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Abstract: For a panel data regression equation with two-way unobserved heterogeneity, individual-

specific and period-specific, ‘within-individual’ and ‘within-period’ estimators, which can be given

Ordinary Least Squares (OLS) or Instrumental Variables (IV) interpretations, are considered. A

class of estimators defined as linear aggregates of these estimators, is defined. Nine aggregate esti-

mators, including between, within, and Generalized Least Squares (GLS), are special cases. Other

estimators are shown to be more robust to simultaneity and measurement error bias than the

standard aggregate estimators and more efficient than the ‘disaggregate’ estimators. Empirical

illustrations relating to manufacturing productivity are given.
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1 Introduction

A primary reason for the substantial growth in the use of panel data during the last

decades is the opportunity they give for identifying and controlling for unobserved het-

erogeneity which may disturb coefficient estimation. It is well known that (i) the potential

nuisance created by fixed (additive) individual heterogeneity in OLS estimation can be

eliminated by measuring all variables from their individual means or taking individual

differences over time, (ii) the potential nuisance created by fixed (additive) time specific

heterogeneity in OLS estimation can be eliminated by measuring all variables from their

time-specific means or taking time-specific differences over individuals, and (iii) efficient

estimation in the presence of suitably structured random individual- or time-specific het-

erogeneity, can be performed by (Feasible) Generalized Least Squares.

Less attention has been given to the fact that such aggregate estimators can be

constructed from disaggregate building-blocks. Approaching estimation in this way is

illuminating because regression coefficients can be estimated consistently from parts of a

panel data set in numerous ways and because the disaggregate estimators have different

degree of robustness to bias. By combining an increasing number of individual-specific or

period-specific estimators, an increasing part of the observations can be included until,

at the limit, the full data set is used. Such approaches are interesting both because

several familiar estimators (within, between, generalized least squares etc.) for panel

data models can be interpreted as linear combinations of elementary estimators, and

because we get other suggestions of estimators along the way.

The paper proceeds as follows: After, in Section 2, describing the model and its

transformations, we in Section 3 define disaggregate within estimators, each having the

interpretation as a ‘micro’ OLS (Ordinary Least Squares) or IV (Instrumental Variables)

estimator. Section 4 defines an estimator class by an arbitrary weighting of the latter,

while in Section 5, nine estimators, including three ‘within’, two ‘between’, three Gen-

eralized Least Squares (GLS), and one standard OLS estimator. The general estimator

is shown also to contain members which are more robust to violation of the standard

assumptions in random coefficient models. Both a standard regression framework and

situations with simultaneity (correlation between individual effects, period effects, and/or

disturbances on the one hand and the regressor vector on the other) and situations with

measurement errors in the regressor vector are considered. Among the latter estimators

we select estimators which are more robust to simultaneity and measurement errors and

more efficient than the ‘disaggregate’ estimators. Finally, Section 6 contains an empirical

illustration of robustness and efficiency loss, relating to manufacturing productivity.

2 Model, notation, and transformations

A linear regression model relating y to the (1×K)-vector x, with observations from N

individuals and T periods is

yit = k + xitβ + ϵit, ϵit = αi + γt + uit,

(uit|X) ∼ IID(0, σ2), (αi|X) ∼ IID(0, σ2α), (γt|X) ∼ IID(0, σ2γ),

uit ⊥ αj ⊥ γs, i, j = 1, . . . , N ; t, s = 1, . . . , T,

(1)

where yit and xit = (x1it, . . . , xKit) are the values of y and x for individual i in period t,

β = (β1, . . . , βK)′ is the coefficient vector, αi and γt are random individual-specific and
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period-specific effects (which may alternatively be interpreted as fixed, see Section 5),

uit is a disturbance, and k is an intercept. At the moment, we make the above standard

assumptions for two-way random effects models, which imply

E(ϵit|X) = 0, E(ϵitϵjs|X) = δijσ
2
α + δtsσ

2
γ + δijδtsσ

2, i, j = 1, . . . , N,
t, s = 1, . . . , T, (2)

where δij =1 for i= j and = 0 for i ̸= j, and δts=1 for t= s and = 0 for t ̸= s, and X is

the (NT×K) matrix containing all xits.

Let individual-specific and period-specific vectors and matrices be

yi· =

 yi1
...
yiT

 , Xi· =

 xi1

...
xiT

 , y·t =
 y1t

...
yNt

 , X·t =

 x1t

...
xNt

 ,
stacked into

y =

 y1·
...
yN·

 , X =

 X1·
...

XN·

 , y∗ =

 y·1
...
y·T

 , X∗ =

 X·1
...

X·T

 ,
and let eH be the (H × 1) vector of ones, IH the H-dimensional identity matrix, AH =

eHe
′
H/H, BH = IH −AH , α = (α1, . . . , αN )′, and γ = (γ1, . . . , γT )

′. Alternative ways

of writing the regression equation are

yi· = eTk +Xi·β + ϵi·, ϵi· = eTαi + γ + ui·, i = 1, . . . , N, (3)

y·t = eNk +X·tβ + ϵ·t, ϵ·t = α+ eNγt + u·t, t = 1, . . . , T, (4)

implying

yi·−ȳ = (Xi·−X̄)β + ϵi·−ϵ̄, ϵi·−ϵ̄ = eT (αi−ᾱ) +BTγ + ui·−ū, (5)

y·t−ȳ∗ = (X·t−X̄∗)β + ϵ·t−ϵ̄∗, ϵ·t−ϵ̄∗ = BNα+ eN (γt−γ̄) + u·t−ū∗, (6)

where ϵi·, ui·, ϵ·t, u·t are defined in similar way as yi· and y·t, ᾱ =
∑

i αi/N , γ̄ =∑
t γt/T , X̄ =

∑
iXi·/N , X̄∗ =

∑
tX·t/T , ȳ =

∑
i yi·/N , ȳ∗ =

∑
t y·t/T , etc. Pre-

multiplying (3) by BT , (5) by AT , (4) by BN and (6) by AN , give, respectively,

BTyi· = BTXi·β +BT ϵi·,
AT (yi· − ȳ) = AT (Xi· − X̄)β +AT (ϵi· − ϵ̄),

(7)

BNy·t = BNX·tβ +BNϵ·t,
AN (y·t − ȳ∗) = AN (X·t − X̄∗)β +AN (ϵ·t − ϵ̄∗).

(8)

Symbolizing byW , V ,B, andC matrices containing within-individual, within-period,

between-individual, and between-period (co)variation, respectively, individual-specific and

period-specific cross-product matrices emerge as

WXXij =X
′
i·BTXj· =

∑T
t=1(xit−x̄i·)′(xjt−x̄j·),

WXγi =X
′
i·BTγ =

∑T
t=1(xit − x̄i·)′(γt−γ̄),

i, j = 1, . . . , N, (9)

V XXts =X
′·tBNX·s =

∑N
i=1(xit−x̄·t)′(xis−x̄·s),

V Xαt =X
′·tBNα =

∑N
i=1(xit − x̄·t)′(αi − ᾱ),

t, s = 1, . . . , T, (10)
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BXXii = (Xi·−X̄)′AT (Xi·−X̄) = T (x̄i·−x̄)′(x̄i·−x̄),
BXαii = (Xi·−X̄)′eT (αi−ᾱ) = T (x̄i·−x̄)′(αi−ᾱ),

i = 1, . . . , N, (11)

CXXtt = (X·t−X̄∗)
′AN (X·t−X̄∗) = N(x̄·t−x̄)′(x̄·t−x̄),

CXγtt = (X·t−X̄∗)
′eN (γt−γ̄) = N(x̄·t−x̄)′(γt−γ̄),

t = 1, . . . , T, (12)

etc., where x̄i· = (e′T /T )Xi·, x̄·t = (e′N/N)X·t, x̄ = (e′NT /(NT ))X = (e′TN/(TN))X∗.

We have:

• WXXij , of full rankK if xit contains no individual-specific variables, is the (K×K)

matrix of within-individual covariation in the xs of individuals i and j, while V XXts,

of full rank K if xit contains no period-specific variables, is the (K ×K) matrix of

within-period covariation in the xs of periods t and s.

• BXXii and CXXtt, of rank 1, are the matrices of between-individual cross-products

and between-period cross-products of the xs of individual i and period t, respec-

tively.

• WXγi and V Xαt are the vectors of, respectively, the within-covariation of the xs

of individual i and the period-specific effects, and the within-covariation of the xs

of period t and the individual-specific effects.

Premultiplying the two equations in (7) by, respectively, X ′
i·BT and (Xi·−X̄)′AT ,

and the two equations in (8) by, respectively, X ′·tBN and (X·t − X̄∗)
′AN , give

WXY ij =WXXijβ +WXϵij , WXϵij =WXγi +WXUij , i, j = 1, . . . , N, (13)

BXY ii = BXXiiβ +BXϵii, BXϵii = BXαii +BXUii, i = 1, . . . , N, (14)

V XY ts = V XXtsβ + V Xϵts, V Xϵts = V Xαt + V XUts, t, s = 1, . . . , T, (15)

CXY tt = CXXttβ +CXϵtt, CXϵtt = CXγtt +CXUtt, t = 1, . . . , T. (16)

3 Base estimators

Since E(ϵij |X) = 0 implies E(WXϵij |X) = E(V Xϵts|X) = 0, (13) and (15) motivate

N2 individual-specific and T 2 period-specific estimators of β, to be denoted as base

estimators, or disaggregate estimators:

β̂Wij =W
−1
XXijWXY ij = (X ′

i·BTXj·)−1(X ′
i·BTyj·), i, j = 1, . . . , N, (17)

β̂V ts = V
−1
XXtsV XY ts = (X ′·tBNX·s)−1(X ′·tBNy·s), t, s = 1, . . . , T, (18)

so that β̂Wii is the OLS estimator based on the time series from individual i; β̂Wij ,

for j ̸= i, is the IV estimator which instruments the ‘within variation’ of individual j,

BTXj·, by the ‘within variation’ of individual i, BTXi·; β̂V tt is the OLS estimator based

on the cross-section from period t; β̂V ts, for s ̸= t, is the IV estimator which instruments

the ‘within variation’ of period s, BNX·s, by the ‘within variation’ of period t, BNX·t.1

If individual-specific variables occur, so that WXXij contains one or more zero rows

and columns, their coefficient estimates cannot be obtained from (17), but estimators

for the other coefficients can be solved from WXXijβ̂Wij =WXY ij . Likewise, if period-

specific variables occur, so that V XXts contains one or more zero rows and columns,

1One-regressor versions of these estimators, in a measurement error context, are considered in

Biørn (2017, Section 7.2.2).

3



their coefficient estimates cannot be obtained from (18), but estimators for the other

coefficients can be solved from V XXtsβ̂V ts = V XY ts.

Since inserting for WXY ij and V XY ts from (13) and (15) in (17) and (18) gives

β̂Wij − β =W−1
XXijWXϵij =W

−1
XXij(WXγi +WXUij), i, j = 1, . . . , N, (19)

β̂V ts − β = V −1
XXtsV Xϵts = V

−1
XXts(V Xαt + V XUts), t, s = 1, . . . , T, (20)

and (1) implies

E(WXUij |X) = E(WXγi|X) = 0K1, i, j = 1, . . . , N, (21)

E(V XUts|X) = E(V Xαt|X) = 0K1, t, s = 1, . . . , T, (22)

β̂Wij and β̂V ts are unbiased. Also, β̂Wij is T -consistent since plim(WXϵij/T )=0K,1, pro-

vided that plim(WXXij/T ) is non-singular, and β̂V ts isN -consistent since plim(V Xϵts/N)=

0K,1, provided that plim(V XXts/N) is non-singular.

Some estimators may be consistent under weaker conditions than (1). The following

robustness results hold:

• Since (19) does not contain α, β̂Wij is T -consistent if αi is fixed and unstructured

or correlated with x̄i·. If γt is correlated with x̄·t, consistency fails. Symmetrically,

since (20) does not contain γ, β̂V ts is N -consistent if γt is fixed and unstructured

or correlated with x̄·t. If αi is correlated with x̄i·, consistency fails.

• Endogeneity of or random measurement error in xit usually violate E(uit|X) = 0

and give E(x′
ituit) ̸= 0K1, plim(WXUii/T ) ̸= 0K1 and plim(V XUtt/N) ̸= 0K1,

making the OLS estimators β̂Wii and β̂V tt inconsistent, while the IV estimators

β̂Wij (j ̸= i) and β̂V ts (s ̸= t) remain T -consistent and N -consistent. respectively.

In Appendix A it is shown that when (2) holds the matrices of covariances for the

base estimators are

C(β̂Wij , β̂Wkl|X) = (σ2γ + δjlσ
2)W−1

XXijWXXikW
−1
XXlk, i, j, k, l = 1, . . . , N, (23)

C(β̂V ts, β̂V pq|X) = (σ2α + δsqσ
2)V −1

XXtsV XXtpV
−1
XXqp, t, s, p, q = 1, . . . , T. (24)

For (k, l) = (i, j) and (p, q) = (t, s), the variance-covariance matrices emerge as

V(β̂Wij |X) = (σ2γ + σ2)W−1
XXijWXXiiW

−1
XXji, i, j = 1, . . . , N, (25)

V(β̂V ts|X) = (σ2α + σ2)V −1
XXtsV XXttV

−1
XXst, t, s = 1, . . . , T, (26)

from which it follows that β̂Wjj and β̂V ss are always superior to β̂Wij (j ̸= i) and β̂V ts (s ̸=
t), respectively, as V(β̂Wij |X)−V(β̂Wjj |X) (i ̸= j) and V(β̂V ts|X)−V(β̂V ss|X) (t ̸= s)

are positive definite. We have:

V(β̂Wij |X)− V(β̂Wjj |X) = (σ2γ + σ2)(W−1
XXijWXXiiW

−1
XXji −W

−1
XXjj)

≡ (σ2γ + σ2)(A−1
WXijA

−1
WXji − IK)W−1

XXjj ,

V(β̂V ts|X)− V(β̂V ss|X) = (σ2α + σ2)(V −1
XXtsV XXttV

−1
XXst − V

−1
XXss)

≡ (σ2α + σ2)(A−1
V XtsA

−1
V Xst − IK)V −1

XXss,

where
AWXij =W

−1
XXiiWXXij ,

AV Xts = V
−1
XXttV XXts.
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The latter are the matrix of regression coefficients when regressing the j-specific block

of X, Xj·, on the i-specific block, Xi·, and when regressing the s-specific block of X,

X·s, on the t-specific block, X·t, respectively, and (A−1
WXijA

−1
WXji− IK), j ̸= i, and

(A−1
V XtsA

−1
V Xst−IK), s ̸= t, are positive definite when all regressors are two-dimensional.

The structure is transparent in the one regressor case (K=1), (23)–(26) reducing to

C(β̂Wij , β̂Wkl|X) = (σ2γ + δjlσ
2)

WXXik

WXXijWXXkl

,

V(β̂Wij |X) = (σ2γ + σ2)
WXXii

W 2
XXij

,
(27)

C(β̂V ts, β̂V pq|X) = (σ2α + δsqσ
2)

VXXtp

VXXtsVXXpq

,

V(β̂V ts|X) = (σ2α + σ2)
VXXtt

V 2
XXts

,

(28)

whereWXXik, β̂Wij , etc. are the scalar counterparts toWXXik, β̂Wij , etc. The coefficient

of correlation between two arbitrary individual-specific and two arbitrary period-specific

base estimators can therefore be written as, respectively,

ρ(β̂Wij , β̂Wkl|X) ≡
C(β̂Wij , β̂Wkl|X)

[V(β̂Wij |X)V(β̂Wkl|X)]1/2

=
σ2γ + δjlσ

2

σ2γ + σ2
WXXik

(WXXiiWXXkk)1/2

= ρ(ϵjt, ϵlt)RWXik, (29)

ρ(β̂V ts, β̂V pq|X) ≡
C(β̂V ts, β̂V pq|X)

[V(β̂V ts|X)V(β̂V pq|X)]1/2

=
σ2α + δsqσ

2

σ2α + σ2
VXXtp

(VXXttVXXpp)
1/2

= ρ(ϵis, ϵiq)RV Xtp, (30)

where RWXik = WXXik/(WXXiiWXXkk)
1/2 is the empirical coefficient of correlation

between the xs of individuals i and k; RV Xtp = VXXtp/(VXXttVXXpp)
1/2 is the coefficient

of correlation between the xs in periods t and p; ρ(ϵjt, ϵlt) = (σ2γ+δjlσ
2)/(σ2γ+σ

2); and

ρ(ϵis, ϵiq) = (σ2α+δsqσ
2)/(σ2α+σ

2).

Therefore, considering (3) as an N -equation model with one equation per individual

and common coefficient, ρ(β̂Wij , β̂Wkl|X) emerges as the product of the coefficient of cor-

relation between two ϵs from individuals (equations) j and l in the same period, and the

coefficient of correlation between the regressor (instrument) for individuals (equations)

i and k. Likewise, considering (4) as a T -equation model with one equation per period

and common coefficient, ρ(β̂V ts, β̂V pq|X) emerges as the product of the coefficient of cor-

relation between two ϵs from periods (equations) s and q for the same individual, and

the coefficient of correlation between the values of the regressor (instrument) in periods

t and p. Hence, ρ(β̂Wij , β̂Wkl|X) has one equation-specific component (j vs. l) and one

instrument-specific component (i vs. k), while ρ(β̂V ts, β̂V pq|X) has one equation-specific

component (s vs. q) and one instrument-specific component (t vs. p). For j = l (same
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equation/individual) and i = k (same IV) (29) gives, respectively,

ρ(β̂Wij , β̂Wkj |X)=RWXik, i ̸=k,

ρ(β̂Wij , β̂Wil|X)=
σ2γ

σ2γ+σ
2
, j ̸= l,

and for s = q (same equation/period) and t = p (same IV) (30) gives, respectively,

ρ(β̂V ts, β̂V ps|X)=RV Xtp, t ̸=p,

ρ(β̂V ts, β̂V tq|X)=
σ2α

σ2α+σ
2
, s ̸=q.

From (27) and (28) it follows that the inefficiency when instrumenting the (within)

variation of individual i by the (within) variation of individual j relative to performing

OLS on the observations from individual j and when instrumenting the (within) variation

of period t by the (within) variation of period s relative to performing OLS on the

observations from period s, can be expressed simply as, respectively,

V(β̂Wij |X)

V(β̂Wjj |X)
=

1

AWXijAWXji
=

1

R2
WXij

,

V(β̂V ts|X)

V(β̂V ss|X)
=

1

AV XtsAV Xst
=

1

R2
V Xts

.

Hence, R−2
WXij and R−2

V Xts measure the efficiency loss when using estimators that are

robust to inconsistency caused by simultaneity or random measurement error in the

regressor, respectively, (i) in a relationship for individual j using as IV observations from

another individual, i, relative to using OLS, and (ii) in a relationship for period s by

using as IV observations from another period, t, relative to using OLS.

4 A class of moment estimators

Since each base estimator β̂Wij and β̂V ts uses only a minor part of the panel data set,

they are rarely real competitors to estimators utilizing the complete data set, when (1)

is valid. And even if correlation between xit and uit, between x̄i· and αi or between x̄·t
and γt are allowed for, consistent aggregate estimators which are more efficient than any

of the IV estimators β̂Wij (j ̸= i) and β̂V ts (s ̸= t) may exist. Yet, the insight provided

by examining the base estimators is useful when constructing composite estimators of β,

of which they can serve as building-blocks.

In order to explore this, we define a class of estimators of β by weighting the

individual-specific or period-specific (co)variation in X and y. Let ϕ = (ϕts) be a

(T × T ) matrix and ψ = (ψij) an (N ×N) matrix of (positive, zero or negative) weights

and define a general moment estimator as

b = b(ϕ,ψ) = (
∑T

t=1

∑T
s=1 ϕtsV XXts +

∑N
i=1

∑N
j=1 ψijWXXij)

−1

× (
∑T

t=1

∑T
s=1 ϕtsV XY ts +

∑N
i=1

∑N
j=1 ψijWXY ij)

≡ (
∑T

t=1

∑T
s=1 ϕtsV XXts +

∑N
i=1

∑N
j=1 ψijWXXij)

−1

× (
∑T

t=1

∑T
s=1 ϕtsV XXtsβ̂V ts +

∑N
i=1

∑N
j=1 ψijWXXijβ̂Wij), (31)
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or, in simplified notation,

b =
∑T

t=1

∑T
s=1GV tsβ̂V ts +

∑N
i=1

∑N
j=1GWijβ̂Wij , (32)

involving weighting matrices GV ts,GWij ,
∑

t

∑
sGV ts+

∑
i

∑
jGWij=IK , given by

GV ts = Q
−1ϕtsV XXts, t, s = 1, . . . , T,

GWij = Q
−1ψijWXXij , i, j = 1, . . . , N,

Q = Q(ϕ,ψ) =
∑T

t=1

∑T
s=1 ϕtsV XXts +

∑N
i=1

∑N
j=1 ψijWXXij .

(33)

When (1) holds, b is unbiased for any ϕ and ψ. In Appendix B it is shown that its

variance-covariance matrix is2

V(b|X) = Q−1P (Q−1)′ = Q(ϕ,ψ)−1P (ϕ,ψ, σ2, σ2α, σ
2
γ)(Q(ϕ,ψ)−1)′, (34)

where

P = P (ϕ,ψ, σ2, σ2α, σ
2
γ) = σ2(SV + SW + SVW ) + σ2αZV + σ2γ ZW , (35)

with

SV = SV (ϕ) =
∑T

t=1

∑T
p=1 V XXtp(

∑T
s=1 ϕtsϕps),

SW = SW (ψ) =
∑N

i=1

∑N
k=1WXXik(

∑N
j=1 ψijψkj),

SVW = SVW (ϕ,ψ) =
∑T

t=1

∑T
s=1

∑N
i=1

∑N
j=1 ϕtsψij(xis − x̄i·)′(xjt − x̄·t),

ZV = ZV (ϕ) =
∑T

t=1

∑T
p=1 V XXtp(

∑T
s=1 ϕts)(

∑T
r=1 ϕpr),

ZW = ZW (ψ) =
∑N

i=1

∑N
k=1WXXik(

∑N
j=1 ψij)(

∑N
l=1 ψkl).

(36)

If either ϕts=ϕ for all t, s or ψij=ψ for all i, j, SWV =0, while ZV =0 if
∑T

s=1 ϕts = 0 for

all t, and ZW =0 if
∑T

j=1 ψij=0 for all i. The standard estimators in fixed and random

effects models satisfy at least one of these restrictions, which will be shown below.

From (34)–(36) V(b|X) can be estimated consistently for any chosen weighting ma-

trices ϕ and ψ when consistent estimators of the variances σ2, σ2α, and σ
2
γ are available.

5 Selected aggregate estimators

The estimator b contains several familiar estimators for fixed effects models. We first

describe the weighting system (ϕ,ψ) for six such estimators and other, less familiar

estimators whose consistency is more robust to violation of the basic assumptions.3

Let the matrices of overall, within individual and within period (co)variation be

WXX =
∑N

i=1WXXii =
∑N

i=1

∑T
t=1(xit − x̄i·)′(xit − x̄i·), (37)

V XX =
∑T

t=1 V XXtt =
∑T

t=1

∑N
i=1(xit − x̄·t) ′(xit − x̄·t), (38)

etc. The corresponding overall between individual, and between period (co)variation are

BXX =
∑N

i=1BXXii = T
∑N

i=1(x̄i· − x̄)′(x̄i· − x̄)

= (1/T )
∑T

t=1

∑T
s=1 V XXts, (39)

CXX =
∑T

t=1CXXtt = N
∑T

t=1(x̄·t − x̄)′(x̄·t − x̄)

= (1/N)
∑N

i=1

∑N
j=1WXXij , (40)

2This specializes to the formula in Biørn (1994, Appendix A) when K = 1, σ2
γ = 0.

3The results below generalize those in Biørn (1994, section 3), where only one regressor is included

(K = 1) and period-specific effects are disregarded (γt = 0).
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etc., where the last equalities are shown in Appendix C. The matrix of overall (co)variation

and its decomposition is

GXX =
∑N

i=1

∑T
t=1(xit − x̄)′(xit − x̄)

=WXX +BXX = V XX +CXX

≡
∑N

i=1WXXii + (1/T )
∑T

t=1

∑T
s=1 V XXts

≡
∑T

t=1 V XXtt + (1/N)
∑N

i=1

∑N
j=1WXXij . (41)

Finally, the matrix of residual (co)variation, i.e., the (co)variation which remains when

all (co)variation between individuals and between periods is eliminated, the combined

within-individual-and-period (co)variation, is

RXX =
∑N

i=1

∑T
t=1(xit − x̄i· − x̄·t + x̄)′(xit − x̄i· − x̄·t + x̄)

= GXX −BXX −CXX

≡
∑N

i=1(WXXii−(1/N)
∑N

j=1WXXij)

≡
∑T

t=1(V XXtt−(1/T )
∑T

s=1 V XXts). (42)

We notice thatGXX andRXX can be expressed in terms of theWXXijs and the V XXtss

in two ways.

Combining the decompositions exemplified in (37)–(40) with (17)–(18), we can now,

cexpress the familiar within individual, within period, between individual, and between

period estimators of β as the following aggregates

β̂W =W−1
XXWXY = (

∑N
i=1WXXii)

−1(
∑N

i=1WXXiiβ̂Wii), (43)

β̂V = V −1
XXV XY = (

∑T
t=1 V XXtt)

−1(
∑T

t=1 V XXttβ̂V tt), (44)

β̂B = B−1
XXBXY = (

∑T
t=1

∑T
s=1 V XXts)

−1(
∑T

t=1

∑T
s=1 V XXtsβ̂V ts), (45)

β̂C = C−1
XXCXY = (

∑N
i=1

∑N
j=1WXXij)

−1(
∑N

i=1

∑N
j=1WXXijβ̂Wij). (46)

We know that β̂W and β̂V are the MVLUE (Minimum Variance Linear Unbiased Esti-

mator) in the cases with only fixed individual-specific and with only fixed period-specific

effects, respectively, and that β̂B and β̂C are obtained by OLS estimation of equations

in individual-specific and in period-specific means, respectively. Among these, β̂W and

β̂C utilize the (co)variation across periods and disregard the (co)variation across indi-

viduals, while β̂V and β̂B utilize the (co)variation across individuals and disregard the

(co)variation across periods. Hence, β̂W and β̂C may be said to relate to time-series

analysis and β̂V and β̂B to cross-section analysis.

Reconsider, with this in mind, the global (standard OLS) (G) and the residual (R)

estimators. Both can be written as aggregates, as either

β̂G = G−1
XXGXY ≡ (BXX +CXX +RXX)−1(BXY +CXY +RXY )

= (
∑N

i=1WXXii + (1/T )
∑T

t=1

∑T
s=1 V XXts)

−1

× (
∑N

i=1WXXii β̂Wii + (1/T )
∑T

t=1

∑T
s=1 V XXtsβ̂V ts), (47)

β̂R = R−1
XXRXY

= [
∑N

i=1(WXXii − (1/N)
∑N

j=1WXXij)]
−1

× [
∑N

i=1(WXXiiβ̂Wii − (1/N)
∑N

j=1WXXijβ̂Wij)], (48)
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or

β̂G = (
∑T

t=1 V XXtt + (1/N)
∑N

i=1

∑N
j=1WXXij)

−1

× (
∑T

t=1 V XXtt β̂V tt + (1/N)
∑N

i=1

∑N
j=1WXXij β̂Wij), (49)

β̂R = [
∑T

t=1(V XXtt − (1/T )
∑T

s=1 V XXts)]
−1

× [
∑T

t=1(V XXtt β̂V tt − (1/T )
∑T

s=1 V XXtsβ̂V ts)], (50)

which follow from (17)–(18) and (41)–(42). While β̂G is the MVLUE of β in the absence

of individual or period-specific heterogeneity, β̂R has this property when all αis and γts

are interpreted as unknown constants (both fixed individual and period-specific effects).4

Briefly, (43)–(50) show that all the six standard aggregate estimators for fixed effects

models belong to the class (31) and can be interpreted as follows:

• The within-individual estimator β̂W and the between-period estimator β̂C are ma-

trix weighted averages of the individual-specific estimators β̂Wij , the former uti-

lizing only the N individual-specific OLS estimators, the latter also the N(N−1)

individual-specific IV estimators.

• The within-period estimator β̂V and the between-individual estimator β̂B are matrix

weighted averages of the period-specific estimators β̂V ts, the former utilizing only

the T period-specific OLS estimators, the latter also the T (T−1) period-specific IV
estimators.

• The residual estimator β̂R is a matrix weighted average of either all the N2

individual-specific estimators or all the T 2 period-specific estimators.

• The global OLS estimator β̂G is a matrix weighted average of either (a) all the N

individual-specific OLS estimators, all the T period-specific OLS estimators, and

all the T (T−1) period-specific within period IV estimators, or (b) all the T period-

specific OLS estimators, all N individual-specific OLS estimators, and all N(N−1)

individual-specific within individual IV estimators.

Table 1, panel A summarizes the weights. Compactly,

β̂R = b(BT ,0N,N ) = b(0T,T ,BN ),

β̂B = b(AT ,0N,N ),

β̂C = b(0TT ,AN ),

β̂W = b(BT ,AN ) = b(0T,T , IN ),

β̂V = b(AT ,BN ) = b(IT ,0N,N ),

β̂G = b(IT ,AN ) = b(AT , IN ).

For the total, residual, and within estimators the weights occur in two versions. We

obtain their variance-covariance matrices when the random effects specification (1) is

valid by inserting the weights in Table 1, panel A, into (34)–(36), using (37)–(42). The

4Equations (43)–(46), (48) and (50) generalize one-regressor counterparts in Biørn (2017 Section 7.2.3).
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results are summarized in panel B. Compactly,

V(β̂R|X) = σ2R−1
XX ,

V(β̂B|X) = (σ2+Tσ2α)B
−1
XX ,

V(β̂C |X) = (σ2+Nσ2γ)C
−1
XX ,

V(β̂W |X) = (RXX+CXX)−1[σ2RXX+(σ2+Nσ2γ)CXX ](RXX +CXX)−1,

V(β̂V |X) = (RXX+BXX)−1[σ2RXX+(σ2+Tσ2α)BXX ](RXX+BXX)−1,

V(β̂G|X) = G−1
XX [σ2RXX+(σ2+Tσ2α)BXX+(σ2+Nσ2γ)CXX ]G−1

XX .

Table 1: The General Moment Estimator (31)

A: Weights ϕts and ψij for selected aggregate estimators

ϕtt ϕts, s ̸= t ψii ψij , j ̸= i ϕ ψ

β̂R 1− 1

T
− 1

T
0 0 BT 0N,N

β̂R 0 0 1− 1

N
− 1

N
0T,T BN

β̂B

1

T

1

T
0 0 AT 0N,N

β̂C 0 0
1

N

1

N
0T,T AN

β̂W 1− 1

T
− 1

T

1

N

1

N
BT AN

β̂W 0 0 1 0 0T,T IN

β̂V

1

T

1

T
1− 1

N
− 1

N
AT BN

β̂V 1 0 0 0 IT 0N,N

β̂G 1 0
1

N

1

N
IT AN

β̂G

1

T

1

T
1 0 AT IN

B: Covariance matrices: values of SV +SW ,ZV ,ZW ,Q (ZVW =0)

SV +SW ZV ZW Q

β̂R RXX 0 0 RXX

β̂B BXX TBXX 0 BXX

β̂C CXX 0 NCXX CXX

β̂W CXX +RXX 0 NCXX CXX+RXX

β̂V BXX +RXX TBXX 0 BXX+RXX

β̂G GXX TBXX NCXX GXX

Next reconsider the GLS estimator of β, which is the MVLUE in (1). Consider first

β̂ = β̂(µB, µC , µR)

= (µBBXX + µCCXX + µRRXX)−1(µBBXY + µCCXY + µRRXY ), (51)

where (µB, µC , µR) are scalar constants. Using the decompositions exemplified by (39),

(40), and (42), it can be expressed in the (31) format as either

β̂ = [µB
∑T

t=1

∑T
s=1V XXts/T+µR

∑N
i=1WXXii+(µC−µR)

∑N
i=1

∑N
j=1WXXij/N ]−1

× [µB
∑T

t=1

∑T
s=1V XY ts/T+µR

∑N
i=1WXY ii+(µC−µR)

∑N
i=1

∑N
j=1WXY ij/N ],
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or

β̂ = [µC
∑N

i=1

∑N
j=1WXXij/N+µR

∑T
t=1V XXtt+(µB−µR)

∑T
t=1

∑T
s=1V XXts/T ]

−1

× [µC
∑N

i=1

∑N
j=1WXY ij/N+µR

∑T
t=1V XY tt+(µB−µR)

∑T
t=1

∑T
s=1 V XY ts/T ];

compactly

β̂ = b(µBAT , µCAN+µRBN ) ≡ b(µBAT+µRBT , µCAN ). (52)

As shown by Fuller and Battese (1973, 1974), the two-way random effects GLS esti-

mator of β in Model (1), for known (σ2, σ2α, σ
2
γ), its MVLUE, can be written as

β̂GLS = β̂(λB, λC , 1)=(λBBXX+λCCXX+RXX)−1(λBBXY +λCCXY +RXY )

≡
[
RXX

σ2
+

BXX

σ2+Tσ2α
+

CXX

σ2+Nσ2γ

]−1[RXY

σ2
+

BXY

σ2+Tσ2α
+

CXY

σ2+Nσ2γ

]
, (53)

where

λB =
σ2

σ2+Tσ2α
, λC =

σ2

σ2+Nσ2γ
.

The corresponding estimators when, respectively, only random individual effects occur

(γt = σ2γ = 0) and only random period effects occur (αi = σ2α = 0) are

β̂GLS(α) = β̂(λB, 1, 1) = (λBBXX +CXX +RXX)−1(λBBXY +CXY +RXY ),

β̂GLS(γ) = β̂(1, λC , 1) = (BXX + λCCXX +RXX)−1(BXY + λCCXY +RXY ).

Their weights, as functions of λB or λC , are given in Table 2, panel A, compactly:

β̂GLS = b(BT + λBAT , λCAN ) ≡ b(λBAT ,BN + λCAN ),

β̂GLS(α) = b(BT + λBAT ,AN ) ≡ b(λBAT , IN ),

β̂GLS(γ) = b(IT , λCAN ) ≡ b(AT ,BN + λCAN ),

with variance-covariance matrices, see Appendix D,

V(β̂GLS |X) = σ2[RXX + λBBXX + λCCXX ]−1

=

[
RXX

σ2
+

BXX

σ2+Tσ2α
+

CXX

σ2+Nσ2γ

]−1

,

V(β̂GLS(α)|X) = [RXX+λBBXX+CXX ]−1

× [σ2RXX+λ2B(σ
2+Tσ2α)BXX+(σ2+Nσ2γ)CXX ]

× [RXX+λBBXX+CXX ]−1,

V(β̂GLS(γ)|X) = [RXX+BXX+λCCXX ]−1

× [σ2RXX+(σ2+Tσ2α)BXX+λ2C(σ
2+Nσ2γ)CXX ]

× [RXX+BXX+λBCXX ]−1.
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If the one-way random effects model is valid, i.e., if σ2γ = 0 or σ2α = 0, respectively, the

latter two are simplified to

V(β̂GLS(α)|X) =

[
RXX +CXX

σ2
+

BXX

σ2 + Tσ2α

]−1

,

V(β̂GLS(γ)|X) =

[
RXX +BXX

σ2
+

CXX

σ2 +Nσ2γ

]−1

.

An interesting issue is robustness of the members of the class b(ϕ,ψ) to violation

of the assumptions in Model (1). From conclusions in Section 3 it follows that: [1] If

xit contains an IID measurement error vector, which becomes part of uit, then (i) all

estimators satisfying ϕtt = 0, ϕts ̸= 0 for some s ̸= t, and all ψij = 0, are N -consistent,

and (ii) all estimators satisfying ψii = 0, ψij ̸= 0 for some j ̸= i, and all ϕts = 0, are

T -consistent. [2] If endogeneity of some variables in xit leads to E(x′
ituit) ̸= 0K,1, while

E(x′
itujs) = 0K,1 for (j, s) ̸= (i, t), similar consistency results hold.

Table 2: The General Moment Estimator (31) For Random Effects Models

A: Weights ϕts and ψij

ϕtt ϕts, s ̸= t ψii ψij , j ̸= i ϕ ψ

β̂GLS 1− 1−λB

T
−1−λB

T

λC

N

λC

N
BT + λBAT λCAN

β̂GLS

λB

T

λB

T
1− 1−λC

N
−1−λC

N
λBAT BN + λCAN

β̂GLS(α) 1− 1−λB

T
−1−λB

T

1

N

1

N
BT + λBAT AN

β̂GLS(α)

λB

T

λB

T
1 0 λBAT IN

β̂GLS(γ) 1 0
λC

N

λC

N
IT λCAN

β̂GLS(γ)

1

T

1

T
1− 1−λC

N
− 1−λC

N
AT BN + λCAN

B: Covariance matrices: values of SV +SW ,ZV ,ZW ,Q (ZVW = 0)

SV + SW ZV ZW Q

β̂GLS λ2
BBXX+λ2

CCXX+RXX λ2
BTBXX λ2

CNCXX λBBXX+λCCXX+RXX

β̂GLS(α) λ2
BBXX+CXX+RXX λ2

BTBXX NCXX λBBXX+CXX+RXX

β̂GLS(γ) BXX+λ2
CCXX+RXX TBXX λ2

CNCXX BXX+λCCXX+RXX

6 Illustration: Factor productivity

In this, final section, we illustrate some of the above results for a model with a single

regressor (K = 1), relating to factor productivity. The data are from successive annual

Norwegian manufacturing censuses, collected by Statistics Norway, for the sector Manu-

facture of textiles (ISIC 32), with N = 215 firms observed in the years 1983–1990, i.e.,

T = 8. The yits and xits are, respectively, the log of the material input and the log of

gross production, both measured as values at constant prices, so that the (scalar) coeffi-

cient β can be interpreted as the input elasticity of materials with respect to output. The

OLS estimate of β obtained from the NT = 1720 observations is β̂G = 1.1450. From the

residuals, ϵ̂it and their between-individual, between-period, and residual sum of squares,

Bϵ̂ϵ̂ = T
∑N

i=1(
¯̂ϵi·−¯̂ϵ)2, Cϵ̂ϵ̂ = N

∑T
t=1(

¯̂ϵ·t−¯̂ϵ)2, Rϵ̂ϵ̂ =
∑N

i=1

∑T
t=1(ϵ̂it−¯̂ϵi·−¯̂ϵ·t+¯̂ϵ)2,
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we obtain ANOVA type estimates:

σ̂2α +
σ̂2

T
=

Bϵ̂ϵ̂

T (N − 1)
, σ̂2γ +

σ̂2

N
=

Cϵ̂ϵ̂

N(T − 1)
, σ̂2 =

Rϵ̂ϵ̂

(N − 1)(T − 1)
,

confer Searle, Casella, and McCulloch (1992, section 4.7.iii), which give

σ̂2α =
1

T (N − 1)

[
Bϵ̂ϵ̂ −

Rϵ̂ϵ̂

T − 1

]
= 0.14394,

σ̂2γ =
1

N(T − 1)

[
Cϵ̂ϵ̂ −

Rϵ̂ϵ̂

N − 1

]
= 0.00066,

σ̂2 = 0.03449,

σ̂2ϵ = σ̂2α + σ̂2γ + σ̂2 = 0.17909.

The corresponding shares representing individual heterogeneity, period heterogeneity, and

residual variation are σ̂2α/σ̂
2
ϵ = 0.80372, σ̂2γ/σ̂

2
ϵ = 0.00370, and σ̂2/σ̂2ϵ = 0.19259, while

BY Y /GY Y = 0.93992, CY Y /GY Y = 0.00829, RY Y /GY Y = 0.05179 for log-material-input

and BXX/GXX = 0.83525, CXX/GXX = 0.04216, and RXX/GXX = 0.12259 for log-

output. Not surprisingly, the between firm variation by far dominates.

We have selected N=10 firms randomly from the 215 in the full sample and included

the T =8 observations from each of them. All results refer to this subsample of NT =80

observations, except that the variance components are estimated from the full sample.

The firm-specific estimates of the input elasticity of materials β̂Wij are given in Table 3

(upper panel), the OLS estimates on the main diagonal, varying from −0.09 (firm 2) to

1.54 (firm 7), and the IV estimates in the off-diagonal positions, standard errors, obtained

from (25), are given in the lower panel. Even the OLS estimates have low precision.

The corresponding within-firm coefficients of correlation of log-output, RWXij , given in

Table A3, panel A, show considerable variation, are often low, indicating that log-output

for other firms are weak IVs for ‘own’ log-output.

The weights of the firm-specific OLS estimates (Table 3) in the overall within-firm

estimate, β̂W , which is 0.9284 (standard error 0.0773), are reported in Table A1, panel A.

The estimate for firm 1 by far dominates (weight 38 per cent). The weights of the firm-

specific IV/OLS estimates (Table 3) in the overall between-year estimate β̂C , which is

0.7269 (standard error 0.1628), are reported in Table A1, panel B. The estimate for

(i, j) = (1, 1) by far dominates (weight 15 per cent). Some off-diagonal weights are

negative, reflecting negative correlation between the log-output of the relevant firms

(Table A3, Panel A).

The year-specific estimates β̂V ts for the T = 8 years are given in Table 4 (upper

panel), with the OLS estimates on the main diagonal, varying between 1.21 (cross section

from year 1989) and 1.64 (cross section from year 1985), and the IV estimates in the

off-diagonal positions. All of the T 2 = 64 estimates exceed one, with standard errors,

from (26), given in the lower panel. Overall, the precision is much higher than for the

firm-specific estimates. The corresponding across-year correlation of log-output, RV Xts,

given in Table A3, panel B, show far less variation than the corresponding across-firm

correlation. This indicates that log-output for other years are strong instruments for the

year’s ‘own’ log-output, cf. (26) and (28).

The weights of the year-specific OLS estimates (Table 4) in the within-year estimate,

β̂V , which is 1.4528 (standard error 0.1717), are reported in Table A2, panel A. The

13



weights vary from 20 per cent (for 1984) and 8 per cent (for 1990). The weights of all

the period-specific IV/OLS estimates (Table 4) in the overall between-firm estimate β̂B,

which is 1.5195 (standard error 0.1965), are reported in Table A2, panel B. Again, the

weights vary less than those for the firm-specific estimates and all weights are positive.

The residual estimate, the OLS estimate, and the GLS estimate (with standard error

in parenthesis) are, respectively, β̂R = 0.9978 (0.0875), β̂G = 1.4222 (0.1646), and β̂GLS =

1.0147 (0.0717). The latter two are known to be weighted averages of β̂B, β̂C , and β̂R,

which agrees with the numerical values β̂B = 1.5195, β̂C = 0.7269, and β̂R = 0.9978.

Since all the aggregate estimators considered have either all ϕtt ̸= 0 or all ψii ̸= 0, they

are inconsistent in cases of endogeneity of or measurement errors in the regressor, confer

the end of Section 5. Modifying the between-firm estimator β̂B by replacing ϕts=1/T for

all (t, s) by 0 for s= t and 1/T for s ̸= t (confer Table 1), we get β̂B∗ = 1.5307. This is N -

consistent and is slightly larger than the (less robust) between-firm estimate β̂B = 1.5195.

Symmetrically, modifying the between-year estimator β̂C by replacing ψij = 1/N for all

(i, j) by 0 for j = i and 1/N for j ̸= i (confer Table 1), we get β̂C∗ = 0.5976, which is

T -consistent and is substantially smaller than the (less robust) between-year estimate

β̂C = 0.7279. On the other hand, if all assumptions of Model (1) hold, β̂B∗ is somewhat

less efficient than β̂B (standard error 0.2007 against 0.1965), and β̂C∗ is markedly less

efficient than β̂C (standard errors 0.2442 against 0.1628), i.e., the efficiency loss when

eliminating the disaggregate OLS estimates from the aggregate estimator to improve

robustness may be substantial.

Table 3: Firm-specific Estimates of Materials–Output Elasticity: β̂Wij

Within deviation of firm i used as IV for within deviation of firm j

i ↓ j → 1 2 3 4 5 6 7 8 9 10

1 0.92 -0.03 1.29 3.41 0.99 0.92 1.74 1.23 0.12 -0.85
2 0.70 -0.09 1.92 1.80 1.15 4.94 3.20 1.42 0.69 4.67
3 0.95 -0.09 0.55 3.17 1.01 1.02 1.46 1.16 0.54 0.26
4 1.02 -0.43 14.42 1.22 0.78 -0.06 0.77 2.53 0.91 -2.77
5 0.94 -0.04 0.08 -3.46 0.99 0.94 1.62 1.16 0.36 -0.11
6 1.08 0.55 -0.64 0.67 1.05 0.90 1.21 1.13 0.92 0.74
7 1.11 -0.81 0.68 2.06 1.02 0.88 1.54 1.02 2.01 0.85
8 0.97 -0.02 0.32 -11.62 1.04 0.90 1.63 1.16 0.61 0.27
9 0.93 -0.05 2.91 1.39 1.14 1.14 0.91 1.30 0.53 -1.67
10 1.24 0.25 -2.19 0.38 1.07 0.79 1.58 0.91 -2.78 0.78

Standard errors

i ↓ j → 1 2 3 4 5 6 7 8 9 10

1 0.28 1.73 1.05 6.87 0.49 1.27 1.19 0.52 2.21 2.07
2 0.64 0.75 2.19 3.01 1.28 12.69 8.85 1.09 2.30 8.49
3 0.31 1.73 0.95 6.95 0.47 0.86 1.02 0.46 2.02 1.22
4 1.90 2.26 6.62 1.00 6.44 2.79 2.33 20.73 2.84 3.83
5 0.30 2.16 1.00 14.49 0.45 0.93 1.03 0.48 3.22 1.08
6 0.54 14.53 1.25 4.26 0.63 0.66 1.43 0.53 2.52 1.05
7 0.46 9.26 1.36 3.25 0.64 1.30 0.72 0.64 6.47 0.85
8 0.32 1.84 0.99 46.51 0.47 0.79 1.03 0.45 2.13 1.07
9 0.49 1.37 1.52 2.25 1.13 1.31 3.67 0.75 1.27 7.60
10 0.84 9.36 1.70 5.63 0.71 1.01 0.89 0.70 14.13 0.68
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Table 4: Year-specific Estimates of Materials–Output Elasticity: β̂V ts

Within deviation of year t used as IV for within deviation of year s

t ↓ s→ 1983 1984 1985 1986 1987 1988 1989 1990

1983 1.267 1.433 1.572 1.383 1.514 1.567 1.407 1.613
1984 1.232 1.375 1.483 1.290 1.390 1.483 1.302 1.526
1985 1.374 1.508 1.642 1.465 1.589 1.576 1.468 1.663
1986 1.414 1.529 1.660 1.483 1.586 1.604 1.499 1.669
1987 1.441 1.595 1.751 1.588 1.606 1.652 1.435 1.618
1988 1.519 1.668 1.803 1.671 1.712 1.625 1.394 1.623
1989 1.454 1.589 1.676 1.584 1.570 1.477 1.212 1.487
1990 1.502 1.665 1.809 1.683 1.626 1.614 1.330 1.551

Standard errors

t ↓ s→ 1983 1984 1985 1986 1987 1988 1989 1990

1983 0.080 0.073 0.099 0.105 0.113 0.118 0.142 0.158
1984 0.083 0.071 0.097 0.099 0.109 0.116 0.133 0.152
1985 0.086 0.074 0.093 0.093 0.103 0.105 0.123 0.140
1986 0.092 0.077 0.095 0.091 0.101 0.105 0.121 0.136
1987 0.094 0.080 0.100 0.096 0.096 0.097 0.106 0.118
1988 0.102 0.088 0.105 0.103 0.100 0.093 0.101 0.116
1989 0.117 0.097 0.117 0.113 0.105 0.097 0.097 0.115
1990 0.113 0.096 0.116 0.110 0.101 0.096 0.100 0.112
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Appendices and Appendix Tables

A: The covariance matrices of the base estimators: In order to derive the variance-covariance

matrices of β̂Wij and β̂V ts in Model (1) is valid, we first need expressions for the variance-covariance

matrices of WXUij , V XUts, WXγi, and V Xαt. Since

E(αα′|X) = σ2
αIN , E(γγ′|X) = σ2

γIT ,

E(uj·u′
l·|X) = δjlσ

2IT , E(u·su′·q|X) = δsqσ
2IN ,

E(uj·u′·q|X) = σ2iTqi
′
Nj , j, l = 1, . . . , N, s, q = 1, . . . , T,

where iHj denotes the j’th column of IH , we get, after some algebra,

E(WXUijW
′
XUkl|X) = δjl σ

2WXXik,

E(WXγiW
′
Xγk|X) = σ2

γWXXik,

E(WXϵijW
′
Xϵkl|X) = (σ2

γ + δjlσ
2)WXXik,

(a.1)

E(V XUts V
′
XUpq|X) = δsq σ

2 V XXtp,

E(V Xαt V
′
Xαp|X) = σ2

α V XXtp,

E(V Xϵts V
′
Xϵpq|X) = (σ2

α + δsqσ
2)V XXtp,

(a.2)

E(WXUij V
′
XUpq|X)

E(WXϵij V
′
Xϵpq|X)

}
= σ2(xiq − x̄i·)′(xjp − x̄·p), i, j, k, l = 1, . . . , N,

t, s, p, q = 1, . . . , T. (a.3)

Combining (a.1)–(a.3) with (19)–(20), it follows that the matrices of covariances between the individual-

specific and between the period-specific base estimators, respectively, can be expressed as

C(β̂Wij , β̂Wkl|X) = (σ2
γ + δjlσ

2)W−1
XXijWXXikW

−1
XXlk, i, j, k, l = 1, . . . , N, (a.4)

C(β̂V ts, β̂V pq|X) = (σ2
α + δsqσ

2)V −1
XXtsV XXtpV

−1
XXqp, t, s, p, q = 1, . . . , T. (a.5)

B: The covariance matrix of b: Inserting for WXY ij and V XY ts from (13) and (15) in (31), using

(33), we find

b− β = Q−1
[∑T

t=1

∑T
s=1 ϕtsV Xϵts +

∑N
i=1

∑N
j=1 ψijWXϵij

]
= Q−1

[∑T
t=1

∑T
s=1 ϕtsV XUts +

∑T
t=1

(∑T
s=1 ϕts

)
V Xαt

+
∑N

i=1

∑N
j=1 ψijWXUij +

∑N
i=1

(∑N
j=1 ψij

)
WXγi

]
.

Combining this equation with (19), (20), and (a.1)–(a.3), we find that b is an unbiased estimator of β

for any ϕ and ψ and has variance-covariance matrix

V(b|X) = Q−1P (Q−1)′ = Q(ϕ,ψ)−1P (ϕ,ψ, σ2, σ2
α, σ

2
γ)(Q(ϕ,ψ)−1)′, (b.1)

where

P = P (ϕ,ψ, σ2, σ2
α, σ

2
γ) = σ2(SV + SW + SV W ) + σ2

αZV + σ2
γ ZW , (b.2)

SV = SV (ϕ) =
∑T

t=1

∑T
p=1 V XXtp

(∑T
s=1 ϕtsϕps

)
,

SW = SW (ψ) =
∑N

i=1

∑N
k=1WXXik

(∑N
j=1 ψijψkj

)
,

SV W = SV W (ϕ,ψ) =
∑T

t=1

∑T
s=1

∑N
i=1

∑N
j=1 ϕtsψij(xis − x̄i·)′(xjt − x̄·t),

ZV = ZV (ϕ) =
∑T

t=1

∑T
p=1 V XXtp

(∑T
s=1 ϕts

)(∑T
r=1 ϕpr

)
,

ZW = ZW (ψ) =
∑N

i=1

∑N
k=1WXXik

(∑N
j=1 ψij

)(∑N
l=1 ψkl

)
.

(b.3)

C: Proof of (39)–(40): Since x̄i· − x̄ =
∑T

t=1(xit − x̄·t)/T , x̄·t − x̄ =
∑N

i=1(xit − x̄i·)/N , etc., and∑N
i=1(Xi· − X̄)′AT (Xi· − X̄) = 1

T

∑T
t=1

∑T
s=1X

′·tBN X·s,∑T
t=1(X·t − X̄)′AN (X·t − X̄) = 1

N

∑N
i=1

∑N
j=1X

′
i·BT Xj·

hold identically, (11) and (12) can be rewritten as

BXXii = 1
T

∑T
t=1

∑T
s=1(xit − x̄·t)′(xis − x̄·s),

BXαii =
∑T

t=1(xit − x̄·t)′(αi − ᾱ),
i = 1, . . . , N, (c.1)

CXXtt = 1
N

∑N
i=1

∑N
j=1(xit − x̄i·)′(xjt − x̄j·),

CXγtt =
∑N

i=1(xit − x̄i·)′(γt − γ̄),
t = 1, . . . , T, (c.2)
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and the following identities hold∑N
i=1BXXii =

1
T

∑T
t=1

∑T
s=1 V XXts,

∑T
t=1CXXtt =

1
N

∑N
i=1

∑N
j=1WXXij . (c.3)

Similarly, ∑N
i=1BXαii =

∑T
t=1 V Xαt,

∑T
t=1CXγtt =

∑N
i=1WXγi.

The overall between individual and overall between period (co)variation can then be written as

BXX =
∑N

i=1BXXii = T
∑N

i=1(x̄i· − x̄)′(x̄i· − x̄) = (1/T )
∑T

t=1

∑T
s=1 V XXts, (c.4)

CXX =
∑T

t=1CXXtt = N
∑T

t=1(x̄·t − x̄)
′(x̄·t − x̄) = (1/N)

∑N
i=1

∑N
j=1WXXij . (c.5)

D: The covariance matrix of β̂GLS: Recalling (45), (46), (48), and (53), the GLS weights in the

variance-covariance matrix can be obtained from Table 2, panel A, by adding λB times the weights in

row 1, λC times the weights in row 2, and the weights in row 3 (or 4). Expressions for the variance-

covariance matrix of β̂GLS can be derived by inserting the weights in Table 2, panel A, rows 1 or 2, into

(34)–(36). The result is given in Table 2, panel B, row 1. In deriving V(β̂GLS |X), we use∑T
s=1 ϕts = λB ,

∑T
s=1 ϕtsϕps = δtp − 1− λ2

B

T
t, p = 1, . . . , T,∑N

j=1 ψij = λC ,
∑N

j=1 ψijψkj = δik − 1− λ2
C

N
i, k = 1, . . . , N,

so that, using (36), we have

ZV = λ2
B

∑T
t=1

∑T
p=1 V XXtp = λ2

BTBXX ,

ZW = λ2
C

∑N
i=1

∑N
k=1WXXik = λ2

CNCXX ,

which are the expressions given in Table 2, panel B, columns 2 and 3. Obviously, SV W = 0. From (36),

in combination with the weights in Table 2, rows 1 and 2, we get

SV + SW = V XX − (1− λ2
B)BXX + λ2

CCXX = λ2
BBXX +WXX − (1− λ2

C)CXX ,

Q = V XX − (1− λB)BXX + λCCXX = λBBXX +WXX − (1− λC)CXX ,

which, since V XX −BXX =WXX −CXX = RXX , can be simplified to

SV + SW = RXX + λ2
BBXX + λ2

CCXX ,

Q = RXX + λBBXX + λCCXX .

These are the expressions given in Table 2, panel B, columns 1 and 4. Finally, since

σ2(SV + SW ) + σ2
αZV + σ2

γZW = σ2[RXX + λBBXX + λCCXX ],

the covariance matrix of β̂GLS can be written as

V(β̂GLS |X)=σ2[RXX+λBBXX+λCCXX ]−1=

[
RXX

σ2
+

BXX

σ2+Tσ2
α

+
CXX

σ2+Nσ2
γ

]−1

. (d.1)

The covariance matrices of the one-way GLS estimators β̂GLS(α) and β̂GLS(γ) when the two-way effects

model is valid, obtained from Table 2, panel B, rows 2 and 3, are

V(β̂GLS(α)|X) = [RXX+λBBXX+CXX ]−1[σ2RXX+λ2
B(σ

2+Tσ2
α)BXX+(σ2+Nσ2

γ)CXX ]

× [RXX+λBBXX+CXX ]−1, (d.2)

V(β̂GLS(γ)|X) = [RXX+BXX+λCCXX ]−1[σ2RXX+(σ2+Tσ2
α)BXX+λ2

C(σ
2+Nσ2

γ)CXX ]

× [RXX+BXX+λCCXX ]−1, (d.3)

which for the one-way random effects models (σ2
γ = 0 and σ2

α = 0, respectively) are simplified to

V(β̂GLS(α)|X) =

[
RXX+CXX

σ2
+

BXX

σ2+Tσ2
α

]−1

, (d.4)

V(β̂GLS(γ)|X) =

[
RXX+BXX

σ2
+

CXX

σ2+Nσ2
γ

]−1

. (d.5)
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Table A1: Weights of β̂Wij in aggregate estimates. N = 10, T = 8.

A. Weights of β̂Wii in β̂W , per cent. Average = 10 per cent

i→ 1 2 3 4 5 6 7 8 9 10

38.25 5.22 3.24 2.93 14.86 6.84 5.71 14.76 1.84 6.35

B. Weights of β̂Wij in β̂C , per cent. Average = 1 per cent

i ↓ j → 1 2 3 4 5 6 7 8 9 10

1 14.95 -2.40 3.95 -0.60 8.50 3.28 -3.47 8.00 -1.87 2.00
2 -2.40 2.04 -0.70 0.51 -1.20 -0.12 0.17 -1.40 0.67 0.18
3 3.95 -0.70 1.27 -0.17 2.58 1.41 -1.18 2.61 -0.60 0.99
4 -0.60 0.51 -0.17 1.15 0.18 0.41 0.49 0.06 0.40 0.30
5 8.50 -1.20 2.58 0.18 5.81 2.78 -2.51 5.43 -0.80 2.38
6 3.28 -0.12 1.41 0.41 2.78 2.67 -1.23 3.28 -0.69 1.67
7 -3.47 0.17 -1.18 0.49 -2.51 -1.23 2.23 -2.50 0.25 -1.89
8 8.00 -1.40 2.61 0.06 5.43 3.28 -2.50 5.77 -1.21 2.41
9 -1.87 0.67 -0.60 0.40 -0.80 -0.69 0.25 -1.21 0.72 0.12
10 2.00 0.18 0.99 0.30 2.38 1.67 -1.89 2.41 0.12 2.48

Table A2: Weights of β̂V ts in aggregate estimates. N = 10, T = 8.

A. Weights of β̂V tt in β̂V , per cent. Average = 12.5 per cent

t→ 1983 1984 1985 1986 1987 1988 1989 1990

15.503 20.005 11.536 12.091 10.844 11.551 10.556 7.915

B. Weights of β̂V ts in β̂B , per cent. Average = 1.56 per cent

t ↓ s→ 1983 1984 1985 1986 1987 1988 1989 1990

1983 2.222 2.437 1.793 1.705 1.579 1.516 1.260 1.129
1984 2.437 2.868 2.084 2.043 1.857 1.749 1.517 1.330
1985 1.793 2.084 1.654 1.662 1.497 1.468 1.255 1.101
1986 1.705 2.043 1.662 1.733 1.555 1.499 1.303 1.154
1987 1.579 1.857 1.497 1.555 1.554 1.543 1.403 1.266
1988 1.516 1.749 1.468 1.499 1.543 1.656 1.524 1.328
1989 1.260 1.517 1.255 1.303 1.403 1.524 1.513 1.276
1990 1.129 1.330 1.101 1.154 1.266 1.328 1.276 1.135

Table A3: Coefficients of Correlation, Log-Output. N = 10, T = 8.

A. Within Firm, RWXij

i ↓ j → 1 2 3 4 5 6 7 8 9 10

1 1.000 -0.435 0.909 -0.146 0.912 0.518 -0.601 0.861 -0.572 0.329
2 -0.435 1.000 -0.435 0.333 -0.347 -0.052 0.081 -0.408 0.550 0.080
3 0.909 -0.435 1.000 -0.144 0.952 0.765 -0.701 0.964 -0.626 0.559
4 -0.146 0.333 -0.144 1.000 0.069 0.235 0.309 0.022 0.446 0.178
5 0.912 -0.347 0.952 0.069 1.000 0.706 -0.696 0.938 -0.393 0.628
6 0.518 -0.052 0.765 0.235 0.706 1.000 -0.503 0.835 -0.501 0.647
7 -0.601 0.081 -0.701 0.309 -0.696 -0.503 1.000 -0.695 0.196 -0.803
8 0.861 -0.408 0.964 0.022 0.938 0.835 -0.695 1.000 -0.594 0.637
9 -0.572 0.550 -0.626 0.446 -0.393 -0.501 0.196 -0.594 1.000 0.090
10 0.329 0.080 0.559 0.178 0.628 0.647 -0.803 0.637 0.090 1.000

B. Within Year, RV Xts

t ↓ s→ 1983 1984 1985 1986 1987 1988 1989 1990

1983 1.000 0.965 0.936 0.869 0.850 0.790 0.687 0.711
1984 0.965 1.000 0.957 0.916 0.879 0.803 0.728 0.737
1985 0.936 0.957 1.000 0.982 0.934 0.887 0.794 0.804
1986 0.869 0.916 0.982 1.000 0.947 0.885 0.805 0.823
1987 0.850 0.879 0.934 0.947 1.000 0.962 0.915 0.954
1988 0.790 0.803 0.887 0.885 0.962 1.000 0.963 0.969
1989 0.687 0.728 0.794 0.805 0.915 0.963 1.000 0.974
1990 0.711 0.737 0.804 0.823 0.954 0.969 0.974 1.000
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