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Abstract

A government wants to exploit a renewable resource, yielding a time-
varying flow of rent, by leasing it at a fixed rate. Leasing contracts can be
expropriated before expiration, albeit at a cost. To minimise transactions
costs and avoid the ‘resource curse’ the government would prefer to enter into
an infinitely long contract (i.e. sell the resource), if it could commit not to
expropriate. However, with finite costs of expropriation credible commitment
is impossible: the government either enters into finite contracts, expropriates
with positive probability or does both. The value of the resource to the govern-
ment is increasing in the cost of expropriation, but decreasing in the variability
of the resource rent. 1

Keywords: Natural resources, sovereign expropriation, optimal contract
length. JEL codes: H13, Q2, D86

1 Introduction

When, in 2011, the Parliament of Iceland enacted a time limit on rights to use pub-
licly owned water resources, a major concern was to prevent situations where the
state would permanently relinquish its resources to private parties, possibly losing

1Baldursson: fmb@ru.is; von der Fehr: nhfehr@econ.uio.no.
We thank Bård Harstad, Daniel Spiro and seminar participants at the Aalto University and the

University of Oslo for constructive feedback on earlier versions of the paper; Fridrik Baldursson
worked on the paper while a visitor at Aalto in the Fall of 2013. While carrying out this research
both authors have been associated with CREE—Oslo Centre for Research on Environmentally
friendly Energy. CREE is supported by the Research Council of Norway.
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completely out on a large future increase in resource value.2,3 These considerations
must be seen in the light of experience from situations where the government was
induced to force renegotiation of contractual terms.4 The case of Icelandic water
resources is of course not unique: around the world governments have placed time
limits on exploitation of natural resources in order to reduce the risk of being com-
pelled to renege on contractual commitments or expropriate private gains and the
inevitable costs of such actions.5

In this paper, we study the problem of setting time limits on rights to use re-
newable resources. In our model, a government holds a natural resource that yields
a time-varying flow of rent for all future. The government offers a leasing contract
through a competitive market that allows the leaseholder to receive the resource
rent against a lease rate that is fixed over the term of the lease. Contracts can be
infinitely long (an infinitely long contract may be thought of as privatisation of the
resource), but may also be finite, in which case transaction costs are incurred every
time a new contract is entered into.6 Contracts can be expropriated or terminated
at any time until they expire but this entails an additional cost to the government.7

We show that optimal contracts either have finite maturity or they will be expro-
priated with positive probability. When the resource rent grows at a fixed, positive
rate optimal contracts are of finite maturity that is set as long as possible without
making expropriation advantageous. When the resource rent is stochastic optimal
contracts do, however, involve expropriation, but with low probability. A long con-

2Water resources, which can be exploited to produce electricity in hydro- or geothermal power
plants, are abundant in Iceland. Most of these resources are on public lands.

3This may be seen in light of the fact that in the 1980’s fishing rights in Iceland were bound in
individual transferable quotas which were grandfathered without any time limitation on the rights.
These rights have risen enormously in value since the system was put in place, with the resulting
increase accruing to owners of fishing vessels.

4An example of such a situation is provided by a dispute between the Government of Iceland
and Alusuisse (now a part of Rio Tinto Alcan) in the early 1980’s. The dispute revolved around
taxation as well as price of electricity produced by a state-owned electricity producer to power
Alusuisse’s aluminium smelter in Iceland. Both taxes and electricity prices had been negotiated in
the 1960’s - before the oil crises of the 1970’s had drastically changed international energy prices
and other economic factors. The dispute, which was initiated by the Government of Iceland, lasted
more than three years and ended in 1984 with a renegotiated contract with terms substantially
more advantageous to Iceland than those of the previous contract.

5For water, Norway presents another example, with its statutory time limits on licences to
private parties for exploring hydrological resources for power production. In fisheries, it has become
common to regulate catch by allocating private property rights in the form of time-limited quotas,
see Costello and Kaffine (2008) for examples.

6There may be other costs associated with finite contract length, such as inefficient resource
use, which could be higher the shorter the contract is. We abstract from such costs in the formal
analysis but return to the issue in the Conclusion; in the Appendix, we outline an extension of the
formal analysis to show how such costs could be incorporated.

7The model is in fact quite general. With slight reformulation, it could be applied to non-
renewable resources such as oil extraction or REDD contracts for conserving tropical forests.
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tract has the advantage of reducing transaction costs, while a short contract has
the advantage of reducing (expected) cost of expropriation; the optimal contract
balances these two types of costs.

The (net) value of the resource is the present value of rent less costs of entering
into contracts and, possibly, expropriating them. Hence, resource value would be
maximised if the government could commit to an infinitely long contract that would
not be expropriated. With imperfect commitment - that is, finite cost of expropri-
ation - this is not possible and so the government is caught in a ‘natural resource
trap’; in particular, a government that incurs a low cost of expropriation must pay
for this through short contracts, high transaction costs and low lease rates. A lower
cost of expropriation therefore reduces the value of the resource.8

Myopia also reduces the value of the resource. With a high discount rate the
government puts less weight on future costs of expropriation. Contract maturity
is therefore increased and expropriation occurs more frequently, reducing resource
value.

Expropriation occurs at high resource rents, which are more likely when volatility
is high. The government counteracts increased frequency of expropriation with
contracts of shorter maturity. In other words, it is optimal to write shorter contracts
for natural resources with greater rent variation; nevertheless, greater variability
reduces the value of the resource.

Finally, high costs of entering into contracts lead to long maturity and, hence, a
high incidence of expropriation. Resource value is low due both to high transaction
costs and the induced expropriation costs.

Our analysis is related to the literature on pricing expropriation risk in natural
resource contracts, particularly the real options approach of Schwarz and Trolle
(2010), from which we have also borrowed certain modelling elements (earlier work
in this tradition includes Mahajan, 1990, and Clark, 2003). They consider a finite-
horizon set up in which a government enters into a contract for production from a
natural resource for the entire time period. The government may at any given time
take over production for the remainder of the period, albeit at some cost. Among
other results, Schwarz and Trolle show that, for a given contractual arrangement,
the value of the expropriation option increases with volatility of the output price.
When we take account of the recurrent nature of the contracting problem, as well

8The risk of expropriation is an instance of an imperfection in property rights. Arnason (2012)
gives an overview of the dimensions of property rights and discusses the associated costs of imper-
fections. While there are efficiency arguments for well defined and secure property rights, we take
it as given that governments will expropriate when the benefits of doing so exceed the costs and
consider the consequences for market equilibrium.
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as the endogeneity of contractual terms (maturity and lease rate), we come to the
opposite conclusion: increased volatility does in fact reduce resource value.

We also contribute to the literature on optimal resource extraction contracts
under threat of expropriation (see eg. Aghion and Quesada, 2010, Engel and Fischer,
2010, and Wernerfelt and Zeckhauser, 2010, for introductions to the literature, as
well as more specific analyses).9 This literature has considered a range of different
dimensions of the contracting problem, including sharing of production, profits and
ownership, as well as various limits on payments to the leaseholder, but not the
maturity or duration of contracts.10 In order to concentrate on the maturity issue,
and for analytical tractability, we abstract from other contractual dimensions and
simply assume that payments are based on a fixed lease rate (see below for more on
this assumption).

The literature on natural resources and sovereign expropriation has been much
concerned with the underlying political economy of what Lawrence Summers has
called the ‘privatisation trap’: nations with low credibility are forced to offer ad-
vantageous terms to firms in order to attract foreign direct investment (Summers,
2010).11 But when profits are high even well-meaning, well-intentioned governments
will come under political pressure to renege on contracts in order to bring the prof-
its back to their own constituency. By taking government preferences as given and
constant over time, we abstract from many aspects of the political economy issue.12

However, we do capture, in an admittedly stylised manner, the ability to withstand
pressure - which in practice is determined in complex interactions between institu-
tions, political processes and public perceptions - and analyse how it affects not only
the extent of expropriation but also contractual relations between governments and
private investors, including the possibility of privatisation.

Our work is related to the literature on strategic sovereign debt and default,13

9In this context, ‘contract’ encompasses taxes, regulations and other relevant aspects of the
business environment subject to government control or influence.

10A strand of this literature studies self-enforcing long-term contracting in an stationary,
infinitely-repeated, bilateral-monopoly game in which the leaseholder has to make investments at
each stage and breach of contract leads to autarky (Thomas and Worrall, 1994). We abstract from
such investments and consider the case in which the distribution of states is non-stationary and the
government may turn to an alternative partner when a given contract expires or is expropriated.

11See the collection of papers edited by Hogan and Sturzenegger (2010) for theoretical and
empirical papers on the expropriation issue in the context of natural resources. They use the term
‘natural resource trap’ for the privatisation trap in the natural resource context. See also Hajzler
(2012) for an overview of sectoral patterns of expropriation.

12See eg. Di Tella, Dubra and MacCulloch (2010) on the interaction between economic conditions
on the one hand and social beliefs and political attitudes on the other.

13Tomz and Wright (2010) present historical evidence for both expropriation and default and
show that defaulting states tend also to expropriate. They also analyse how incentives to default
and expropriate vary with the economic cycle, risk aversion of governments, and costs of default
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going back to the seminal paper of Eaton and Gersovits (1981).14 Of particular
relevance to our work is recent research by Arellano and Ramanarayanan (2012) who
study a dynamic model of sovereign borrowing with endogenous default and interest
rate spreads and two possible bond maturities, short-term and long-term. They
show that long-term debt provides a hedge against future fluctuations in spreads,
whereas short-term debt provides better incentives to repay. This has implications
for the maturity structure of sovereign debt.

We are aware of only three other papers that explicitly consider the issue of
(optimal) contract length. Harris and Holmström (1987) associate length with time
between renegotiation of a given contract and considers a setting where costly rene-
gotiation is necessary to discover and incorporate new information. Ellman (2006)
studies the tradeoff between incentives for relation-specific investments and the ben-
efit of switching to a better partner. Harstad (2015) argues that the optimal length
of climate agreements trades off the hold-up problem of inefficient technology in-
vestment incentives against the problem of choosing the right amount of emission
quotas. None of these papers allows for strategically breaching a contract to enter
into a new, more advantageous one, as we do.

The paper is organised as follows. In Section 2, we set up a general model and
in Section 3 formalise the resource trap; in Section 4, we consider a deterministic
version of the model, and in Section 5 the general case with stochasticity; finally, in
Section 6, we conclude.

2 The Set Up

The government holds a natural resource. The resource is infinitely lived and re-
newable and generates a resource rent flow of Rt at time t. Rt should be thought of
as revenues emanating from the resource net of costs of exploitation.

Time is continuous and Rt is a geometric Brownian motion, i.e. has the stochastic
differential equation (SDE) representation

dRt = µRtdt+ σRtdWt, (2.1)

where W = {Wt; t ≥ 0} is a Brownian motion defined on the complete probability
space (Ω,=, P ) and µ and σ ≥ 0 are return and volatility parameters. Starting from
a given initial value r0, the SDE has the unique solution, Rt = r0e

(µ−σ2/2)t+σWt .15

and expropriation.
14See Panizza et al. (2010) for a recent review of this literature.
15Hence, ln (Rt) is a Brownian motion with trend parameter µ− σ2

2 and per-unit-time standard
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Denote by {=t; t ≥ 0} the nondecreasing, right-continuous family of sub-σ-algebras
of = (“filtration”) associated with W . =t contains all events depending on features
of sample paths up to time t, or, even more informally, information on all events
that have taken place up to time t. Finally, we assume that µ < δ, where δ is a
discount rate, so that the expected present value of the resource rent is finite

V0 = E

[ˆ ∞
0

e−δtRtdt

]
<∞.

In the deterministic case, σ = 0 and (2.1) reduces to the ordinary differential
equation Ṙt = µRt which, starting from a given initial value r0, has the unique
solution, Rt = r0e

µt.

2.1 Leasing contracts

The government prefers not to exploit the resource on its own but signs leasing
contracts for its exploitation.16 At any time after a contract comes into effect, but
before it expires, when observing the realised rent the government may decide to
expropriate the resource and lease it again. To formalise this, let T ≥ 0 be the
contractual expiration time (maturity) of the first contract, and let τ ≥ 0 be the
time of expropriation of the first contract. The expropriation time τ must be a
stopping time, i.e. the decision to expropriate at a certain time can depend on
observed resource rent up to that time.17 If there is no expropriation, so that the
contract is allowed to expire, we set τ = T . We therefore have

0 ≤ τ ≤ T,

with τ < T if there is expropriation and τ = T if the contract expires without
expropriation.

Expropriation of a contract at time t ≥ 0 carries the cost kRt where k is a positive
constant. This assumption has the advantage of being mathematically convenient,

deviation σ. Throughout we use upper case R for the stochastic process and lower case r for a
given (deterministic) value of R at a certain time.

16This could be because the government lacks the relevant knowhow; see the various contributions
in Hogan and Sturzenegger (2010) for examples and discussions.

17In other words, τ must be measurable with respect to the σ-algebra =τ . The mathematical
concept of a stopping time in the theory of stochastic processes formalises the idea that the decision
to ‘stop’ and undertake some action should be based on information available at the time of decision
only and not rely on future events (Karatzas and Shreve, 1991). To establish that τi is a stopping
time it suffices to show that {τ > t} ∈ =t for all t > 0, i.e. for each t the event where the decision
to stop has not been made at time t must be contained in the σ-algebra generated by all possible
sample-paths up to time t.
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but it also captures the idea that the costs of expropriation are related to the value
of the resource, i.e. what is at stake (cf. Engel and Fischer, 2010). We think
of costs of expropriation not only as including direct costs, such as legal costs in
relation to litigation, but also indirect costs due to the perception of increased risk
of investment, deterioration in terms of trade, political implications, and so on (cf.
Hogan and Sturzenegger, 2010).18 Similarly, we assume that the costs of entering
into a contract at time t and begin exploiting the resource are given by cRt, where
c is a positive constant. Without loss of generality we let the entire cost of entering
into a contract fall on the leaseholder, cf. Equation (3.2). However, we think of c as
the total cost of transaction, including the cost to the government of assessing the
value of the resource or rent at the time the contract is written as well as the cost to
the firm of setting up operations. It seems reasonable that some of these costs are
increasing in the value of the resource; for example, a higher resource rent caused
by a global demand shock would tend to raise the costs of setting up operations.

The government is restricted to a contract form with a flow of payment (lease
rate) lr over a contract period starting at time t0, where l is a positive constant
and Rt0 = r. For simplicity, we assume a fixed lease rate over the lifetime of each
contract (although the lease rate will be changed with each new contract that is
entered into).19

Note that we assume that payments cannot be conditioned on the value of the
resource during the contract period while the decision to expropriate can. In real
situations, governments typically cannot observe the resource rent (in particular
underlying costs of exploitation), but they may observe various signals that are cor-
related with it (such as product price indices). It may be possible to index payments
to some such signals (e.g. royalties linked to product price indices), but this would
rarely capture all rents.20 Therefore, even in such a richer set up there would be an
incentive to expropriate for sufficiently strong signals. For our analysis, the critical
assumption is that the government cannot fully extract resource rent in all contin-

18In our full-information setting, we cannot capture possible reputation effects of expropriation
that affect behaviour of actual and potential leaseholders. Modelling such effects would require
a setting with asymmetric information about the ‘type’ of the government, or the value of k in
our model, in effect endogenising k. However, even accounting for such effects, in a world where
reputation is short-lived (for example because it is only related to the current government) it is
not unreasonable to assume that k remains constant over time.

19Rigobon (2010) discusses various reasons why payments for the exploitation of natural resources
do not typically vary completely with underlying rents or profits, including agency issues and the
desire of governments to stabilise revenues.

20Engel and Fisher (2010) write: “Attempts have been made to introduce profit-sharing mech-
anisms to reduce the temptation to expropriate, but in practice they are often abused by transfer
pricing, creating negative effect on public opinion, which in turn increases the pobability of expro-
priation.”
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gencies through contractual arrangements, including royalty payments, taxes and
the like, and hence that it has an incentive to expropriate in some circumstances.
Rather than considering a more complex environment where complete capture of
rents would not be possible for any conceivable contract (e.g. along the lines of
Harris and Holmström, 1987), we have chosen a simpler, incomplete-contracting
framework where the set of available contracts is constrained. In particular, we have
made the assumption that expropriation and transaction costs are proportional to
the resource rent while the lease rate is fixed over the contract period. Alternatively,
we could have allowed for a variable lease rate (e.g. by profit sharing) and assumed
that costs were fixed; such a formulation yields similar incentive for expropriation,
but it involves a time-inhomogenous model that is analytically intractable. While
we have chosen a formulation that is analytically convenient, the insights would
seem to carry over to a more general setting.

2.2 Government surplus

Given a contracting strategy, i.e. sequences of contract expiration times, {Ti}, and
expropriation times, {τi}, and a sequence of lease rates, {li}, the government’s
surplus, summing over all future contracts, can be written as

G = E

[
∞∑
i=1

(ˆ τi

τi−1

e−δtliRτi−1
dt− e−δτi1{τi<Ti}kRτi

)
|R0 = r0

]
(2.2)

where τ0 = 0.21

We can rewrite (2.2) as

G = r0E

[
∞∑
i=1

(ˆ τi

τi−1

e−δtliR̂τi−1
dt− e−δτi1{τi<Ti}kR̂τi

) ∣∣∣R̂0 = 1

]
, (2.3)

where R̂t = Rt/r0. Note that R̂ obeys (2.1) with the initial value R̂0 = 1. It follows
that G is homogenous in r0. It therefore suffices to find an equilibrium solution
starting from r0 = 1.

Now rewrite (2.2) by separating the first term from the remainder of the in-
finite sum, factoring Rτ1e

−δτ1 out of the sum and taking conditional expectation,
21In line with the earlier literature (cf. Engel and Fischer, 2010), we (implicitly) assume that the

leaseholder is foreign so that goverment surplus does not include profits. The qualitative nature
of our results would appear to hold also if profits were included, so long as these had lower weight
than government revenue.
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conditioning on information available at =τ1 (i.e. on Rτ1),

G = E

[ˆ τ1

0

e−δtl1dt− e−δτ11{τ1<T1}kRτ1

+Rτ1e
−δτ1E

[
∞∑
i=2

(ˆ τi

τi−1

e−δ[t−τ1]liŘτi−1
dt− e−δ[τi−τ1]1{τi<Ti}kŘτi

)
|Rτ1

]
|R0 = 1

]
,

(2.4)

where Řt = Rt/Rτ1 . By the Markov property and time-homogeneity of the geometric
Brownian motion the inner conditional expectation reduces to G starting from τ1

and so we can write

G = E

[ˆ τ1

0

e−δtl1dt− e−δτ11{τ1<T1}kRτ1 +Rτ1e
−δτ1G

]
, (2.5)

The first two terms inside the expectation on the right-hand side represent the value
of the first contract, allowing for the possibility of expropriation. The last term is the
discounted value of the resource starting at the time of expiration or expropriation
of the first contract.

It is now clear that the problem ‘starts anew’ at τ1. In this formulation the
resource rent process begins at 1 in each contract period, the optimal contract
length T will be the same for all contract periods, and the expropriation time in
each contract period will have the same distribution, or, put in terms of sample
paths of the resource rent, be the same functional of the sample path.

2.3 Determination of lease rates

There is perfect competition for leasing utilisation rights. Given a contract length
T and an expropriation strategy τ , expected profit to the holder of the first contract
(leaseholder) is given by

π = E

[ˆ τ

0

e−δt (Rt − l) dt− c
]
, (2.6)

where c is the cost of entering into a leasehold and we have normalised the inital
resource rent to R0 = 1.

Since there is perfect competition for leasing the resource, we have the condition
that

π = 0, (2.7)
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which implies

l =
δE
[´ τ

0
e−δtRtdt− c

]
1− Ee−δτ

. (2.8)

Applying Ito’s rule to e−δtRt it is immediate that

e−δtRt −R0 = − (δ − µ)

ˆ t

0

e−δsRsds+ σ

ˆ t

0

e−δsRsdWs

which gives the following expression for l:

l =
δ

δ − µ
1− Ee−δτRτ − c (δ − µ)

1− Ee−δτ
(2.9)

provided that the stopping time τ has finite expectation.

2.4 Equilibrium

We may think of the government’s decision problem as occurring in two stages: first,
the government selects a maturity for the contract, and second, during the lifetime
of the contract, it must decide on when to terminate the contract, i.e. whether to
expropriate or allow the contract to expire.

First consider the problem of expropriation of a contract. Fix the contract length
T , take the lease rate l as given and define the optimal payoff, or value function

V = sup
τ≤T

G, (2.10)

where the supremum is taken over all stopping times τ ≤ T . By (2.5), V must
satisfy the equation22

V = sup
τ≤T

E

[ˆ τ

0

e−δtldt− e−δτ1{τ<T}kRτ +Rτe
−δτV |R0 = 1

]
. (2.11)

The equilibrium in this model is given by an optimal contract of length T ∗that
maximises the (net) value of the resource, V , an expropriation time, τ ∗, that solves
(2.11) and a lease rate, l∗, determined by the zero-profit condition (2.7).23

22Note that V is the value of the option to terminate the contract by expropriation. Analytically
it is similar to an American call option with a particular payoff structure. We elaborate on this
point in Section 5.1 below.

23The equilibrium is renegotiation proof provided that contracting costs, c, and expropriation
costs, k, apply in the relevant circumstances. In particular, it seems reasonable that any attempt
to renege on the contract - whether by outright expropriation or to obtain more favourable terms
through renegotiation - is considered a breach of contract that carries costs; here, for simplicity,
we assume that these costs are the same, and equal to k, for any type of breach.
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Table 1: Baseline parameter values
Cost of expropriation k = 1
Cost of contracting c = 0.5

Discount rate δ = 0.1
Resource rent growth rate µ = 0.02
Resource rent volatility σ = 0.1

2.5 Parametrisation

Below we present numerical results for a parametrised version of the model. For
our baseline case, we use the parameter values given in Table 1. Thinking of time
as measured in years, the resource rent has a growth rate of two per cent and
a volatility of 10 per cent, while the discount rate is 10 per cent. The cost of
expropriation corresponds to resource rent for one year while the cost of contracting
is half of that.

Actual parameter values will of course vary depending on the specific circum-
stances, such as country, resource and market conditions. We have attempted to
select baseline values that are within a reasonable range.

Prices of commodities produced on the basis of renewable resources can provide
an indication of the dynamics of the underlying resource rent. For example, over
the last thirty years the real world-price of fish meal has a trend of 3.8 per cent
and volatility of 15 per cent p.a.; the corresponding numbers for aluminium (an
important driver of hydro rents) are -0.4 and 19.1 per cent and for timber 0.9 and
12.2 per cent.24

We have assumed the government and market participants use the same discount
rate. Indeed, in many countries governments employ a market-based discount rate
for projects which could be implemented by private parties. In developed economies,
this tends to put the discount rate in the range of 7-10 per cent; in developing
economies rates are often higher.25

Clearly, the cost of expropriation will depend critically on conditions prevailing
at the time it happens. Taking wider repercussions into account - e.g. possible
market exclusion, capital flight or retaliation - the cost may well become large; in
particular, it does not seem unreasonable that it is of a similar order of magnitude
as the net rent of a particular natural resource over one year.26

24These values are calculated based on monthly data from UNCTAD (fish meal and aluminium)
and the World Bank (timber), deflated by the US Produer Price Index.

25See discussion in Zhuang et al. (2007).
26In the literature on sovereign default it is common to assume the cost of default to be a fraction

of output. For example, Aguiar and Gopinath (2006) assume a value of 5% of a year’s worth of
gross domestic product, Arellano and Ramanarayanan (2012) 4.5% while Hatchondo and Martinez
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Similarly, the cost of contracting - which includes not only the pure transaction
cost, but also costs of setting up operations and making necessary investments - will
depend on conditions but may well be large; we assume it to be 50 per cent of the
net annual resource rent at the initiation of utilisation.

Obviously, other parameter values could have been argued for. However, as
we shall see below, the qualitative nature of our results is robust to the choice of
parameter values as long as they are within reasonable bounds.

3 Resource trap

Inserting (2.6) and (2.7) into (2.2), for an arbitrary contracting strategy we get

G = E

[
∞∑
i=1

(ˆ τi

τi−1

e−δtRtdt− e−δτi−1cRτi−1
− e−δτi1{τi<Ti}kRτi

)]
. (3.1)

Rewriting this expression, we have

G = E

[ˆ ∞
0

e−δtRtdt

]
− E

[
∞∑
i=1

(
e−δτi−1cRτi−1

+ e−δτi1{τi<Ti}kRτi

)]
. (3.2)

The first term on the right-hand side of the equation is the value of the resource
given by the expected present value of the resource rent. The second term is the
expected present value of costs associated with writing and expropriating contracts.
In other words, the government receives the present value of the resource rent less
all transaction costs.

It follows that the government’s surplus would be maximised if transaction costs
could be avoided. If the government could commit never to expropriate a contract,
it would. Also, it would want to enter into the longest contracts possible. We can
analyse this as the case where the cost of expropriating a contract is infinite.

Suppose k ≡ ∞. Then no contracts would be expropriated so τi ≡ Ti and, hence,
(3.2) reduces to

G = E

[ˆ ∞
0

e−δtRtdt

]
− E

[
∞∑
i=1

e−δTi−1cRTi−1

]
. (3.3)

(We set T0 = 0.) This expression is maximised for T1 =∞, i.e. for an infinitely long
first contract. This amounts to selling the resource at a price equal to the expected

(2009) consider values in the range 2.5-12.5%.
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present value of the resource rent less the cost of making the transaction,

V ∞ = E

[ˆ ∞
0

e−δtRtdt

]
− c =

1

δ − µ
− c. (3.4)

Now we will show that if the government is unable to commit it may suffer ad-
ditional transaction costs, either because contracts are of finite maturity or because
they will be expropriated.

To see this, suppose a contract of infinite maturity that will never (i.e. with
probability zero) be expropriated could be implemented. Then the lease rate l is
easily calculated from (2.7) as

l∞ = δ

(
1

δ − µ
− c
)
. (3.5)

At any time t the value to the lessee of the remainder of the contract is

E

[ˆ ∞
t

e−δ[s−t] (Rs − l) ds |Rt

]
=

1

δ − µ
(Rt −R0) + c. (3.6)

Define the stopping time τ ε as the first time this value exceeds the cost of the
government expropriating the contract and entering into a new one by a (small)
positive margin ε > 0, i.e.

τ ε = inf

{
t ≥ 0 :

1

δ − µ
(Rt −R0) + c > (k + c)Rt + ε

}
. (3.7)

At this time the government can increase its surplus by expropriating the initial
contract and offering a new contract of the same type but with payment flow l̂ > l.
If τ ε <∞ with positive probability this contradicts the assumption that the optimal
contract is of infinite maturity and will never be expropriated.

The inequality in (3.7) can be rewritten as(
1

δ − µ
− k − c

)
Rt >

(
1

δ − µ
− c
)
R0 + ε.

This inequality will be satisfied for some t with positive probability if and only if27

k + c <
1

δ − µ
. (3.8)

27For a geometric Brownian motion, the first-passage time to any given level, say x, is finite
with positive probability, i.e. if we define λx = inf {t ≥ 0 : Rt ≥ x} then Pr {λx <∞} > 0. For a
geometric Brownian motion, Rt, such that ln (Rt) has non-negative drift, i.e. µ − σ2

2 ≥ 0, λx is
finite with probability one. If µ− σ2

2 > 0 then the expectation of λx is finite.
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This condition says that the cost of expropriation and writing a new contract is
smaller than the present value of the expected resource rent. It follows that (3.8) is
a necessary and sufficient condition for expropriation of an infinitely long contract
with positive probability.

Note that by (3.5) we must have 1
δ−µ ≥ c (otherwise the lease rate would be

negative). So if k+c is large enough for (3.8) not to hold the government would never
expropriate an infinitely long contract. It follows that under such circumstances such
a contract would in fact be optimal. In the remainder of this paper we shall assume
(3.8) is satisfied.

Under that assumption, whether expropriation occurs with certainty depends on
the properties of the resource rent process:

Proposition 1. Assume (3.8) holds. Then optimal contracts either have finite
maturity or they will be expropriated. Specifically, if µ − σ2

2
> 0, an infinitely long

contract will be expropriated with probability one and the expected expropriation time
is finite; if µ− σ2

2
= 0 and σ > 0, expropriation occurs with probability one, but the

expected expropriation time is infinite; if µ − σ2

2
< 0 and σ > 0, expropriation will

occur with positive probability, but not with certainty.

In other words, unless the resource rent process is deterministic with a non-
positive trend (i.e. σ = 0 and µ ≤ 0) the government faces a problem of time
inconsistency and must pay for this through higher transaction costs and lower
surplus.

4 The Deterministic Case

We start by considering equilibrium in the case where the resource rent is determin-
istic and given by

Rt = eµt, ∀t ≥ 0,

where we limit our attention to the non-trivial case when µ > 0. Note that by (2.7)
the lease rate for a contract that starts at time t = 0 and expires or is expropriated
at time t = τ is determined by

ˆ τ

0

(
eµt − l

)
e−δtdt− c = 0

which implies

l = δ
1− e−(δ−µ)τ

1− e−δτ

(
1

δ − µ
− c

1− e−(δ−µ)τ

)
. (4.1)
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We begin with the result that neither infinitely long contracts nor expropriation
will occur in equilibrium.

Proposition 2. When the resource rent is deterministic optimal contracts are of
finite maturity and will not be expropriated.

Proof. We know from Section 3 that an optimal contract is of finite maturity or it
will be expropriated. Suppose that it is optimal to enter into a contract (finitely or
infinitely long) that will be expropriated at time τ , where τ <∞ by Proposition 1.
The lease rate for the first such contract is given by (4.1). Consider an alternative
first contract of length T = τ with the same lease rate. Clearly, such a similar
contract with a shorter maturity will not be expropriated. Since the two contracts
are effectively the same, except that the former involves costs of expropriation, the
alternative contract is the better one. It follows that the optimal contract will not
be expropriated and is of finite length.

The lease rate over a first contract period of length T that will not be expropri-
ated may be found from (4.1) with τ = T . The discounted lease payments over the
period are given by ˆ T

0

le−δtdt =
1− e−(δ−µ)T

δ − µ
− c (4.2)

Given that the optimal contract maturity is T ∗, the value of leasing the resource
over its lifetime is given by

V ∗ =
1− e−(δ−µ)T ∗

δ − µ
− c+ e−(δ−µ)T ∗

V ∗,

or
V ∗ =

1

δ − µ
− c

1− e−(δ−µ)T ∗ . (4.3)

The value of the resource to the government is therefore given by the value of the
resource less cumulative discounted transactions (contracting) costs. Note that the
sum of discounted transactions costs declines with the contract length. The optimal
contract maturity, T ∗, must therefore be the longest such that the contract will not
be expropriated.

4.1 Optimal contract length

Consider an initial contract of maturity T ≤ T ∗ starting at 0 with lease rate l given
by (4.1) for τ = T and assume that after this contract is terminated contracts of
optimal maturity T ∗ are offered. Let V (t) be the optimal (remaining) value of this
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contract at time t. By the principle of optimality we must then have

V (t) = max
{
ldt+ V (t+ dt) e−δdt, (V ∗ − k) eµt

}
(4.4)

for any t ∈ (0, T ) and infinitesimal dt. The first term inside the brackets is the
return of the strategy of not expropriating in the interval (t, t+ dt). The second
term is the return of expropriation at time t. The dynamic programming equation
(4.4) is tantamount to V satisfying the variational inequality

V ′ (t)− δV (t) + l ≤ 0

V (t) ≥ (V ∗ − k) eµt
(4.5)

with equality holding in the first line over an interval where no expropriation takes
place.

It is easily seen that a solution to (4.5) is unique and is equal to the optimal
value function V . The optimal time of expropriation - if such a time exists - is the
first time equality obtains in the second line and strict inequality in the first.

Let

v(t) =

ˆ T

t

le−δ(s−t)ds+ e−δ(T−t)V ∗eµT (4.6)

be the value at time t ∈ (0, T ) of honouring the contract for the remainder of
its lifetime. Suppose this is the optimal policy, so v ≡ V . It follows that for all
0 ≤ t ≤ T :

v (t) ≥ (V ∗ − k) eµt, (4.7)

where the inequality will be strict, except possibly at one point of indifference be-
tween expropriation and non-expropriation (this will be the case for the optimal
contract maturity T ∗). Conversely, suppose (4.7) holds for all 0 ≤ t ≤ T with strict
inequality (except possibly at a point of indifference as before). It is easily seen that
v is a solution to the ordinary differential equation v′ − δv + l = 0 so v is a solution
to (4.5) and, hence, v ≡ V .

It follows that (4.7) is a necessary and sufficient condition for a contract of length
T ≤ T ∗ not to be expropriated.

Let f be the premium for letting the contract run to maturity rather than ex-
propriating at t, viz.

f (t) = v (t)− (V ∗ − k) eµt. (4.8)

Note that ˆ T

t

le−δ(s−t)ds =
(
1− e−δ(T−t)

) l
δ
,
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which implies

f (t) =
l

δ
+ Aeδt −Beµt,

where A = e−δT
(
eµTV ∗ − l

δ

)
> 0 and B = V ∗ − k > 0 are functions of T and T ∗

only. The condition (4.7) may therefore alternatively be written

f (t) =
l

δ
+ Aeδt −Beµt ≥ 0, (4.9)

The optimal first-period contract must be such that mint≤T f (t) = 0, since other-
wise the government could make the contract longer and it would still be honoured.

Note that we have
f ′ = δAeδt − µBeµt,

f ′′ = δ2Aeδt − µ2Beµt.

Observe that, if t̂ is a point such that f ′
(
t̂
)

= 0 then, since δ > µ, it holds
that f ′ (t) ≷ 0 for all t ≷ t̂. It follows that, if such a t̂ exists, then it is the unique
minimand.

We have that f ′ (0) < 0 . To see this, assume the contrary, i.e. that f ′ (0) ≥ 0

. Then, since f ′′ (t) > 0 whenever f ′ (t) ≥ 0, f is strictly increasing everywhere on
(0, T ]. Moreover, since f (0) ≥ 0 (by the optimality of T ), f (t) > 0 for all 0 < t ≤ T .
Since d

dT
f (0) > 0 (which we obtain by substituting (4.6) and (4.2) in (4.8) and

differentiating), it follows that the contract could be improved by extending its
maturity, contradicting the assumption that T is the optimal length of the contract.

Furthermore, we have that f ′ (T ) > 0. If this were not the case, f ′ (t) would
have to be strictly negative for all t (again, since f ′′ (t) > 0 whenever f ′ (t) ≥ 0) so
f (t) ≥ f (T ) = keµT > 0 for all t and the contract could be improved by extending
its maturity. We conclude that for a contract to be of optimal length, there is a
unique t̂ = arg mint≤T f (t) ∈ (0, T ) .

We summarise the above discussion in the following Proposition.

Proposition 3. The optimal contract is uniquely determined by the conditions

f ′
(
t̂
)

= 0, (4.10)

f
(
t̂
)

= 0, (4.11)

where f is defined in (4.9), T = T ∗, V ∗ is given by (4.3) and l is given by (4.1) with
τ = T ∗.

Figure 4.1 shows f for three different values of T given the baseline set of param-
eters (µ = 0.02, δ = 0.1, k = 1, c = 0.5). The top curve shows f for T = 18. In this
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Figure 4.1: Premium for letting contract run to maturity

case the premium of letting the contract run to maturity is always positive so this
contract will not be expropriated. It can, however, be improved upon by selecting
a longer contract. The bottom curve shows f for T = 24. In this case, when t goes
beyond 8, the premium turns negative and so the contract will be expropriated at
this point. The middle curve, with T

.
= 21.5, corresponds to the longest contract

that has a non-negative premium of not expropriating over its lifetime. This is the
optimal contract. In this case the contract can be fine tuned such that the premium
is exactly zero at its lowest point and the contract is upheld.

All the curves are U-shaped. There is no gain to expropriation in the beginning
when the contract is (ex ante) optimal. Around the middle of the contract period
expropriation becomes more tempting since the value of the resource (which is higher
by now) can be cashed in. After this point has been passed expropriation becomes
too costly in relation to the time remaining to expiration.

Note that a slight increase in the contract length beyond the optimum would
imply that the premium of honouring the contract shown in Figure 4.1 will turn
negative slightly before t̂. Effectively, the lifetime of the contract would then be
approximately halved, dropping from T

.
= 21.5 to t̂ .

= 11.9 as the contract is ex-
propriated. This implies a discrete drop in the value of the contract to a value
corresponding to that of a contract of length t̂ less the discounted cost of expropri-
ation.
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Table 2: Comparative statics in deterministic case (baseline: µ = 0.02, δ = 0.1,
k = 1, c = 0.5).

T ∗ t̂ V ∗ l∗

Baseline 21.50 11.88 11.89 1.10
k = 0.5 14.91 8.00 11.78 1.06
k = 2.0 31.89 18.35 11.96 1.15
c = 0.25 21.20 11.70 12.19 1.13
c = 1.00 22.12 12.25 11.29 1.05
δ = 0.05 20.61 10.48 32.25 1.16
δ = 0.20 24.94 16.08 5.05 1.01
µ = 0.01 31.39 18.78 10.58 1.04
µ = 0.04 14.92 7.64 15.82 1.21

4.2 Comparative statics

Using the condition (4.10) to solve for t̂, we get

t̂ =
1

δ − µ
ln
µB

δA
.

Inserting into (4.11) and simplifying gives

l∗

δ
− δ − µ

δ

(µ
δ

) µ
δ−µ B

δ
δ−µ

A
µ
δ−µ

= 0,

where l∗ is the lease rate in the optimal contract. Note that T ∗ enters into this
equation via A. Using equation (4.1) with τ = T ∗ to derive an expression for l∗ in
terms of T ∗ and the expression (4.3) for V ∗ allows in principle to solve for t̂ and T ∗.
The resulting equations do however not allow for an analytical solution and so we
have resorted to numerical solutions to study comparative statics.

The top row of the Table 2 shows the baseline solution. The value of the resource
to the government, V ∗ .

= 11.89, and the corresponding lease rate, l∗ .
= 1.10, may

be compared to the values with perfect commitment (i.e. when k = ∞) which are
given by V ∞ = 12.00 and l∞ = 1.20, respectively (cf. (3.4) and (3.5)).

In subsequent rows we vary the parameters, respectively halving and doubling
each from the baseline value.

A higher cost of expropriation involves a longer equilibrium contract, a higher
lease rate and a larger (net) value of the resource. While expropriation never oc-
curs in equilibrium the cost of expropriation affects the incentive to expropriate;
specifically, a higher cost reduces the incentive. Therefore, a higher cost of expro-
priation makes it possible to enter into a longer contract and increases the net value
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of the resource by virtue of saving contracting costs. With these parameter values,
a doubling of the expropriation cost implies an increase in optimal maturity by half.

A higher cost of contracting also involves a longer equilibrium contract, but a
lower lease rate and a smaller value of the resource. The contracting cost is borne
by the leaseholder so a higher cost requires a lower lease rate (for a given contract
length). A lower lease rate implies a smaller value of the resource. A smaller value of
the resource makes it less tempting to expropriate, making longer contracts possible.
Longer contracts counteract the direct impact of higher contracting costs and hence
mitigate the overall reduction in resource value. The impact of contracting cost is,
however, small; a doubling increases optimal maturity by only 3 per cent.

A higher discount rate has a similar effect as a higher contracting cost. The
present value of the flow of resource rent over a given contract period is lower with a
higher discount rate. Hence, both lease rate and resource value are reduced. Again,
the smaller resource value diminishes the incentive to expropriate, leading to a longer
contract. A doubling of the discount rate increases optimal maturity by 16 per cent.

A higher expected growth rate of resource rent works in a similar fashion as a
higher discount rate, but with the opposite direction and a relatively strong impact.
Both lease rate and resource value are increased while the expropriation incentive
is reduced, leading to a shorter equilbrium contract. A doubling of the growth rate
reduces optimal maturity by a third.

4.3 Expropriation boundary

It is useful, especially in relation to the stochastic version of the model, to study the
deterministic case from a different angle, viz. that of a ‘critical’ value of resource
rent at which expropriation takes place.

Keep V ∗ fixed and also - for the time being - the lease rate l. Define r̄ (t) as the
critical resource rent which demarcates profitable and non-profitable expropriation,
i.e. if we are at the point (t, r̄ (t)) we have

v (t) = r̄ (t) (V ∗ − k) ,

where on the left we have the payoff of continuation until the end and on the right
the payoff of expropriation. Using the property that r (T ) = r (t) eµ(T−t), this is
equivalent to

r̄ (t) =
l

δ

(
1− e−δ(T−t)

)
(V ∗ − k)

(1− e−(δ−µ)(T−t)V ∗)− k
. (4.12)

Note that as t approaches tc = T + 1
δ−µ log

(
1− k

V ∗

)
< T from the left the denom-
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Figure 4.2: Expropriation boundary and resource rent in deterministic case

inator approaches zero and so r̄ (t) → ∞. After this point it is not profitable to
expropriate, regardless of the level of the resource rent.

Figure 4.2 shows the expropriation boundary, computed from (4.12) with the
same parameter values as in the previous subsection and with T equal to the opti-
mal value for these parameters (see Table 2 for numerical values). The figure also
shows the resource rent trajectory Rt = eµt which touches the critical boundary
tangentially at t̂, where there is indifference between expropriating or not. With a
shorter contract the expropriation boundary would shift upwards and would then
lie strictly above Rt for all t. Similarly to our previous analysis, this indicates that
the contract can be made longer without being expropriated. Conversely, were the
contract to be made longer, the expropriation boundary would shift downwards, and
expropriation would occur at the point where the resource rent trajectory cross the
expropriation boundary.

Figure 4.2 provides some intuitive insight into the question of why the optimal
time horizon is shortened when stochasticity is added, as we shall see below. Con-
sider a contract that is optimal in the deterministic case and assume that we add
some stochasticity to the resource rent process (i.e. σ > 0). The expropriation
boundary will then be shifted up due to the addition of a new cost term, viz. the
option value of expropriation, but it will have the same properties as in the fig-
ure. In particular, it will be relatively flat to the left of t̂, where the resource rent
touches the expropriation boundary in the deterministic case. Assuming the critical
boundary will not shift much, the resource rent trajectory will make expropriation
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very likely - in fact there will be close to a 50 per cent chance of expropriation. To
avoid considerable expected expropriation costs it would then make sense to shorten
the time horizon, shifting the expropriation boundary above the resource rent path.
The effective contract lifetime (i.e. accounting for the possibility of expropriation)
will be similar as in the deterministic contract so the lease rate will not be much
affected. However, expropriation becomes less likely and the related costs are lower
and hence the value of the resource is higher than if the deterministic contract were
used.

5 The General Case

We now consider the general case where the resource rent R is a geometric Brownian
motion as in (2.1) with positive volatility σ > 0.

5.1 Optimal expropriation strategy

In this section we characterise the optimal expropriation strategy proceeding along
similar lines as in Section 4.1. Consider an initial contract of maturity T ∈ (0,∞)

starting at t = 0. We first take the lease rate l > 0 as given and assume that
after this contract expires contracts of the same maturity and value are offered. If
expropriation has not occurred by time t, let v (t, r) be the optimal (remaining)
value of this contract at resource rent Rt = r. In particular, v (0, 1) = V and
v (T, r) = rV , where V is given by (2.11).

By the principle of optimality, we must then have

v (t, Rt) = max
{
ldt+ E

[
v (t+ dt, Rt+dt) e

−δdt |Rt

]
, (V − k)Rt

}
, (5.1)

for any t ∈ (0, T ) and infinitesimal dt. The first term inside the brackets is the
expected return of the strategy of not expropriating in the interval (t, t+ dt). The
second term is the return of expropriation at time t. The optimal action (expropriate,
or wait and reconsider at time t + dt) is decided so as to maximise the expected
return. By Ito’s rule, the dynamic-programming equation (5.1) is equivalent to v
satisfying the variational inequality

vt + µrvr + σ2

2
r2vrr + l ≤ δv (t) ,

v (t, r) ≥ (V − k) eµt.
(5.2)

Over the ‘continuation’ area of the (t, r)-plane where no expropriation takes place
the first relation holds with equality and the second with strict inequality. At the
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time of expropriation - if this exists - the first relation holds with strict inequality
and the second with equality.

The problem of determining v (t, r) is analytically analogous to the pricing of an
American call option on a dividend-paying asset with underlying asset value V Rt,
dividend flow l, maturity T and a strike price k (see e.g. Duffie, 2001, and Karatzas
and Shreve, 1991). The difference is that if the option is exercised before maturity,
so τ < T , then the payment is not V Rτ − k, as would be the case in a standard
American call option, but rather (V − k)Rτ . If the option is held to maturity the
terminal payment is V RT instead of max {V RT − k, 0} in the standard case where
the strike price is fixed.

One can therefore formulate the problem as follows: find functions u (t, r) and
function r̄ (t) such that

δu = µrvr +
1

2
σ2r2urr + ut + l, for 0 < t < T, 0 < r < r̄ (t) , (5.3)

u (t, r) = r [V − k] , for 0 < t < T, r > r̄ (t) ,

ur (t, r) = V − k, for 0 < t < T, r > r̄ (t) ,

u (T, r) = rV, for r > 0.

The third equation is derived from the so-called ‘smooth fit’ condition at the expro-
priation boundary r̄ (t). The function u must be twice continuously differentiable in
the area below r̄, i.e. for (t, r) such that 0 < t < T and 0 < r < r̄ (t).

Given a solution, u, to the above problem, it can - by an application of Ito’s rule
- be shown to be unique and equal to v (t, r). The expropriation boundary r̄ then
also provides the optimal stopping strategy, i.e. it is optimal to expropriate the first
time the resource rent process hits the boundary:

τ = inf {t ≥ 0;Rt ≥ r̄ (t)} .

In general, explicit value functions and exercise strategies for American call op-
tions do not exist, necessitating the use of numerical methods. So is the case in the
problem at hand, even before the endogeneity of the dividend flow (lease rate) l and
the payoff (V ) is taken into account. We return to this below.

5.2 Infinitely long contracts

In the case of an infinitely long contract - i.e. when the resource is sold - the
partial differential equation in (5.3) reduces to an ordinary differential equation.
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Furthermore, the expropriation boundary becomes a constant r̄. In this case it is
possible to obtain an analytical solution for the optimal expropriation strategy for
given values of V and l by standard methods (e.g. Dixit and Pindyck, 1994). Taking
the endogeneity of V and l into account results in a set of non-linear equations which
do not admit closed-form solution, but are easily solved numerically. See Appendix
A for details.

With the baseline set of parameters (µ = 0.02, δ = 0.1, k = 1, c = 0.5, σ = 0.1),
the optimal expropriation boundary is found to be r̄ .

= 1.38, so it is optimal to
expropriate the resource when the resource rent first exceeds the initial value by 38
per cent. This strategy results in resource value V .

= 10.57. Recall from Section
3 that with µ − σ2

2
≥ 0 expropriation will occur with probability one and this is

the case here. Furthermore, when µ− σ2

2
> 0 the expected time to expropriation is

finite and given by (A.8). With the current parameter values the expected time to
expropriation, or effective lifetime of the contract, is Eτ .

= 21.60.

5.3 A lower bound for the expropriation boundary

Given values for l and V , a lower bound can be derived for the expropriation bound-
ary r̄ in much the same fashion as the exact boundary was derived in the determin-
istic case. Suppose that, for a given lease rate l, it is optimal to expropriate at
(t, r̄ (t)). Then the payoff associated with expropriation at this point has to be at
least as big as that of allowing the contract to run to maturity, so

r̄ (V − k) ≥ Et,r̄

[ˆ T

t

e−δ(s−t)lds+RT e
−δ(T−t)V

]
,

where Et,r̄ denotes expectation taken at time t conditional on Rt = r̄ (t). Since
Et,r̄ [RT ] = r̄ (t) eµ(T−t) we can rewrite this as

r̄ (t)
[(

1− e−δ(T−t)
)
V − k

]
≥ l

δ

(
1− e−δ(T−t)

)
. (5.4)

Let
tc = T +

1

δ − µ
ln

(
1− k

V

)
, (5.5)

where we note that tc < T .
For t < tc,

(
1− e−δ(T−t)

)
V − k is positive and finite and (5.4) implies

r̄ (t) ≥ l

δ

1− e−δ(T−t)

(1− e−(δ−µ)(T−t))V − k
. (5.6)
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Hence, r̄ (t) > 0 for t < tc. As t → tc the denominator in (5.6) tends to zero while
the numerator is bounded away from zero, so the lower bound for r̄ (t), and hence
r̄ (t) itself, will tend to infinity.

For t ≥ tc, we have
(
1− e−(δ−µ)(T−t))V − k < 0, so the opposite inequality to

(5.4) holds and it cannot pay to expropriate the contract at any level of the resource
rent. Hence, the expropriation boundary is infinite for t ≥ tc and contracts are
upheld if they survive up to this point.

5.4 Characterisation of contracts

In the characterisation of the expropriation strategy above we assumed the lease
rate l to be given and fixed. The lease rate is, however, endogenous and de-
termined by the zero-profit condition (2.7), which implies the expression (2.9).
Note that in the present setting, equilibrium (cf. the definition in Section 2.4)
is given by a contract of maturity, T ∗, that maximises V , an expropriation bound-
ary, r̄∗ (2.11), which provides the (time consistent) optimal expropriation strategy
τ ∗ = inf {t ≥ 0;Rt ≥ r̄∗ (t)}, and a lease rate, l∗, determined by the zero-profit con-
dition (2.7) with τ = τ ∗.

It follows directly from the properties of the expropriation boundary that suffi-
ciently short contracts will never be expropriated. Specifically, suppose a contract of
maturity T is never expropriated. Its value, V , is then given by the same expression
as in the deterministic case, viz. (4.3). From (5.5), it follows that if T satisfies
T < −1

δ−µ ln
(
1− k

V

)
the contract will not be expropriated. It is easily seen that this

will be true for any contract of maturity T < −1
δ−µ ln (1− (δ − µ) (k + c)) .

We conjecture that contracts with no expropriation are not optimal. Intuitively,
by extending a contract of length T c = −1

δ−µ ln (1− (δ − µ) (k + c)) by a little bit,
there is a gain due to costs of entering into future contracts being pushed out in time;
there is also a loss due to the possibility of expropriation - this is, however, very
unlikely since the expropriation boundary goes to infinity for contract lengths close
to T c. Alternatively, if the value function is smooth (continuously differentiable) in
T , then, since V is increasing in T for T < T c, it must hold that T ∗ > T c. If so, the
equilibrium contract involves expropriation.

We further conjecture that for finite (but positive) values of k an infinitely long
contract cannot be optimal. As demonstrated above, an infinitely long contract will
surely be expropriated. While a shorter contract may involve more frequent contract
renewals, the probability and cost of expropriation are reduced. If so, equilibrium
contracts are finite.

We have not been able to confirm these conjectures analytically, but below we
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demonstrate numerically that they are true for reasonable parameter values.

5.5 Numerical results

As noted above, the partial differential equation problem (5.3) is not amenable to
analytical solution so we must rely on numerical methods. We employ a common
approach in this type of problem: value function iteration with approximation of
the geometric Brownian motion by a simple geometric random walk. The problem
has an extra layer of complexity relative to standard option-pricing problems in
that the lease rate and payoff upon expropriation or maturity of the contract are
endogenous. It is therefore necessary to start off with a guess at the equilibrium
lease rate and resource value. Given these initial values, we derive the optimal
expropriation strategy by backward induction, which allows computation of new
values for the lease rate and resource value. The iteration is continued until the
resource value has converged, i.e. the change in resource value between iterations is
sufficiently small. Details of the numerical algorithm are given in Appendix B.28

Baseline scenario

Figure 5.1 is the stochastic counterpart of Figure 4.2. The expropriation boundary
is shown for T = 21.5 (which is the optimal maturity in the deterministic case). The
figure also shows two examples of simulated resource rent paths, where one path leads
to expropriation (at t .

= 11) and the other allows the contract to run to maturity
without expropriation. There is in fact a high probability of expropriation in this
case, viz. 61 per cent, implying substantial transaction costs and suboptimality of
contracts this long.

Figure 5.2 shows the resource value, V , and the lease rate, l, for different values of
T . The resource value increases with contract maturity up to a maximum at T .

= 7

whereafter it decreases and approaches the value of an infinitely long contract (cf.
Section 5.2). The lease rate follows a similar pattern, but reaches maximum for a
longer contract, at T .

= 8.
The relationship between contract maturity, on the one hand, and resource value

and lease rate, on the other, is driven by the probability of expropriation and life-
time of the contract. Figure 5.3 shows expected lifetime, Eτ , and the probability
of expropriation, Pr {τ < T} for the same setting as in Figure 5.2. There is no

28Due to discretisation and a finite number of simulated resource rent paths there is a small
amount of variation in the numerical results. This implies that some caution must be exercised
in the interpretation of results; in particular, when the probability of expropriation is small the
numerical error is large as a proportion of the estimated probability. For purposes of presentation,
in the figures below the results have been smoothed using the Savitzky-Golay filter in MATLAB.

26



Figure 5.1: Expropriation boundary, r̄ (t), and two simulated resource rent paths,
R

(i)
t , i = 1, 2 (µ = 0.02, δ = 0.1, k = 1, c = 0.5, σ = 0.1, T = 21.5).

expropriation at short contract lengths and hence contract lifetime is equal to con-
tract maturity.29 As the contract length approaches the optimum, expropriation
will take place, albeit at low probability; at optimum, the expropriation probability
is 3 per cent and expected contract lifetime is Eτ .

= 6.8 or 98 per cent of contract
length. For longer contracts, the expropriation probability increases and approaches
1. With expropriation, expected lifetime drops below, and eventually becomes only
a fraction of, maturity.

The reason that contract lifetime increases with maturity, but at a lower rate,
is that with longer contracts more resource rent paths lead to expropriation. Along
paths that rise quickly expropriation will occur with both short and long contracts.
However, along paths that initially remain low but eventually turn and rise to high
levels, expropriation will not occur for contracts with short maturity, but for longer
maturities it will. As contract maturity becomes very long, expropriation will occur
along almost all paths and expected contract lifetime will approach the theoretical
limit derived in Section 5.2 (Eτ .

= 21.60 for baseline parameter values).
For the lease rate, a longer maturity therefore involves two effects that pull in op-

posite directions: a higher expected lifetime tends to increase the lease rate, whereas
29With the baseline parameter values there will be no expropriation for contracts shorter than

T
.
= 1.6. The shortest contract maturity in the numerical results is T = 2 so in the theoretical

model there would, in fact, be some expropriation at all values of T considered, but with very low
probability. In the discretisation there is an upper limit on how fast the geometric random walk
can approach the expropriation boundary, so T must exceed a certain limit - T = 5 in the baseline
scenario - before expropriation can occur.
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Figure 5.2: Resource value and lease rate, baseline scenario (µ = 0.02, δ = 0.1,
k = 1, c = 0.5, σ = 0.1).
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Figure 5.3: Expected lifetime of contract and probability of expropriation, baseline
scenario (µ = 0.02, δ = 0.1, k = 1, c = 0.5, σ = 0.1).
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Figure 5.4: Resource value for alternative values of volatility (µ = 0.02, δ = 0.1,
k = 1, c = 0.5).

a lower expected return, due to a higher incidence of resource rent paths involving
expropriation and elimination of upside gains, tends to reduce it; for sufficiently long
maturities the latter effect dominates and hence the lease rate falls. For the resource
value, the same effects are at play, but in addition there is the negative impact of
expropriation costs; consequently, the resource value reaches its maximum before
the lease rate.

Comparative statics

Figure 5.4 shows the resource value as a function of contract maturity for alternative
volatities of the resource rent. A larger volatility leads to a reduction in resource
value and a shorter optimal contract maturity. For a given contract, a larger volatil-
ity results in a higher incidence of high resource rents that trigger expropriation. To
avoid excessive expropriation costs the optimal contract is shortened; nevertheless,
both expropriation and transaction costs rise, reducing (net) resource value.

Table 3 summarises the implications of changes in volatility, as well as other
parameters, on key variables, by, respectively, halving and doubling each parameter
from the baseline value.30

30For k, c, and δ, the comparative statics computations are performed on the same set of sim-
ulated resource rent paths as in the baseline solution. For σ and µ a different set of simulated
paths must necessarily be generated for each parameter value; this introduces an additional source
of variation in outcomes in these cases. This affects, in particular, estimates of the probability of
expropriation as σ and µ are varied; the order of magnitude is the same, but we are reluctant to
place too much weight on the precise numerical values.
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Table 3: Comparative statics in general case (baseline: µ = 0.02, δ = 0.1, k = 1,
c = 0.5, σ = 0.1).

T ∗ Eτ ∗ Pr {τ ∗ < T ∗} V ∗ l∗

Baseline 7.00 6.85 3.25% 11.23 0.96
σ = 0.05 10.00 9.83 2.73% 11.54 1.00
σ = 0.20 4.75 4.67 2.38% 10.73 0.90
k = 0.5 5.00 4.71 8.54% 10.73 0.90
k = 2.0 10.50 10.44 0.89% 11.61 1.01
c = 0.25 6.00 5.96 1.04% 11.83 1.00
c = 1.00 8.50 8.10 7.07% 10.21 0.88
δ = 0.05 6.25 6.14 2.64% 30.21 0.96
δ = 0.20 8.50 7.62 15.08% 4.88 0.94
µ = 0.01 7.25 7.10 3.04% 9.99 0.93
µ = 0.04 6.50 6.36 3.27% 15.00 1.01

As we would expect, the optimal contract maturity is increasing in cost of expro-
priation, transaction cost and discount rate, but decreasing in resource rent growth
rate. However, transaction cost, discount rate and growth rate have a relatively
small impact on the optimal maturity; this is mainly determined by volatility and
expropriation cost.

The probability of expropriation is mainly determined by the expropriation and
transaction cost, as well as the discount rate. Naturally, a higher cost of expropri-
ation leads to less expropriation. A higher transaction cost provides an incentive
for longer contracts with the consequence of more frequent expropriation. A higher
discount rate has a similar effect.

The results may be compared to those in the deterministic case given in Table
2. The direction of change for the variables common to both cases is the same.
Moreover, the relative changes are of the same order of magnitude, except for the
resource rent growth rate, where the impact on contract maturity is large in the
deterministic case but small in the stochastic. In the deterministic case it turns
out that a condition for optimality is that the government, mid-way through the
contract period, is indifferent between expropriation and letting the contract run to
maturity (cf. (4.11)). The incentive to expropriate therefore depends on the value of
the contract for the remainder of the period, which is strongly affected by a change
in the growth rate through the compounding effect. This property does not carry
over to the stochastic case, where the solution is based on a marginal principle of
optimality (cf. (5.1)); at each moment the comparison is between expropriation and
continuation for a short period for which the growth rate has little impact.
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The computations underlying the comparatic static exercise also yield a robust-
ness check of our results. In particular, for all parameter combinations there exists
a solution and it has similar properties as in the baseline scenario. Furthermore,
the comparative static exercise indicates that marginal effects are monotone; as a
further test of this we have solved the model for a broad range of values of k and σ
- the two parameters of most interest - confirming these results.

6 Conclusion

We have shown that the possibility of expropriation leads governments to limit
the length of contracts for exploiting renewable resources. When resource rent is
deterministic the contract length can be set so as to exactly avoid the imperative
to expropriate. In the more realistic case of stochastic resource rent the government
cannot avoid expropriation altogether, but its probability is reduced by a shorter
contract length and in optimal contracts the probability of expropriation is low.
We have also shown that higher costs of expropriation make longer contracts more
attractive and increase the net value of the resource. Increased variability of resource
rent, however, makes situations where the government finds itself unable to resist
the temptation to expropriate more likely and reduces the net value of the resource.

Our present work can be extended in several different directions. One such direc-
tion arises from inefficiency in the use of a renewable resource - e.g. overharvesting
of a fishery or insufficient maintenance of a hydro power plant as the end of a conces-
sion period draws near - that may arise from exploitation contracts of finite length.
This dimension is absent here. In reality, however, the length of a contract will affect
the incentives for ‘bad’ behaviour by the firm that is given the right to exploit the
resource: the shorter the contract the stronger the incentives for mismanagement of
the resource and the lower the resulting net resource value.31 This has implications
for incentives to expropriate and the optimal design of contracts, including contract
length.32

31Costello and Kaffine (2008) show that uncertainty about renewal of a lease, or concession, to
harvest a fishery can cause the fishing firm to choose either a ‘good stewardship path’, where the
fish stock is left in good condition at the end of the concession period, or a ‘bad stewardship path’
where the stock is overexploited. The outcome depends on model parameters, including the natural
resource growth rate, length of concession and probability of renewal, all of which are exogenous.
In our model exploitation rights are auctioned off at each contract period so the issue of renewal
is not relevant.

32While we belive that a satisfactory analysis of these issues would require a somewhat different
model, and as such is beyond the scope of the present paper, in the Appendix we provide a brief
sketch of how the present model could be extended to capture, in an admittedly rather simplistic
way, some of the relevant effects.
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Another interesting possibility for future research is to take political economy
(or public choice) aspects into account. More specifically, different governments may
attach different costs to expropriation, depending on their ideology or - in a more
Machiavellian vein (cf. Biais and Perotti, 2002) - to what voter groups they fetch
their support. Contract length and, more generally, contract structure, may then
be utilised to sway the behaviour of the next government towards that of the one in
power at present.33 This will affect expropriation risk and optimal contract length
and could lead to ‘cycles’ of expropriation and different contract structures.

Finally, it may be possible to apply similar methods as we do here to the related
area of sovereign debt and default, cf. the work by Arellano and Ramanarayanan
cited in the Introduction. In that setting a stochastic income stream from a tradable
good would take the place of resource rent in our model. The aim would be to obtain
equilibrium maturity structure and interest rate spreads for sovereign borrowing.
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A Infinite contract length

An infinite contract length, T =∞, corresponds to selling the resource. In this case,
i.e. with an infinite time-horizon, the termination boundary becomes a constant, r̄.
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Given the lease rate, l > 0, and V > 0, the partial-differential equation problem of
Section 5.1 reduces to the following ordinary-differential equation problem: find a
function v (r) and a constant r̄ such that:

δv = µrv′ +
1

2
σ2r2v′′ + l for 0 < r < r̄, (A.1)

v (r) = r (V − k) , for r > r̄, (A.2)

v′ (r) = V, for r > r̄, (A.3)

where v must be twice continuously differentiable for 0 < r < r̄ and continuously
differentiable across the boundary r̄ (this is the ‘smooth fit’ condition (A.3)).

As with a finitely long contract, the boundary r̄ also provides the optimal ex-
propriation strategy, i.e. it is optimal to expropriate the first time the resource rent
process hits the expropriation boundary:

τ = τ ∗ = inf {t ≥ 0;Rt ≥ r̄} .

The above problem is of a well-known type, e.g. similar to analogous infinite-
horizon problems solved in Dixit and Pindyck (1994). The general solution to (A.1)
is of the form v (r) = A1r

β1 +A2r
β2 + l

δ
where A1 and A2 are constants and β1 > 1

and β2 < 0 are the positive and negative roots, respectively, of the characteristic
equation σ2

2
β2 +

(
µ− σ2

2

)
β − δ = 0. Since the second term of the general solution

will go to infinity as r approaches zero it must hold that A2 = 0. By continuity and
smooth fit at the termination boundary we obtain

r̄ =
βl

δ (β − 1) (V − k)
(A.4)

A =
V − k
β

r̄1−β

v (r) = Arβ +
l

δ

where we drop the indices on A1 and β1 without risk of confusion.
There are two additional complications to this problem over and above what is

the norm for problems of this type, viz. that V and the lease rate l are endogenous.
More specifically, the lease rate l is determined by the zero-profit condition ( 2.7 on
page 9) and, since Rτ = r̄, we get immediately from ( 2.9 on page 10) that

l =
δ

δ − µ
1− r̄Ee−δτ − c (δ − µ)

1− Ee−δτ
. (A.5)
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Note that τ is the first-passage time of the geometric Brownian motion to the ter-
mination boundary r̄. Calculation of the expectation Ee−δτ (the Laplace transform
of τ) is a standard exercise for such stopping times:

E
[
e−δτ

]
= exp

− ln r̄

σ2

√(µ− σ2

2

)2

+ 2σ2δ − µ+
σ2

2

 (A.6)

The value of l can now be calculated by inserting (A.6) into (A.5).
Since V = v (1) = A+ l

δ
we can use (A.4) to derive a non-linear equation for V :

V =
V − k
β

(
βl

δ (β − 1) (V − k)

)1−β

+
l

δ
. (A.7)

The equations ( A.5 on the preceding page) and ( A.7) do not admit a closed form
solution, but are easily solved numerically.

The Laplace transform ( A.6) allows for calculation of the expectation (and
higher moments) of the time to termination. Differentiating (A.6) and setting δ = 0

gives the expected time to expropriation,

Eτ =
ln r̄

µ− σ2

2

. (A.8)

B Numerical Computation

The numerical algorithm for computing an approximation to the resource value
and lease rate proceeds by value function iteration. The computation is done over a
discrete time grid where the geometric Brownian motion is approximated by a simple
geometric random walk. The MATLAB code for the computation is available online
at [WEBSITE]. The algorithm proceeds roughly as follows:

1. Values are set for model parameters, µ, σ, δ, c, and k.

2. Parameters for the numerical algorithm are set, including length of each dis-
crete timestep (DT ), the number of replications of resource rent paths (Nrep)
and the parameters of the geometric random walk (see details below).

3. Nrep paths are generated for the resource rent. These are kept fixed through-
out the steps below.

4. A value for contract maturity, T , is set and an initial guess is made for V (0, 1),
the equilibrium resource value at t = 0 and R0 = 1. An initial guess is also
made for the corresponding lease rate l.
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5. An approximation is computed for V by backwards induction over a discrete
time grid, starting at T and approximating the distribution of the geometric
Brownian motion by that of a simple geometric random walk. A new approx-
imation of V (0, 1) is set to be equal to the computed value of V at t = 0

and R0 = 1 resulting from the backwards induction. The backwards induction
algorithm also delivers an approximation to the expropriation boundary r̄ (t).

6. A new approximation for the equilibrium lease rate is computed for l using
(2.8), where expectations are approximated by averaging over the previously
generated paths of the geometric random walk (Step 3).

7. Steps 5 and 6 are repeated until the combined absolute changes in the approx-
imations for V (0, 1) and l are smaller than a preset tolerance.

8. If the difference in V (0, 1) from the last approximation is small than a preset
tolerance the iteration for a contract of maturity T is ended. Otherwise the
algorithm is resumed from Step 5, in a fixed-point iteration, setting intial
values of V (0, 1) and l to be the last available approximations. If the fixed-
point iteration has not converged after a given number of iterations, then a
bisection algorithm is employed to reach the desired precision.

9. The equilibrium solution is found by finding the contract maturity that max-
imises the resource value V (0, 1).

B.1 Approximating the geometric Brownian motion

Time is measured in steps of length ∆, where 1/∆ is an even integer. A contract
of maturity T corresponds to N = T/∆ steps and time then runs over the values
{tj = j∆; j = 0, 1, ..., N}. Note in particular that t0 = 0 and tN = T .

The resource rent process R is approximated by a geometric random walk R̂,
where

R̂tj+1
=

{
R̂tju

R̂tju
−1

with probability p
with probability 1− p

and

u = eσ
√

∆,

pu+ (1− p)u−1 = eµ∆,
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which preserves the drift and volatility parameters of the geometric Brownian motion
for small values of ∆ (Sigman, 2006). This implies that ER̂tj = eµtj = ERtj and
V ar

(
R̂tj

)
.
= eµtj = V ar

(
Rtj

)
.

C Utilisation of the resource

In this appendix, we briefly consider the question of resource utilisation by the
leaseholder and its relationship to contract length and expropriation. A full formal
analysis of this issue is quite challenging and lies outside the scope of this paper.
In what follows we merely sketch a very simple implementation in the setting of
Section 2.3.

We assume that the leaseholder needs to make a single, up-front investment in
order to utilise the resource and that the larger that investment the larger is the
realised resource rent. Hence, in this setting the transaction cost c is interpreted as
the cost of investment necessary to achieve a certain degree of resource utilisiation.
Moreover, we assume the investment is made immediately after the contract has been
entered into, that it cannot be contracted upon in advance and that it cannot be
expropriated by the government. Upon expropriation of the contract the investment
is lost, both to the leaseholder and the government.

To introduce notation, let I > 0 be an investment of a leaseholder made at
the outset of a contract period. The investment cost is given by an increasing
and convex function c (I) > 0. The flow of realised resource rent at each moment
during the lifetime of the contract is given by γ (I)Rt, where Rt now stands for
an index of potential resource rent (rather than for the flow of resource rent itself)
and γ (I) > 0 is an increasing, concave function. Given a contract length, T , an
expropriation strategy, τ and a lease rate, l, expected profit to the holder of the first
contract (leaseholder) is given by

π = E

[ˆ τ

0

e−δt (γ (I)Rt − l) dt− c (I)

]
. (C.1)

Note that this equation is the same as (2.6) except that the flow of revenues is given
by γ (I)Rt, instead of Rt, and it is made explicit that c is a function of the initial
investment I.

Since the investment takes place after the contract has been entered into, the
lease rate l and contract length T are taken as given by the leaseholder. Hence, the
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initial investment I is determined by the first-order condition

E

[ˆ τ

0

γ′ (I)Rte
−δtdt− c′ (I)

]
= 0, (C.2)

which can be rewritten as
c′ (I) = ρ (τ) γ′ (I) , (C.3)

where ρ (τ) = E
[´ τ

0
Rte

−δtdt
]
is the expected present value of the potential resource

rent index.34 Hence, at the optimal level the marginal cost of investment is equal to
the marginal expected present value of resource rent.

We are ultimately interested in the relationship between the initial investment
and contract length. The latter enters implicitly into (C.3) through its effect on the
expropriation strategy τ . Since ρ (τ) is increasing in τ (for the moment thinking of
τ as a scalar rather than a stochastic variable) it is easily seen from (C.3) that the
larger is τ the larger is the optimal investment I. Hence, if, for each realised path
of the resource rent, τ is increasing in T , then I and c (I) will also be increasing in
T . Unfortunately, we cannot establish this as a general result for each realised path
of R (in fact it seems unlikely to be true).

Consider, however, the deterministic case and assume, as in Section 4, that there
is an optimal contract T ∗ such that there is no expropriation for T ≤ T ∗ and, hence,
τ ≡ T . It then follows immediately that initial investment and the associated cost
are both increasing in contract length. This is in accordance with intuition: the
leaseholder is willing to make a larger initial investment in order to extract a larger
flow of rent from the resource provided she reaps the benefits over a longer contract
period.

As for the stochastic case, our numerical results indicate that, for a fixed c, τ is
an increasing function of the contract length in expected value terms (cf. Fig. 5.3).
Even if here the equilibrium contract length, lease rate and expropriation strategy
will be different, one would, intuitively, expect a similar result to continue to hold in
this case, in the sense that ρ (τ) increases with T , resulting in a positive relationship
between contract length and initial investment.

34Assuming there is an interior solution to (C.3) it follows from convexity of c and concavity of
γ that the second-order condition for a maximum is satisfied.
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