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Abstract: For a panel data regression equation with two-way unobserved heterogeneity, individual-
specific and period-specific, ‘within-individual’ and ‘within-period’ estimators, which can be given
Ordinary Least Squares (OLS) or Instrumental Variables (IV) interpretations, are considered. A
class of estimators defined as linear aggregates of these estimators, is defined. Nine aggregate esti-
mators, including between, within, and Generalized Least Squares (GLS), are special cases. Other
estimators are shown to be more robust to simultaneity and measurement error bias than the
standard aggregate estimators and more efficient than the ‘disaggregate’ estimators. Empirical
illustrations relating to manufacturing productivity are given.
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1 InTRODUCTION

A primary reason for the substantial growth in the use of panel data during the last
decades is the opportunity they give for identifying and controlling for unobserved het-
erogeneity which may disturb coefficient estimation. It is well known that (i) the potential
nuisance created by fized (additive) individual heterogeneity in OLS estimation can be
eliminated by measuring all variables from their individual means or taking individual
differences over time, (ii) the potential nuisance created by fized (additive) time specific
heterogeneity in OLS estimation can be eliminated by measuring all variables from their
time-specific means or taking time-specific differences over individuals, and (iii) efficient
estimation in the presence of suitably structured random individual- or time-specific het-
erogeneity, can be performed by (Feasible) Generalized Least Squares.

Less attention has been given to the fact that such aggregate estimators can be
constructed from disaggregate building-blocks. Approaching estimation in this way is
illuminating because regression coefficients can be estimated consistently from parts of a
panel data set in numerous ways and because the disaggregate estimators have different
degree of robustness to bias. By combining an increasing number of individual-specific or
period-specific estimators, an increasing part of the observations can be included until,
at the limit, the full data set is used. Such approaches are interesting both because
several familiar estimators (within, between, generalized least squares etc.) for panel
data models can be interpreted as linear combinations of elementary estimators, and
because we get other suggestions of estimators along the way.

The paper proceeds as follows: After, in Section 2, describing the model and its
transformations, we in Section 3 define disaggregate within estimators, each having the
interpretation as a ‘micro’ OLS (Ordinary Least Squares) or IV (Instrumental Variables)
estimator. Section 4 defines an estimator class by an arbitrary weighting of the latter,
while in Section 5, nine estimators, including three ‘within’, two ‘between’, three Gen-
eralized Least Squares (GLS), and one standard OLS estimator. The general estimator
is shown also to contain members which are more robust to violation of the standard
assumptions in random coefficient models. Both a standard regression framework and
situations with simultaneity (correlation between individual effects, period effects, and /or
disturbances on the one hand and the regressor vector on the other) and situations with
measurement errors in the regressor vector are considered. Among the latter estimators
we select estimators which are more robust to simultaneity and measurement errors and
more efficient than the ‘disaggregate’ estimators. Finally, Section 6 contains an empirical
illustration of robustness and efficiency loss, relating to manufacturing productivity.

2 MODEL, NOTATION, AND TRANSFORMATIONS

A linear regression model relating y to the (1 x K)-vector &, with observations from N
individuals and T periods is

Vit =k + B+ €, €t = o + Y 4 U,

(uzt|X) ~ IID(0702)7 (al|X) ~ ”D(ngi)7 (,Yt‘X) ~ IID(Ovo-?y% (1)
wip Loaj Lo, ,j=1,....,N; t,s=1,...,T,
where y;; and @y = (%13, ..., TKq) are the values of y and @ for individual ¢ in period ¢,
B = (p1,...,PK) is the coefficient vector, o; and 7 are random individual-specific and



period-specific effects (which may alternatively be interpreted as fixed, see Section 5),
ug is a disturbance, and k is an intercept. At the moment, we make the above standard
assumptions for two-way random effects models, which imply
E(e,|X) =0,  E(eye: | X) = 0,02 + 6,02 + 6,:8,,0° Li=1... N (g
it ) A K] 177« ts¥y 177ts ’ t,S 1’”_7T7

where 0;; =1 for i=j and = 0 for i#j, and ¢,;=1 for t=s and = 0 for t#s, and X is
the (NT' x K) matrix containing all x;s.
Let individual-specific and period-specific vectors and matrices be

Yi1 Tl Yit Tt
Y. = ) XZ — y Y= ) X't - 5
yir ;T YNt TNt
stacked into
Y. Xl' Y1 X'l
YnN- XN. Y.r X.T

and let e be the (H x 1) vector of ones, I the H-dimensional identity matrix, Ay =
egey/H, By =TIy — Ay, oo = (ay,...,ay), and v = (7q,...,7p) . Alternative ways
of writing the regression equation are

y,. = epk + X,;.0 + €., €. = epay + ¥ + Uy, i=1,..., N, (3)
y.t:eNk—i—X.t,@—i—e.t, e.t:a—{—eN’yt—l—u.t, t:17...,T, (4)

implying
Y.~ = (X —X)B+e.—¢, €. —€ = ep(o;—a) + Bpy + u;.—1, (5)

Yi—Po = (X4~ X.)B+€1—&, €1—&=DByat+ey(y—7) +ui—1us, (6)

where €;., u;., €4, w.; are defined in similar way as y;. and y.,, @ = >, 0;/N, 7 =

Sow/T, X =5, X /N, Xo =3, X4/T, 5 =>,9../N, 4. = >, y../T, etc. Pre-
multiplying (3) by By, (5) by Ap, (4) by By and (6) by Ay, give, respectively,

BTyZ == BTXlB + BTEi.’

Ap(y;. —9) = Ap(X; —X)B+ Ap(es. — ©), (7)

BNy't == BNthB + _BNe't;

Symbolizing by W, V| B, and C matrices containing within-individual, within-period,

(8)

between-individual, and between-period (co)variation, respectively, individual-specific and
period-specific cross-product matrices emerge as

Wxxij = Xj.BpX ;. =Y (wi—Ti.) (20— Z;.),
Wxyi=X;Bpy= Zthl(iBit - Z:.) (%),

Vxxts = X/'tBNX-s = Zi]il(mit—a_:.t)’(mis—i.s),
VXat == X/'tBNa = Zi]il(m,-t — a‘c.t)’(ai — @),

i,j=1,...,N, (9)

t,s=1,...,T, (10)



etc., where &. = (efp/T) X, & = (e /N) X1, & = (ehyg/(NT)X = (e /(TN)) X
We hayve:

o Wxx;j, of full rank K if x;; contains no individual-specific variables, is the (K x K)
matrix of within-individual covariation in the xs of individuals ¢ and 7, while V x x5,
of full rank K if x;; contains no period-specific variables, is the (K x K) matrix of
within-period covariation in the xs of periods t and s.

e Bxx; and Cxxy, of rank 1, are the matrices of between-individual cross-products
and between-period cross-products of the xs of individual ¢ and period t, respec-
tively.

e Wx,; and Vx are the vectors of, respectively, the within-covariation of the xs
of individual ¢ and the period-specific effects, and the within-covariation of the xs
of period ¢ and the individual-specific effects.

Premultiplying the two equations in (7) by, respectively, X;. By and (X;.—X) A,
and the two equations in (8) by, respectively, X', B and (X.; — X.) Ay, give

Wixyvii =WxxiiB+Wxejs Wi =Wy + Wiy, 6,5=1,...,N, (
Bxyii = BxxiiB + Bxeii Bx.i; = Bxaii + Bxuii, i=1,...,N, (14
VXYts = VXthB+VXetsv VXets = VXat"_VXUtS’ tys=1,...,T, (
Cxyu=CxxuB+Cxeqy, Cxet = Cxyu + Cxuus t=1,..., (

~— — ~— —

3 BASE ESTIMATORS

Since E(e;j|X) = 0 implies E(W x.;|X) = E(V x| X) = 0, (13) and (15) motivate
N? individual-specific and T? period-specific estimators of 3, to be denoted as base
estimators, or disaggregate estimators:

Bwij = W)_(lXijWXYij = (XQ-BTXj-)il(X;-BTyj-)u i,j=1,..., N, (17)
Bvis = VixiVxvis = X,ByX..) ' (X,Byy.,), t,s=1,...,T, (18)

so that Bwn is the OLS estimator based on the time series from individual ¢; ,/B\Wij,
for j # i, is the IV estimator which instruments the ‘within variation’ of individual j,
B X ;., by the ‘within variation’ of individual ¢, B7 X;.; BV“ is the OLS estimator based
on the cross-section from period ¢; BWS, for s # ¢, is the IV estimator which instruments
the ‘within variation’ of period s, B y X .s, by the ‘within variation’ of period t, By X ;.1

If individual-specific variables occur, so that W x x;; contains one or more zero rows
and columns, their coefficient estimates cannot be obtained from (17), but estimators
for the other coefficients can be solved from W y XijBWij = W xy,j- Likewise, if period-
specific variables occur, so that V xxis contains one or more zero rows and columns,

!One-regressor versions of these estimators, in a measurement error context, are considered in
Bigrn (2017, Section 7.2.2).



their coefficient estimates cannot be obtained from (18), but estimators for the other
coefficients can be solved from V' y v;.8vis = V xyis-
Since inserting for W xy; and V xyys from (13) and (15) in (17) and (18) gives

:BAWz'j -B= W;(IXZ'J'WXEU = W}lxij(wxw +Wxuij),  4i=1...,N, (19)
Bvis — B =V Vxes = Vixi(Vxar + Vxues), t,s=1,...,T,  (20)

and (1) implies

E(W xy:j| X) = E(W x| X) = Ok, i,7=1,..., N, (21)
E(VXUts’X) = E(VXat‘X) = 0[(1, t,s = 1, e ,T, (22)

BWZ-J- and Bws are unbiased. Also, BWU is T-consistent since pim(W x;;/T) =0k 1, pro-
vided that plim(W y x,;/T) is non-singular, and ,@Vts is N-consistent since plim(V y,,/N)=
Ok 1, provided that plim(V y y;,/N) is non-singular.

Some estimators may be consistent under weaker conditions than (1). The following
robustness results hold:

e Since (19) does not contain e, BWZ-J- is T-consistent if o, is fixed and unstructured
or correlated with Z,.. If 7, is correlated with Z.,, consistency fails. Symmetrically,
since (20) does not contain -, ,@Vts is N-consistent if +, is fixed and unstructured
or correlated with Z.;,. If «; is correlated with Z,., consistency fails.

e Endogeneity of or random measurement error in x,;, usually violate E(uu|X) = 0
and give E(xju;) # Ox1, pim(Wyy;/T) # Ok1 and plim(V . /N) # Ok,
making the OLS estimators BW“- and an inconsistent, while the IV estimators
B’Wij (j # i) and By, (s # t) remain T-consistent and N-consistent. respectively.

In Appendix A it is shown that when (2) holds the matrices of covariances for the
base estimators are

CBwij: Bwwl X) = (02 + 6jl02)W)_{%XijWXXikW)_(1Xlka i,j,k,l=1,...,N, (23)
CByis: Bypg X) = (02 + 050 )V ikts VxxipVxxgy  bLspa=1,...,T.  (24)
For (k,1) = (4,7) and (p,q) = (¢, s), the variance-covariance matrices emerge as
V(IBAWz’j|X) = (03 + )Wk, WxxiW xxjin ij=1...,N, (25
V(I@VtSIX) = (U?Y+O'2)V;(g(t3VXXttV;(g(st7 t,S = 17"'7T7 (26)

from which it follows that ﬁwjj and BVss are always superior to BWZ-]- (j#1) and BWS (s#

t), respectively, as V(Byy ;| X) =V (By ;5|1 X) (i # ) and V(Bys| X) =V (By | X) (t#5)
are positive definite. We have:

V(BWij|X) - V(BWjj’X) = (03 + 02)(WXXUWXX11WX1ij W;(lxj'j)
= (03 + ") (Ayxi A — L)Wk
V(IBVts|X) - V(l@Vss’X) = (O‘i + 02)( XthVXXttVXXst V)_(IXSS)
= (Ji + 0-2)(AV§(tsAV§(st IK)VXles’

where
AWXz] WXXuWXX2]7
AVth - VXXttVXth



The latter are the matrix of regression coeflicients when regressing the j-specific block
of X, X ., on the i-specific block, X;., and when regressing the s-specific block of X,
X .5, on the t- speciﬁc block, X .;, respectively, and (AWIXZ]AWlXﬂ I,),j # 1, and
(A‘_/ Xt sAvﬁ( «— L), s#t, are positive definite when all regressors are two-dimensional.

The structure is transparent in the one regressor case (K =1), (23)—(26) reducing to

SO —_
CBwij: Bww|X) = (02 +06;,0%) =Xk

WWXXijWXXkl (27)

V(Bwij| X) = (02 +o? )WXXu7

XXij

L Vi xt
C(By i Bypgl X) = (0§+5sq02)m7 (28)
s pq 28
R V.
V(ﬂvts|X) = (034—02)%7
XXts

where Wy v, BWij’ etc. are the scalar counterparts to Wy 1., BWU, etc. The coefficient
of correlation between two arbitrary individual-specific and two arbitrary period-specific
base estimators can therefore be written as, respectively,

C(BWW Ewm 1 X)
IV (Byyi; | XV By | X112
= Jg + 5]'102 Wxxik
o2+ 0% (WxxiWxxk)/?
= p(€jes 1) Ryy x i (29)
C(By it Bypgl X)
(5Vtsa Bqu| ) = : "pq 1/2
V(By | XV (B, | X))
_ er + 55(10 VXti

O-gt + o? (VXXttVXpr)1/2

= p(eisv 6iq)]%Vtiv (30)

p(BWij’ BWkl|X) =

where Ry = Wyxin/ Wy xiWyxan) /2 is the empirical coefficient of correlation
between the zs of individuals i and k; Ry vy, = Vi xy,/ (ViexuVx pr)l/ 2 is the coefficient
of correlation between the xs in periods ¢ and p; p(ejt, €y) = (03+5j102)/(ag+02); and
p(eis7 6iq) = (Ug¢+6sqg2)/(ag¢+a2)

Therefore, considering (3) as an N -equation model with one equation per individual
and common coefficient, prz i BWM | X') emerges as the product of the coefficient of cor-
relation between two es from individuals (equations) j and [ in the same period, and the
coefficient of correlation between the regressor (instrument) for individuals (equations)
i and k. Likewise, considering (4) as a T-equation model with one equation per period
and common coefficient, p(gws, gqu|X ) emerges as the product of the coefficient of cor-
relation between two es from periods (equations) s and ¢ for the same individual, and
the coefficient of correlation between the values of the regressor (instrument) in periods
t and p. Hence, P(B\WW B\Wkl\X ) has one equation-specific component (j vs. [) and one
instrument-specific component (i vs. k), while p(B\Vt o ﬁqu\X ) has one equation-specific
component (s vs. ¢) and one instrument-specific component (¢ vs. p). For j = [ (same



equation/individual) and i = k (same IV) (29) gives, respectively,
PBwijs Bwii| X) =Ry xins 17Kk,
2

P(Bwijs 5Wﬂ|X):ﬁ702> J#l,
Y

and for s = ¢ (same equation/period) and ¢ = p (same IV) (30) gives, respectively,

p(/BVts’BVps|X):RVtia t#p7

2
P(Byss IBth‘X) = 037_&‘27 s#q.
From (27) and (28) it follows that the inefficiency when instrumenting the (within)
variation of individual ¢ by the (within) variation of individual j relative to performing
OLS on the observations from individual j and when instrumenting the (within) variation
of period ¢ by the (within) variation of period s relative to performing OLS on the
observations from period s, can be expressed simply as, respectively,

V(B X) B 1 1
V(B | X)  AwxijAwxji  Riyxi;’
VBylX) 11
V(By.|X) AvxesAvxs RZ ..

Hence, R;VQXi j and R‘_/?Xt . measure the efficiency loss when using estimators that are
robust to inconsistency caused by simultaneity or random measurement error in the
regressor, respectively, (i) in a relationship for individual j using as IV observations from
another individual, 4, relative to using OLS, and (ii) in a relationship for period s by
using as IV observations from another period, t, relative to using OLS.

4 A CLASS OF MOMENT ESTIMATORS

Since each base estimator EWij and Bws uses only a minor part of the panel data set,
they are rarely real competitors to estimators utilizing the complete data set, when (1)
is valid. And even if correlation between x;; and wu;;, between &;. and «; or between I.;
and y, are allowed for, consistent aggregate estimators which are more efficient than any
of the IV estimators BWij (j #1) and BVts (s # t) may exist. Yet, the insight provided
by examining the base estimators is useful when constructing composite estimators of 3,
of which they can serve as building-blocks.

In order to explore this, we define a class of estimators of B by weighting the
individual-specific or period-specific (co)variation in X and y. Let ¢ = (¢s) be a
(T x T') matrix and ¥ = (;;) an (N x N) matrix of (positive, zero or negative) weights

and define a general moment estimator as

b=b(, %) = (X/_1 Ximy $1sVxxas + Licy Z;Vzl i W xxij) !
< (U ST 66 Vixves + 2N SN 0 Wxyig)
= (O L 6 Vixxes + 2y SN 0 Woxxig) !
X (Lo S 06V xxusBuis + Sy Z;'V=1 ¢ijWXXijBW¢j)> (31)



or, in simplified notation,

T T 3 N N 5
b=>1_12 521 GvisBuis +2i21 2 5—1 GwijiBwij, (32)
involving weighting matrices Gvts, Gwij, Y ;> s Gvis+); Zj Gwij =1k, given by
GVts :Q_qutSVXXtS: t73: 17"'7T7
Gwij = Q'YW xxij, i,j=1,...,N, (33)

Q=Q(p, %) =1 S s Vixxes + S, Z;-Vzl Yi; W x xij.-

When (1) holds, b is unbiased for any ¢ and v. In Appendix B it is shown that its

variance-covariance matrix is?

V(b|X)=Q T P(Q7Y) =Q(e,%) ' P(¢,,0%00,07)( Qe ) ), (34)
where
P(p,v,0%,04,03) = 0*(Sy + Sy + Syw) + 02 Zy + 02 Zyy, (35)
with
_ _ T T T
SV - SV(¢) - Zt:l Zp:l VXti(Zszl ¢ts¢ps)?
Sy =Sw(¥) = sz\il Z]kvzl WXXik(Z;‘Vzl wijwkj)v
Syw = Syw(d,¥) = Zthl Zstl Zz]\il Zjvzl (btswij (w5 — ji-)/(mjt — &), (36)
ZV = ZV(d)) = Zle Zg:l VXti(Z?:l ¢ts)(2?:l pr)a
Zy = Zyy ($) = 2000 Tioa W (2551 0) (21 Y-
If either ¢y =¢ for all ¢, s or 1;; =1 for all ¢, j, Sy, =0, while Zy, =0 if Zil ¢rs = 0 for
all t, and Zy;, =0 if Z;Trzl ;=0 for all i. The standard estimators in fixed and random

effects models satisfy at least one of these restrictions, which will be shown below.

From (34)-(36) V(b|X) can be estimated consistently for any chosen Weighting ma-

trices ¢ and 1) when consistent estimators of the variances o2, 02, and 0 are available.

5 SELECTED AGGREGATE ESTIMATORS

The estimator b contains several familiar estimators for fixed effects models. We first

describe the weighting system (¢, 1)) for six such estimators and other, less familiar

estimators whose consistency is more robust to violation of the basic assumptions.3

Let the matrices of overall, within individual and within period (co)variation be

Wixx = Yo Wi = Yoy Yo (Tit — &) (Tit — &), (37)
Vxx =31 Vxxu=Y01, Zfil(iﬂit —Z.) (i — Zy), (38)

etc. The corresponding overall between individual, and between period (co)variation are

Bxx =Y, Bxxi=T Y\, (® — ®) (T — @)

= (1T) S0 Saey Vs, (39)
Cxx = Z;f:l Cxxi = NZle(f-t - 3_3)/@% - CE)
= (1/N) i, Y00 Wk, (40)

2This specializes to the formula in Bigrn (1994, Appendix A) when K = 1, a?, =0.
3The results below generalize those in Bigrn (1994, section 3), where only one regressor is included
(K = 1) and period-specific effects are disregarded (v; = 0).



etc., where the last equalities are shown in Appendix C. The matrix of overall (co)variation
and its decomposition is

Gxx = Y0 Xy (@i — &) (zi — 7)
=Wxx +Bxx =Vxx+Cxx
= 2 Wi + (1/T) 22, iy Vixxes
=Y Vxxu + (1/N) X8 X0, Wxxi;. (41)
Finally, the matrix of residual (co)variation, i.e., the (co)variation which remains when
all (co)variation between individuals and between periods is eliminated, the combined
within-individual-and-period (co)variation, is
Rxx = Ei\il Zthl(mit — T — T+ i)’(wit — X;. — L.+ f)
=Gxx — Bxx — Cxx
=Y (Wxxi—(1/N) Y0, Wxxi))
= Y (Vxxu—(1/T) 00 V). (42)
We notice that G x x and Rxx can be expressed in terms of the W x x;;s and the V x x,s
in two ways.
Combining the decompositions exemplified in (37)—(40) with (17)—(18), we can now,

cexpress the familiar within individual, within period, between individual, and between
period estimators of 3 as the following aggregates

By = W AWy = (25 W) HEL Wy xiBwii),

By = VikViy = (Cm Viexa) (2 V xxuBvi)s

Bp = BY\Bxy = (21 X Viexs) (i Y V xxtsBvis):
BC’ = C)_(lXCXY = (Zij\il Z;Vd WXXij)_l(Zi]il Z;'V:I WXXijBWij)'

We know that BW and ,@V are the MVLUE (Minimum Variance Linear Unbiased Esti-
mator) in the cases with only fixed individual-specific and with only fixed period-specific

43
44
45

(
(
(
(46

)
)
)
)

effects, respectively, and that B’ g and BC are obtained by OLS estimation of equations
in individual-specific and in period-specific means, respectively. Among these, BW and
,BC utilize the ( co )varzatzon across periods and disregard the (co)variation across indi-
viduals, while BV and ,@ p utilize the ( co )vamatzon across individuals and disregard the
(co)variation across periods. Hence, BW and BC may be said to relate to time-series
analysis and Bv and B p to cross-section analysis.

Reconsider, with this in mind, the global (standard OLS) (G) and the residual (R)
estimators. Both can be written as aggregates, as either

BG = GyxGxy = (Bxx + Cxx + Rxx) '(Bxy + Cxy + Rxy)
= (O8N W + (/) X Y Vi)™
X (S Wi Bwai + (U/T) S0 Y0 VixxusBrs), (47)
Br = Rx\Rxy
= [CX (W xxi — (1/N) Z;y:1 W x| ™
X [C0L (W x xiiBwi — (1/N) Z;’V:I WXXij,@Wz‘j)]a (48)



or

Bo= (T Vaxu+ /NS SN W)™

X (S Vi B + (/N) S S0 Wk By, (49)
BR = [25:1(Vxxn —(1/T) ZST:1 Vixxis) ™!
X [Zf:l(VXXtt BVtt - (1/T) 23:1 VXthBVts)L (50)

which follow from (17)—(18) and (41)—(42). While BG is the MVLUE of 3 in the absence
of individual or period-specific heterogeneity, B r has this property when all a;s and ;s
are interpreted as unknown constants (both fixed individual and period-specific effects).*

Briefly, (43)—(50) show that all the six standard aggregate estimators for fixed effects
models belong to the class (31) and can be interpreted as follows:

e The within-individual estimator ,@W and the between-period estimator B’C are ma-
trix weighted averages of the individual-specific estimators Bwlj, the former uti-
lizing only the N individual-specific OLS estimators, the latter also the N(N —1)
individual-specific IV estimators.

e The within-period estimator BV and the between-individual estimator [Ai’ p are matrix
weighted averages of the period-specific estimators ,Bws, the former utilizing only
the T period-specific OLS estimators, the latter also the T'(T—1) period-specific IV
estimators.

e The residual estimator BR is a matrix weighted average of either all the N2
individual-specific estimators or all the T2 period-specific estimators.

e The global OLS estimator BG is a matrix weighted average of either (a) all the N
individual-specific OLS estimators, all the T period-specific OLS estimators, and
all the T'(T—1) period-specific within period IV estimators, or (b) all the T" period-
specific OLS estimators, all N individual-specific OLS estimators, and all N(N—1)
individual-specific within individual IV estimators.

Table 1, panel A summarizes the weights. Compactly,

Br = b(Br,0y,y) = b0, By),

Br = b(Ar,0y N),

Bc = b(0rr, Ay),

By = b(Br, Ay) = b(0rz, Iy).

gv b(Ar, By) = b(Ir,0y x),
Ba=bIr,Ay)=0b(Ar,IN).

For the total, residual, and within estimators the weights occur in two versions. We
obtain their variance-covariance matrices when the random effects specification (1) is
valid by inserting the weights in Table 1, panel A, into (34)—(36), using (37)-(42). The

‘Equations (43)—(46), (48) and (50) generalize one-regressor counterparts in Bigrn (2017 Section 7.2.3).



results are summarized in panel B. Compactly,

V(BrIX) = o Ry,

V(B3| X) = (62 +T02) By,

V(Bc|X) = (0?+No2)CY,

V(QW’X) = (Rxx+Cxx) '[0*?Rxx+(0°+No2)Cxx](Rxx + Cxx) ',
V(@V’X) = (Ryx+Bxx) '[0*Rxx+(0°+T03) Bxx|(Rxx+Bxx) ",
V(BalX

Table 1: The General Moment Estimator (31)

) =Gy [U2Rxx+(02+TUg)BXX+(‘72+NU~2,)CXX]G;<1X~

A: Weights ¢vs and 1p;; for selected aggregate estimators

Pt Pts, SFEL i Yij, J £ ¢ P
-~ 1 1
R 0 0 1-= - = Or,r Bn
N N
B3 1 L 0 0 A 0
B T T 1 1 T N,N
C 0 0 —_ o OT,T AN
| | ¥ ¥
w 1- = —= — — Br Ay
5 T T N N
B 0 0 1 0 Orr Iy
-~ 1 1 1 1
e - 1— — = A B
Py T T N N g N
B 1 0 0 0 Ir On,v
~ 1 1
I
Be E E 1 0 Ar Iy

B: Covariance matrices: values of Sv+Sw,Zv,Zw,Q (Zvw =0)

Sv+Sw Zy Zw
Br Rxx 0 0 Rxx
BB Bxx TBxx 0 Bxx
Bc Cxx 0 NCxx Cxx
,@W Cxx + Rxx 0 NCxx Cxx+Rxx
Bv Bxx +Rxx TBxx 0 Bxx+Rxx
ﬁg Gxx TBxx NCxx Gxx

Next reconsider the GLS estimator of 3, which is the MVLUE in (1). Consider first

IB = B(HB?HC?NR)

= (upBxx + 1cCxx + nrRxx) (upBxy + 1cCxy + rRxy),

(51)

where (pg, ftc, ftp) are scalar constants. Using the decompositions exemplified by (39),
(40), and (42), it can be expressed in the (31) format as either

B =Yt I Vs /T+pr S W xxii+ (Ho—pr) Yoy Y0 Wox i /N1
X (18 Y4y Sy Vixves/ T+ 1r Yo r W xyvii+ (o — r) Yory 3oy W xvis /N,
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or
B = lno X XN Woxxis /N +pr SV xxu+ (s —pr) X S Ve /T) !
X (o Sy S Wy N+ oy Vv + (B —1R) i1 2 ey Vicves/T);

compactly
(52)

8= b(upAr, pcAN+urBN) = b(upAr+prBT, ic AN).

As shown by Fuller and Battese (1973, 1974), the two-way random effects GLS esti-
2 02,02), its MVLUE, can be written as

mator of B in Model (1), for known (0%, 07,07

Bars =B, Ac, 1)=(ApBxx+AcCxx+Rxx) ' (ApgBxy+AcCxy+Rxy)

-1
_ | Bxx Bxx Cxx RXY_|_ Bxy Cxy (53)
| o2 02+To2 0>+ No? 0% = 024To2 o*+NoZ]’
where ) )
o o
P VP —
B o?+To?2 © 0?4+No2

The corresponding estimators when, respectively, only random individual effects occur

(v, = O',QY = 0) and only random period effects occur (a; = 02 = 0) are

(A, 1,1) = A\gByxx + Cxx + Rxx) '(AgBxy + Cxy + Rxy),
"(Bxy + AcCxy + Rxy).

) @)

Bars(a) =
Barsy) =Bl Ac, 1) = (Bxx + AcCxx + Rxx)~

Their weights, as functions of Az or A, are given in Table 2, panel A, compactly:

[:'}GLS =b(Br + ApA7,\cAN) = b(ApAr, BNy + A\cAN),
Bcrs(a) = b(Br + AAr, An) = b(ApAr, Ix),
Bersy) = bIr, \cAN) = b(Ar, By + A\cAn),

with variance-covariance matrices, see Appendix D,

V(Bars|X) = o’ [Rxx + ApBxx + A\cCxx] ™"

-1
o? 0?4+To%  o0?+No2

)

V(Barsa)X) = [Rxx+ApBxx+Cxx]| ™"
X [UQRXX+)‘2B(02+TU§¢)BXX+(02+N03)CXX]

X [Ryx+ApBxx+Cxx] ™",
V(BGLS(W)’X) = [Rxx+Bxx+AcCxx| ™"
X [UZRxx+(02+T<7(2X)BXX+)\%7(02+N03)CXX]
X [Rxx+Bxx+ACxx] "

11



If the one-way random effects model is valid, i.e., if 03/ =0 or 02 = 0, respectively, the
latter two are simplified to

1
Ryx+Cxx n By x
o? o2 +To2|

-1
Ryx +Bxy " Cxx
o2 o2 + NO',QY

V(Bopsie|X) = [

V(Barse|X) = {

An interesting issue is robustness of the members of the class b(¢, 1)) to violation
of the assumptions in Model (1). From conclusions in Section 3 it follows that: [1] If
@i contains an |ID measurement error vector, which becomes part of w;, then (i) all
estimators satisfying ¢y = 0, ¢ys # 0 for some s # t, and all ;; = 0, are N-consistent,
and (ii) all estimators satisfying ;; = 0, ¢;; # 0 for some j # i, and all ¢, = 0, are
T-consistent. [2] If endogeneity of some variables in x;, leads to E(x},u;) # Oy ;, while
E(xjyu;s) = 0g y for (j,s) # (i,t), similar consistency results hold.

Table 2: The General Moment Estimator (31) For Random Effects Models
A: Weights ¢vs and ;5

Pre Pts, SF#L Yii Pij, §Fi | ¢ P

~ 1-Ap 1-Ap Ac Ao

Bers | 1-— ) T - )\T 1} . 1*)\ Br + ApAr AcAN

BaLs FB ?B 1- NC - Nc ABAT By +AcAnN
BGLS(a) 1- 1_;\3 - l_T)\B % % Br + ABAT AN
BGLS(Q) )\?B )\?B 1 0 ABAT Iy
EGLS(A/) 1 0 )\FC )\WC Ir Ac AN
BGLS('\/) % % 1- liNAC - 17]\;\0 Ar By + AcAN

B: Covariance matrices: values of Syv+Sw,Zv,Zw,Q (Zyvw =0)

Sv + Sw Zvy Zw Q

Bers M Bxx+MiCxx+Rxx MTBxx MNCxx MgBxx+MCxx+Rxx
BGLS(Q) ApBxx+Cxx+Rxx MTBxx NCxx ABxx+Cxx+Rxx
BGLS(A,) Bxx+M.Cxx+Rxx TBxx ALNCxx Bxx+AcCxx+Rxx

6 ILLUSTRATION: FACTOR PRODUCTIVITY

In this, final section, we illustrate some of the above results for a model with a single
regressor (K = 1), relating to factor productivity. The data are from successive annual
Norwegian manufacturing censuses, collected by Statistics Norway, for the sector Manu-
facture of textiles (ISIC 32), with N = 215 firms observed in the years 1983-1990, i.e.,
T = 8. The y;s and xys are, respectively, the log of the material input and the log of
gross production, both measured as values at constant prices, so that the (scalar) coeffi-
cient 8 can be interpreted as the input elasticity of materials with respect to output. The
OLS estimate of 8 obtained from the NT = 1720 observations is BG = 1.1450. From the
residuals, €; and their between-individual, between-period, and residual sum of squares,

N = = T /= = N T [~ -~ = ~
Bo=T3 (6. —6)27 Ce = NZt:1(f-t—€)27 R = D1 Zt:l(eit_ei-_e-t+€)27
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we obtain ANOVA type estimates:

0,0 By, 8 Co o, Ry
T T TrN-1 TN NT-1) 7 T (N-1)(T-1)
confer Searle, Casella, and McCulloch (1992, section 4.7.iii), which give
1 R
~2 €e
=—— |Bo— = 0.14394
7o T(N—l)[ e T—J 014394,
1 R
~2
= —— |Cr. — —=—| = 0.00066
7 N(T—l)[ e N—l] ’
5% = 0.03449,

G2 =05+ 05 +0° = 0.17909.

e —

The corresponding shares representing individual heterogeneity, period heterogeneity, and
residual variation are 02/62 = 0.80372, 62 /62 = 0.00370, and 5°/52 = 0.19259, while
Byy /Gyy = 0.93992, Cyy /Gyy = 0.00829, Ryy /Gyy = 0.05179 for log-material-input
and Bxx/Gxx = 0.83525, Cxx/Gxx = 0.04216, and Rxx/Gxx = 0.12259 for log-
output. Not surprisingly, the between firm variation by far dominates.

We have selected N =10 firms randomly from the 215 in the full sample and included
the T'=8 observations from each of them. All results refer to this subsample of NT'=80
observations, except that the variance components are estimated from the full sample.

The firm-specific estimates of the input elasticity of materials EWZ» ; are given in Table 3
(upper panel), the OLS estimates on the main diagonal, varying from —0.09 (firm 2) to
1.54 (firm 7), and the IV estimates in the off-diagonal positions, standard errors, obtained
from (25), are given in the lower panel. Even the OLS estimates have low precision.
The corresponding within-firm coefficients of correlation of log-output, Ry x;;, given in
Table A3, panel A, show considerable variation, are often low, indicating that log-output
for other firms are weak IVs for ‘own’ log-output.

The weights of the firm-specific OLS estimates (Table 3) in the overall within-firm
estimate, EW, which is 0.9284 (standard error 0.0773), are reported in Table A1, panel A.
The estimate for firm 1 by far dominates (weight 38 per cent). The weights of the firm-
specific IV/OLS estimates (Table 3) in the overall between-year estimate B, which is
0.7269 (standard error 0.1628), are reported in Table Al, panel B. The estimate for
(¢,7) = (1,1) by far dominates (weight 15 per cent). Some off-diagonal weights are
negative, reflecting negative correlation between the log-output of the relevant firms
(Table A3, Panel A).

The year-specific estimates BVts for the T = 8 years are given in Table 4 (upper
panel), with the OLS estimates on the main diagonal, varying between 1.21 (cross section
from year 1989) and 1.64 (cross section from year 1985), and the IV estimates in the
off-diagonal positions. All of the T? = 64 estimates exceed one, with standard errors,
from (26), given in the lower panel. Overall, the precision is much higher than for the
firm-specific estimates. The corresponding across-year correlation of log-output, Ry x¢s,
given in Table A3, panel B, show far less variation than the corresponding across-firm
correlation. This indicates that log-output for other years are strong instruments for the
year’s ‘own’ log-output, cf. (26) and (28).

The weights of the year-specific OLS estimates (Table 4) in the within-year estimate,
BV, which is 1.4528 (standard error 0.1717), are reported in Table A2, panel A. The

13



weights vary from 20 per cent (for 1984) and 8 per cent (for 1990). The weights of all
the period-specific IV/OLS estimates (Table 4) in the overall between-firm estimate Bz,
which is 1.5195 (standard error 0.1965), are reported in Table A2, panel B. Again, the
weights vary less than those for the firm-specific estimates and all weights are positive.

The residual estimate, the OLS estimate, and the GLS estimate (with standard error
in parenthesis) are, respectively, Br = 0.9978 (0.0875), B¢ = 1.4222 (0.1646), and Bgrs =
1.0147 (0.0717). The latter two are known to be weighted averages of BB, BC, and BR;
which agrees with the numerical values B\B = 1.5195, BC = 0.7269, and B\R = 0.9978.

Since all the aggregate estimators considered have either all ¢4 # 0 or all ¢;; # 0, they
are inconsistent in cases of endogeneity of or measurement errors in the regressor, confer
the end of Section 5. Modifying the between-firm estimator E B by replacing ¢ =1/T for
all (¢,s) by 0 for s=t and 1/T for s#t (confer Table 1), we get Bp. = 1.5307. This is N-
consistent and is slightly larger than the (less robust) between-firm estimate 3 5 = 1.5195.
Symmetrically, modifying the between-year estimator BC by replacing v¢;; = 1/N for all
(7,7) by 0 for j =14 and 1/N for j#i (confer Table 1), we get BC* = 0.5976, which is
T-consistent and is substantially smaller than the (less robust) between-year estimate
Bg = 0.7279. On the other hand, if all assumptions of Model (1) hold, B B« 1S somewhat
less efficient than BB (standard error 0.2007 against 0.1965), and BC* is markedly less
efficient than EC (standard errors 0.2442 against 0.1628), i.e., the efficiency loss when
eliminating the disaggregate OLS estimates from the aggregate estimator to improve
robustness may be substantial.

Table 3: Firm-specific Estimates of Materials—Output Elasticity: B\Wij
Within deviation of firm i used as IV for within deviation of firm j

il j— 1 2 3 4 5 6 7 8 9 10
1 0.92 -0.03 1.29 341 099 092 174 123 0.12 -0.85
2 0.70  -0.09 1.92 1.80 1.15 494 320 142 0.69 4.67
3 0.95 -0.09 0.55 3.17  1.01 1.02 146 1.16 054 0.26
4 1.02 -0.43 14.42 1.22 078 -0.06 0.77 253 091 -2.77
5 0.94 -0.04 0.08 -3.46 099 094 162 1.16 036 -0.11
6 1.08 0.55 -0.64 0.67 1.05 090 121 113 092 0.74
7 1.11  -0.81 0.68 2.06 1.02 088 154 1.02 201 0.85
8 0.97 -0.02 0.32 -11.62 1.04 090 1.63 1.16 061 0.27
9 0.93 -0.05 291 1.39 114 114 091 1.30 053 -1.67
10 1.24  0.25 -2.19 0.38 1.07 0.79 158 091 -2.78 0.78

Standard errors

i1l j— 1 2 3 4 5 6 7 8 9 10
1 0.28 1.73  1.05 6.87 0.49 1.27  1.19 0.52 2.21  2.07
2 0.64 0.75 2.19 3.01 1.28 12.69 8.85 1.09 2.30  8.49
3 0.31 1.73  0.95 6.95 0.47 0.86 1.02 0.46 2.02 1.22
4 1.90 2.26 6.62 1.00 6.44 2.79 233 20.73 2.84 3.83
5 0.30 2.16 1.00 14.49 0.45 0.93 1.03 0.48 3.22  1.08
6 0.54 1453 1.25 4.26 0.63 0.66 1.43 0.53 2.52  1.05
7 0.46 9.26 1.36 3.25 0.64 1.30 0.72 0.64 6.47 0.85
8 0.32 1.84 099 46.51 0.47 0.79 1.03 0.45 2.13  1.07
9 0.49 1.37 1.52 225 1.13 1.31  3.67 0.75 1.27  7.60
10 0.84 9.36 1.70 5.63 0.71 1.01  0.89 0.70 14.13 0.68
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Table 4: Year-specific Estimates of Materials—Output Elasticity: B\Vts
Within deviation of year t used as IV for within deviation of year s

tl s— | 1983 1984 1985 1986 1987 1988 1989 1990

1983 1.267 1.433 1.572 1.383 1.514 1.567 1.407 1.613
1984 1.232 1375 1.483 1.290 1.390 1.483 1.302 1.526
1985 1.374 1.508 1.642 1.465 1.589 1.576 1.468 1.663
1986 1.414 1.529 1.660 1.483 1.586 1.604 1.499 1.669
1987 1.441 1595 1.751 1.588 1.606 1.652 1.435 1.618
1988 1.519 1.668 1.803 1.671 1.712 1.625 1.394 1.623
1989 1.454 1.589 1.676 1.584 1.570 1.477 1.212 1.487
1990 1.502 1.665 1.809 1.683 1.626 1.614 1.330 1.551

Standard errors

tl s— | 1983 1984 1985 1986 1987 1988 1989 1990

1983 0.080 0.073 0.099 0.105 0.113 0.118 0.142 0.158
1984 0.083 0.071 0.097 0.099 0.109 0.116 0.133 0.152
1985 0.086 0.074 0.093 0.093 0.103 0.105 0.123 0.140
1986 0.092 0.077 0.095 0.091 0.101 0.105 0.121 0.136
1987 0.094 0.080 0.100 0.096 0.096 0.097 0.106 0.118
1988 0.102 0.088 0.105 0.103 0.100 0.093 0.101 0.116
1989 0.117 0.097 0.117 0.113 0.105 0.097 0.097 0.115
1990 0.113 0.096 0.116 0.110 0.101 0.096 0.100 0.112
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APPENDICES AND APPENDIX TABLES

A: The covariance matrices of the base estimators: In order to derive the variance-covariance
matrices of By,;; and By, in Model (1) is valid, we first need expressions for the variance-covariance
matrices of Wxuvij, Vxuts, Wxyi, and Vxa¢. Since

E(ad/|X) =021y, E(vY'|X) = o217,
E(ujup.|X) =8;0°Ir, E(u. ul|X)=0.,01Iy,
E(u;.uly| X) = 0ip,ing, jl=1,...,N,s,q=1,...,T,

where iz, denotes the j'th column of Iy, we get, after some algebra,

E(WXUz‘j W/XUkl‘X) = (sz o’ W x xik,
E(W xy: Wiy X) = 05 Wxxir, (a.1)
E(W xeij Wie| X) = (05 + 6;,0")W x xx,

E(VXUts V/Xqu|X) = 5sq ‘72 VXti,
E(VXoct V/)(ap‘X) = Ji VXti7 (a2)
E(VXets Vl)(epq|X) = (Ui + (Squ'Q)VXXt]w

E(WXUij V/Xqu|X)

E(W xai; Vi X) } =0’ (zig — &) (=) — &), fg: 11’ : '.'_’7%]{ (a.3)
€] €pq

Combining (a.1)—(a.3) with (19)—(20), it follows that the matrices of covariances between the individual-

specific and between the period-specific base estimators, respectively, can be expressed as
C(ﬂWl]7lBWk:l|X) = (O’QY+5]l0-2)W)_(1)('L]WXX1kW)_(TXlk7 iaj7k7l = 17"'7N7 (a’4)
CBviss Bypgl X) = (JZ + 5Sq0'2)V}1XtSVXtiV}qup, t,s,p,q=1,...,T. (a.5)

B: The covariance matrix of b: Inserting for Wxyq; and Vxyys from (13) and (15) in (31), using
(33), we find

b=F= Q_l [Zf:l Zz:l btsV Xets + Zivzl Z;'V:1 Yij WXsij]
=@ [T, S oV + S0 (S0 60) Vicas
+ X5 Ejvil wigWxvi + 20, (Z;V:I wij) wai] .

Combining this equation with (19), (20), and (a.1)—(a.3), we find that b is an unbiased estimator of 8
for any ¢ and 1 and has variance-covariance matrix

V(X)) =Q'P(Q7") = Q(¢, %) P(¢,%,0%, 02,07 (Q(¢, %)), (b.1)
where
P =P(¢,¢,0°,02,05) =0 (Sy + Sw + Svw) + 00 Zy + 0> Zy, (b.2)

Sv = Sv(e) = S Tiy Viexwy (Z01 600s ) »
Sw = Sw(®) = X T W (X v ) -
Syw = Syw(e, ) =31 > S, Z;vzl Grsij(Tis — Ty.) (x50 — Boy), (b.3)
Zy = Zy(®) = L1y She Viexa (200 00) (S0 00r)
Zy =Zw ()= Eivzl Z]kvzl W xxik (Zle wz‘j) (Elj\il 1/%1) .

C: Proof of (39)—(40): Since &;- — & = Zle(mit —Z4)/T, &t — T = Z?Ll(mit — &;.)/N, etc., and

Zt:1(X't - X)/AN(X't -X)= % 21:1 ijl Xi. Br XJ"

hold identically, (11) and (12) can be rewritten as

Bxxii = 7 SEST (@i — &) (Tis — &es),
T — / — 1= 17 B N7 (C 1)
Bxaii = 2o (®it — &) (i — &),
Cxxte = 7 2ivy g (@ie — &) (x50 — &;0), f—1 T (c.2
N — / — - b} I C )
Cxyer = Y (@it — &) (e — ),
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and the following identities hold

SN  Bxxi= %0 S Vixxis, S, Cxxu=+3N, Zj-vzl W x xij- (c.3)
Similarly,
SN Bxai = Y1 Vxat, S Cxee =N, Wy
The overall between individual and overall between period (co)variation can then be written as
Bxx =YL Bxxi =T Y0, (& — &) (@ — &) = (1/T) 2, X0, Vxxes, (c.4)

Cxx =31, Cxxee =N (&1 =) (@ — @) = (1I/N) XL, 200, Wxxij.  (c5)

D: The covariance matrix of BGLS: Recalling (45), (46), (48), and (53), the GLS weights in the
variance-covariance matrix can be obtained from Table 2, panel A, by adding A\p times the weights in
row 1, Ac times the weights in row 2, and the weights in row 3 (or 4). Expressions for the variance-
covariance matrix of ,@G s can be derived by inserting the weights in Table 2, panel A, rows 1 or 2, into
(34)—(36). The result is given in Table 2, panel B, row 1. In deriving V(Bq.5|X), we use

_1-2%
T

N N 1- )% .

Y%y =Ac,  20jo Yigey = Gik — N i,k=1,...,N,

ZZ:l ¢ts = )‘Bv 25:1 ¢ts¢ps = 6tp

so that, using (36), we have
Zy =X5 > Y1 Vxxy = \eTBxx,
ZW = AQC Zf\]:l Zszl WXXik = AQC’NC)(Xv

which are the expressions given in Table 2, panel B, columns 2 and 3. Obviously, Syvw = 0. From (36),
in combination with the weights in Table 2, rows 1 and 2, we get

Sv+Sw=Vxx —(1-25)Bxx + \eCxx = A5Bxx + Wxx — (1 - 2&)Cxx,
Q=Vxx—(1-2Ap)Bxx +AcCxx =AgBxx + Wxx — (1 - Ac)Cxx,
which, since Vxx — Bxx = Wxx — Cxx = Rxx, can be simplified to
Sy + Sw = Rxx + A\ Bxx + A\eCxx,
Q=Rxx +AgBxx +AcCxx-
These are the expressions given in Table 2, panel B, columns 1 and 4. Finally, since
02(5\/ +Sw) + o2Zy + O—'ZYZW = UQ[RXX +AgBxx +AcCxx],
the covariance matrix of BGLS can be written as

-1
Rxx Bxx Cxx
o2 02+T02 o2+ No2

V(Bars|X)=0"[Rxx+ApBxx+AcCxx] ' = (d.1)

The covariance matrices of the one-way GLS estimators ,@GLsm) and ,[A'IGLS(W when the two-way effects
model is valid, obtained from Table 2, panel B, rows 2 and 3, are

V(ﬁcLs(aﬂX) = [RXX+>\BBXX+CXX}71[UZRXX+)‘2B(02+T02)BXX+(U2+NU$)CXX]

X [Rxx+)\BBxx+Cxx]_l, (d2)
V(IaGLS('y)|X) = [Rxx+Bxx+XcCxx] [0’ Rxx+(0°+T02) Bxx +2& (0 +No3)Cx x]

x [Rxx+Bxx+AcCxx] ™}, (d.3)

2

5 =0 and o2 = 0, respectively) are simplified to

which for the one-way random effects models (o

3 Rxx+Cxx Bxx -

ViBopsio|X) = | Bt O, B |, (@4)
3 Rxx+Bxx Cxx -

V(BarsqlX) = [ o) o2+ NoZ . (d.5)
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Table Al: Weights of B\Wq',j in aggregate estimates. N =10, T'=8.

A. Weights of B\W“- in BW, per cent. Average = 10 per cent

1 1 2 3 4 5 6 7 8 9 10
3825 522 324 293 1486 6.84 571 14.76 184 6.35
B. Weights of //B\Wij in Bc, per cent. Average = 1 per cent
1l j— 1 2 3 4 5 6 7 8 9 10
1 1495 -2.40 395 -0.60 850 328 -347 800 -1.87 2.00
2 -2.40 204 -0.70 051 -1.20 -0.12 0.17 -140 0.67 0.18
3 395 -0.70 1.27 -0.17 258 141 -1.18 261 -0.60 0.99
4 -0.60 0.51 -0.17 1.15 0.18 041 049 0.06 0.40 0.30
5 850 -1.20 2,58 0.18 581 278 -251 543 -0.80 2.38
6 3.28 -0.12 141 041 278 267 -1.23 328 -0.69 1.67
7 -3.47 017 -1.18 049 -2,51 -1.23 223 -250 0.25 -1.89
8 8.00 -140 2.61 0.06 543 328 -2.50 577 -1.21 241
9 -1.87 0.67 -0.60 040 -0.80 -0.69 025 -1.21 0.72 0.12
10 2.00 018 099 030 238 167 -1.89 241 0.12 248
Table A2: Weights of BVts in aggregate estimates. N =10, T = 8.
A. Weights of Bv,gt in BV: per cent. Average = 12.5 per cent
t— 1983 1984 1985 1986 1987 1988 1989 1990
15.503 20.005 11.536 12.091 10.844 11.551 10.556 7.915
B. Weights of B\Vts in BB, per cent. Average = 1.56 per cent
tl s— | 1983 1984 1985 1986 1987 1988 1989 1990
1983 2.222 2437 1.793 1.705 1.579 1.516 1.260 1.129
1984 2.437 2.868 2.084 2.043 1.857 1.749 1.517 1.330
1985 1.793 2.084 1.654 1.662 1.497 1.468 1.255 1.101
1986 1.705 2.043 1.662 1.733 1.555 1.499 1.303 1.154
1987 1.579 1.857 1.497 1.555 1.554 1.543 1.403 1.266
1988 1.516 1.749 1.468 1.499 1543 1.656 1.524 1.328
1989 1.260 1.517 1.255 1.303 1.403 1.524 1.513 1.276
1990 1.129 1.330 1.101 1.154 1.266 1.328 1.276 1.135

Table A3: Coefficients of Correlation, Log-Output. N = 10,7 = 8.

A. Within Firm, Rw xi;

il j— 1 2 3 4 5 6 7 8 9 10
1 1.000 -0.435 0.909 -0.146  0.912 0.518 -0.601 0.861 -0.572 0.329
2 -0.435 1.000 -0.435 0.333  -0.347 -0.052 0.081 -0.408 0.550 0.080
3 0.909 -0.435 1.000 -0.144  0.952 0.765 -0.701 0.964 -0.626 0.559
4 -0.146 0.333 -0.144 1.000 0.069 0.235 0.309  0.022 0.446 0.178
5 0.912 -0.347 0.952 0.069 1.000 0.706 -0.696  0.938 -0.393 0.628
6 0.518 -0.052 0.765 0.235 0.706 1.000 -0.503 0.835 -0.501 0.647
7 -0.601 0.081 -0.701 0.309 -0.696 -0.503 1.000 -0.695 0.196 -0.803
8 0.861 -0.408 0.964  0.022 0.938 0.835 -0.695 1.000 -0.594 0.637
9 -0.572 0.550 -0.626  0.446 -0.393 -0.501 0.196 -0.594 1.000 0.090
10 0.329 0.080 0.559 0.178 0.628 0.647 -0.803 0.637  0.090 1.000

B. Within Year, Ry xts
tl s— 1983 1984 1985 1986 1987 1988 1989 1990
1983 1.000 0.965 0.936 0.869 0.850 0.790 0.687 0.711
1984 0.965 1.000 0.957 0.916 0.879 0.803 0.728 0.737
1985 0.936 0.957 1.000 0.982 0.934 0.887 0.794 0.804
1986 0.869 0.916 0.982 1.000 0.947 0.885 0.805 0.823
1987 0.850 0.879 0.934 0.947 1.000 0.962 0.915 0.954
1988 0.790 0.803 0.887 0.885 0.962 1.000 0.963 0.969
1989 0.687 0.728 0.794 0.805 0.915 0.963 1.000 0.974
1990 0.711 0.737 0.804 0.823 0.954 0.969 0.974 1.000
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