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Epistemically robust strategy subsetsa

Geir B. Asheimb Mark Voorneveldc Jörgen W. Weibulld

Abstract

We define a concept of epistemic robustness in the context of an epistemic

model of a finite normal game where a player type corresponds to a belief over

the profiles of opponent strategies and types. A Cartesian product X of pure-

strategy subsets is epistemically robust if there is a Cartesian product Y of

player type subsets with X as the associated set of best reply profiles such

that the set Yi contains all player types that believe with sufficient probability

that the others are of types in Y−i and play best replies. This robustness

concept provides epistemic foundations for set-valued generalizations of strict

Nash equilibrium, applicable also to games without strict Nash equilibria. We

relate our concept to closedness under rational behavior and thus to strategic

stability and to the best reply property and thus to rationalizability.

Keywords: Epistemic game theory; epistemic robustness; rationalizability;

closedness under rational behavior; mutual p-belief.
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1 Introduction

In most applications of noncooperative game theory, Nash equilibrium is used as a

tool to predict behavior. Under what conditions, if any, is this approach justified?

In his Ph.D. thesis, Nash (1950) suggested two interpretations of Nash equilibrium,

one rationalistic, in which all players are fully rational, know the game, and play it

exactly once. In the other, “mass action” interpretation, there is a large population

of actors for each player role of the game, and now and then exactly one actor

from each player population is drawn at random to play the game in his or her

player role, and this is repeated (i.i.d.) indefinitely over time. Whereas the latter

interpretation is studied in the literature on evolutionary game theory and social

learning, the former—which is the interpretation we will be concerned with here—is

studied in a sizeable literature on epistemic foundations of Nash equilibrium. It

is by now well-known from this literature that players’ rationality and beliefs or

knowledge about the game and each others’ rationality in general do not imply

that they necessarily play a Nash equilibrium or even that their conjectures about

each others’ actions form a Nash equilibrium; see Bernheim (1984), Pearce (1984),

Aumann and Brandenburger (1995).

The problem is not only a matter of coordination of beliefs (conjectures or ex-

pectations), as in a game with multiple equilibria. It also concerns the fact that,

in Nash equilibrium interpreted as an equilibrium in belief (see Aumann and Bran-

denburger, 1995, Theorems A and B), beliefs are supposed to correspond to specific

randomizations over the others’ strategies. In particular, a player might have op-

ponents with multiple pure strategies that maximize their expected payoffs, given

their equilibrium beliefs. Hence, for these opponents, any randomization over their

pure best replies maximizes their expected payoffs. Yet in Nash equilibrium, the

player is assumed to have a belief that singles out a randomization over the best

replies of her opponents that serves to keep this player indifferent across the support

of her equilibrium strategies, and ensures that none of the player’s other strategies

are better replies. In addition, a player’s belief concerning the behavior of others

assigns positive probability only to best replies; players are not allowed to entertain

any doubt about the rationality of their opponents.

Our aim is to formalize a notion of epistemic robustness that relaxes these re-

quirements. In order to achieve this, we have to move away from point-valued to

set-valued solution concepts. In line with the terminology of epistemic game theory,
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let a player’s epistemic type correspond to a belief over the profiles of opponent

strategies and types. Assume that the epistemic model is complete in the sense that

all possible types are represented in the model. Let non-empty Cartesian products

of (pure-strategy or type) subsets be referred to as (strategy or type) blocks (cf.

Myerson and Weibull, 2015). Say that a strategy block X = X1 × · · · ×Xn is epis-

temically robust if there exists a corresponding type block Y = Y1 × · · · × Yn such

that: for each player i,

(I) the strategy subset Xi coincides with the set of best replies of the types in Yi;

(II) the set Yi contains all player types that believe with sufficient probability that

the others are of types in Y−i and play best replies.

Here, for each player, (II) requires the player’s type subset to be robust in the

sense of including all possible probability distributions over opponent pure-strategy

profiles that consist of best replies to the beliefs of opponent types that are included

in the opponents’ type subsets, even including player types with a smidgen of doubt

that only these strategies are played. In particular, our epistemic model does not

allow a player to pinpoint a specific opponent type or a specific best reply for an

opponent type that has multiple best replies. The purpose of (I) is, for each player,

to map this robust type subset into a robust subset of pure strategies by means of

the best reply correspondence.

Consider in contrast the case where point (II) above is replaced by:

(II ′) the set Yi contains only player types that believe with probability 1 that the

others are of types in Y−i and play best replies.

Tan and Werlang (1988) show that the strategy block X is a best reply set (Pearce,

1984) if there exists a corresponding type block Y such that (I) and (II ′) hold for

all players. This epistemic characterization of a best reply set X explains why, for

each player i, all strategies in Xi are included. In contrast, the concept of epistemic

robustness explains why all strategies outside Xi are excluded, as a rational player

will never choose such a strategy, not even if the player with small probability

believes that opponents will not stick to their types Y−i or will not choose best

replies.

Any strict Nash equilibrium, viewed as a singleton strategy block, is epistemi-

cally robust. In this case, each player has opponents with unique pure strategies

that maximize their expected payoffs, given their equilibrium beliefs. The player’s
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equilibrium strategy remains her unique best reply, as long as she is sufficiently

sure that the others stick to their unique best replies. By contrast, non-strict pure-

strategy Nash equilibria by definition have ‘unused’ best replies and are consequently

not epistemically robust: a player, even if she is sure that her opponents strive to

maximize their expected payoffs given their equilibrium beliefs, might well believe

that her opponents play such alternative best replies.

In informal terms our Proposition 1 establishes that epistemic robustness is suffi-

cient and necessary for the non-existence of such ‘unused’ best replies. Consequently,

epistemic robustness captures through restrictions on the players’ beliefs a property

satisfied by strict Nash equilibria, but not by non-strict pure-strategy Nash equi-

libria. The restrictions on players’ beliefs implied by epistemic robustness can be

imposed also on games without strict Nash equilibria. Indeed, our Propositions 2–5

show how epistemic robustness is achieved by variants of curb sets. A curb set

(mnemonic for ‘closed under rational behavior’) is a strategy block that contains, for

each player, all best replies to all probability distributions over the opponent strate-

gies in the block.1 Hence, if a player believes that her opponents stick to strategies

from their components of a curb set, then she’d better stick to her strategies as

well.

A strategy block is fixed under rational behavior (furb; or ‘tight’ curb in the

terminology of Basu and Weibull, 1991) if each player’s component not only con-

tains, but is identical with the set of best replies to all probability distributions over

the opponent strategies in the block. Basu and Weibull (1991) show that minimal

curb (mincurb) sets and the unique largest furb set are important special cases

of furb sets. The latter equals the strategy block of rationalizable strategies (Bern-

heim, 1984; Pearce, 1984). At the other extreme, mincurb is a natural set-valued

generalization of strict Nash equilibrium. The main purpose of this paper is to pro-

vide epistemic foundations for set-valued generalizations of strict Nash equilibrium.

Our results are not intended to advocate any particular point- or set-valued solution

concept, only to propose a definition of epistemic robustness and apply this to some

1 Curb sets and variants were introduced by Basu and Weibull (1991) and have since been

used in many applications. Several classes of adaptation processes eventually settle down in a

minimal curb set; cf. Hurkens (1995), Sanchirico (1996), Young (1998), and Fudenberg and Levine

(1998). Moreover, minimal curb sets give appealing results in communication games (Hurkens,

1996; Blume, 1998) and network formation games (Galeotti, Goyal, and Kamphorst, 2006). For

closure properties under generalizations of the best reply correspondence, see Ritzberger and Weibull

(1995).
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set-valued solution concepts currently in use.2

In order to illustrate our line of reasoning, consider first the two-player game

l c

u 3, 1 1, 2

m 0, 3 2, 1

In its unique Nash equilibrium, player 1’s equilibrium strategy assigns probability

2/3 to her first pure strategy and player 2’s equilibrium strategy assigns probability

1/4 to his first pure strategy. However, even if player 1’s belief about the behavior

of player 2 coincides with his equilibrium strategy, (1/4, 3/4), player 1 would be

indifferent between her two pure strategies. Hence, any pure or mixed strategy

would be optimal for her, under the equilibrium belief about player 2. For all other

beliefs about her opponent’s behavior, only one of her pure strategies would be

optimal, and likewise for player 2. The unique curb set and unique epistemically

robust subset in this game is the full set S = S1 × S2 of pure-strategy profiles.

Add a third pure strategy for each player to obtain the two-player game

l c r

u 3, 1 1, 2 0, 0

m 0, 3 2, 1 0, 0

d 5, 0 0, 0 6, 4

(1)

Strategy profile x∗ = (x∗1, x
∗
2) =

((
2
3 ,

1
3 , 0
)
,
(

1
4 ,

3
4 , 0
))

is a Nash equilibrium (indeed a

perfect and proper equilibrium). However, if player 2’s belief concerning the behavior

of 1 coincides with x∗1, then 2 is indifferent between his pure strategies l and c, and if

1 assigns equal probability to these two pure strategies of player 2, then 1 will play

the unique best reply d, a pure strategy outside the support of the equilibrium.3

Moreover, if player 2 expects 1 to reason this way, then 2 will play r: the smallest

epistemically robust subset containing the support of the mixed equilibrium x∗ is

the entire pure strategy space. By contrast, the pure-strategy profile (d, r) is a strict

2Clearly, if a strategy block is not epistemically robust, then our concept does not imply that

players should or will avoid strategies in the block.

3We emphasize that we are concerned with rationalistic analysis of a game that is played once,

and where players have beliefs about the rationality and beliefs of their opponents. If the marginal

of a player’s belief on an opponent’s strategy set is non-degenerate—so that the player is uncertain

about the behavior of the opponent—then this can be interpreted as the player believing that the

opponent is playing a mixed strategy.
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equilibrium. In this equilibrium, no player has any alternative best reply and each

equilibrium strategy remains optimal also under some uncertainty as to the other

player’s action: the set {d} × {r} is epistemically robust. In this game, all pure

strategies are rationalizable, S = S1 × S2 is a furb set, and the game’s unique

mincurb set (thus, the unique minimal furb set) is T = {d} × {r}. These are also

the epistemically robust subsets; in particular, {u,m} × {l, c} is not epistemically

robust.

Our results can be described as follows. First, the intuitive link between strict

Nash equilibria and our concept of epistemic robustness in terms of ruling out the

existence of ‘unused’ best replies is formalized in Proposition 1: a strategy block

X is not epistemically robust if and only if for each type block Y raised in its

defense—so that X is the set of best reply profiles associated with Y—there is a

player i and a type ti with a best reply outside Xi, even if ti believes with high

probability that his opponents are of types in Y−i and play best replies. Second, in

part (a) of Proposition 2, we establish that epistemically robust strategy blocks are

curb sets. As a consequence (see Ritzberger and Weibull, 1995), every epistemically

robust strategy block contains at least one strategically stable set in the sense of

Kohlberg and Mertens (1986). In part (b) of Proposition 2, although not every

curb set is epistemically robust (since a curb set may contain non-best replies), we

establish that every curb set contains an epistemically robust strategy block and we

also characterize the largest such subset. As a by-product, we obtain the existence

of epistemically robust strategy blocks in all finite games. Third, in Proposition

3 we show that a strategy block is furb if and only if it satisfies the definition

of epistemic robustness with equality, rather than inclusion, in (II). furb sets thus

have a clean epistemic robustness characterization in the present framework. Fourth,

in Proposition 4, instead of starting with strategy blocks, we start from a type

block and show how an epistemically robust strategy block can be algorithmically

obtained; we also show that this is the smallest curb set that contains all best

replies for the initial type block. Fifth, Proposition 5 shows how mincurb sets

(which are necessarily furb and hence epistemically robust) can be characterized

by initiating the above algorithm with a single type profile, while no proper subset

has this property. We argue that this latter result shows how mincurb sets captures

characteristics of strict Nash equilibrium.

As our notion of epistemic robustness checks for player types with ‘unused’ best

replies on the basis of their beliefs about the opponents’ types and rationality, we
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follow, for instance, Asheim (2006) and Brandenburger, Friedenberg, and Keisler

(2008), and model players as having beliefs about the opponents without model-

ing the players’ actual behavior. Moreover, we consider epistemic models that are

complete in the sense of including all possible beliefs. In these respects, our mod-

eling differs from that of Aumann and Brandenburger’s (1995) characterization of

Nash equilibrium. In other respects our modeling resembles that of Aumann and

Brandenburger (1995). They assume that players’ beliefs about opponent play is

commonly known. Here, we require the existence of a type block Y and consider,

for each player i, types of player i who believe that opponent types are in Y−i. And,

as do Aumann and Brandenburger (1995), we consider types of players that believe

that their opponents are rational.

The notion of persistent retracts (Kalai and Samet, 1984) goes part of the way

towards epistemic robustness. These are product sets requiring the presence of at

least one best reply to arbitrary beliefs close to the set. In other words, they are

robust to small belief perturbations, but admit alternative best replies outside the

set, in contrast to our concept of epistemic robustness. Moreover, as pointed out

by van Damme (2002, Sect. 4.5) and Myerson and Weibull (2015), persistence is

sensitive to certain game details that might be deemed strategically inessential.

The present approach is related to Tercieux’s (2006) analysis in its motivation

in terms of epistemic robustness of solution concepts and in its use of p-belief. His

epistemic approach, however, is completely different from ours. Starting from a two-

player game, he introduces a Bayesian game where payoff functions are perturbations

of the original ones and he investigates which equilibria are robust to this kind of

perturbation. Zambrano (2008) studies the stability of non-equilibrium concepts in

terms of mutual belief and is hence more closely related to our analysis. In fact, our

Proposition 3 overlaps with but is distinct from his main results. Also Hu (2007)

restricts attention to rationalizability, but allows for p-beliefs, where p < 1. In the

games considered in Hu (2007), pure strategy sets are permitted to be infinite. By

contrast, our analysis is restricted to finite games, but under the weaker condition of

mutual, rather than Hu’s common, p-belief of opponent rationality and of opponents’

types belonging to given type sets.

The remainder of the paper is organized as follows. Section 2 contains the

game theoretic and epistemic definitions used. Section 3 characterizes variants of

curb sets in terms of epistemic robustness. An appendix contains proofs of the

propositions.
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2 The model

2.1 Game theoretic definitions

Consider a finite normal-form game 〈N, (Si)i∈N , (ui)i∈N 〉, where N = {1, . . . , n}
is the non-empty and finite set of players. Each player i ∈ N has a non-empty,

finite set of pure strategies Si and a payoff function ui : S → R defined on the set

S := S1 × · · · × Sn of pure-strategy profiles. For any player i, let S−i := ×j 6=iSj .

It is over this set of other players’ pure-strategy combinations that player i will

form his or her probabilistic beliefs. These beliefs may, but need not be product

measures over the other player’s pure-strategy sets. We extend the domain of the

payoff functions to probability distributions over pure strategies as usual.

For each player i ∈ N , pure strategy si ∈ Si, and probabilistic belief σ−i ∈
M(S−i), where M(S−i) is the set of all probability distributions on the finite set

S−i, write

ui(si, σ−i) :=
∑

s−i∈S−i

σ−i(s−i)ui(si, s−i).

Define i’s best reply correspondence βi : M(S−i) → 2Si as follows: For all σ−i ∈
M(S−i),

βi(σ−i) := {si ∈ Si | ui(si, σ−i) ≥ ui(s′i, σ−i) for all s′i ∈ Si} .

Let S := {X ∈ 2S | ∅ 6= X = X1×· · ·×Xn} denote the collection of strategy blocks.

For X ∈ S we abuse notation slightly by writing, for each i ∈ N , βi(M(X−i)) as

βi(X−i). Let β(X) := β1(X−1)× · · · × βn(X−n). Each constituent set βi(X−i) ⊆ Si
in this strategy block is the set of best replies of player i to all probabilistic beliefs

over the others’ strategy choices X−i ⊆ S−i.
Following Basu and Weibull (1991), a set X ∈ S is:

closed under rational behavior (curb) if β(X) ⊆ X;

fixed under rational behavior (furb) if β(X) = X;

minimal curb (mincurb) if it is curb and does not properly contain

another one: β(X) ⊆ X and there is no X ′ ∈ S with X ′ ( X and

β(X ′) ⊆ X ′.

Basu and Weibull (1991) call a furb set a ‘tight’ curb set. The reversed inclusion,

X ⊆ β(X), is the best reply property (Pearce, 1984, p. 1033). It is shown in Basu and
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Weibull (1991, Prop. 1 and 2) that a mincurb set exists, that all mincurb sets are

furb, and that the block of rationalizable strategies is the game’s largest furb set.

While Basu and Weibull (1991) require that players believe that others’ strategy

choices are statistically independent, σ−i ∈ ×j 6=iM(Sj), we here allow players to

believe that others’ strategy choices are correlated, σ−i ∈ M(S−i).
4 Our results

carry over—with minor modifications in the proofs—to the case of independent

strategy choices. Thus, in games with more than two players, the present definition

of curb is somewhat more demanding than that in Basu and Weibull (1991), in the

sense that we require closedness under a wider space of beliefs. Hence, the present

definition may, in games with more than two players, lead to different mincurb

sets.5

2.2 Epistemic definitions

The epistemic analysis builds on the concept of player types, where a type of a player

is characterized by a probability distribution over the others’ strategies and types.

For each i ∈ N , denote by Ti player i’s non-empty type space. The state space

is defined by Ω := S × T , where T := T1 × · · · × Tn. For each player i ∈ N ,

write Ωi := Si × Ti and Ω−i := ×j 6=iΩj . To each type ti ∈ Ti of every player i is

associated a probabilistic belief µi(ti) ∈ M(Ω−i), where M(Ω−i) denotes the set of

Borel probability measures on Ω−i endowed with the topology of weak convergence.

For each player i, we thus have the player’s pure-strategy set Si, type space Ti and a

mapping µi : Ti →M(Ω−i) that to each of i’s types ti assigns a probabilistic belief,

µi(ti), over the others’ strategy choices and types. Assume that, for each i ∈ N , µi

is continuous and Ti is compact. The structure (S1, . . . , Sn, T1, . . . , Tn, µ1, . . . , µn)

is called an S-based (interactive) probability structure. Assume in addition that, for

each i ∈ N , µi is onto: all Borel probability measures on Ω−i are represented in

Ti. A probability structure with this additional property is called complete.6 The

4In doing so, we follow Osborne and Rubinstein (1994, Ch. 5).

5 We also note that a pure strategy is a best reply to some belief σ−i ∈ M(S−i) if and only if

it is not strictly dominated (by any pure or mixed strategy). This follows from Lemma 3 in Pearce

(1984), which, in turn, is closely related to Ferguson (1967, p. 86, Theorem 1) and van Damme

(1983, Lemma 3.2.1).

6An adaptation of the proof of Brandenburger, Friedenberg, and Keisler (2008, Proposition 7.2)

establishes the existence of such a complete probability structure under the assumption that, for all

i ∈ N , player i’s type space Ti is Polish (separable and completely metrizable). The exact result we

use is Proposition 6.1 in an earlier working paper version (Brandenburger, Friedenberg, and Keisler,
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completeness of the probability structure is essential for our analysis and results. In

particular, the assumption of completeness is invoked in all proofs.

For each i ∈ N , denote by si(ω) and ti(ω) i’s strategy and type in state ω ∈ Ω.

In other words, si : Ω → Si is the projection of the state space to i’s strategy set,

assigning to each state ω ∈ Ω the strategy si = si(ω) that i uses in that state.

Likewise, ti : Ω→ Ti is the projection of the state space to i’s type space. For each

player i ∈ N and positive probability p ∈ (0, 1], the p-belief operator Bp
i maps each

event (Borel-measurable subset of the state space) E ⊆ Ω to the set of states where

player i’s type attaches at least probability p to E:

Bp
i (E) := {ω ∈ Ω | µi(ti(ω))(Eωi) ≥ p} ,

where Eωi := {ω−i ∈ Ω−i | (ωi, ω−i) ∈ E}. This is the same belief operator as in Hu

(2007).7 One may interpret Bp
i (E) as the event ‘player i believes E with probability

at least p’. For all p ∈ (0, 1], Bp
i satisfies Bp

i (∅) = ∅, Bp
i (Ω) = Ω, Bp

i (E′) ⊆ Bp
i (E′′)

if E′ ⊆ E′′ (monotonicity), and Bp
i (E) = E if E = proj Ωi

E × Ω−i. The last

property means that each player i always p-believes his own strategy-type pair, for

any positive probability p. Since also Bp
i (E) = proj Ωi B

p
i (E) × Ω−i for all events

E ⊆ Ω, each operator Bp
i satisfies both positive (Bp

i (E) ⊆ Bp
i (Bp

i (E))) and negative

(¬Bp
i (E) ⊆ Bp

i (¬Bp
i (E)) introspection. For all p ∈ (0, 1], Bp

i violates the truth

axiom, meaning that Bp
i (E) ⊆ E need not hold for all E ⊆ Ω. In the special case

p = 1, we have Bp
i (E′) ∩ Bp

i (E′′) ⊆ Bp
i (E′ ∩ E′′) for all E′, E′′ ⊆ Ω. Finally,

note that Bp
i (E) is monotone with respect to p in the sense that, for all E ⊆ Ω,

Bp′

i (E) ⊇ Bp′′

i (E) if p′ < p′′.

We connect types with the payoff functions by defining i’s choice correspondence

Ci : Ti → 2Si as follows: For each of i’s types ti ∈ Ti,

Ci(ti) := βi(margS−i
µi(ti))

consists of i’s best replies when player i is of type ti. Let T := {Y ∈ 2T | ∅ 6= Y =

Y1 × · · · × Yn} denote the collection of type blocks. For any such set Y ∈ T and

player i ∈ N , write Ci(Yi) :=
⋃

ti∈Yi
Ci(ti) and C(Y ) := C1(Y1) × · · · × Cn(Yn). In

other words, these are the choices and choice profiles associated with Y . If Y ∈ T
and i ∈ N , write

[Yi] := {ω ∈ Ω | ti(ω) ∈ Yi}.

2004). Existence can also be established by constructing a universal state space (cf. Mertens and

Zamir, 1985; Brandenburger and Dekel, 1993).

7See also Monderer and Samet (1989).
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This is the event that player i is of a type in the subset Yi. Likewise, write [Y ] :=⋂
i∈N [Yi] for the event that the type profile is in Y . Finally, for each player i ∈ N ,

write Ri for the event that player i uses a best reply:

Ri := {ω ∈ Ω | si(ω) ∈ Ci(ti(ω))}.

One may interpret Ri as the event that i is rational: if ω ∈ Ri, then si(ω) is a best

reply to margS−i
µi(ti(ω)).

3 Epistemic robustness

We define a strategy block X ∈ S to be epistemically robust if there exists a p̄ < 1

such that, for each probability p ∈ [p̄, 1], there is a type block Y ∈ T (possibly

dependent on p) such that

C(Y ) = X (2)

and

Bp
i

(⋂
j 6=i

(
Rj ∩ [Yj ]

))
⊆ [Yi] for all i ∈ N . (3)

Hence, epistemic robustness requires the existence of a type block Y satisfying,

for each player i, that Xi is the set of best replies of the types in Yi, and that

every type of player i who p-believes that opponents are rational and of types in

Y−i is included in Yi. Condition (2) is thus not an equilibrium condition as it is

not interactive: it relates each player’s type subset to the same player’s strategy

subset. The interactivity enters through condition (3), which relates each player’s

type subset to the type subsets of the other players. For each p < 1, condition (3)

allows each player i to attach a positive probability to the event that others do not

play best replies and/or are of types outside Y . It follows from the monotonicity of

Bp
i (·) with respect to p that, for a fixed type block Y , if inclusion (3) is satisfied for

p = p̄, then inclusion (3) is satisfied also for all p ∈ (p̄, 1].

Note that if (2) is combined with a variant of (3), with the weak inclusion reversed

and p set to 1, then we obtain a characterization of Pearce’s (1984) best reply set

(see Tan and Werlang, 1988).

In line with what we mentioned in the introduction, we can now formally show

that if s ∈ S is a strict Nash equilibrium, then {s} is strategically robust. To see this,

define for all i ∈ N , Yi := {ti ∈ Ti | Ci(ti) = {si}}. Since the game is finite, there is,

for each player i ∈ N , a pi ∈ (0, 1) such that βi(σ−i) = {si} for all σ−i ∈ M(S−i)
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with σ−i({s−i}) ≥ pi. Let p = max{p1, . . . , pn}. Then it holds for each p ∈ [p̄, 1]:

Bp
i

(⋂
j 6=i

(
Rj ∩ [Yj ]

))
⊆ Bp

i

(
{ω ∈ Ω | ∀j 6= i, sj(ω) ∈ Xj}

)
⊆ [Yi] for all i ∈ N .

Thus, by (2) and (3), {s} is strategically robust.

Also, as discussed in the introduction, non-strict pure-strategy Nash equilibria

have ‘unused’ best replies. Our first result demonstrates that epistemic robustness

is sufficient and necessary for the non-existence of such ‘unused’ best replies.

Proposition 1 The following two statements are equivalent:

(a) X ∈ S is not epistemically robust.

(b) For all p̄ < 1, there exists p ∈ [p̄, 1] such that if Y ∈ T satisfies C(Y ) =

X, then there exist i ∈ N and ti ∈ Ti such that C(ti) * Xi and [{ti}] ⊆
Bp

i

(⋂
j 6=i

(
Rj ∩ [Yj ]

))
.

Hence, while an epistemically robust subset is defined by a set of profiles of player

types, it suffices with one player and one possible type of this player to determine

that a strategy block is not epistemically robust.

We now relate epistemically robust subsets to curb sets. To handle the fact that

all strategy profiles in any epistemically robust subset are profiles of best replies,

while curb sets may involve strategies that are not best replies, introduce the fol-

lowing notation: For each i ∈ N and Xi ⊆ Si, let

β−1
i (Xi) := {σ−i ∈M(S−i) | βi(σ−i) ⊆ Xi} .

denote the pre-image (upper inverse) of Xi under player i’s best reply correspon-

dence.8 For a given subset Xi of i’s pure strategies, β−1
i (Xi) consists of the beliefs

over others’ strategy profiles having the property that all best replies to these beliefs

are contained in Xi.

Proposition 2 Let X ∈ S.

(a) If X is epistemically robust, then X is a curb set.

(b) If X is a curb set, then ×i∈Nβi(β
−1
i (Xi)) ⊆ X is epistemically robust. Fur-

thermore, it is the largest epistemically robust subset of X.

8Harsanyi and Selten (1988) refer to such pre-images of strategy sets as stability sets.
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Claim (a) implies that every epistemically robust subset contains at least one

strategically stable set, both as defined in Kohlberg and Mertens (1986) and as

defined in Mertens (1989), see Ritzberger and Weibull (1995) and Demichelis and

Ritzberger (2003), respectively.9 Claim (a) also implies that subsets of epistemi-

cally robust sets need not be epistemically robust. Concerning claim (b), note that

×i∈Nβi(β
−1
i (Si)) equals the set of profiles of pure strategies that are best replies

to some belief. Hence, since for each i ∈ N , both βi(·) and β−1
i (·) are monotonic

w.r.t. set inclusion, it follows from Proposition 2(b) that any epistemically robust

subset involves only strategies surviving one round of strict elimination. Thus,

×i∈Nβi(β
−1
i (Si)) is the largest epistemically robust subset, while the characteriza-

tion of the smallest one(s) will be dealt with by Proposition 5.

Our proof shows that Proposition 2(a) can be slightly strengthened, as one only

needs the robustness conditions with p = 1; as long as there is a Y ∈ T such that

C(Y ) = X and (3) holds with p = 1, X is curb.10 Moreover, although epistemic

robustness allows that Y ∈ T depends on p, the proof of (b) defines Y independently

of p.

The following result shows that furb sets are characterized by epistemic robust-

ness when player types that do not believe with sufficient probability that the others

play best replies are removed:

Proposition 3 The following two statements are equivalent:

(a) X ∈ S is a furb set.

(b) There exists a p̄ < 1 such that, for each probability p ∈ [p̄, 1], there is a type

block Y ∈ T satisfying (2) such that (3) holds with equality.

The block of rationalizable strategies (Bernheim, 1984; Pearce, 1984) is the

game’s largest furb set (Basu and Weibull, 1991). Thus, it follows from Proposition

3 that epistemic robustness yields a characterization of the block of rationalizable

strategies, without involving any explicit assumption of common belief of rationality.

Instead, only mutual p-belief of rationality and type sets are assumed. Proposition

9In fact, these inclusions hold under the slightly weaker definition of curb sets in Basu and

Weibull (1991), in which a player’s belief about other players is restricted to be a product measure

over the others’ pure-strategy sets.

10In the appendix we also prove that if p ∈ (0, 1] and Y ∈ T are such that C(Y ) = X and (3)

holds for all i ∈ N , then X is a p-best reply set in the sense of Tercieux (2006).
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3 also applies to mincurb sets, as these sets are furb. In particular, it follows

from Propositions 2(a) and 3 that a strategy block is mincurb if and only if it is a

minimal epistemically robust subset.11

As much of the literature on curb sets (recall footnote 1) focuses on minimal

ones, we now turn to how smallest curb sets can be characterized in terms of

epistemic robustness. This characterization is presented through Propositions 4 and

5.

Proposition 4 starts from an arbitrary block Y of types and generates an epis-

temically robust subset by including all beliefs over the opponents’ best replies, and

all beliefs over opponents’ types that have such beliefs over their opponents, and so

on. Formally, define for any Y ∈ T the sequence 〈Y (k)〉k by Y (0) = Y and, for each

k ∈ N and i ∈ N ,

[Yi(k)] := [Yi(k − 1)] ∪B1
i

(⋂
j 6=i

(
Rj ∩ [Yj(k − 1)]

))
. (4)

Define the correspondence E : T → 2S , for any Y ∈ T , by

E(Y ) := C
(⋃

k∈N
Y (k)

)
.

We show that the strategy block E(Y ) of best replies is epistemically robust and is

the smallest curb set that includes C(Y ).12

Proposition 4 Let Y ∈ T . Then X = E(Y ) is the smallest curb set satisfying

C(Y ) ⊆ X. Furthermore, E(Y ) is epistemically robust.

Remark 1 If the strategy block C(Y ) contains strategies that are not rationaliz-

able, then E(Y ) will not be furb. Therefore, the epistemic robustness of E(Y ) does

not follow from Proposition 3; its robustness is established by invoking Proposition

2(b).

Note that if a strategy block X is epistemically robust, then there exists a type

block Y satisfying (2) such that (3) is satisfied for p = 1. Thus, X = C(Y ) = E(Y ),

showing that all epistemically robust strategy blocks can be obtained using the

algorithm of Proposition 4.

11We thank Peter Wikman for this observation.

12For each strategy block X ∈ S, there exists a unique smallest curb set X ′ ∈ S with X ⊆ X ′

(that is, X ′ is a subset of all curb sets X ′′ that include X). To see that this holds for all finite

games, note that the collection of curb sets including a given block X ∈ S is non-empty and finite,

and that the intersection of two curb sets that include X is again a curb set including X.
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The final Proposition 5 shows how mincurb sets can be characterized by epis-

temically robust subsets obtained by initiating the algorithm of Proposition 4 with

a single type profile: a strategy block X is a mincurb set if and only if (a) the

algorithm leads to X from a single type profile, and (b) no single type profile leads

to a strict subset of X.

Proposition 5 X ∈ S is a mincurb set if and only if there exists a t ∈ T such

that E({t}) = X and there exists no t′ ∈ T such that E({t′}) ( X.

Strict Nash equilibria (interpreted as equilibria in beliefs) satisfy ‘coordination’,

in the sense that there is mutual belief about the players’ sets of best replies, ‘con-

centration’, in the sense that each player has only one best reply, and epistemic

robustness (as defined here), implying that each player’s set of beliefs about oppo-

nent choices contains all probability distributions over opponent strategies that are

best replies given their beliefs. In Proposition 5, starting with a single type profile

t corresponds to ‘coordination’, using the algorithm of Proposition 4 and ending up

with E({t}) = X ensures epistemic robustness, while the non-existence of t′ ∈ T

such that E({t′}) is a proper subset of X corresponds to ‘concentration’. Hence,

these three characteristics of strict Nash equilibria characterize mincurb sets in

Proposition 5.

In order to illustrate Propositions 4 and 5, consider the Nash equilibrium x∗ in

game (1) in the introduction. This equilibrium corresponds to a type profile (t1, t2)

where t1 assigns probability 1/4 to (l, t2) and probability 3/4 to (c, t2), and where

t2 assigns probability 2/3 to (u, t1) and probability 1/3 to (m, t1). We have that

C({t1, t2}) = {u,m} × {l, c}, while the full strategy space S is the smallest curb

set that includes C({t1, t2}). Proposition 4 shows that C({t1, t2}) is not epistemi-

cally robust, since it does not coincide with the smallest curb set that includes it.

Recalling the discussion from the introduction: if player 2’s belief concerning the

behavior of 1 coincides with x∗1, then 2 is indifferent between his pure strategies l

and c, and if 1 assigns equal probability to these two pure strategies of player 2,

then 1 will play the unique best reply d, a pure strategy outside the support of the

equilibrium. Moreover, if player 2 expects 1 to reason this way, then 2 will play r.

Hence, to assure epistemic robustness, starting from type set {t1, t2}, the repeated

inclusion of all beliefs over opponents’ best replies eventually leads to the smallest

curb set, here S, that includes the Nash equilibrium that was our initial point of

departure. By contrast, for the type profile (t′1, t
′
2) where t′1 assigns probability 1 to
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(r, t′2) and t′2 assigns probability 1 to (d, t′1) we have that C({t′1, t′2}) = {(d, r)} coin-

cides with the smallest curb set that includes it. Thus, the strict equilibrium (d, r)

to which (t′1, t
′
2) corresponds is epistemically robust, when viewed as a singleton set.

Furthermore, by Proposition 5, {(d, r)} is the unique mincurb set.

Appendix

Proof of Proposition 1. Let T (X) := {Y ∈ T | C(Y ) = X} denote the collection

of type blocks having the property that X is the strategy block of best replies. By

the completeness of the probability structure, we have that T (X) is non-empty if

and only if X ⊆ ×i∈Nβi(β
−1
i (Si)). Furthermore, by completeness, if T (X) is non-

empty, then T (X) has a largest element, Ȳ (X), which is constructed by letting

Ȳi(X) = {ti ∈ Ti | Ci(ti) ⊆ Xi} for all i ∈ N .

By the definition of epistemic robustness, a strategy block X ∈ S is not epis-

temically robust if and only if, for all p̄ < 1, there exists p ∈ [p̄, 1] such that for all

Y ∈ T (X), there exists i ∈ N such that

Bp
i

(⋂
j 6=i

(
Rj ∩ [Yj ]

))
* [Yi] .

Hence, X ∈ S is not epistemic robust if and only if

(∗) X * ×i∈Nβi(β
−1
i (Si)) so that T (X) = ∅, or

(∗∗) X ⊆ ×i∈Nβi(β
−1
i (Si)) so that T (X) 6= ∅, and, for all p̄ < 1, there exists

p ∈ [p̄, 1] such that if Y ∈ T (X), then there exist i ∈ N and ti /∈ Yi such that

[{ti}] ⊆ Bp
i

(⋂
j 6=i

(
Rj ∩ [Yj ]

))
.

(b) implies (a). Assume that, for all p̄ < 1, there exists p ∈ [p̄, 1] such that if

Y ∈ T (X), then there exist i ∈ N and ti ∈ Ti such that C(ti) * Xi and [{ti}] ⊆
Bp

i

(⋂
j 6=i

(
Rj ∩ [Yj ]

))
. Note that if Y ∈ T (X) and C(ti) * Xi, then ti /∈ Yi.

Either T (X) = ∅, so that (∗) is satisfied, or T (X) 6= ∅ and, for all p̄ < 1, there

exists p ∈ [p̄, 1] such that if Y ∈ T (X), then there exist i ∈ N and ti /∈ Yi such that

[{ti}] ⊆ Bp
i

(⋂
j 6=i

(
Rj ∩ [Yj ]

))
, so that (∗∗) is satisfied.

(a) implies (b). Assume that (∗) or (∗∗) is satisfied.
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Assume that (∗) is satisfied, and fix p < 1. Then it holds trivially that if

Y ∈ T (X), then there exist i ∈ N and ti ∈ Ti such that C(ti) * Xi and [{ti}] ⊆
Bp

i

(⋂
j 6=i

(
Rj ∩ [Yj ]

))
.

Assume that (∗∗) is satisfied. Then, since Ȳ (X) ∈ T (X), it must also hold

that for all p̄ < 1, there exist p(p̄) ∈ [p̄, 1], i(p̄) ∈ N and ti(p̄)(p̄) /∈ Ȳi(p̄)(X)

such that [{ti(p̄)(p̄)}] ⊆ B
p(p̄)
i(p̄)

(⋂
j 6=i(p̄)

(
Rj ∩ [Ȳj(X)]

))
. By the definition of Ȳ (X),

C(ti(p̄)(p̄)) * Xi(p̄). It is sufficient to construct, for all p̄ < 1 and Y ∈ T (X), a type

ti(p̄) ∈ Ti such that C(ti(p̄)) = C(ti(p̄)(p̄)) and [{ti(p̄)}] ⊆ B
p(p̄)
i(p̄)

(⋂
j 6=i(p̄)

(
Rj ∩ [Yj ]

))
.

For all s−i(p̄) ∈ X−i(p̄) with margS−i(p̄)
µ−i(p̄)(ti(p̄)(p̄))(s−i(p̄)) > 0, select t−i(p̄) ∈

Y−i(p̄) such that sj ∈ Cj(tj) for all j 6= i(p̄) (which exists since C(Y ) = X) and let

µi(p̄)(ti(p̄))(s−i(p̄), t−i(p̄)) = margS−i(p̄)
µ−i(p̄)(ti(p̄)(p̄))(s−i(p̄)) .

For all s−i(p̄) /∈ X−i(p̄) with margS−i(p̄)
µ−i(p̄)(ti(p̄)(p̄))(s−i(p̄)) > 0, select t−i(p̄) ∈

Y−i(p̄) arbitrary and let again

µi(p̄)(ti(p̄))(s−i(p̄), t−i(p̄)) = margS−i(p̄)
µ−i(p̄)(ti(p̄)(p̄))(s−i(p̄)) .

Then margS−i(p̄)
µ−i(p̄)(ti(p̄))(s−i(p̄)) = margS−i(p̄)

µ−i(p̄)(ti(p̄)(p̄))(s−i(p̄)), implying that

C(ti(p̄)) = C(ti(p̄)(p̄)). Furthermore, by the construction of ti(p̄):

µi(p̄)(ti(p̄))
(
{(s−i(p̄), t−i(p̄)) ∈ S−i(p̄) × Y−i(p̄) | sj ∈ Cj(tj) for all j 6= i(p̄)}

)
= µi(p̄)(ti(p̄))

(
X−i(p̄) × T−i(p̄)

)
= µi(p̄)(ti(p̄)(p̄))

(
X−i(p̄) × T−i(p̄)

)
≥ µi(p̄)(ti(p̄)(p̄))

(
{(s−i(p̄), t−i(p̄)) ∈ S−i(p̄) × Ȳ−i(p̄)(X) | sj ∈ Cj(tj) for all j 6= i(p̄)}

)
≥ p(p̄)

since C(Y ) = X = C(Ȳ (X)).13 Thus, [{ti(p̄)}] ⊆ B
p(p̄)
i(p̄)

(⋂
j 6=i(p̄)

(
Rj ∩ [Yj ]

))
.

Proof of Proposition 2. Part (a). By assumption, there is a Y ∈ T with

C(Y ) = X such that for each i ∈ N , B1
i

(⋂
j 6=i

(
Rj ∩ [Yj ]

))
⊆ [Yi].

13To see that the first equality in the expression above holds, note first that, since C(Y ) = X,

{(s−i(p̄), t−i(p̄)) ∈ S−i(p̄) × Y−i(p̄) | sj ∈ Cj(tj) for all j 6= i(p̄)} ⊆ X−i(p̄) × T−i(p̄) .

However, by construction, for any (s−i(p̄), t−i(p̄)) ∈ X−i(p̄) × T−i(p̄) assigned positive probability by

µi(p̄)(ti(p̄)), it is the case that t−i(p̄) ∈ Y−i(p̄) and sj ∈ Cj(tj) for all j 6= i(p̄). Hence, the two sets

are given the same probability by µi(p̄)(ti(p̄)).
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Fix i ∈ N , and consider any σ−i ∈ M(X−i). Since C(Y ) = X, it follows that,

for each s−i ∈ S−i with σ−i(s−i) > 0, there exists t−i ∈ Y−i such that, for all j 6= i,

sj ∈ Cj(tj). Hence, since the probability structure is complete, there exists a

ω ∈ B1
i

(⋂
j 6=i

(
Rj ∩ [Yj ]

))
⊆ [Yi]

with margS−i
µi(ti(ω)) = σ−i. So

βi(X−i) := βi(M(X−i)) ⊆
⋃

ti∈Yi

βi(margS−i
µi(ti)) := Ci(Yi) = Xi .

Since this holds for all i ∈ N , X is a curb set.

Part (b). Assume that X ∈ S is a curb set, i.e., X satisfies β(X) ⊆ X. It

suffices to prove that ×i∈Nβi(β
−1
i (Xi)) ⊆ X is epistemically robust. That it is the

largest epistemically robust subset of X then follows immediately from the fact that,

for each i ∈ N , both βi(·) and β−1
i (·) are monotonic w.r.t. set inclusion.

Define Y ∈ T by taking, for each i ∈ N , Yi := {ti ∈ Ti | Ci(ti) ⊆ Xi}. Since

the probability structure is complete, it follows that Ci(Yi) = βi(β
−1
i (Xi)). For

notational convenience, write X ′i = βi(β
−1
i (Xi)) and X ′ = ×i∈NX

′
i. Since the game

is finite, there is, for each player i ∈ N , a pi ∈ (0, 1) such that βi(σ−i) ⊆ βi(X
′
−i)

for all σ−i ∈M(S−i) with σ−i(X
′
−i) ≥ pi. Let p = max{p1, . . . , pn}.

We first show that β(X ′) ⊆ X ′. By definition, X ′ ⊆ X, so for each i ∈ N :

M(X ′−i) ⊆ M(X−i). Moreover, as β(X) ⊆ X and, for each i ∈ N , βi(Xi) :=

βi(M(X−i)), it follows that M(X−i) ⊆ β−1
i (Xi). Hence, for each i ∈ N ,

βi(X
′
i) := βi(M(X ′−i)) ⊆ βi(M(X−i)) ⊆ βi(β−1

i (Xi)) = X ′i .

For all p ∈ [p, 1] and i ∈ N , we have that

Bp
i

(⋂
j 6=i

(Rj ∩ [Yj ])
)

= Bp
i

(⋂
j 6=i
{ω ∈ Ω | sj(ω) ∈ Cj(tj(ω)) ⊆ X ′j}

)
⊆

{
ω ∈ Ω | µi(ti(ω)){ω−i ∈ Ω−i | for all j 6= i, sj(ω) ∈ X ′j} ≥ p

}
⊆ {ω ∈ Ω | margS−i

µi(ti(ω))(X ′−i) ≥ p}

⊆ {ω ∈ Ω | Ci(ti(ω)) ⊆ βi(X ′−i)}

⊆ {ω ∈ Ω | Ci(ti(ω)) ⊆ X ′−i} = [Yi],

using β(X ′) ⊆ X ′.
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For X ∈ S and p ∈ (0, 1], write, for each i ∈ N ,

βpi (X−i) := {si ∈ Si | ∃σ−i ∈M(S−i) with σ−i(X−i) ≥ p

such that ui(si, σ−i) ≥ ui(s′i, σ−i) ∀s′i ∈ Si} .

Let βp(X) := βp1(X−1)× · · · × βpn(X−n). Following Tercieux (2006), a set X ∈ S is

a p-best reply set if βp(X) ⊆ X.

Claim: Let X ∈ S and p ∈ (0, 1]. If Y ∈ T is such that C(Y ) = X and (3) holds

for each i ∈ N , then X is a p-best reply set.

Proof. By assumption, there is a Y ∈ T with C(Y ) = X such that for each

i ∈ N , Bp
i

(⋂
j 6=i

(
Rj ∩ [Yj ]

))
⊆ [Yi].

Fix i ∈ N and consider any σ−i ∈M(S−i) with σ−i(X−i) ≥ p. Since C(Y ) = X,

it follows that, for each s−i ∈ X−i, there exists t−i ∈ Y−i such that sj ∈ Cj(tj) for

all j 6= i. Hence, since the probability structure is complete, there exists a

ω ∈ Bp
i

(⋂
j 6=i

(
Rj ∩ [Yj ]

))
⊆ [Yi]

with margS−i
µi(ti(ω)) = σ−i. So, by definition of βpi (X−i):

βpi (X−i) ⊆
⋃

ti∈Yi

βi(margS−i
µi(ti)) := Ci(Yi) = Xi .

Since this holds for all i ∈ N , X is a p-best reply set.

Proof of Proposition 3. (b) implies (a). By assumption, there is a Y ∈ T
with C(Y ) = X such that for all i ∈ N , B1

i

(⋂
j 6=i

(
Rj ∩ [Yj ]

))
= [Yi].

Fix i ∈ N . Since C(Y ) = X, and the probability structure is complete, there

exists, for any σ−i ∈M(S−i), an

ω ∈ B1
i

(⋂
j 6=i

(
Rj ∩ [Yj ]

))
= [Yi]

with margS−i
µi(ti(ω)) = σ−i if and only if σ−i ∈M(X−i). So

βi(X−i) := βi(M(X−i)) =
⋃

ti∈Yi

βi(margS−i
µi(ti)) := Ci(Yi) = Xi .

Since this holds for all i ∈ N , X is a furb set.

(a) implies (b). Assume that X ∈ S satisfies X = β(X). Since the game is

finite, there exists, for each player i ∈ N , a pi ∈ (0, 1) such that βi(σ−i) ⊆ βi(X−i)

if σ−i(X−i) ≥ pi. Let p = max{p1, . . . , pn}.
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For each p ∈ [p, 1], construct the sequence of type blocks 〈Y p(k)〉k as follows:

For each i ∈ N , let Y p
i (0) = {ti ∈ Ti | Ci(ti) ⊆ Xi}. Using continuity of µi, the

correspondence Ci : Ti ⇒ Si is upper hemi-continuous. Thus Y p
i (0) ⊆ Ti is closed,

and, since Ti is compact, so is Y p
i (0). There exists a closed set Y p

i (1) ⊆ Ti such that

[Y p
i (1)] = Bp

i

(⋂
j 6=i

(
Rj ∩ [Y p

j (0)]
))

.

It follows that Y p
i (1) ⊆ Y p

i (0). Since Y p
i (0) is compact, so is Y p

i (1). By induction,

[Y p
i (k)] = Bp

i

(⋂
j 6=i

(
Rj ∩ [Y p

j (k − 1)]
))

. (5)

defines, for each player i, a decreasing chain 〈Y p
i (k)〉k of compact and non-empty

subsets: Y p
i (k + 1) ⊆ Y p

i (k) for all k. By the finite-intersection property, Y p
i :=⋂

k∈N Y
p
i (k) is a non-empty and compact subset of Ti. For each k, let Y p(k) =

×i∈NY
p
i (k) and let Y p :=

⋂
k∈N Y

p(k). Again, these are non-empty and compact

sets.

Next, C(Y p(0)) = β (X), since the probability structure is complete. Since X is

furb, we thus have C(Y p(0)) = X. For each i ∈ N ,

[Y p
i (1)] ⊆ {ω ∈ Ω | margS−i

µi(ti(ω))(X−i) ≥ p} ,

implying that Ci(Y
p
i (1)) ⊆ βi(X−i) = X−i by the construction of p. Moreover,

since the probability structure is complete, for each i ∈ N and σ−i ∈ M(X−i),

there exists ω ∈ [Y p
i (1)] = Bp

i

(⋂
j 6=i(Rj ∩ [Y p

j (0)])
)

with margS−i
µi(ti(ω)) = σ−i,

implying that Ci(Y
p
i (1)) ⊇ βi(X−i) = X−i. Hence, Ci(Y

p
i (1)) = βi(X−i) = Xi. By

induction, it holds for all k ∈ N that C(Y p(k)) = β(X) = X . Since 〈Y p
i (k)〉k is a

decreasing chain, we also have that C(Y p) ⊆ X. The converse inclusion follows by

upper hemi-continuity of the correspondence C. To see this, suppose that xo ∈ X
but xo /∈ C (Y p). Since xo ∈ X, xo ∈ C (Y p (k)) for all k. By the Axiom of Choice:

for each k there exists a yk ∈ Y p (k) such that (yk, x
o) ∈ graph (C). By the Bolzano-

Weierstrass Theorem, we can extract a convergent subsequence for which yk → yo,

where yo ∈ Y p, since Y p is closed. Moreover, since the correspondence C is closed-

valued and u.h.c., with S compact (it is in fact finite), graph (C) ⊆ T × S is closed,

and thus (yo, xo) ∈ graph (C), contradicting the hypothesis that xo /∈ C (Y p). This

establishes the claim that C(Y p) ⊆ X.

It remains to prove that, for each i ∈ N , (3) holds with equation for Y p. Fix

i ∈ N , and let

Ek =
⋂

j 6=i

(
Rj ∩ [Y p

j (k)]
)

and E =
⋂

j 6=i

(
Rj ∩ [Y p

j ]
)
.
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Since, for each j ∈ N , 〈Y p
j (k)〉k is a decreasing chain with limit Y p

j , it follows that

〈Ek〉k is a decreasing chain with limit E.

To show Bp
i (E) ⊆ [Y p

i ], note that by (5) and monotonicity of Bp
i , we have, for

each k ∈ N, that

Bp
i (E) ⊆ Bp

i (Ek−1) = [Y p
i (k)] .

As the inclusion holds for all k ∈ N:

Bp
i (E) ⊆

⋂
k∈N

[Y p
i (k)] = [Y p

i ] .

To show Bp
i (E) ⊇ [Y p

i ], assume that ω ∈ [Y p
i ].14 This implies that ω ∈ [Y p

i (k)]

for all k, and, using (5): ω ∈ Bp
i (Ek) for all k. Since Ek = Ωi × projΩ−i

Ek, we have

that Eωi
k = projΩ−i

Ek. It follows that

µi(ti(ω))(projΩ−i
Ek) ≥ p for all k .

Thus, since 〈Ek〉k is a decreasing chain with limit E,

µi(ti(ω))(projΩ−i
E) ≥ p .

Since E = Ωi × projΩ−i
E, we have that Eωi = projΩ−i

E. Hence, the inequality

implies that ω ∈ Bp
i (E).

Proof of Proposition 4. LetX ∈ S be the smallest curb set containing C(Y ):

(i) C(Y ) ⊆ X and β(X) ⊆ X and (ii) there exists no X ′ ∈ S with C(Y ) ⊆ X ′ and

β(X ′) ⊆ X ′ ( X. We must show that X = E(Y ).

Consider the sequence 〈Y (k)〉k defined by Y (0) = Y and (4) for each k ∈ N and

i ∈ N . We show, by induction, that C(Y (k)) ⊆ X for all k ∈ N. By assumption,

Y (0) = Y ∈ T satisfies this condition. Assume that C(Y (k − 1)) ⊆ X for some

k ∈ N, and fix i ∈ N . Then, ∀j 6= i, βj(margS−j
µj(tj(ω))) ⊆ Xj if ω ∈ [Yj(k − 1)]

and sj(ω) ∈ Xj if, in addition, ω ∈ Rj . Hence, if ω ∈ B1
i

(⋂
j 6=i

(
Rj ∩ [Yj(k − 1)]

))
,

then margS−i
µi(ti(ω)) ∈ M(X−i) and Ci(ti(ω)) ⊆ βi(X−i) ⊆ X−i. Since this holds

for all i ∈ N , we have C(Y (k)) ⊆ X. This completes the induction.

Secondly, since the sequence 〈Y (k)〉k is non-decreasing and C(·) is monotonic

w.r.t. set inclusion, and the game is finite, there exist a k′ ∈ N and someX ′ ⊆ X such

that C(Y (k)) = X ′ for all k ≥ k′. Let k > k′ and consider any player i ∈ N . Since

14We thank Itai Arieli for suggesting this proof of the reversed inclusion, shorter than our original

proof. A proof of both inclusions can also be based on property (8) of Monderer and Samet (1989).
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the probability structure is complete, there exists, for each σ−i ∈ M(X ′−i) a state

ω ∈ [Yi(k)] with margS−i
µi(ti(ω)) = σ−i, implying that βi(X

′
−i) ⊆ Ci(Yi(k)) = X ′i.

Since this holds for all i ∈ N , β(X ′) ⊆ X ′. Therefore, if X ′ ( X would hold,

then this would contradict that there exists no X ′ ∈ S with C(Y ) ⊆ X ′ such that

β(X ′) ⊆ X ′ ( X. Hence, X = C
(⋃

k∈N Y (k)
)

= E(Y ).

Write X = E(Y ). To establish that X is epistemically robust, by Proposition

2(b), it is sufficient to show that

X ⊆ ×i∈Nβi(β
−1
i (Xi)) ,

keeping in mind that, for all X ′ ∈ S, X ′ ⊇ ×i∈Nβi(β
−1
i (X ′i)).

Fix i ∈ N. Define Y ′i ∈ T by taking Y ′i := {ti ∈ Ti | Ci(ti) ⊆ Xi}. Since the prob-

ability structure is complete, it follows that Ci(Y
′
i ) = βi(β

−1
i (Xi)). Furthermore, for

all k ∈ N, Y (k) ⊆ Y ′ and, hence,
⋃

k∈N Y (k) ⊆ Y ′. This implies that

Xi = C
(⋃

k∈N
Y (k)

)
⊆ Ci(Y

′
i ) = βi(β

−1
i (Xi))

since Ci(·) is monotonic w.r.t. set inclusion.

Proof of Proposition 5. (Only if) Let X ∈ S be a mincurb set. Let t ∈ T
satisfy margS−i

µi(ti)(X−i) = 1 for all i ∈ N . By construction, C({t}) ⊆ X, as X is

a curb set. By Proposition 4, E({t}) is the smallest curb set with C({t}) ⊆ E({t}).
But then E({t}) ⊆ X. The inclusion cannot be strict, as X is a mincurb set. Hence,

there exists a t ∈ T such that E({t}) = X. Moreover, as E({t′}) is a curb set for

all t′ ∈ T and X is a mincurb set, there exists no t′ ∈ T such that E({t′}) ( X.

(If) Assume that there exists a t ∈ T such that E({t}) = X and there exists no

t′ ∈ T such that E({t′}) ( X. Since E({t}) = X it follows from Proposition 4 that

X is a curb set. To show that X is a minimal curb set, suppose—to the contrary—

that there is a curb set X ′ ( X. Let t′ ∈ T be such that margS−i
µi(t

′
i)(X

′
−i) = 1 for

each i ∈ N . By construction, C({t′}) ⊆ X ′, so X ′ is a curb set containing C({t′}).
By Proposition 4, E({t′}) is the smallest curb set containing C({t′}). However,

by assumption there exists no t′ ∈ T such that E({t′}) ( X, so it must be that

E({t′}) ⊇ X. This contradicts X ′ ( X.
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