts
. (18)

6See the proof of Proposition 2 in the Appendix.
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Corollary 7 When T = 3, the expected effort of the laggard is larger than
the leader at t = 2.

Together, Corollaries 2 and 7 deal with cases of short series of contests.
When the series consists of two contests, the laggard will always exert more
effort in expectation than the leader in the final contest. When the series
consists of three contests, the laggard will always have more expected effort
than the leader in the second contest, and also in the final one, should he
still be disadvantaged at this stage. From (12) and (13), it can be verified
that the win advantage, as measured by Mt, reduces the expected effort of
the leader by more than the laggard. Modifying this effect is the fact that
the winner of the first contest has more to fight for, as measured by a2,
which is zero when T = 2, and 2s when T = 3. Hence there is no effect on
the expected effort of the laggard through this channel in the former case,
and a negative effect in the latter. In sum, however, the expected effort of
the leader falls more in such short series of contests.
Corollary 6 deals with the more general case. From this we can conclude

that the laggard in expectation has more effort than the leader in cases
where

• he is at a large disadvantage (large Mt),

• there are a low number of contests left (low T − t),

• the win advantage is high, and

• the stage prize v is low.

These results reflect the findings in Section 3 above: When there are
relatively few contests left, the difference in valuation between winning
and losing, at, becomes small. The value of at affects the laggard’s effort
negatively but does not affect the leader’s effort, whereas the biasMt affects
both expected efforts negatively. It can easily be verified that the negative
effect that increasing Mt has on the leader’s effort is larger in magnitude
than the reduction in that of the laggard. Hence the leader slacks off
by more than the laggard is discouraged following an increase in the net
win. The role of the size of the win advantage s is more subtle, since it
leads to more bias in the contest success function, causing less effort by
both competitors, at the same time as it increases at which reduces only
the laggard’s effort. The larger is s, the more at falls in each successive
contest, which raises the effort of the laggard. Hence, although increases in
Mt and s lead to a higher likelihood that the laggard will have more effort,
they work through different channels.
Our results are partly driven by the fact that competitors can win a

prize at each stage. This will generally raise the expected effort level for
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both players. The comparative-static properties of (12) and (13) show that
an increase in v will tend to raise the expected effort of the leader relative
to the follower when there are many contests left, and that the laggard’s
effort will be raised the most in later stages of the contest. Early in the
series of contests, a leader has a great deal to fight for, since at = 2s (T − t)
is large, and increasing v strengthens this effect. Later on, at falls, giving
the laggard more to fight for.
The following Proposition sums up results on how the relative expected

efforts of leader and laggard develop for games of more than three rounds;
the proof is in the Appendix.

Proposition 3 Suppose T ≥ 4.
(i) There is always one contest t in the series such that t ≤ T − 1,

Mt ≥ 1, and Ex∗2,t (Mt) > Ex∗1,t (Mt).
(ii) If t ≤ T−1,Mt ≥ 1, and Ex∗2,t (Mt) > Ex∗1,t (Mt), then Ex∗2,t+1 (Mt + 1) >

Ex∗1,t+1 (Mt + 1).
(iii) If t ≤ T−2,Mt ≥ 2, and Ex∗2,t (Mt) > Ex∗1,t (Mt), then Ex∗1,t+1 (Mt − 1) >

Ex∗2,t+1 (Mt − 1).
(iv) If t ≤ T − 1, Mt ≥ 2, and Ex∗2,t (Mt) > Ex∗1,t (Mt), then it is

possible to have Ex∗1,t+1 (Mt − 1) > Ex∗2,t+1 (Mt − 1).

Part (i) of this Proposition states that the expected effort of a laggard
will always be larger than that of the advantaged player at some stage in
the series of contests before the final stage. The intuition is based upon
the combination of two effects: the bias which reduces both efforts, and
that of the leader more, and the reduction in the continuation payoff for
the leader in the series, which encourages the laggard.
Part (ii) states that, if the laggard has more expected effort in contest

t and loses, then he will also have more expected effort in the following
contest. The transition from contest t to t + 1 here implies an increased
win bias causing more slacking off by the leader, while the progression of
the contest lowers the continuation value of the leader.
Part (iii) looks at the case in which the leader has the more expected

effort in contest t; should he lose this contest, then, given that he is still
advantaged, he will continue to have the more effort in the next contest, as
long as the game by then has not reached the final contest; recall that the
laggard always has more effort in contest T . In this case, the transition of
the contest from t to t+ 1 implies a smaller win bias; both expected efforts
increase, affecting the leader more.
Part (iv) looks at the case in which the laggard has more expected

effort in a contest; if he wins the contest and is still disadvantaged, then it
is possible for this player to have less expected effort than the rival in the
next contest.
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Parts (ii) and (iii) of Proposition 3 can be combined to show that the
sign of the difference in efforts of the players is invariant to loss in the
following sense:

Corollary 8 Suppose T ≥ 4. Irrespective of who has the more expected
effort in contest t, with Mt ≥ 2, if this player loses that contest, then he
will have more expected effort also in contest t+ 1,unless t = T − 1.

Many trajectories of the game are possible, of course, depending upon
who wins each stage. One extreme case is that of the “unluckiest loser”, i.e.,
a player who has lost each contest to date; correspondingly, his opponent
is the “luckiest winner”. Suppose that, at the start of contest t, player
2 has lost each previous contest so that Mt = t − 1. Despite his bad
luck, he will never give up, however. In fact, as Corollary 2 shows, he will
eventually have the higher expected effort, even after a losing streak. And
Corollary 7 tells us that, for T = 3, the unluckiest loser will have the higher
expected effort already at contest 2. The next two Propositions extend this
discussion to longer series of contests.
Proposition 4 notes that, if the condition in (1) is strengthened, then

the expected efforts of the leader and the laggard in this trajectory move
in opposite directions over time.

Proposition 4 Suppose that, at every contest t, Mt = t− 1, meaning the
same player wins all contests.
(i) The luckiest winner’s expected effort decreases over time.
(ii) If

s (T − 1) ≤ v

2
, (19)

then the unluckiest loser’s expected effort increases over time.

As we see from (12) and (13), increasing the leader’s advantage by an
increase from Mt to Mt+1 = Mt + 1 lowers both players’expected efforts.
But at the same time, this decreases the value of being leader, which again
lifts the unluckiest loser’s effort. Under the condition in (19), the latter
effect is the stronger and the unluckiest loser puts in more and more effort
over time, in expectation.
Proposition 5 shows that, even without the condition in (19), there will

always come a time, before the penultimate contest, at which the effort of
the unluckiest loser outstrips that of his winning opponent. Furthermore,
the laggard who keeps losing will have more expected effort for the duration
of the contest. The proofs of both these Propositions are in the Appendix.

Proposition 5 Suppose that T ≥ 5.
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(i) There exists a t̂ ∈ {3, ..., T − 2} such that, if Mt = t−1 for some t ∈
{2, ..., T}, then Ex∗1,t(Mt) > Ex∗2,t(Mt) if t < t̂, and Ex∗2,t(Mt) > Ex∗1,t(Mt)

if t > t̂.
(ii) The time t̂ is weakly decreasing in s. It is also weakly increasing in

T , at a rate less than 1.

In part (i) of Proposition 5, we find a contest, denoted by t̂, such that
the expected effort of the unluckiest loser will outstrip that of the leader.
Furthermore, continuing to lose gives a higher effort in expectation from
the laggard.
The first effect in part (ii) of Proposition 5 says that the crossing of

expected effort will be earlier, the higher is s. This is due to the fact that
a large s gives both a large win bias in the contest success function and a
large continuation value of winning to the leader. The former effect makes
both players exert less effort, with the larger effect on the leader. The latter
effect makes the leader’s continuation value fall quickly so that the leader
has less to gain from successive wins. This encourages even the unluckiest
loser.
That t̂ is weakly increasing in T means that the larger the total number

of contests in the game, the longer it will take before the effort of the
unluckiest loser is larger than the leader. However, the number of periods
remaining when this happens is also larger the total number of contests
since, by part (ii) of Proposition 5, T − t̂ is weakly increasing in T .
The two Propositions are illustrated in Figure 1, where we record the

expected efforts of the unluckiest loser and the luckiest winner for our
Example, where T = 8, v = 1, and s = 0.05; note that the example
satisfies condition (19).
Initially both players have a high expected effort in order to become

the advantaged player from contest 2 on. After this, the expected effort
of each player falls, with the loser of the first contest having the larger
fall. As the bias increases, the luckiest winner decreases expected effort
successively; this effect also exerts downward pressure on the expected
effort of the laggard, but the positive effect — that winning matters less
and less to the advantaged player —outweighs this. Hence, the effort of the
laggard increases across contests. In the example, the unluckiest loser has
the larger expected effort in each period from t = 5 on.
Figure 2 plots the number of contests remaining from the time at which

the effort of the laggard is largest (denoted R in the figure), using as before
v = 1, s = 0.05. When T = 8, there are three contests remaining after
crossing (as illustrated in Figure 1); when T = 15, there are eight remaining
contests, and so on.
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Figure 1: Expected efforts in the case of the unluckiest loser.

Figure 2: Remaining contests after unluckiest-loser effort is larger.
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6 Extensions

In this Section, we discuss four departures from the basic model. In Section
6.1, we allow the win advantage to materialize as a combination of headstart
and handicapping, thus departing from the contest success function in (2).
In Section 6.2, we discuss how the equilibrium would be affected by players
discounting future payoffs. In the final two sections, we depart in various
ways from the assumption in (1) that put a restriction on how the win
advantage, the length of the game, and the stage prize are related. In
Section 6.3, we study a sequence of all-pay auctions where prizes vary
across time, making it necessary to allow the prize in a single contest to
breach that assumption. In Section 6.4, we consider long games, where
T ≥ v

s
+ 1.

6.1 Headstart vs handicapping

In our main analysis, the effect of a win in today’s contest is to create a
headstart for the winner in future contests. It can be argued that this is
a narrow view of such a win advantage. An alternative is to allow for the
win advantage to take the form in part of a headstart for the winner and
in part of a handicap for the loser. In order to model this, let us replace
the contest success function in (2) with the following:

p1,t =


1 if bMts+ x1,t > [1− (1− b)Mts]x2,t
1
2
if bMts+ x1,t = [1− (1− b)Mts]x2,t

0 if bMts+ x1,t < [1− (1− b)Mts]x2,t

, (20)

where b ∈ [0, 1]. This case can be viewed as giving the win advantage both
an additive component, on the lefthand side of (20), and a multiplicative
component on the righthand side. In the terminology of Konrad (2002),
such an additive advantage is a headstart for player 1, while the multiplica-
tive disadvantage is a handicap for player 2. This set-up collapses to our
earlier case when b = 1. The higher is b, the more of the win advantage
comes as a headstart and correspondingly less as a handicap.
We impose the following restriction on parameters:

s (T − 1) <
v

b+ v (1− b) , (21)

which is a modification of (1) to the present case. Note that, for b < 1,
(21) is stricter than (1) if and only if v > 1, and that it reduces to (1) when
b = 1.
With this restriction, we can carry out an analysis parallel to the one

we have above. In particular, the restriction allows us to use Lemma A.1
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in the Appendix, which extends our Proposition 1 and extends a result of
Konrad (2002).
For an illustration, consider the case of T = 3 with the win advantage

creating both a headstart and a handicap, such as in (20). In contest 3,
in case of symmetry, M3 = 0, each player’s expected effort is v

2
, and his

expected net payoff is zero. In case of asymmetry in that contest, M3 = 2.
By Lemma A.1, the expected payoff to the leader is 2s [b+ v (1− b)].
Consider next contest 2. Here, there is a leader for sure, with M1 = 1.

The value of winning is

a2 = 2s [b+ v (1− b)] . (22)

The leader’s expected net surplus is

z + a+ v (1− w) = 3s [b+ v (1− b)] .

Thus, in contest 1, the value of winning is the above plus the prize in that
contest, v, that is,

v + 3s [b+ v (1− b)] .
Note that, at b = 1, this becomes v+3s. Moreover, this value increases as b
decreases, i.e., as more weight is put on handicapping relative to headstart,
if and only if v > 1. Each player’s expected effort in contest 1 is

1

2
{v + 3s [b+ v (1− b)]} .

Corollary 2 still holds in this setting, by Corollary A.2 in the Appendix,
since also now aT = 0. However, other results cannot be expected to carry
over to the present case without further conditions. Consider, for example,
Corollary 7 on the relative efforts of the players in the second contest of
a three-contest game. Combining Corollary A.2 in the Appendix with the
expression for the value of winning the second contest, in (22) above, we
find that the laggard has the larger expected efforts in the second contest
if and only if

s >
v2 (1− b)

[b+ v (1− b)]2
. (23)

This puts a lower limit on the win advantage in order for the laggard to
exert more effort than the leader in the second contest of a three-contest
game. Combining this with the upper limit in (21), we have in fact that a
value for the win advantage s, satisfying both the constraints in (21) and
(23) when b < 1, can only exist when v < b

1−b . In fact, when v >
b
1−b , the

opposite of Corollary 7 is true: the leader has the higher expected efforts
in the second contest of a three-contest game.
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6.2 Discounting

We so far simplified the analysis by disregarding players’discounting of
future payoffs. Suppose, alternatively, that the players use a common dis-
count factor δ ∈ (0, 1]. As shown in the Appendix, the leader’s extra value
of winning in contest t now is

at = 2s
1− δT−t

1− δ ,

which is increasing in δ for t ≤ T − 2 and approaching 2s (T − t) as δ
approaches 1.
In Proposition 2, this implies that the laggard’s expected effort in con-

test t, rather than (13), becomes

Ex∗2,t(Mt) =
v2 − (Mts)

2

2
[
v + 2s1−δ

T−t

1−δ

] ;

thus, the more discounting, the higher is the laggard’s expected efforts for
contests t ≤ T − 2. The leader’s expected payoff in contest t, in (14),
becomes, from (A11) in the Appendix,

Eu∗1,t(Mt) =
s

1− δ

{
Mt

(
1− δT−t

)
+ δ

[
1− δT−t

1− δ + δT−t (T − t)
]}

.

Note that, as before, aT = 0 and aT−1 = 2s, so that Corollaries 2 and 7
still hold. Corollary 6 is modified, in that the condition in (18) becomes

1− δT−t

1− δ <
vMt

v −Mts
.

Thus, we can add heavy discounting to the factors, discussed in Section 5,
leading to the laggard having more expected effort than the leader.

6.3 Varying prizes

In the main analysis, we assume that there is a prize of value v in each
contest. Allowing this prize to vary across the contests does not have a
too strong effect on the outcome of the game so long as the contest prize
in each contest, denoted vt, still adhers to condition (1) so that, for each
contest t, vt ≥ s (T − 1). If this is not the case, there is a possibility that
the leader’s lead will be so great that the laggard concedes and the players
exert no effort at all in one or more of the contests, in line with part (i) of
Proposition 1.
In order to explore the possible outcomes when prizes vary, consider the

case of T = 3. Let vt ≥ 0 be the prize in contest t ∈ {1, 2, 3}. Suppose
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Figure 3: Varying prizes.

the contest designer has a total budget of 1 to spend in total in the three
contests, so that v1 + v2 + v3 = 1, implying v3 = 1 − v1 − v2, and assume
that s ∈

(
0, 1

6

)
.

The equilibrium outcome of this game is illustrated in Figure 3, which
describes the distribution of prizes in (v1, v2) space; given the fixed total
prize budget, the third prize, v3 = 1− v1− v2, is measured by the distance
from the v1 + v2 = 1 line. Details of the analysis of this case are in the
Appendix. We can delineate four different areas in Figure 3 in which the
game is played out differently.
If 1− v1 − 2s ≤ v2 ≤ s, so that we are in area I of Figure 3, then each

player exerts expected effort of 1
2
in contest 1, while no efforts are exerted

in contests 2 and 3, so that total expected effort in the game is 1. In this
case, both v2 and v3 are so small, relative to the win advantage s, that they
are not worth fighting for for the player losing contest 1.
If v2 < 1−v1−2s at the same time as v2 ≤ s, so that we are in area II in

Figure 3, then each player’s expected effort in contest 1 is (v1 + v2 + 2s) /2.
In contest 2, no player exerts effort and the leader wins that contest for
certain. In contest 3, however, both the leader and the laggard exert posi-
tive expected efforts with a total expected effort of 1− v1− v2− 2s. Thus,
total expected effort across the three contests is again 1. In this case, it is
v1 and v2 that are small. Efforts are exerted in contest 1, mainly in order
to obtain the win advantage and get in position before the showdown in
contest 3, where the big prize is.
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If v2 ≥ 1−v1−2s, as well as v2 > s, so that we are in area III in Figure
3, then each player exerts in expectation (1− v2 + s) /2 in contest 1. In
contest 2, expected efforts of leader and laggard are

(v2 − s)2

2v2
and

v22 − s2
2 (1− v1)

,

respectively. Now, two possibilities arise. One is that the laggard wins
contest 2, so that the game is back to symmetry in contest 3 with total
expected effort at 1− v1 − v2. The other possibility is another win by the
leader, increasing his accumulated win advantage so much that he wins
contest 3 without further efforts. As shown in the Appendix, when tak-
ing into account the win probabilities in contest 2, we find that the total
expected effort in this game is again 1. In this case, v2 is big enough for
there being something to fight for in contest 2, while v3 is so small that the
laggard’s incentives disappear in the event of a second loss.
Finally, the case of s < v2 < 1−v1−2s corresponds to area IV in Figure

3 and covers that of v1 = v2 = v3 = 1
3
discussed in the main analysis. Each

player’s expected effort in contest 1 is (v1 + 3s) /2. In contest 2, expected
efforts of the leader and the laggard are

(v2 − s)2

2v2
and

v22 − s2
2 (v2 + 2s)

,

respectively. In contest 3, if the laggard wins in contest 2, then the game is
at symmetry and total expected efforts of the players are 1−v1−v2. If the
leader wins again in contest 2, then, in contest 3, the leader has a 2s win
advantage and total expected efforts in that contest are 1 − v1 − v2 − 2s.
Again, as shown in the Appendix, total expected efforts in the game are 1.
In this case, both v2 and v3 are large enough that a player has incentives
to stay in the game throughout, even if he should lose both contest 1 and
contest 2.
In summary, we find that the outcome of the game that we have dis-

cussed in our main analysis is relatively robust to variations in prizes, as
long as later prizes do not become too small. It appears that the assump-
tion in (1) can be replaced with the weaker condition s (t− 1) < vt, for
each t. Thus, for example, any v1 > 0 in the first contest can be allowed.

6.4 Long games

We have so far insisted on a game of finite length. In particular, we have
assumed that the game is over after T contests, where T < v

s
+ 1. If this

assumption no longer holds, we have to deal with the possibility that the
leader’s cumulated wins are so many that he can win again with exerting
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no effort, a phenomenon we saw also in Section 6.3 above. When the stage
prize is constant at v across time, the state where one player wins without
efforts is absorbing and the game will stay in that state throughout.
In order to explore the consequences of win advantages in long games,

we go to the extreme case and consider the case of infinitely long games,
i.e., where T = ∞. Moreover, we assume, as in Section 6.2, that players
discount future payoffs with a discount factor δ ∈ (0, 1). The value for the
leader of reaching a state when he will win all future contests effortlessly
is thus V := v

1−δ . We will stick to an upper limit on the win advantage,
though, by assuming that s < v.
The value for the leader of winning has so far been denoted at and in

the analysis above, it has been found to be independent of the leader’s net
number of wins, Mt. This is no longer the case in an infinite game. Define
t∗ as the first contest at which a player can possibly win effortlessly, i.e.,
t∗ :=

⌈
v
s

+ 1
⌉
. This is also the number of net wins needed in order to achieve

the endless streak of effortless wins. Define the number of additional net
wins needed for the leader to achieve this as Lt = t∗ −Mt.
Consider some contest t′ ≥ t∗ − 1 in which the leader is one win shy of

this endless streak, i.e., where Lt′ = 1. The value of winning for the leader
will be δV = δv

1−δ . Using (6), we find that the laggard’s expected effort
is somewhere in the interval

[
0, s (1− δ)

(
1− s

2v

))
, depending on where in

the interval
(
v
s
, v
s

+ 1
]
we have Mt′ . Clearly, with the de facto end of the

game looming ahead, the laggard is severely discouraged. This will also
affect contests in which Lt is greater than 1, i.e., where Mt is less than
t∗ − 1.
This analysis, although incomplete, serves to illustrate that, in infinite

games with win advantages, we obtain an effect similar to that of races, or
best-of-t competitions. Long games create a race-like incentive to rush for
the big prize V . And our result in Corollary 2, that the laggard eventually
has the more effort, clearly does not hold for long games.

7 Conclusion

In this paper we have examined a finite series of all-pay auctions that are
linked through time. Specifically, a player who has won more contests than
he has lost is assumed to build up a win advantage over the rival, and
the more net wins the larger the advantage. In the contest literature, one
can say that we endogenize the size of any headstart. The effect captured
here may be purely psychological or experience-based, but may also be due
to factors outside of the model such as sellers who gain more back-room
resources, or researchers with more assistants. The series of contests has a
symmetric outset, and we identify effects overlooked in static contest mod-
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els. Two effects are at work that influence efforts of leaders and laggards.
First, a headstart leads both players to exert lower effort in expectation,
but affects the laggard most; exerting effort will at best even up the con-
test, at which point both players will expend much resources to gain the
lead. Second, the headstart creates an extra value to the leader by ensur-
ing easier access to future prizes, hence reducing the effort of the laggard
further. The relative magnitude of these effects change throughout the se-
ries of contests, however, so that, eventually, the laggard has the higher
expected effort.
In the series of contests, the whole value of the prize is competed away,

as is common in all-pay auctions with a symmetric starting point. The
players fight intensely when the contest is even so that there appears to be
overdissipation of the prize in these cases. However, the magnitude of the
resource exertion in these cases reduces the further advanced we are in the
sequence of contests. There are fewer future prizes to be won in this case,
making the value of being the leader lower.
We have focussed on cases in which the laggard may be expected to

exert most effort, and find this to be most likely when he is at a large
disadvantage (due to the leader relaxing), or when there are few contests
remaining (since the value of remaining the leader diminishes). Due to the
latter effect, the laggard will always be expected to exert most effort in the
final contest. We can also show that as long as the sequence is long enough
(specifically, at least four contests), the laggard will be expected to have
most effort before the final contest. Should he subsequently lose in spite
of this, the laggard will have more effort than the leader in the following
contest.
We have indeed been able to identify various patterns of expected effort.

For example, the loser of a very uneven contest will have more effort in the
subsequent contest whether he is leader or laggard. Even a player who loses
all previous contests will be expected to have larger effort than the rival
at some stage before the final contest as long as the series is long enough.
These results are in contrast to the race literature in which a disadvantaged
player will often simply give up.
We have considered several extensions to out main model to look at the

robustness of our conclusions. Whereas our main model defines the win
advantage as being in the form of a headstart, we investigate an extension
in which the advantage may be a handicap, or a combination of headstart
and handicap. The laggard can still have a higher effort than the leader in
expectation, and this is more likely for a larger handicap, paralleling our
previous result. The results of our main model are robust to discounting,
but introducing the possibility of an infinite sequence of contests makes our
model more like a race in which an absorbing state may be reached in which
the laggard gives up. Finally, we show in an example that the restriction
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on having an identical prize in each contest can be relaxed, and that our
results are robust as long as later prizes are not too small (in which case
the laggard would again give up). Our future work will examine this line
of enquiry further.

A Appendix

A.1 Proof of Proposition 2

Consider contest T − 1. If MT−1 ≥ 1, then the expected payoffs in this
contest are

Eu1,T−1(MT−1) = p1,T−1 [v + Eu1,T (MT−1 + 1)]

+ (1− p1,T−1)Eu1,T (MT−1 − 1)− x1,T−1
= Eu1,T (MT−1 − 1)

+p1,T−1 [v + Eu1,T (MT−1 + 1)− Eu1,T (MT−1 − 1)]− x1,T−1
Eu2,T−1(MT−1) = (1− p1,T−1) v − x2,T−1

Through the win advantage, player 1 has a guaranteed payoffofEu1,T (MT−1 − 1)
if he loses contest T − 1. If player 1 wins contest T − 1, then he gets
the instantaneous prize v and the continuation value in contest T , with
MT = MT−1 + 1. Should player 1 lose contest T − 1, then he gets no in-
stantaneous prize but receives the continuation value from the net number
of wins MT = MT−1 − 1 in the next contest.
Since MT−1 ≥ 1, we have that, if player 2 wins, he receives the instan-

taneous prize v, and the net win for player 1 is MT−1− 1 ≥ 0 in contest T ;
the continuation value for player 2 is zero in the final contest anyway.
The extra value to player 1 from winning contest T − 1 is thus given by

Eu1,T (MT−1 + 1)−Eu1,T (MT−1 − 1); commensurate with the notation in
Section 3, denote this extra value to winning by aT−1. Using the results for
contest T in the text, we have that aT−1 = 2s; note that this is independent
of the number of net wins in this contest. From Proposition 1, we now find
expected efforts and payoffs in contest T − 1 as

Ex1,T−1(MT−1) =
(v −MT−1s)

2

2v

Ex2,T−1(MT−1) =
v2 − (MT−1s)

2

2 (v + 2s)

Eu1,T−1(MT−1) = Eu1,T (MT−1 − 1) + (MT−1 + 2) s

= (MT−1 − 1) s+ (MT−1 + 2) s

= (2MT−1 + 1) s

Eu2,T−1(MT−1) = 0
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Using (7), we can stipulate the form of the equilibrium expected payoff
for player 1 in contest t to be:

Eu∗1,t(Mt) = Eu1,t+1 (Mt − 1) + at +Mts

= Eu1,t+1 (Mt + 1) +Mts

Calculating the expected payoffs recursively backwards reveals a pattern
for the equilibrium expected payoff in each contest

Eu1,T (MT ) = MT s

Eu1,T−1(MT−1) = (2MT−1 + 1) s

Eu1,T−2(MT−2) = (3MT−2 + 3) s

Eu1,T−3(MT−3) = (4MT−3 + 6) s

.

.

Eu1,t(Mt) = s

[
T−t∑
j=0

(Mt + j)

]
= s

[
(T − t+ 1)Mt +

T−t∑
j=1

j

]
(A1)

This is rewritten in the more convenient form (14) in the Proposition.
In order to examine the equilibrium expected efforts for the advantaged

and disadvantaged player, we simply need to identify the parameters in (6)
for each contest. The bias term z is Mts, and we need to calculate the
difference to the leader from winning and losing the current contest, at.
It is convenient to consider how at is determined using (14). From (10),

we have:
at = Eu1,t+1(Mt + 1)− Eu1,t+1(Mt − 1). (A2)

From (14), we have

Eu1,t+1(Mt+1) = s (T − t)Mt+1 +
1

2
(T − t− 1) . (A3)

Applying (A3) in (A2), replacing Mt+1 by first Mt + 1 and then Mt − 1,
gives

at = s (T − t) [(Mt + 1)− (Mt − 1)]

= 2s(T − t).

Putting z = Mts and a = at into (6) gives the expected efforts in the
Proposition.
In order to verify (15), we have, from (14), that

Eu∗1,t(1) = s (T − t+ 1)

(
1 +

1

2
(T − t)

)
.
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From the text before the Proposition, we have that each player’s expected
effort at Mt = 0 is

1

2
[v + Eui,t+1 (1)] =

1

2

{
v + s [T − (t+ 1) + 1]

[
1 +

1

2
[T − (t+ 1)]

]}
=

1

2

[
v +

1

2
s (T − t) (T − t+ 1)

]
,

where the first equality is by the above expression; this proves (15).

A.2 Proof of Corollary 4

Part (i): With Mt = 0, total expected effort in contest t is, by equation
(15),

v +
1

2
s (T − t) (T − t+ 1) > v,

where the inequality follows from t < T .
Part (ii): It follows that, after a winner is declared in contest t, we have

Mt+1 = 1. Total expected efforts in contest t+ 1 are found from equations
(12) and (13):

(v − s)2

2v
+

v2 − s2
2 [v + 2 (T − t− 1) s]

= (v − s)
[
v2 + (v − s) (T − t− 1) s

v2 + 2v (T − t− 1) s

]
< v−s.

Since 2v > v− s, the fraction within square brackets in the second expres-
sion is less than 1, and the inequality follows.

A.3 Proof of Proposition 3

Part (i). The laggard has more expected effort if condition (18) is fulfilled.
This is least likely to be satisfied for Mt = 1, in which case the condition
can be written as

t > T − v

v − s.

Clearly, T − v
v−s < T − 1, since v

v−s > 1.
Part (ii). The laggard having more expected effort means, from (18),

that
Mt [v + s (T − t)]− v (T − t) > 0. (A4)

If the laggard loses, then Mt+1 = Mt + 1, and the left hand side of the
inequality for contest t+ 1 can be written as

(Mt + 1) [v + s (T − t− 1)]− v (T − t− 1) =

[Mt (v + s (T − t))− v (T − t)] + [2v −Mts] + s (T − t− 1) > 0
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where the inequality follows since the first square-bracketed term is positive
by (A4), and the second one is positive by (1).
Part (iii). In contest t, we have Mt [v + s (T − t)] − v(T − t) < 0,

since the leader has more effort in this period. By the leader losing we get
Mt+1 = Mt − 1, and the left hand side of the inequality for period t + 1
becomes

(Mt − 1) [v + s (T − t− 1)]− v (T − t− 1) =

[Mt (v + s (T − t))− v (T − t)]−Mts− s (T − t− 1) < 0.

Part (iv). If the laggard has more effort in contest t, then

T − t < vMt

v −Mts
, (A5)

by (18). If the laggard wins this contest, then Mt+1 = Mt − 1, and the
leader has more effort in contest t+ 1 if

T − t− 1 >
v (Mt − 1)

v − (Mt − 1) s
. (A6)

For the inequalities in (A5) and (A6) to be consistent, we must have

v (Mt − 1)

v − (Mt − 1) s
+ 1 <

vMt

v −Mts
⇐⇒

v (Mt − 1)

v − (Mt − 1) s
− v (Mt − 1) +Mts

v −Mts
< 0⇐⇒

s
v (Mt − 1) + [v − (Mt − 1) s]Mt

[v − (Mt − 1) s] (v −Mts)
> 0,

which is clearly true, by (1).

A.4 Proof of Proposition 4

Let Mt = t− 1.
Part (i). The leader’s expected effort in (12) is now [v−(t−1)s]2

2v
, which is

decreasing in t by (1).
Part (ii). The laggard’s expected effort in (13) is now

v2 − (t− 1)2 s2

2 [v + 2 (T − t) s] .

Differentiating this expression with respect to t, we get

s3 (t− 1) (2T − t− 1)

(v + 2Ts− 2st)2

[
v

s (t− 1)

v − s (t− 1)

s (2T − t− 1)
− 1

]
.

This is positive if the expression inside square brackets is positive, which
is the case if both fractions in that expression are greater than one. The
first fraction is greater than one by (1). The second fraction is also greater
than one, as long as (19) holds.
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A.5 Proof of Proposition 5

Part (i). Consider contest t, and suppose player 2 has lost all the previous
t − 1 contest, so that mt = Mt = t − 1. The difference in effort between
leader and laggard is, from Proposition 2,

Ex∗1,t (t− 1)− Ex∗2,t (t− 1)

=
[v − (t− 1) s]2

2v
− v2 − (t− 1)2 s2

2 [v + 2 (T − t) s]

=
s [v − s (t− 1)]

v [v + 2s (T − t)]
{
st2 − [s (T + 1) + 2v] t+ [v + T (s+ v)]

}
By the assumption in (1), v − s (t− 1) > 0. It follows that the above
expression has the same sign as the one inside curly brackets. Disregarding
for now that t is integer, that expression, in turn, is a convex function of t,
with negative slope and positive value at zero. It thus has two real roots
in t, both positive, which we call t > t > 0. Moreover, Ex∗1,t (t− 1) −
Ex∗2,t (t− 1) < 0 if and only if t > t > t.
In order to prove the Proposition, we need to show that t > T , and that

2 < t < T − 1. It is readily verified that

t =
1

2s

[
2v + s (T + 1) +

√
s2 (T − 1)2 + 4v2

]
, and

t =
1

2s

[
2v + s (T + 1)−

√
s2 (T − 1)2 + 4v2

]
. (A7)

We first show that t > T . Consider

t > T

⇐⇒ 1

2s

[
2v + s (T + 1) +

√
s2 (T − 1)2 + 4v2

]
− T > 0

⇐⇒ 1

2s

[
2v − s (T − 1) +

√
s2 (T − 1)2 + 4v2

]
> 0

⇐⇒
√
s2 (T − 1)2 + 4v2 + 2v > s (T − 1)

By (1), the right-hand-side of the inequality is at most v, whilst the left-
hand-side is at least 4v. Hence t > T .
We next show that t < T − 1. Consider

T − 1 > t

⇐⇒ T − 1− 1

2s

[
2v + s (T + 1)−

√
s2 (T − 1)2 + 4v2

]
> 0

⇐⇒ 1

2s

[
−2v + s (T − 3) +

√
s2 (T − 1)2 + 4v2

]
> 0

⇐⇒ s (T − 3) +

√
s2 (T − 1)2 + 4v2 > 2v
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where
√
s2(T − 1)2 + 4v2 ≥ 2v and T ≥ 5, so the inequality holds.

We finally show that t > 2. Consider

t > 2

⇐⇒ 1

2s

[
2v + (T + 1) s−

√
s2 (T − 1)2 + 4v2

]
− 2 > 0

⇐⇒ 1

2s

[
2v + (T − 3) s−

√
s2 (T − 1)2 + 4v2

]
> 0

In the Proposition we have T ≥ 5. Let

Φ(s, T, v) := 2v + (T − 3) s−
√
s2 (T − 1)2 + 4v2.

Note that Φ is continuous in s, that Φ (0, T, v) = Φ
(
v T−3
T−2 , T, v

)
= 0, and

that Φ (s, T, v) > 0 for v T−3
T−2 > s > 0. By (1), we have v

T−1 > s. Since
v T−3
T−2 > v 1

T−1 for any T ≥ 5, we have Φ (s, T, v) > 0 for permissible para-
meter values, proving t > 2.
It follows that 2 < t < T − 1. This must also hold if we make the

restriction to integer values. Thus, t̂ ∈ {3, ..., T − 2}.
Part (ii). Differentiations in (A7) give ∂t

∂s
< 0 and ∂t

∂T
> 0. Moreover, ∂t

∂T
=

1
2

√
s2(T−1)2+4v2−(T−1)s√

s2(T−1)2+4v2
, which can be verified to lie within the interval (0, 1).

With the restriction to integer values, the signs of the differentials still hold,
although weakly so.

A.6 Headstart vs handicap

We present, and prove, a Lemma used in the discussion of headstart vs
handicap in Section 6.1. The Lemma extends Proposition 1 to allow for
handicaps as well has headstarts; by putting w = 1 in (A8), we are back
to (3).

Lemma A.1 Let the contest success function be

p1,t =


1 if z + x1,t > wx2,t
1
2
if z + x1,t = wx2,t

0 if z + x1,t < wx2,t

(A8)

where z ≥ 0 and w ∈ (0, 1]. Let the values of the prize be v1 = v + a and
v2 = v for players 1 and 2, respectively, where v > z

w
, and a ≥ 0. The

unique symmetric equilibrium is as follows:

F1 (0) =
z

vw
; F1(x1) =

z + x1
vw

, x1 ∈ [0, vw − z] ;

F2 (0) =
v (1− w) + a+ z

v + a
; F2 (x2) =

v (1− w) + a+ wx2
v + a

, x2 ∈
[ z
w
, v
]
.
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Expected efforts are

Ex1 =
(vw − z)2

2vw
, and Ex2 =

v2w2 − z2
2w (v + a)

;

expected net surpluses are

Eπ1 = z + a+ (1− w) v, and Eπ2 = 0;

and probabilities of winning are

p∗1 = 1− v2w2 − z2
2vw (v + a)

, and p∗2 =
v2w2 − z2

2vw (v + a)
.

Proof. Player 2 will not spend more than v, so that the maximum spent
by player 1 is wv−z. If player 1 sets x1 = 0, then he wins if z > wx2 so that
player 2 will not choose positive effort below z

w
. Hence, x1 ∈ [0, wv − z],

and x2 ∈ {0}∪
[
z
w
, v
]
. By setting x1 = wv−z, player 1 wins with probability

1 and secures a payoff of z + a+ (1− w) v, whilst player 2 must expect 0.
The expected payoff of player 1 is

Eπ1 = Pr

(
x2 <

z + x1
w

)
(v + a)− x1 = z + a+ (1− w) v. (A9)

Write X = z+x1
w
, so that (A9) becomes

Eπ1 = Pr (x2 < X) (v + a)− (wX − z)

= F2 (X) (v + a)− (wX − z) = z + a+ (1− w) v.

Solving gives

F2 (X) =
v (1− w) + a+ wX

v + a
.

Similarly, for player 2,

Eπ2 = Pr (x1 < wx2 − z) v − x2 = 0

= F1 (Y ) v − Y + z

w
= 0,

where Y = wx2 − z. Hence,

F1 (Y ) =
Y + z

vw
.

Player 2’s probability of winning is found from the equation p2v−Ex2 = 0,
while that of player 1 is p1 = 1− p2.

This result extends Lemma 1 of Konrad (2002). In order to retain his
result, put a = 0. The parallel to Corollary 1 is the following:
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Corollary A.2 With the contest success function in (A8), the disadvan-
taged player has the higher expected effort if

a <
2vz

vw − z . (A10)

The right-hand side in (A10) decreases in w. Thus, the laggard has
more effort than his rival when the handicap is high, i.e., w is low.

A.7 Discounting

Suppose players discount future payoffs with a discount factor δ ∈ (0, 1].
Discounting will affect the leader’s expected value of winning in a straight-
forward manner: equation (A1), in the proof of Proposition 2, now becomes

Eu1,t(Mt) = s

(
T−t∑
i=0

δi (Mt + i)

)
(A11)

Using (10) and (A11), we have, for δ ∈ (0, 1),

at = Eu1,t+1 (Mt + 1)− Eu1,t+1 (Mt − 1)

= s

[
T−t−1∑
i=0

δi (Mt + 1 + i)−
T−t−1∑
i=0

δi (Mt − 1 + i)

]

= 2s
1− δT−t

1− δ .

Note that limδ→1
1−δT−t
1−δ = T − t, that dat

dδ
> 0 —heavier discounting means

a lower value of winning for the leader - and that, as before, dat
d(T−t) > 0 —

the more periods left, the higher is at.

A.8 Varying prizes

Here we present details of the analysis of the case when prizes vary over
time, discussed in Section 6.3. We start with considering the last contest,
t = 3. There are two possibilities, either symmetry, with one win to each
player in the previous rounds, or asymmetry, with one player having won
both previous rounds. In case of symmetry,M3 = 0, each player’s expected
effort is v3/2 = (1− v1 − v2) /2, and each player’s expected net payoff is
zero.
In case of asymmetry, M3 = 2. We need to distinguish between two

cases. If v3 = 1 − v1 − v2 ≤ 2s, then, by part (i) of Proposition 1, players
have zero efforts in the last contest and the leader is certain to win, with
net payoff 1− v1 − v2 to the leader and zero to the laggard. Otherwise, if
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1 − v1 − v2 > 2s, then, by (6), the expected efforts of the leader and the
laggard are

(1− v1 − v2 − 2s)2

2 (1− v1 − v2)
and

(1− v1 − v2)2 − 4s2

2 (1− v1 − v2)
, (A12)

respectively, so that total expected efforts in contest 3 in this case, the sum
of the two expressions above, is

1− v1 − v2 − 2s.

The expected net payoffs are 2s to the leader and, again, zero to the laggard.
Consider next the next-to-last contest, that is, t = 2. In this case,

there is surely asymmetry, with M2 = 1. Again, we need to consider two
possibilities. If v2 ≤ s, then players have zero efforts and the leader wins
contest 2. If, in addition, 1−v1−v2 ≤ 2s, then the leader wins also contest
3 with zero efforts. Thus, if 1 − v1 − 2s ≤ v2 ≤ s, which can only happen
if v1 ≥ 1 − 3s, then the winner of contest 1 wins the next two contests
without spending further efforts and the expected value of winning contest
1 is 1; the variable restrictions in this case corresponds to area I in Figure
3, where feasible combinations of (v1, v2) are depicted. If v2 < 1− v1 − 2s
at the same time as v2 ≤ s, however, then the winner of contest 1 wins
again in contest 2 and has an expected net payoff of 2s in contest 3, with a
total value of winning contest 1 of v1 + v2 + 2s < 1; this is area II in Figure
3.
If v2 > s, then, by (6), the expected efforts of the leader and the laggard

are
(v2 − s)2

2v2
and

v22 − s2
2 (v2 + a2)

,

respectively. To get any further, we need to find a2. For this, we distinguish
two subcases.
If v2 ≥ 1 − v1 − 2s, as well as v2 > s, then the leader, if he wins also

here, will win again in contest 3 without efforts, so a2 = 1− v1 − v2 ≤ 2s,
the laggard’s expected effort is

v22 − s2
2 (1− v1)

,

and total expected effort in contest 2 is

v2 − s
2v2 (1− v1)

[
v22 + (1− v1 + s) v2 − s (1− v1)

]
. (A13)

The expected payoff to the leader is z + a, which here is 1 − v1 − v2 + s.
Thus, the value of winning contest 1 is, in this case, v1+(1− v1 − v2 + s) =
1− (v2 − s) < 1. The case corresponds to area III in Figure 3.
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If, on the other hand, s < v2 < 1 − v1 − 2s, which can only happen if
v1 < 1− 3s, then a2 = 2s by equation (17), the laggard’s expected effort is

v22 − s2
2 (v2 + 2s)

,

and total expected effort in contest 2 is

v2 − s
v2 (v2 + 2s)

(
v22 + sv2 − s2

)
. (A14)

The expected payoff to the leader is z + a = 3s, and the value of winning
contest 1 is v1 + 3s < 1. This case corresponds to area IV in Figure 3.
Finally, consider the full game, noting that, at contest 1, there is sym-

metry and M1 = 0. We can now specify the equilibrium play in each of
the four cases introduced above. If 1 − v1 − 2s ≤ v2 ≤ s, then the value
of winning contest 1 is 1, and each player exerts expected effort in that
contest equal to 1

2
. No efforts are exerted in contests 2 and 3, so that total

expected effort in the game is 1. This is area I in Figure 3.
If v2 < 1 − v1 − 2s at the same time as v2 ≤ s, then the value of

winning contest 1 is v1 + v2 + 2s, each player’s expected effort in contest 1
is (v1 + v2 + 2s) /2, and total expected effort in contest 1 is v1 + v2 + 2s.
In contest 2, no player exerts effort and the leader wins that contest for
certain. In contest 3, the expected efforts of leader and laggard are given
in (A12), and total expected effort is 1− v1− v2− 2s. Thus, total expected
effort across the three contests is 1. This is area II in Figure 3.
If v2 ≥ 1−v1−2s, as well as v2 > s, then the value of winning contest 1

is 1−(v2 − s). Each player exerts in expectation [1− (v2 − s)] /2 in contest
1, and total expected effort in that contest is 1− (v2 − s). In contest 2, the
expected efforts of leader and laggard are

(v2 − s)2

2v2
and

v22 − s2
2 (1− v1)

,

respectively, with total expected effort given by (A13). The laggard wins
with probability

v22 − s2
2v2 (1− v1)

,

in which case the game moves to symmetry in contest 3 where each player’s
expected effort is (1− v1 − v2) /2, with total expected efforts in contest 3
equal to 1− v1 − v2. With probability

1− v22 − s2
2v2 (1− v1)

,
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the leader wins contest 2, in which case no effort is exerted in contest 3 and
the leader wins for sure. The total expected effort across all contests is

1− (v2 − s) +
v2 − s

2v2 (1− v1)
[
v22 + (1− v1 + s) v2 − s (1− v1)

]
+

v22 − s2
2v2 (1− v1)

(1− v1 − v2) = 1.

This is area III in Figure 3.
Finally, consider the case s < v2 < 1− v1− 2s, which covers the special

case of v1 = v2 = 1
3
discussed in Section 4. The value of winning contest 1

is v1 + 3s, and so each player’s expected effort in contest 1 is (v1 + 3s) /2
with a total expected effort in contest 1 of v1 + 3s. In contest 2, expected
efforts of the leader and the laggard are

(v2 − s)2

2v2
and

v22 − s2
2 (v2 + 2s)

,

respectively, with total expected effort given in (A14). The laggard wins
with probability

v22 − s2
2v2 (v2 + 2s)

,

in which case there is symmetry in contest 3 and total expected effort in
that contest equal to 1−v1−v2. The leader wins contest 2 with probability

1− v22 − s2
2v2 (v2 + 2s)

,

and the game moves to an instance of asymmetry in contest 3 with the
players’expected efforts in that contest given in (A12) and total expected
efforts equal to 1− v1 − v2 − 2s. The total expected effort across all three
contests is

v1 + 3s+
v2 − s

v2 (v2 + 2s)

(
v22 + sv2 − s2

)
+

v22 − s2
2v2 (v2 + 2s)

(1− v1 − v2)

+

[
1− v22 − s2

2v2 (v2 + 2s)

]
(1− v1 − v2 − 2s) = 1.

This is area IV in Figure 3.
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