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Abstract

We provide comparable algorithms for the Dekel-Fudenberg procedure, it-

erated admissibility, proper rationalizability and full permissibility by means of

the concepts of preference restrictions and likelihood orderings. We apply the

algorithms for comparing iterated admissibility, proper rationalizability and full

permissibility, and provide a sufficient condition under which iterated admissi-

bility does not rule out properly rationalizable strategies. Finally, we use the

algorithms to examine an economically relevant strategic situation, namely a

bilateral commitment bargaining game.
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1 Introduction

In non-cooperative game theory, a player is cautious if he takes into account all

opponents’ strategies, also strategies that seem very unlikely to be chosen by the

opponents. Cautious reasoning of a player can be modeled by a lexicographic belief

(Blume et al., 1991a). This notion allows a player i to deem some strategy sj of an

opponent j infinitely more likely than some other strategy s′j , while still taking s′j

into account. What outcomes of a strategic game are consistent with common belief

of the event that all players are rational and cautious?

Various concepts in the literature provide different answers to this question. Still,

there is a common idea underlying each of these concepts, namely that player i should

deem a strategy sj of opponent j infinitely more likely than strategy s′j whenever

player i considers sj a “better choice” for opponent j than s′j . The question then

remains what we should mean by a “better choice”.

As an illustration, consider the following economic example (which is the Spy

game of Perea, 2012, p. 262, but with another motivating story). An entrant (firm

1) and an incumbent (firm 2) must decide which type of good to bring to the market:

x, y or z. The entrant expects a revenue of 3 as long as it produces a good different

from the incumbent, and a revenue of 2 if it produces the same good. Its production

costs for each of the goods is 2. The incumbent expects, for every production choice,

a revenue of 3. The only exception is when the goods x and z are both brought on

the market. Since these goods are complementary, the incumbent expects a revenue

of 6 in this case. The incumbent has produced good x in the past, which would

therefore have the lowest costs (normalized to 0). Producing goods y and z would

cost the incumbent 1 and 2, respectively, since good y is more similar to x than z

is. The profits for both firms can be found in Figure 0, where the choice of firm 1 is

indicated in upper case, to differentiate from the choice of firm 2 in lower case.

Note that for firm 2, production choice y can never be rational as x strictly

dominates y, whereas x and z can be rational for some belief about firm 1’s choice.

One could therefore argue that x and z are better choices for firm 2 than y, and

hence firm 1 should deem x and z infinitely more likely than y. But then, if firm

1 takes all possible choices by firm 2 into account, its unique rational choice would

be to implement production plan Y . The line of argument we have followed here

corresponds to the procedure of iterated admissibility which iteratively eliminates all

weakly dominated strategies, as it corresponds to the epistemic foundation provided

1



x y z

X

Y

Z

0, 3 1, 2 1, 4

1, 3 0, 2 1, 1

1, 6 1, 2 0, 1

Figure 0: Illustrating iterated admissiblity and proper rationalizability.

for this procedure by Brandenburger et al. (2008)

Iterated admissibility is not the only plausible procedure for cautious reasoning,

however. Consider again the example above. If firm 2 would indeed believe that

firm 1 makes production choice Y , which is what iterated admissibility requires,

then choice y would actually be better for firm 2 than choice z. So given that firm 1

believes that firm 2 believes that firm 1 will do the choice that iterated admissibility

requires, one could argue that firm 1 should deem y infinitely more likely than z,

and not infinitely less likely, as iterated admissibility imposes. Hence, by applying

the procedure of iterated admissibility one may along the way impose conditions on

lexicographic beliefs which need not be convincing given the prescriptions that this

procedure ends up providing.

The concept of proper rationalizability (Schuhmacher, 1999; Asheim, 2001) takes

a different viewpoint. The key condition is that a player i should deem a strategy

sj of opponent j infinitely more likely than strategy s′j whenever he believes that

opponent j, after completing his reasoning process, prefers sj to s′j . If the beliefs of

player i satisfies this condition, we say (following Blume et al., 1991b, Definition 4)

that player i respects the preferences of opponent j.

To see what difference this approach makes, let us return to the example. It

is clear that for firm 2, choice x is better than choice y, whereas we cannot say at

this stage of the reasoning processs that z is better than y. Proper rationalizability

therefore only requires that firm 1 deems x infinitely more likely than y, but does

not require that it deems z infinitely more likely than y. If firm 1 indeed holds

such a belief, then it prefers Y to X, and hence firm 2 should deem Y infinitely

more likely than X. But then, firm 2 will prefer x to y, and y to z. Hence, firm

1 should deem x infinitely more likely than y, and y infinitely more likely than z.

As a consequence, firm 1 should choose production plan Z, and not Y as iterated

admissibility requires.

Both concepts, iterated admissibility and proper rationalizability, are reason-

able concepts with their own intuitive appeal, but may lead to completely different
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choices as we have seen. It therefore seems worthwile to investigate their differences

and similarities in some more detail, and this is exactly what this paper seeks to

accomplish.

A number of contributions, starting with Brandenburger (1992) and Börgers

(1994), have shown that the Dekel-Fudenberg procedure (Dekel and Fudenberg,

1990), where one round of elimination of weakly dominated strategies is followed

by iterated elimination of strictly dominated strategies, provides a robust answer to

the question we posed initially, in the sense that the eliminated strategies are defi-

nitely incompatible with common belief of the event that all players are rational and

cautious. Hence, surviving the Dekel-Fudenberg procedure, and thus being permiss-

ible in the terminology of Brandenburger (1992), is a necessary condition. However,

the concepts of iterated admissibility and proper rationalizability might rule out

more strategies. The same applies for the concept of full permissibility (Asheim and

Dufwenberg, 2003a), which is another procedure for cautious reasoning in games.

Permissibility, iterated admissibility and full permissibility are all defined in

terms of algorithms. While epistemic foundations for the former and latter were

provided quickly (Brandenburger, 1992; Börgers, 1994; Asheim and Dufwenberg,

2003a), half a century elapsed between the introduction of iterated admissibility in

the 1950s and the establishment of an epistemic foundation for this procedure by

Brandenburger et al. (2008).

The case of proper rationalizability is different. This concept was defined by

Schuhmacher (1999) and Asheim (2001) by means of epistemic conditions. Schuh-

macher defines, for every ε > 0, the ε-proper trembling condition, which states that

if a player prefers one pure strategy over another, then the probability he assigns to

the latter strategy should be at most ε times the probability he assigns to the for-

mer. Proper rationalizability is obtained by imposing common belief of the ε-proper

trembling condition, and then letting ε tend to zero. Schuhmacher (1999) provides

an algorithm, iteratively proper trembling, which generates for a given ε > 0 the set

of mixed strategy profiles that can be chosen under common belief of the ε-proper

trembling condition. However, this procedure does not yield the set of properly

rationalizable strategies directly, as we must still let ε go to zero, and see which

strategies survive in the limit. Only later has Perea (2011) provided an algorithm

that directly computes the set of properly rationalizable strategies.

The purpose of the present paper is to present algorithms for permissibility, iter-

ated admissibility and full permissibility that build on the key concepts introduced
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by Perea (2011), thereby making such established procedures comparable to the new

algorithm for proper rationalizability. Section 2 introduces these key concepts: pref-

erence restrictions and likelihood orderings. Above we have already illustrated in the

game of Figure 0 how the working of iterated admissibility and proper rationaliz-

ability can be described in terms of likelihood orderings, indicating which strategies

are deemed infinitely more likely than others. Section 3 introduces algorithms that

iterately eliminates likelihood orderings, for the concepts of permissibility, iterated

admissibility and full permissibiity. These algorithms are thus comparable with the

one for proper rationalizability. Section 4 then puts these algorithms to use. In

particular, we offer examples further illuminating the differences between iterated

admissibility, proper rationalizability and full permissibility. Moreover, we provide

a sufficient condition under which iterated admissibility does not rule out properly

rationalizable strategies. Finally, we use the algorithms to examine an economically

relevant strategic situation, namely a bilateral commitment bargaining game which

has been analyzed by Ellingsen and Miettinen (2008). Section 5 offers concluding

remarks, while an appendix contains all proofs.

2 Preference Restrictions and Likelihood Orderings

Consider a finite strategic game G = (Si, ui)i∈I where I is a finite set of players

and where, for i ∈ I, the finite set Si denotes player i’s set of strategies and ui :∏
j∈I Sj → R denotes player i’s utility function. Write S−i :=

∏
j 6=i Sj . As usual, we

extend ui to subjective probability distributions λi ∈ ∆(S−i) over the opponent’s

strategy profiles, writing ui(si, λi) for the resulting subjective expected utility.

Say that strategy si ∈ Si is strictly dominated by a mixed strategy µi ∈ ∆(Si)

on a subset of opponents’ strategy profiles S′−i ⊆ S−i if ui(si, s−i) < ui(µi, s−i) for

every s−i ∈ S′−i. Similarly, say that si is weakly dominated by µi on S′−i if ui(si, s−i)

≤ ui(µi, s−i) for every s−i ∈ S′−i, with strict inequality for some s′−i ∈ S′−i.
Each player i’s preferences over his own strategies are determined by ui and a

lexicographic probability system (LPS) (Blume et al., 1991a) with full support on

S−i. An LPS consists of a finite sequence of subjective probability distributions,

λi = (λ1
i , . . . , λ

K
i ), where for each k ∈ {1, . . . ,K}, λki ∈ ∆(S−i). Player i prefers

ai ∈ Si to si ∈ Si if there exists k ∈ {1, . . . ,K} such that (i) ui(ai, λ
k
i ) > ui(si, λ

k
i )

and (ii) ui(ai, λ
`
i) = ui(si, λ

`
i) for all ` ∈ {1, . . . , k − 1}. The LPS λi = (λ1

i , . . . , λ
K
i )

has full support on S−i if, for all s−i ∈ S−i, there exists k ∈ {1, . . . ,K} such that
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λki (s−i) > 0. Player i deems s′−i infinitely more likely than s′′−i (written s′−i �i s
′′
−i)

if there exists k ∈ {1, . . . ,K} such that (i) λki (s′−i) > 0 and (ii) λ`i(s
′′
−i) = 0 for

all ` ∈ {1, . . . , k}. For each j 6= i, player i deems s′j infinitely more likely than s′′j

(written s′j �i s
′′
j ) if there exists some s′−i ∈ {s′j} ×

∏
j′ 6=i,j Sj′ such that s′−i �i s

′′
−i

for all s′′−i ∈ {s′′j } ×
∏

j′ 6=i,j Sj′ . It follows that �i is an asymmetric and transitive

binary relation both on S−i and on Sj for each j 6= i.

The following two definitions, which are taken from Perea (2011), provide the

key concepts for our algorithms.

Definition 1 (Preference restriction) A preference restriction for player i on Si

is a pair (si, Ai), where si ∈ Si and Ai is a nonempty subset of Si.

The interpretation of a preference restriction (si, Ai) is that player i prefers some

strategy in Ai to si. Let Ri denote a set of preference restrictions for i, let R∗i denote

the collection of all sets of preference restrictions for i, and let R∗−i :=
∏

j 6=iR∗i
denote the collection of all vectors of sets of preference restrictions for i’s opponents.

For any set Ri of preference restrictions, define the choice set Ci(Ri) as follows:

Ci(Ri) := {si ∈ Si | @Ai ⊆ Si with (si, Ai) ∈ Ri} .

It follows that Ci(R
′
i)∩Ci(R

′′
i ) = Ci(R

′
i ∪R′′i ) for every R′i, R

′′
i ∈ R∗i . In particular,

Ci(R
′
i) ⊇ Ci(R

′′
i ) whenever R′i ⊆ R′′i . Let C−i(R−i) :=

∏
j 6=iCj(Rj) denote the

Cartesian product of the choice sets of i’s opponents, given their sets of preference

restrictions.

Definition 2 (Likelihood ordering) A likelihood ordering for player i on S−i is

an ordered partition Li = (L1
i , L

2
i , . . . , L

K
i ) of S−i.

A likelihood ordering Li = (L1
i , L

2
i , . . . , L

K
i ) on S−i determines the infinitely-

more-likely relation of player i: s−i �i s
′
−i if and only if s−i ∈ Lk

i and s′−i ∈ Lk′
i

with k < k′. Let L∗i denote the set of all likelihood orderings on S−i, and let L̃∗i
(⊆ L∗i ) denote the set of all likelihood orderings on S−i which are either trivial (so

that K = 1 and Li = (L1
i ) = (S−i)) or partition S−i into a non-empty proper subset

A−i and its complement (so that K = 2 and Li = (L1
i , L

2
i ) = (A−i, S−i\A−i)).

For any likelihood ordering Li on S−i, let Ri(Li) denote the set of preference

restrictions derived from Li in the following manner:

Ri(Li) := {(si, Ai) ∈ Si × 2Si | ∃k ∈ {1, . . . ,K} and µi ∈ ∆(Ai)

such that si is weakly dominated by µi on L1
i ∪ · · · ∪ Lk

i } .
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Let R−i(L−i) := (Rj(Lj))j 6=i denote the vectors of sets of preference restrictions for

i’s opponents given their vector (Lj)j 6=i of likelihood orderings.

For any non-empty set Li of likelihood orderings on S−i, write

Ri(Li) :=
⋂

Li∈Li
Ri(Li) .

It follows that Ri(L′i) ∩Ri(L′′i ) = Ri(L′i ∪ L′′i ) for every L′i, L′′i ⊆ L∗i . In particular,

Ri(L′i) ⊇ Ri(L′′i ) whenever L′i ⊆ L′′i . Let R−i(L−i) := (Rj(Lj))j 6=i denote the vectors

of sets of preference restrictions for i’s opponents given their vector L−i := (Lj)j 6=i

of non-empty sets of likelihood orderings. Let L−i 6= ∅ signify that Lj 6= ∅ for all

j 6= i and let L′−i ⊆ L′′−i signify that L′j ⊆ L′′j for all j 6= i.

Likelihood-orderings can be related to the ordinary belief operator as well as the

assumption operator, as proposed by Brandenburger et al. (2008) (and discussed by

Asheim and Søvik, 2005, Section 6).

Definition 3 (Believing an event) For a given subset A−i ⊆ S−i of opponent

strategy vectors, the likelihood ordering Li believes A−i if, for every s−i ∈ S−i\A−i,
a−i �i s−i for some a−i ∈ A−i.

Hence, Li believes A−i if and only if L1
i ⊆ A−i.

Definition 4 (Assuming an event) For a given subset A−i ⊆ S−i of opponent

strategy vectors, the likelihood ordering Li assumes A−i if A−i 6= ∅ and, for every

s−i ∈ S−i\A−i, a−i �i s−i for every a−i ∈ A−i.

Hence, Li assumes A−i if and only if there exists k ∈ {1, . . . ,K} such that L1
i ∪

· · · ∪ Lk
i = A−i. So, if the likelihood ordering Li assumes an event A−i, then it also

believes the event A−i (since clearly L1
i ⊆ A−i), but not vice versa.

Likelihood-orderings can also be related to respect of preferences as introduced

by Blume et al. (1991b).

Definition 5 (Respecting preferences) For a given vector R−i ∈ R∗−i of sets of

preference restrictions, the likelihood ordering Li respects R−i if, for all players j 6= i

and every preference restriction (sj , Aj) ∈ Rj , aj �i sj for some aj ∈ Aj .

It follows that a likelihood ordering Li believes the rationality of i’s opponents if it

respects their preferences, but not vice versa. This can be stated formally as follows.
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Lemma 1 If the likelihood ordering Li respects the vector R−i ∈ R∗−i of sets of

preference restrictions, then it also believes the event C−i(R−i).

Let Lbi(R−i) denote the set of likelihood orderings for i that believe the rationality

of i’s opponents when the preferences of i’s opponents satisfy the vector R−i of sets

of preference restrictions:

Lbi(R−i) := {Li ∈ L∗i | Li believes C−i(R−i)} .

Let Lai (R−i) denote the set of likelihood orderings for i that assume the rationality

of i’s opponents when the preferences of i’s opponents satisfy the vector R−i of sets

of preference restrictions:

Lai (R−i) := {Li ∈ L∗i | Li assumes C−i(R−i)} .

Finally, let Lri (R−i) denote the set of likelihood orderings for i that respect the

vector R−i of opponent sets of preference restrictions:

Lri (R−i) := {Li ∈ L∗i | Li respects R−i} .

We have seen that assumption implies belief, but not vice versa. Moreover, from

Lemma 1 we know that respect of preferences implies belief of rationality, but not

versa. Hence, we conclude that

Lbi(R−i) ⊇ Lai (R−i) ∪ Lri (R−i)

for every R−i ∈ R∗−i with C−i(R−i) 6= ∅. Since the belief operator satisfies conjunc-

tion and monotonicity, the properties of the choice correspondence Ci(·) imply

Lbi(R′−i) ∩ Lbi(R′′−i) = Lbi(R′−i ∪R′′−i)

for every R′−i, R
′′
−i ∈ R∗−i. However, since the assumption operator satisfies con-

junction but not monotonicity, it holds for every R′−i, R
′′
−i ∈ R∗−i that

Lai (R′−i) ∩ Lai (R′′−i) ⊆ Lai (R′−i ∪R′′−i) ,

while the inverse inclusion need not hold. In particular, Lai (R′−i)∩Lai (R′′−i) 6= ∅ only

if C−i(R
′
−i) ⊆ C−i(R′′−i) or C−i(R

′′
−i) ⊆ C−i(R′−i). Finally, Definition 5 implies

Lri (R′−i) ∩ Lri (R′′−i) = Lri (R′−i ∪R′′−i)

for every R′−i, R
′′
−i ∈ R∗−i. In particular, Lbi(R′−i) ⊇ Lbi(R′′−i) and Lri (R′−i) ⊇ Lri (R′′−i)

whenever R′−i ⊆ R′′−i. This conclusion need not hold for Lai (·) since a likelihood

ordering Li may assume A′−i but not A′′−i even though A′−i ⊂ A′′−i. Hence, we may

have Lai (R′−i) * Lai (R′′−i) and Lai (R′−i) + Lai (R′′−i) even though R′−i ⊂ R′′−i.
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3 Algorithms

In this section we provide comparable algorithms for permissibility (the Dekel-

Fudenberg procedure), iterated admissibility, proper rationalizability, and full per-

missibility. To define these concepts, we need to introduce the following operators:

ai(S
′
−i) := {si ∈ Si | si is not weakly dominated by any µi ∈ ∆(Si) on S′−i} ,

bi(S
′
−i) := {si ∈ Si | si is not strictly dominated by any µi ∈ ∆(Si) on S′−i} ,

where S′−i is a non-empty subset of S−i. Note that ∅ 6= ai(S
′
−i) ⊆ bi(S

′
−i) ⊆ Si for

any non-empty subset S′−i of S−i.

3.1 An algorithm for permissibility

We first consider the Dekel-Fudenberg procedure (Dekel and Fudenberg, 1990), which

is the procedure where one round of maximal elimination of weakly dominated strate-

gies is followed by iterated maximal elimination of strictly dominated strategies. Fol-

lowing Brandenburger (1992), strategies surviving the Dekel-Fudenberg procedure

are referred to as permissible. The formal definition is as follows.

Definition 6 (Permissibility) Consider the sequence defined by, for all players i,

S0
i = Si and, for every n ≥ 1, Sn

i = bi
(
Sn−1
−i
)
∩ ai(S−i). A strategy si for player i is

permissible if si ∈
⋂∞

n=1 S
n
i .

Since ai(S−i) ⊆ bi(S−i) this corresponds to the Dekel-Fudenberg procedure: Elimi-

nation of weakly dominated strategies in the first round, followed by elimination of

strictly dominated strategies in later rounds.

Consider the following algorithm, which iteratedly decreases the set of likelihood

orderings for all players:

Ini For all players i, let L0
i = L∗i .

Per For every n ≥ 1 and all players i, let Lni = Lbi(R−i(L
n−1
−i )).

From the properties of Lbi(·) and Ri(·), it follows that Ini and Per determine,

for each player, a non-increasing sequence of sets of likelihood orderings (where

non-increasing are defined w.r.t. set inclusion). As a consequence, the sequence

Ci(Ri(Lni )) of choice sets is non-increasing. Since the set of likelihood orderings is

finite, the algorithm converges after a finite number of rounds.
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For all players i, let L∞i :=
⋂∞

n=1 Lni be the limiting set of likelihood orderings

produced by the algorithm defined by Ini and Per.

Proposition 1 Let G be a finite strategic game. Then, for all players i, a strategy

si is permissible if and only if si ∈ Ci(Ri(L∞i )).

Proof. See the appendix.

As we note in the proof, the same result is obtained if the algorithm is initiated

with L0
i = L̃∗i , including only likelihood orderings that are either trivial or partition

S−i into a non-empty proper subset and its complement. The reason is that the belief

operator is concerned only with the top level element of the likelihood ordering.

3.2 An algorithm for iterated admissibility

Iterated admissibility is the procedure of iterated maximal elimination of weakly

dominated strategies, which can formally be defined as follows.

Definition 7 (Iterated admissibility) Consider the sequence defined by, for all

players i, S0
i = Si and, for every n ≥ 1, Sn

i = ai
(
Sn−1
−i
)
∩ Sn−1

i . A strategy si for

player i survives iterated admissibility if si ∈
⋂∞

n=1 S
n
i .

Consider the following algorithm, which iteratedly decreases the set of likelihood

orderings for all players:

Ini For all players i, let L0
i = L∗i .

IA For every n ≥ 1 and all players i, let

Lni = Lai (R−i(Ln−1
−i )) ∩ Ln−1

i .

It follows directly that Ini and IA determine, for each player, a non-increasing

sequence of sets of likelihood orderings. As a consequence, the sequence Ci(Ri(Lni ))

of choice sets is non-increasing. Since the set of likelihood orderings is finite, the

algorithm converges after a finite number of rounds.

For all players i, let L∞i :=
⋂∞

n=1 Lni be the limiting set of likelihood orderings

produced by the algorithm defined by Ini and IA.

Proposition 2 Let G be a finite strategic game. Then, for all players i, a strategy

si survives iterated admissibility if and only if si ∈ Ci(Ri(L∞i )).

9



Proof. See the appendix.

Proposition 2 echoes Brandenburger et al.’s (2008, Theorem 9.1) epistemic char-

acterization of iterated admissibility (see also the observation that Stahl (1995)

makes in his theorem) by pointing out that iterated admissibility corresponds to

likelihood orderings where strategies eliminated in a later round are deemed in-

finitely more likely than strategies eliminated in an earlier round, and surviving

strategies are deemed infinitely more likely than strategies eliminated in any round.

Thus, when we evaluate the procedure of iterated admissibility by considering how

our algorithm eliminates likelihood orderings, our evaluation is consistent with Bran-

denburger et al.’s (2008) epistemic characterization.

3.3 An algorithm for proper rationalizability

We then consider proper rationalizability, a concept defined by Schuhmacher (1999)

and characterized by Asheim (2001). We refer to these references for details.

Consider the following algorithm, which iteratedly decreases the set of likelihood

orderings for all players:

Ini For all players i, let L0
i = L∗i .

PR For every n ≥ 1 and all players i, let Lni = Lri (R−i(L
n−1
−i )).

From the properties of Lri (·) and Ri(·), it follows that Ini and PR determine,

for each player, a non-increasing sequence of sets of likelihood orderings. As a

consequence, the sequence Ci(Ri(Lni )) of choice sets is non-increasing. Since the

set of likelihood orderings is finite, the algorithm converges after a finite number of

rounds.

For all players i, let L∞i :=
⋂∞

n=1 Lni be the limiting set of likelihood orderings

produced by the algorithm defined by Ini and PR.

Proposition 3 Let G be a finite strategic game. Then, for all players i, a strategy

si is properly rationalizable if and only if si ∈ Ci(Ri(L∞i )).

Proof. Perea (2011).

3.4 An algorithm for full permissibility

We finally consider a procedure for the concept of fully permissible sets, as defined

by Asheim and Dufwenberg (2003a) for 2-player games. Full permissibility selects
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sets of strategies, rather than individual strategies, for both players. To formally

define this concept, let Σi denote the collection of all non-empty subsets of strategies

in Si, for both players i. Furthermore, introduce the following operator:

αi(Σ
′
j) := {Ai ∈ Σi | ∃(∅ 6=) Σ′′j ⊆ Σ′j s.t. Ai = ai

(
∪Aj∈Σ′′j

Aj

)
∩ ai(Sj)} ,

where j 6= i and Σ′j is a non-empty subset of Σj . Note that ∅ 6= αi(Σ
′
j) ⊆ Σi for any

non-empty subset Σ′j of Σj .

Definition 8 (Full permissibility) Consider the sequence defined by, for both

players i, Σ0
i = Σi and, for every n ≥ 1, Σn

i = αi

(
Σn−1
j

)
. A strategy set Ai for

player i is fully permissible if Ai ∈
⋂∞

n=1 Σn
i .

Consider the following algorithm, which iteratedly decreases the set of likelihood

orderings for all players:

Ini For all players i, let L0
i = L∗i .

FP For every n ≥ 1 and all players i, let

Lni = {Li ∈ L∗i | ∃(∅ 6=)L−i ⊆ Ln−1
−i such that Li assumes A−i

if and only if A−i ∈ {∪L−i∈L−iC−i(R−i(L−i)), S−i}} .

It follows that Ini and FP determine, for each player, a non-increasing sequence

of sets of likelihood orderings. As a consequence, the sequence (Ci(Ri(Li)))Li∈Lni of

collections of choice sets is non-increasing. Since the set of likelihood orderings is

finite, the algorithm converges after a finite number of rounds.

For all players i, let L∞i :=
⋂∞

n=1 Lni be the limiting set of likelihood orderings

produced by the algorithm defined by Ini and FP.

Proposition 4 Let G be a finite 2-player strategic game. Then, for both players

i, Ai is a fully permissible set if and only if there exists Li ∈ L∞i such that Ai =

Ci(Ri(Li)).

Proof. See the appendix.

We can use the algorithm defined by Ini and FP to define the concept of fully

permissible sets for games with more than two players:

Definition 9 Let G be a finite strategic game. Then, for all players i, Ai is a fully

permissible set if there exists Li ∈ L∞i such that Ai = Ci(Ri(Li)).

11



As for permissibility, we can initiate the algorithm for full permissibility with

L0
i = L̃∗i , including only likelihood orderings that are either trivial or partition S−i

into a non-empty proper subset and its complement. Indeed, Lni ⊆ L̃∗i for every

n ≥ 1 and all players i also when the algortithm is initiated with L0
i = L∗i .

4 Applying the algorithms

In this section we put the algorithms to work. In the first subsection four examples

illustrate how the algorithms lead to sequences of sets of likelihood orderings. This

sheds light on differences between iterated admissibility, proper rationalizability and

full permissibility. Iterated admissibility results in a strict refinement of permissi-

bility in all four examples, proper rationalizability strictly refines permissibility in

examples 2 and 3, and full permissibility strictly refines permissibility in examples

2 and 4. However, even when two different concepts (like iterated admissibility and

proper rationalizability in examples 2 and 3) give rise to the same prescription, there

are interesting differences in the working of the algorithms in terms of the likelihood

orderings that are eliminated along the way. In particular, example 3 illustrates

how iterated admissibility and proper rationalizability promote backward induction

through two different sequences of elimination, while example 4 does the same for

how iterated admissibility and full permissiblity promote forward induction.

In the second subsection we build on insights conveyed by the examples and

provide through Proposition 5 a sufficient condition ensuring that any properly

rationalizable strategy survives iterated admissibility. In particular, since proper

equilibrium always exists and any strategy being used with positive probability in a

proper equilibrium is properly rationalizable, we reach the following conclusion: If

a game, for which iterated admissibility leads to a unique strategy for each player,

satisfies the sufficient condition of Proposition 5, then the surviving strategies are

the unique properly rationalizable strategies and the corresponding strategy profile

is the unique proper equilibrium.

In the third subsection we consider a contribution on commitment bargaining

(Ellingsen and Miettinen, 2008) to show the usefulness and appeal of the concept of

proper rationalizability in an economically relevant situation. In particular, we use

the algorithm of Section 3.3 to show how proper rationalizability yields the outcomes

Ellingsen and Miettinen point to in their propositions, while other concepts do not.

12



L R

U

M

D

1, 1 1, 1

0, 1 2, 0

1, 0 0, 1

Figure 1: Iterated admissibility rules out properly rationalizable strategies (G1).

4.1 Examples

The examples are games G1–G4, which are illustrated by Figures 1–4. The corre-

sponding Tables 1–4 provide the order in which likelihood orderings are eliminated

by the algorithms for permissibility, iterated admissibility, proper rationalizability

and full permissibility in each of these examples.1

[Table 1 about here.]

In game G1 (discussed by Asheim and Dufwenberg, 2003a) the algorithm for

permissibility rules out likelihood orderings for player 2 where D is at the top level,

while the algorithm for proper rationalizability in addition requires that player 2

respects the preferences of player 1 by deeming D infinitely less likely than U (as U

weakly dominates D and is thus preferred by player 1). Since this does not imply

anything about the relative likelihood of M and D, which is what the preferences

of player 2 depend on, there is no elimination of likelihood orderings for player 1.

Thus, for permissibility and proper rationalizability, the algorithm converges after

one round. The algorithm for full permissibility also rules out that the top level

element of a surviving likelihood ordering is a singleton set containing only R or M .

However, all three concepts eliminate only strategy D in this example.

In contrast, the algorithm for iterated admissibility works by eliminating all

likelihood orderings for player 2 but those that assume {U,M}, thus deeming D

infinitely less likely than both U and M in the first round. This in turn means

that player 2 prefers L to R, determining ({L}, {R}) as the sole surviving likelihood

ordering for player 1 in round 2, and that player 1 prefers U to M , determining

({U}, {M}, {D}) as the sole surviving likelihood ordering for player 2 in round 3.

Thus, iterated admissibility eliminates both strategies D and M for player 1 and

strategy R for player 2.

1For permissibility and full permissibility we restrict ourselves to likelihood orderings that are

either trivial or partition the opponent’s strategy set into a proper subset and its complement

since—as noted in the main text—this is immaterial for the outcome.
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Figure 2: IA and proper rationalizability make same prescription (G2).

The key difference in game G1 between the algorithms for iterated admissibility

and the other concepts is that the algorithm for iterated admissibility insists that

both U and M be infinitely more likely than D, even though only U weakly dom-

inates D. It follows from the structure of game G1 that player 2 prefers L to R if

player 2 believes that M is infinitely more likely than D. The algorithms for the

other concepts do not reach this conclusion, and thus player 2 need not prefer L

to R. Under iterated admissibility the sole surviving likelihood ordering for player

1 entails the belief that L is infinitely more likely than R, implying that player 1

prefers D to M . Nevertheless, the sole surviving likelihood ordering for player 2

entails the belief that D is infinitely less likely than M .

[Table 2 about here.]

Compare game G1 to game G2, for which both iterated admissibility and proper

rationalizability prescribe only U for player 1 and only L for player 2. Also in this

game, the algorithm for proper rationalizability rules out all likelihood orderings for

player 2 but those where D is infinitely less likely than U (as U weakly dominates

D and is thus preferred by player 1), while the algorithm for iterated admissibility

goes further by eliminating all likelihood orderings but those where D is infinitely

less likely than both U and M in the first round. However, in this example the

preferences of player 2 depends on the relative likelihood of U and D and thus U

being infinitely more likely than D is sufficient for player 2 preferring L to R. For

both algorithms this determines ({L}, {R}) as the sole surviving likelihood ordering

for player 1 in round 2, and implies that player 1 prefers both U and D to M .

In the algorithm for iterated admissibility this entails that player 2 assumes {U},
implying that U is infinitely more likely than both M and D. Since all likelihood

orderings but those where both U and M are infinitely more likely than D have

already been eliminated, ({U}, {M}, {D}) ends up as the sole surviving likelihood

ordering for player 2 in round 3. However, as player 1 prefers D to M and the

algorithm for proper rationalizability requires player 2 to respect the preferences

14
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Figure 3: Backward induction in a four-legged centipede game (G3).

of player 1, this algorithm yields ({U}, {D}, {M}) as the sole surviving likelihood

ordering for player 2 in round 3.

A key observation for game G2 is that U weakly dominates D, and that L weakly

dominates R on both {U} (which is the strategy used to eliminate D in the first

round of iterated admissibility) and {U,M} (which is the set of strategies for player

1 surviving the first round of iterated admissibility). The same kind of observation

can be made for the centipede game, which we turn to next.

[Table 3 about here.]

Also in the four-legged centipede game illustrated in Figure 3 both iterated

admissibility and proper rationalizability make the same prescription, namely the

backward induction outcome (D, d). However, as for game G2, the algorithms in

terms of likelihood orderings do not coincide. In the first round, the algorithm for

proper rationalizability requires that player 1 respects the preferences of player 2

by deeming ff infinitely less likely than fd (as fd weakly dominates ff and is thus

preferred by player 2). The algorithm for iterated admissibility goes further by

eliminating all likelihood orderings for player 1 but those that assume {d, fd}, thus

deeming ff infinitely less likely than both d and fd. Even though the set of likelihood

orderings for player 1 that assume {d, fd} is a strict subset of those that deem fd

infinitely more likely than ff, it turns out that deeming fd infinitely more likely

than ff is sufficient for player 1 to prefer FD to FF. Likewise, in the second round,

even though the set of likelihood orderings for player 2 that assume {D,FD} is a

strict subset of those that deem FD infinitely more likely than FF, it turns out that

deeming FD infinitely more likely than FF is sufficient for player 2 to prefer d to fd.

Note that in the second round, FD weakly dominates FF on both {fd} (which

is the strategy used to eliminate ff in the first round of iterated admissibility) and

{d, fd} (which is the set of strategies for player 2 surviving the first round of iterated

admissibility). Likewise, in the third round, d weakly dominates fd and ff on both

{FD} (which is the strategy used to eliminate FF in the second round of iterated
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Figure 4: Forward induction in the battle of the sexes with outside option (G4).

admissibility) and {D,FD} (which is the set of strategies for player 1 surviving the

second round of iterated admissibility). Similar conclusions hold for any centipede

game independent of size and illustrates how both iterated admissibility and proper

rationalizability correspond to the procedure of backward induction in such games.2

The algorithm for permissibility works similarly in games G2 and G3 as in game

G1. In particular, in game G2 it does not require player 2 to deem U infinitely more

likely than D (even though U weakly dominates D and is thus preferred by player 1).

Thus, this algorithm does not allow us to conclude that player 2 prefers L to R, and

therefore does not determine ({L}, {R}) as the sole surviving likelihood ordering for

player 1. In contrast, the algorithm for full permissibility does lead to ({L}, {R}) as

the sole surviving likelihood ordering for player 1 in game G2. Hence, it prescribes

the outcome (U,L), thus coinciding with the algorithms for iterated admissibility and

proper rationalizability in this respect. However, the algorithm for full permissibility

does not directly conclude that U infinitely more likely than D. Rather, as shown

in Table 2, this conclusion is reached through a process that is more involved than

for the algorithms for iterated admissibility and proper rationalizability.

[Table 4 about here.]

To illustrate the algorithm for full permissibility in another game where this

concept has as much cutting power as iterated admissibility, but where in contrast

to game G2 it is more restrictive than proper rationalizability, we include the battle

of the sexes with outside option as game G4. In this game, both iterated admissibility

and full permissibility prescribe the forward induction outcome (U,L) (see Asheim

and Dufwenberg, 2003b, p. 319). However, the process at which player 2 is lead

2For finite perfect information games without relevant payoff ties, proper rationalizability leads

to the unique profile of backward induction strategies (Schuhmacher, 1999; Asheim, 2001), and

iterated admissibility leads to the backward induction outcome (see Battigalli, 1997, pp. 52–53,

for relevant references). While the algorithms of Sections 3.2 and 3.3 correspond to the backward

induction procedure in the subclass of centipede games, this does not hold for the whole class of

finite perfect information games without relevant payoff ties.
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to conclude that U is infinitely more likely than M (leading to a preference for L

over R) is different for the two algorithms. For iterated admissibility this follows

directly from assuming {U,D}, thus deeming M infinitely less likely than both U

and D, even though only D weakly dominates M . For full permissibility the process

is more involved, as illustrated in Table 4.

The examples of Figures 1–4 show that there are no logical relationships between

proper rationalizability and full permissibility, while suggesting that iterated admis-

sibility refines proper rationalizability and full permissibility, which in turn refine

permissibility. Which of these relations are general properties? This is a question

which we consider in the next subsection.

4.2 The relations between the algorithms

The properties of Lbi(·) and Ri(·) combined with Lemma 1 imply both

Lai (R−i(L′−i)) ⊆ Lbi(R−i(L′−i)) ,

Lri (R−i(L′−i)) ⊆ Lbi(R−i(L′−i)) ,

{Li ∈ L∗i | ∃(∅ 6=)L−i ⊆ L′−i such that Li assumes A−i

if and only if A−i ∈ {∪L−i∈L−iC−i(R−i(L−i)), S−i}}
⊆ Lbi(R−i(L′−i))

for any vector L′−i of non-empty sets of likelihood orderings for i’s opponents, and

Lbi(R−i(L′−i)) ⊆ Lbi(R−i(L′′−i))

if L′−i ⊆ L′′−i, signifying that L′j ⊆ L′′j for all j 6= i. Thus, if L′j ⊆ L′′j for all j 6= i,

then the set of likelihood orderings determined for i by Per on the basis of L′′−i is

always a superset of those sets determined for i by IA, PR and FP on the basis of

L′−i. This means that Propositions 1–4 can be used to establish the (already known)

result that each of the concepts iterated admissibility, proper rationalizability and

full permissibility refine the concept of permissibility. The examples illustrate that

these refinements might be strict.

The other conjecture suggested by examples of Figures 1–4, namely that iter-

ated admissibility refines proper rationalizability and full permissibility, is not true.

Asheim and Dufwenberg (2003a, p. 216) show that there is no logical relationship

between iterated admissibility and full permissibility: in their game G4 (illustrated

in Asheim and Dufwenberg, 2003a, Figure 4) strategy b survives iterated admissi-

bility but does not appear in any fully permissible set, while strategy f appears
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in a fully permissible set but does not survive iterated admissibility. Likewise, our

example in the introduction, illustrated in Figure 0 (see also Perea, 2012, p. 262),

shows that there is no logical relationship between iterated admissibility and proper

rationalizability: in the game of Figure 0 proper rationalizability uniquely selects

strategy Z, whereas iterated admissibility uniquely selects strategy Y .

As we have seen in games G2 and G3, there are examples where proper ratio-

nalizability has at least as much cutting power as iterated admissibility. In the fol-

lowing proposition we generalize insights gained through these examples to provide

a sufficient condition under which iterated admissibilty does not rule out properly

rationalizable strategies. Hence, under these conditions, the restrictions on lexico-

graphic beliefs that the procedure of iterated admissibility imposes along the way

are convincing also given the prescriptions that this procedure ends up providing.

Proposition 5 Consider a finite 2-player strategic game G where the procedure of

iterated admissibility leads to the sequence 〈Sn
1 , S

n
2 〉∞n=0 of surviving strategy sets.

Suppose that there exists a sequence 〈An
1 , A

n
2 〉∞n=0 of strategy sets satisfying, for both

players i, A0
i = Si and for each n ∈ N,

• An
i ⊆ Sn

i ,

• if Sn
i 6= Sn−1

i , then, for every si ∈ Si\Sn
i , si is weakly dominated by every

ai ∈ An
i on either (An−1

j and Sn−1
j ) or Sj,

• if Sn
i = Sn−1

i , then An
i = An−1

i .

Then, for both players i, if si is properly rationalizable, then si ∈
⋂∞

n=1 S
n
i .

Proof. See the appendix.

Both G2 of Figure 2 and G3 of Figure 3 can be used to illustrate Proposition

5. In G2, the procedure of iterated admissibility yields the following sequence of

strategy sets: S1
1 = S2

1 = {U,M} and Sn
1 = {U} for n ≥ 3, and S1

2 = {L,R} and

Sn
2 = {L} for n ≥ 2. Choose An

1 = {U} for n ≥ 1, and A1
2 = {L,R} and An

2 = {L}
for n ≥ 2. It is straightforward to check that the conditions of Proposition 5 are

satisfied; in particular, L weakly dominates R on both A1
1 = {U} and S1

1 = {U,M},
and U weakly dominates M on A2

2 = S2
2 = {L}, and weakly dominates D on S2.

In G3, the procedure of iterated admissibility yields the following sequence of

strategy sets: S1
1 = {D,FD ,FF}, S2

1 = S3
1 = {D,FD} and Sn

1 = {D} for n ≥ 4,
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and S1
2 = S2

2 = {d, fd} and Sn
2 = {d} for n ≥ 3. Choose A1

1 = {D,FD ,FF},
A2

1 = A3
1 = {FD} and An

1 = {D} for n ≥ 4, and A1
2 = A2

2 = {fd} and An
2 = {d}

for n ≥ 3. Again, it is straightforward to check that the conditions of Proposition 5

are satisfied; in particular, FD weakly dominates FF on both A1
2 = {fd} and S1

2 =

{d, fd}, d weakly dominates both fd and ff on both A2
1 = {FD} and S2

1 = {D,FD},
and D weakly dominates both FD and FF on A3

2 = S3
2 = {d}.

4.3 Commitment bargaining

The algorithms of Section 3 can be applied for the purpose of analyzing economically

significant models, independently of whether the sufficient condition of Proposition

5 is satisfied. In particular, they can be used for comparing iterated admissibility

to properly rationalizable strategies in specific strategic situations. In this subsec-

tion we consider a model of bilateral commitment bargaining due to Ellingsen and

Miettinen (2008, Section I).

Ellingsen and Miettinen (2008) reexamine the problem of observable commit-

ments in bargaining, first studied by Schelling (1956) and later formalized by Craw-

ford (1982). Ellingsen and Miettinen (2008) extends Crawford’s (1982) analysis by

considering variants of iterated admissibility and refinements of Nash equilibrium.

Here we show how some of the outcomes that Ellingsen and Miettinen (2008) sug-

gest, in particular through their Lemma 2 and Proposition 2, can be obtained by

using proper rationalizability instead of iterated admissibility. There is actually a

mistake in their Lemma 2, but we will come back to this later.

In order to turn their strategic situation where two players bargain over real

numbered fractions of a surplus of size 1 into a finite one-stage game with simul-

taneous moves, we introduce a smallest money unit g. We measure all variables

in terms of numbers of the smallest money unit, and assume that k units of the

smallest money unit equals the total surplus (i.e., k · g = 1). Hence, players 1 and 2

bargain over a surplus of size k.

Each player i chooses, simultaneously with the other, either to commit to some

demand si ∈ {0, 1, . . . , k} or to wait and remain uncommitted. Let w denote the

waiting strategy. Hence the strategy set of each player i is Si = {0, 1, . . . , k} ∪ {w}.
If both players choose w, then each player i receives βi > 1, where β1 + β2 = k.

In the case with certain commitments and no commitment costs (Ellingsen and

Miettinen, 2008, Section I) the payoffs are as follows: If only one player i makes a

commitment si, then i receives si and the other player receives k−si. If both players
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make commitments, then each player i receives xi(si, sj) ∈ {si, si + 1, . . . , k − sj},
with x1(s1, s2) + x2(s2, s1) ≤ k, if s1 + s2 ≤ k and nothing otherwise.

The payoff function ui(si, sj) of each player i can be summarized as follows:

ui(si, sj) =



xi(si, sj) if si + sj ≤ k ,

0 if si + sj > k ,

si if si 6= w and sj = w ,

k − sj if si = w and sj 6= w ,

βi if si = w = sj .

Ellingsen and Miettinen (2008) show through the proof of their Lemma 2 that,

for each player i, iterated admissibility leads to the elimination of 0, 1, . . . , βi in the

first round, and βi + 1, βi + 2, . . . , k− 1 in the second round, leaving k and w as the

surviving strategies. Actually, with only k and w as the surviving strategies, w is

eliminated in the third round, since choosing k yields player i a payoff of 0 if the

opponent also chooses k and k if the opponent chooses w, while choosing w yields

player i a payoff of 0 if the opponent chooses k and βi (< k) if the opponent also

chooses w. Hence, the correct statement of Ellingsen and Miettinen’s (2008) Lemma

2 is that only k is iteratively weakly undominated.

Ellingsen and Miettinen (2008) use Lemma 2 in their subsequent Proposition 2 to

focus on Nash equilibria involving only the strategies k and w (including asymmetric

equilibria where one commits to the entire surplus and the other waits), as opposed to

the plethora of unrefined Nash equilibria that this game gives rise to (cf. Crawford,

1982). Their Proposition 2 states that only the two asymmetric equilibria along

with the symmetric equilibrium where both claim the entire surplus are consistent

with two rounds of elimination of weakly dominated strategies. This statement is

correct, but it begs the question: why stop with two rounds of weak elimination?

As the following proposition shows, proper rationalizability provides a reason for

considering only the strategies k and w.

Proposition 6 Consider the finite version of Ellingsen and Miettinen’s (2008, Sec-

tion I) bilateral commitment bargaining game with zero commitment cost. The prop-

erly rationalizable strategies for each player are to commit to the whole surplus, i.e.,

to choose the strategy k, or to wait, i.e., to choose the strategy w.

Proof. See the appendix.
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The proof of Proposition 6 consists of two parts. The one part uses the algorithm

of Section 3.3 to show that no strategy but k and w can be properly rationalizable.

Since w weakly dominates 0, 1, . . . , βj for player j, respect of j’s preferences forces

player i to deem w infinitely more likely than each of 0, 1, . . . , βj . This in turn

implies that k weakly dominates βi + 1, βi + 2, . . . , k − 1 for player i. Hence, only k

and w can be best responses when players are cautious.

The other part uses the result of Asheim (2001, Proposition 2) — that any

strategy being used with positive probability in a proper equilibrium is properly

rationalizable — to show that k and w are properly rationalizable. In particular,

the asymmetric equilibria where one player commits to the entire surplus and the

other waits are proper. In addition, there is a proper equilibrium where both players

choose k with probability 1.3 In any proper equilibrium, at most one player attains

positive payoff and no strategy but k and w is assigned positive probability. Thus,

the concept of proper equilibrium focuses precisely on the equilibria highlighted in

Ellingsen and Miettinen’s (2008) Proposition 2.4

Ellingsen and Miettinen (2008, Section II) also consider a variant of Crawford’s

(1982) bilateral commitment bargaining game where commitments are uncertain. In

their Proposition 4 they show that only k survives iterated admissibility if commit-

ments are uncertain. Actually, the iterations involve one round of weak elimination,

followed by two rounds of strict elimination. Hence, only k is permissible, and it

follows from the algorithms of Sections 3.1 and 3.3 that only k is properly ratio-

nalizable (and thus, (k, k) is the only proper equilibrium). In their Propositions 1

and 3 they consider costly commitments. In this case, it can be shown that every

strategy surviving iterated elimination of strictly dominated strategies is properly

rationalizable. Hence, in all variants considered by Ellingsen and Miettinen (2008),

proper rationalizability and proper equilibrium yield the outcomes they point to in

their propositions, while other concepts do not.

3This equilibrium involves likelihood orderings where k − 1 and w are at the second level. See

the Claim of the Appendix.

4Even though at most one player attains positive payoff in any perfect equilibrium, there exists,

for each player i and any strategy ` ∈ {βi + 1, βi + 2, . . . , k − 1}, a perfect equilibrium in which

player i assigns positive probability to `. This requires that this player also assigns sufficient positive

probability to w, so that k is the unique best response for the other player. See the Claim of the

Appendix. Hence, the concept of perfect equilibrium can not be used to rule out all equilibria but

the ones highlighted in Ellingsen and Miettinen’s (2008) Proposition 2.
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5 Concluding remarks

In our opinion, proper rationalizability is an attractive concept which is based on

appealing epistemic conditions. However, its applicability has been hampered by the

lack of an algorithm leading directly to the properly rationalizable strategies. With

Perea’s (2011) algorithm, this roadblock has been removed. Here we have compared

proper rationalizability to permissibility (i.e., the Dekel-Fudenberg procedure), it-

erated admissibility and full permissibility by presenting comparable algorithms for

the three latter concepts. Through a bilateral commitment bargaining game due to

Crawford (1982) and Ellingsen and Miettinen (2008) we have illustrated the useful-

ness of proper rationalizability in economic applications.

The four algorithms eliminate likelihood orderings. Likelihood orderings model

cautious behavior, as they require that each player takes into all opponents strate-

gies, also those that seem unlikely to be chosen. There might also be other inter-

esting elimination procedures that can be captures in terms of likelihood orderings.

A particularly interesting example is the reasoning-based expected utility procedure

defined by Cubitt and Sugden (2011). This procedure determines, for each player

and every iteration, a positive and a negative subset of the player’s strategy set (the

two subsets having a non-empty intersection) as follows:

(i) A set of allowable probability distribution is determined by assigning positive

weight to every strategy in the opponent’s positive set and zero weight to every

strategy in the opponent’s negative set.

(ii) The player’s positive set consists of strategies being a best reply to every

allowable probability distribution, while the player’s negative set consists of

strategies not being a best reply to any allowable probability distribution.

In terms of likelihood orderings this requires the top level element to include every

strategy in the opponent’s positive set and to exclude every strategy in the oppo-

nent’s negative set. However, the resulting algorithm is different since the partitional

nature of likelihood orderings induces cautious behavior: all opponent strategies, also

those in the negative set are taken into account.
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A Proofs

Proof of Lemma 1. Assume that Li respects R−i. Suppose sj /∈ Cj(Rj) for some j 6= i,

implying that there exists Aj such that (sj , Aj) ∈ Rj . Since Li respects R−i, aj �i sj for

some aj ∈ Aj . Thus, if sj /∈ Cj(Rj), then there exists a−i ∈ S−i such that a−i �i s−i for all

s−i ∈ {sj} ×
∏
j′ 6=i,j Sj′ , implying that L1

i ∩ {sj} ×
∏
j′ 6=i,j Sj′ = ∅. Therefore, if s−i ∈ L1

i ,

then s−i ∈
∏
j 6=i Cj(Rj) = C−i(R−i), establishing the lemma.

In order to prove Proposition 1, we need the following lemma.

Lemma 2 Let si ∈ Si, Ai ⊆ Si and S′−i ⊆ S−i. Then, si is strictly dominated by some

µi ∈ ∆(Ai) on S′−i if and only for every (∅ 6=)S′′−i ⊆ S′−i strategy si is weakly dominated by

some µ′i ∈ ∆(Ai) on S′′−i.

Proof. Only if. If there exists µi ∈ ∆(Ai) such that µi strictly dominates si on S′−i,

then, for every (∅ 6=)S′′−i ⊆ S′−i, µi ∈ ∆(Ai) weakly dominates si on S′′−i.

If. Suppose there does not exist µi ∈ ∆(Ai) such that µi strictly dominates si on S′−i.

Hence, by Pearce (1984, Lemma 3), there exists λi ∈ ∆(S′−i) such that u(si, λi) ≥ u(s′i, λi)

for all s′i ∈ Ai. Then, by Pearce (1984, Lemma 4), there does not exist µ′i ∈ ∆(Ai) such

that µ′i weakly dominates si on S′′−i := suppλi ⊆ S′−i.

By Lemma 2 it follows that the operator bi(S
′
−i) can be expressed as follows:

bi(S
′
−i) = {si ∈ Si | ∃(∅ 6=)S′′−i ⊆ S′−i s.t. si ∈ ai(S′′−i)} ,

and the combined operator used to define permissibility (in Definition 6) becomes:

bi(S
′
−i) ∩ ai(S−i) = {si ∈ Si | ∃(∅ 6=)S′′−i ⊆ S′−i

s.t. si ∈ ai(S′′−i) ∩ ai(S−i)} .
(A1)
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Note the analogy to the definition of full permissibility in Definition 8.

Proof of Proposition 1. Consider, for all players i, the sequence 〈Sni 〉∞n=0 defined

in Definition 6. We show, by induction on n, that Ci(Ri(Lni )) = Sn+1
i for all players i and

every n ≥ 0.

Part (i). For n = 0, we have that L0
i = L∗i and hence,

Ri(L0
i ) = {(si, Ai) | ∃µi ∈ ∆(Ai) such that si is weakly dominated by µi on S−i} .

Therefore, Ci(Ri(L0
i )) = ai(S−i) = bi(S

0
−i) ∩ ai(S−i) = S1

i for all players i, since S0
−i = S−i

and ai(S−i) ⊆ bi(S−i).
Part (ii). Now, let n ≥ 1, and assume that for all players i, Ci(Ri(Ln−1

i )) = Sni . We

show that, for all players i, Ci(Ri(Lni )) = Sn+1
i .

Fix a player i. By definition, Lni = Lbi (R−i(L
n−1
−i )). We have that

Lbi (R−i(Ln−1
−i )) = {Li ∈ L∗i | Li believes C−i(R−i(Ln−1

−i ))}

= {Li ∈ L∗i | Li believes Sn−i}

= {Li ∈ L∗i | L1
i ⊆ Sn−i},

by our induction assumption. But then,

Ri(Lni ) = {(si, Ai) | for every L1
i ⊆ Sn−i there is µi ∈ ∆(Ai) such that

si is weakly dominated by µi on L1
i or on S−i}

and
Ci(Ri(Lni )) = {si ∈ Si | ∃(∅ 6=)L1

i ⊆ Sn−i s.t. si ∈ ai(L1
i ) ∩ ai(S−i)}

= bi(S
n
−i) ∩ ai(S−i) = Sn+1

i

by (A1) and Definition 6, thus concluding the proof.

Note that the proof above would also apply to the case where L0
i = L̃∗i , restricting to

likelihood orderings that consist of one or two levels only. The reason is that the restrictions

on the sets Lni of likelihood orderings only apply to the first level of the likelihood orderings,

and not to further levels.

Proof of Proposition 2. Consider, for all players i, the sequence 〈Sni 〉∞n=0 defined

in Definition 7. We show, by induction on n, that Ci(Ri(Lni )) = Sn+1
i for all players i and

every n ≥ 0.

Part (i). For n = 0, it follows by part (i) of the proof of Proposition 1, that Ci(Ri(L0
i )) =

ai(S−i) = ai(S
0
−i) ∩ Si = S1

i for all players i.

Part (ii). Let n ≥ 1, and assume that, for all players i, Ci(Ri(Lmi )) = Sm+1
i for every

m ∈ {0, . . . , n− 1}. We show that, for all players i, Ci(Ri(Lni )) = Sn+1
i .

Fix a player i. By definition, we have that

Lni = Lai (R−i(L0
−i)) ∩ Lai (R−i(L1

−i)) ∩ ... ∩ Lai (R−i(Ln−1
−i )).
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By the induction assumption, we know that C−i(R−i(Lm−i)) = Sm+1
i for everym ∈ {0, . . . , n− 1},

and hence

Lai (R−i(Lm−i)) = {Li ∈ L∗i | Li assumes C−i(R−i(Lm−i))}

= {Li ∈ L∗i | Li assumes Sm+1
−i }

= {Li ∈ L∗i | ∃k ∈ {1, . . . ,K} such that L1
i ∪ · · · ∪ Lki = Sm+1

−i }

for every m ∈ {0, . . . , n− 1}. This implies that

Lni = {Li ∈ L∗i | ∀m ∈ {1, . . . , n},∃k ∈ {1, . . . ,K} such that L1
i ∪ · · · ∪ Lki = Sm−i} .

Therefore, Ri(Lni ) contains exactly those preference restrictions (si, Ai) such that si is

weakly dominated by some µi ∈ ∆(Ai) on some Sm−i with m ≤ n:

Ri(Lni ) = {(si, Ai) | there are m ∈ {0, . . . , n} and µi ∈ ∆(Ai)

such that si is weakly dominated by µi on Sm−i}
and

Ci(Ri(Lni )) = ai(S
0
−i) ∩ ai(S1

−i) ∩ · · · ∩ ai(Sn−i) = Sn+1
i ,

which completes the proof.

Proof of Proposition 4. Consider, for both players i, the sequence 〈Σni 〉∞n=0 defined

in Definition 8. Consider also, for both players i, the sequence 〈L̃ni 〉∞n=0 defined by

Ini* For both players i, let L̃0
i = L̃∗i .

and FP. Note that L1
i ⊆ L̃0

i ⊆ L0
i , so by induction, for every n ≥ 1, Ln+1

i ⊆ L̃ni ⊆ Lni .

Since also the algorithm defined by Ini* and FP converges after a finite number of rounds,

as the set of likelihood orderings is finite, we have that L̃∞i :=
⋂∞
n=1 L̃ni equals L∞i . Thus,

it is sufficient to show that there exists Li ∈ L̃ni such that Ai = Ci(Ri(Li)) if and only if

Ai ∈ Σn+1
i , for both players i and every n ≥ 0. We show this by induction on n.

Part (i). For n = 0, we have that L̃0
i = L̃∗i and thus, Li ∈ L̃0

i if and only if Li = (L1
i ) = Sj

or Li = (L1
i , L

2
i ) = (Aj , Sj\Aj) for some non-empty proper subset Aj of Sj . Hence, there is

Li ∈ L̃0
i such that (si, Ai) ∈ Ri(Li) if and only if there exist (∅ 6=)Aj ⊆ Sj and µi ∈ ∆(Ai)

such that si is weakly dominated by µi on Aj or Sj . Therefore, there is Li ∈ L̃0
i such that

Ai ∈ Ci(Ri(Li)) if and only if Ai = ai(Aj) ∩ ai(Sj) for some (∅ 6=)Aj ⊆ Sj . It now follows

from the definition of the operator αi(Σ
′
j) that there is Li ∈ L̃0

i such that Ai ∈ Ci(Ri(Li))
if and only if Ai ∈ αi(Σj) = αi(Σ

0
j ) = Σ1

i , since Σ0
j = Σj .

Part (ii). Now, let n ≥ 1, and assume that for both players i, there exists Li ∈ L̃n−1
i

such that Ai = Ci(Ri(Li)) if and only if Ai ∈ Σni .

Fix a player i. By FP, Li ∈ L̃ni is equivalent to there existing (∅ 6=)Lj ⊆ L̃n−1
j such that

Li assumes Aj if and only if Aj ∈ {∪Lj∈LjCj(Rj(Lj)), Sj}. By the induction assumption

this is equivalent to there existing (∅ 6=) Σ′′j ⊆ Σnj such that Li assumes Aj if and only if
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Aj ∈ {∪A′′
j ∈Σ′′

j
A′′j , Sj}. Hence, Li ∈ L̃ni if and only if Li = (L1

i ) = Sj for some (∅ 6=) Σ′′j ⊆ Σnj
satisfying ∪A′′

j ∈Σ′′
j
A′′j = Sj or Li = (L1

i , L
2
i ) = (Aj , Sj\Aj) for some (∅ 6=) Σ′′j ⊆ Σnj satisfying

∪A′′
j ∈Σ′′

j
A′′j = Aj $ Sj . Therefore, there is Li ∈ L̃ni such that Ai = Ci(Ri(Li)) if and only

if Ai = ai(∪A′′
j ∈Σ′′

j
A′′j ) ∩ ai(Sj) for some (∅ 6=) Σ′′j ⊆ Σnj . It now follows from the definition

of the operator αi(Σ
′
j) that there is Li ∈ L̃ni such that Ai = Ci(Ri(Li)) if and only if

Ai ∈ αi(Σnj ) = Σn+1
i , which completes the proof.

Proof of Proposition 5. Let 〈Ln1 ,Ln2 〉∞n=1 be the sequence of likelihood orderings

according to the algorithm for proper rationalizability (cf. Section 3.3). It is sufficient to

show, under the assumptions of the proposition, that for every n ≥ 0 and both players i, it

holds that, for every si ∈ Si\Sn+1
i , (si, {ai}) ∈ Ri(Lni ) for every ai ∈ An+1

i . In this case,

namely, every properly rationalizable strategy is in
⋂∞
n=1 S

n
i . We show by induction that

the statement above is true.

Part (i). Let n = 0. If S1
i = Si, so that there is no si ∈ Si\S1

i , then the statement

is trivially true. If S1
i 6= Si, then, by the premise of the proposition, for every si ∈ Si\S1

i ,

si is weakly dominated by every ai ∈ A1
i on Sj . Hence, by the full support assumption,

(si, {ai}) ∈ Ri(L∗i ) = Ri(L0
i ), implying that the statement is true also in this case.

Part (ii). Let n ≥ 1, and assume that, for every m ∈ {0, . . . , n− 1} and both players i,

it holds that, for every si ∈ Si\Sm+1
i , (si, {ai}) ∈ Ri(Lmi ) for every ai ∈ Am+1

i .

Fix a player i. We first make the observation that, for every m ∈ {1, . . . , n}, every

Li = (L1
i , . . . , L

K
i ) ∈ Lmi satisfies that there exists k ∈ {1, . . . ,K} such that Amj ⊆ L1

i ∪· · ·∪
Lki ⊆ Smj . This is true by the full support assumption if Smj = Sj (and thus Amj = Sj , by

the last bullet point of Proposition 5 and fact that A0
j = Sj). Assume now that Smj 6= Sj .

By the algorithm for proper rationalizability, every Li ∈ Lmi respects Rj(Lm−1
j ), implying

aj �i sj for every sj ∈ Sj\Smj and every aj ∈ Amj , and the observation follows also in this

case.

If Sn+1
i = Si, then the statement is trivially true also for n ≥ 1.

If Sn+1
i 6= Si, let (0 ≤) m ≤ n satisfy Sn+1

i = Sm+1
i 6= Smi . By a premise of the

proposition, for every si ∈ Si\Sm+1
i , si is weakly dominated by every ai ∈ Am+1

i on either

(Amj and Smj ) or Sj . If si is weakly dominated by ai on Amj and Smj , then si is weakly

dominated by ai on each strategy set S′j satisfying Amj ⊆ S′j ⊆ Smj . By the observation

that every Li = (L1
i , . . . , L

K
i ) ∈ Lmi satisfies that there exists k ∈ {1, . . . ,K} such that

Amj ⊆ L1
i ∪ · · · ∪ Lki ⊆ Smj it follows that (si, {ai}) ∈ Ri(Lmi ). If si is weakly dominated by

ai on Sj , then by the full support assumption, (si, {ai}) ∈ Ri(L∗i ) = Ri(L0
i ). Hence, since

the sequence of sets of likelihood orderings is non-increasing, so that Lni ⊆ Lmi ⊆ L0
i and

thus, Ri(Lni ) ⊇ Ri(Lmi ) ⊇ Ri(L0
i ), for every si ∈ Si\Sn+1

i , (si, {ai}) ∈ Ri(Lni ) for every

ai ∈ An+1
i .

Proof of Proposition 6. The proof is divided into two parts. In part (i) we show

that the strategies in Si\ ({k} ∪ {w}) are not properly rationalizable. In part (ii) we show
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that k and w are properly rationalizable.

Part (i). Let 〈Ln1 ,Ln2 〉∞n=1 be the sequence of sets of likelihood orderings for the finite

version of Ellingsen and Miettinen’s (2008, Section I) bilateral commitment bargaining game

with zero commitment cost, according to the algorithm for proper rationalizability (cf. Sec-

tion 3.3). In order to show that the strategies in Si\ ({k} ∪ {w}) = {0, 1, . . . , k− 1} are not

properly rationalizable, it is sufficient to show that for each player i, it holds that (a) for

every si ∈ {0, 1, . . . , βi}, (si, {w}) ∈ Ri(L0
i ), and (b) for every si ∈ {βi+1, βi+2, . . . , k−1},

(si, {k}) ∈ Ri(L1
i ), keeping in mind that the sequence of sets of likelihood orderings is

non-increasing, so that Lni ⊆ L1
i ⊆ L0

i and thus, Ri(Lni ) ⊇ Ri(L1
i ) ⊇ Ri(L0

i ) for every n ≥ 1.

Result (a) follows from the fact that, for each player i and for every si ∈ {0, 1, . . . , βi},
w weakly dominates si on Sj . (To see this, note that if the opponent chooses w, then player

i’s payoff by choosing w is βi, while it is {0, 1, . . . , βi} if player i commits to one of these

demands, and if the opponent chooses sj ∈ {0, 1, . . . , k}, then player i’s payoff by choosing w

is 1−sj , while it is no more than 1−sj and sometimes 0 if si ∈ {0, 1, . . . , βi}.) Hence, for each

player i and for every si ∈ {0, 1, . . . , βi}, (si, {w}) ∈ Ri(L∗i ) = Ri(L0
i ). This result implies

that, for each player i, every Li = (L1
i , . . . , L

K
i ) ∈ L1

i = Lri (Rj(L0
j )) satisfies that there exists

k ∈ {1, . . . ,K} such that {w} ⊆ L1
i∪· · ·∪Lki ⊆ {βj+1, βj+2, . . . , k}∪{w}. Result (b) follows

from the fact that, for each player i and for every si ∈ {βi + 1, βi + 2, . . . , k − 1}, k weakly

dominates si on each strategy set S′j satisfying {w} ⊆ S′j ⊆ {βj + 1, βj + 2, . . . , k} ∪ {w}.
Hence, for each player i and for every si ∈ {βi + 1, βi + 2, . . . , k − 1}, (si, {k}) ∈ Ri(L1

i ).

Part (ii). We establish that k and w are properly rationalizable in the finite version

of Ellingsen and Miettinen’s (2008, Section I) bilateral commitment bargaining game with

zero commitment cost, by showing that both k and w can be used with positive probability

in a proper equilibrium; thus, they are properly rationalizable (Asheim, 2001, Proposition

2). To prove this claim, consider the likelihood orderings

L1 = {{w}, {1}, {2}, . . . , {β2 − 1}, {k}, {k − 1}, . . . , {β2 + 1}, {β2}, {0}} ,

L2 = {{k}, {k − 1}, . . . , {β1 + 1}, {w}, {β1}, {β1 − 1}, . . . , {1}, {0}} .

Since each element in either of these partitions contains only one strategy, they determine

a pair of LPSs. It is straightforward to check that this pair of LPSs determines a proper

equilibrium, according to Blume et al.’s (1991b, Proposition 5) characterization, where player

1 chooses k with probability 1 and player 2 chooses w with probability 1.

Claim Consider the finite version of Ellingsen and Miettinen’s (2008, Section I) bilateral

commitment bargaining game with zero commitment cost. Assume that x1(s1, s2) = s1 and

x2(s2, s1) = s2 if s1 + s2 ≤ k.

(i) There exists a proper equilibrium where both players assign probability 1 to k.

(ii) For both players i and any strategy ` ∈ {βi+1, βi+2, . . . , k−1}, there exists a perfect

equilibrium where player i assigns positive probability to both w and ` and player j

assigns probability 1 to k.
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Proof. Part (i). Consider the LPSs

λ1 = {λ1
1, . . . , λ

k+1
1 }

λ2 = {λ1
2, . . . , λ

k+1
2 } ,

where for both players i and each ` ∈ {1, . . . , k + 1}, the support of λ`i is included in

{w, k+1−`} for ` ∈ {1, . . . , βj+1}, {w, 1} for ` = βj+2, {w, k+2−`} for ` ∈ {βj+3, . . . , k},
and {w, 0} for ` = k + 1. Let, for each ` ∈ {1, . . . , k + 1}, λ`i be determined by ui(w, λ

`
i) =

ui(k − 1, λ`i). This means that

λ1
i (w) = 0 λ1

i (k) = 1

λ2
i (w) = 1

βj
λ2
i (k − 1) =

βj−1
βj

λ3
i (w) = 2

βj+1 λ3
i (k − 2) =

βj−1
βj+1

· · · · · ·

λ
βj+1
i (w) =

βj

2βj−1 λ
βj+1
i (βi) =

βj−1
2βj−1

λ
βj+2
i (w) = 0 λ

βj+2
i (1) = 1

λ
βj+3
i (w) =

βj+1
2βj

λ
βj+3
i (βi − 1) =

βj−1
2βj

· · · · · ·

λki (w) = k−2
βj+k−3 λki (2) =

βj−1
βj+k−3

λk+1
i (w) = 1

βj
λk+1
i (0) =

βj−1
βj

The LPSs λ1 and λ2 determine the following likelihood orderings:

L1 = {{k}, {w, k − 1}, {k − 2}, . . . , {β1 + 1}, {β1}, {1}, {β1 − 1}, . . . , {2}, {0}} ,

L2 = {{k}, {w, k − 1}, {k − 2}, . . . , {β2 + 1}, {β2}, {1}, {β2 − 1}, . . . , {2}, {0}} .

It can be checked that L1 respects the preference restrictions that u2 and λ2 give rise to,

and L2 respects the preference restrictions that u1 and λ1 give rise to. To see this in the

case of L1 (the demonstration for L2 is symmetric), note:

(a) Player 2 ranks the commitment strategies 0, 2, 3, . . . , k according to size since

u2(s2, λ
1
2) = 0 and u2(s2, λ

2
2) = s2/β1 for s2 ∈ 0, 2, 3, . . . , k.

(b) Player 2 is indifferent between the commitment strategy k − 1 and waiting w since,

by construction, u2(w, λ`2) = u2(k − 1, λ`2) for all ` ∈ {1, . . . , k + 1}.

(c) Player 2 ranks the commitment strategy 1 between the commitment strategies β1 and

β1 − 1 since

u2(β1, λ
1
2) = u2(1, λ1

2) = u2(β1 − 1, λ1
2) = 0 ,

u2(β1, λ
2
2) = u2(1, λ2

2) = 1 > u2(β1 − 1, λ2
2) = β1−1

β1
,

u2(β1, λ
3
2) = 2β1

β1+1 > u2(1, λ3
2) = 1 ,
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since β1 > 1 and x2(1, k − 2) = 1.

It follows from Blume et al.’s (1991b, Proposition 5) characterization that (λ1
1, λ

1
2), where

λ1
2 is the mixed strategy of player 1 and λ1

1 is the mixed strategy of player 2, is a proper

equilibrium. Note that, for both players i, λ1
i (k) = 1.

Part (ii). Let ` be any player 1 strategy in {β1 + 1, β1 + 2, . . . , k − 1}. Consider the

LPSs λ1 = {λ1
1, . . . , λ

k+1
1 } and λ2 = {λ1

2, λ
2
2} defined by

λ1
1(w) = 0 λ1

1(k) = 1 λ1
2(w) = β2

k λ1
2(`) = 1− β2

k

λ2
1(w) = 0 λ2

1(k − `) = 1 λ2
2(s1) = 1

k for all s1 ∈ S1\{w, `}

λ3
1(w) = 1

`−β1+1 λ3
1(k − 1) = `−β1

`−β1+1

· · · · · ·

λ`+1
1 (w) = `−1

2`−β1−1 λ`+1
1 (k − `+ 1) = `−β1

2`−β1−1

λ`+2
1 (w) = 1

`−β1+1 λ`+2
1 (k − `− 1) = `−β1

`−β1+1

· · · · · ·

λk1(w) = k−`−1
k−β1−1 λk1(1) = `−β1

k−β1−1

λk+1
1 (w) = k−`

k−β1
λk+1

1 (0) = `−β1

k−β1
,

with, for each level of these LPSs, zero probability assigned to other strategies.

These LPSs imply that player 1 is indifferent between w and ` and that player 1 prefers

each of these strategies to any strategy in S1\{w, `}, and that player 2 prefers k to any

strategy in S2\{k}. To see this, note:

(a) It follows that player 1 strictly prefers each of w and ` to any strategy in S1\{w, `} since

u1(s1, λ
1
1) = 0 for all s1 ∈ S1 and u1(w, λ2

1) = u1(`, λ2
1) = `, while u1(s1, λ

2
1) = s1 < `

if s1 is a commitment strategy in {1, 2, . . . , ` − 1} and u1(s1, λ
2
1) = 0 < ` if s1 is a

commitment strategy in {` + 1, ` + 2, . . . , k}. It follows that player 1 is indifferent

between w and ` since λ3
1, λ

4
1, . . . , λ

k+1
1 have been constructed so that u1(w, λm1 ) =

u1(`, λm1 ) for each m ∈ {3, 4, . . . , k + 1}.

(b) It follows that player 2 strictly prefers k to any strategy in S2\{k} since u2(k, λ1
2) = β2

and u2(s2, λ
1
2) < β2 for all s2 ∈ S2\{k}.

Since both λ1 and λ2 have full support on the set of opponent strategies, it follows from

Blume et al.’s (1991b, Proposition 4) characterization that (λ1
1, λ

1
2), where λ1

2 is the mixed

strategy of player 1 and λ1
1 is the mixed strategy of player 2, is a perfect equilibrium where

player 1 assigns positive probability to both w and ` and player 2 assigns probability 1 to k.

In a simular fashion we can show that, for any player 2 strategy ` ∈ {β2 + 1, β2 +

2, . . . , k−1}, there exists a perfect equilibrium where player 1 assigns probability 1 to k and

player 2 assigns positive probability to both w and `.

30



B Tables

Table 1: The functioning of the algorithms in game G1.

Permissibility

L0
1 = L̃∗1 L0

2 = L̃∗2
L∞1 = L̃∗1 L∞2 = {({U}, {M,D}), ({M}, {U,D}), ({U,M}, {D})}

Iterated admissibility

L0
1 = L∗1 L0

2 = L∗2
L1

1 = L∗1 L1
2 = {({U,M}, {D}), ({U}, {M}, {D}), ({M}, {U}, {D})}

L2
1 = {({L}, {R})} L2

2 = {({U,M}, {D}), ({U}, {M}, {D}), ({M}, {U}, {D})}

L∞1 = {({L}, {R})} L∞2 = {({U}, {M}, {D})}

Proper rationalizability

L0
1 = L∗1 L0

2 = L∗2
L∞1 = L∗1 L∞2 = {({U}, {M,D}), ({U,M}, {D}),

({U}, {M}, {D}), ({U}, {D}, {M}), ({M}, {U}, {D})}

Full permissibility

L0
1 = L̃∗1 L0

2 = L̃∗2
L1

1 = L̃∗1 L1
2 = {({U}, {M,D}), ({M}, {U,D}), ({U,M}, {D})}

L2
1 = {S2, ({L}, {R})} L2

2 = {({U}, {M,D}), ({M}, {U,D}), ({U,M}, {D})}

L∞1 = {S2, ({L}, {R})} L∞2 = {({U}, {M,D}), ({U,M}, {D})}
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Table 2: The functioning of the algorithms in game G2.

Permissibility

L0
1 = L̃∗1 L0

2 = L̃∗2
L∞1 = L̃∗1 L∞2 = {({U}, {M,D}), ({M}, {U,D}), ({U,M}, {D})}

Iterated admissibility

L0
1 = L∗1 L0

2 = L∗2
L1

1 = L∗1 L1
2 = {({U,M}, {D}), ({U}, {M}, {D}), ({M}, {U}, {D})}

L2
1 = {({L}, {R})} L2

2 = {({U,M}, {D}), ({U}, {M}, {D}), ({M}, {U}, {D})}

L∞1 = {({L}, {R})} L∞2 = {({U}, {M}, {D})}

Proper rationalizability

L0
1 = L∗1 L0

2 = L∗2
L1

1 = L∗1 L1
2 = {({U}, {M,D}), ({U,M}, {D}),

({U}, {M}, {D}), ({U}, {D}, {M}), ({M}, {U}, {D})}

L2
1 = {({L}, {R})} L2

2 = {({U}, {M,D}), ({U,M}, {D}),

({U}, {M}, {D}), ({U}, {D}, {M}), ({M}, {U}, {D})}

L∞1 = {({L}, {R})} L∞2 = {({U}, {D}, {M})}

Full permissibility

L0
1 = L̃∗1 L0

2 = L̃∗2
L1

1 = L̃∗1 L1
2 = {({U}, {M,D}), ({M}, {U,D}), ({U,M}, {D})}

L2
1 = {S2, ({L}, {R})} L2

2 = {({U}, {M,D}), ({M}, {U,D}), ({U,M}, {D})}

L3
1 = {S2, ({L}, {R})} L3

2 = {({U}, {M,D}), ({U,M}, {D})}

L4
1 = {({L}, {R})} L4

2 = {({U}, {M,D}), ({U,M}, {D})}

L∞1 = {({L}, {R})} L∞2 = {({U}, {M,D})}
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Table 3: The functioning of the algorithms in game G3.

Permissibility

L01 = L̃∗1 L02 = L̃∗2
L11 = {({d}, {fd ,ff }), L12 = L̃∗2

({fd}, {d,ff }), ({d, fd}, {ff })}

L∞1 = {({d}, {fd ,ff }), L∞2 = {({D}, {FD ,FF}),

({fd}, {d,ff }), ({d, fd}, {ff })} ({FD}, {D,FF}), ({D,FD}, {FF})}

Iterated admissibility

L01 = L∗1 L02 = L∗2
L11 = {({d, fd}, {ff }), L12 = L∗2

({d}, {fd}, {ff }), ({fd}, {d}, {ff })}

L21 = {({d, fd}, {ff }), L22 = {({D,FD}, {FF}),

({d}, {fd}, {ff }), ({fd}, {d}, {ff })} ({D}, {FD}, {FF}), ({FD}, {D}, {FF})}

L31 = {({d}, {fd}, {ff })} L32 = {({D,FD}, {FF}),

({D}, {FD}, {FF}), ({FD}, {D}, {FF})}

L∞1 = {({d}, {fd}, {ff })} L∞2 = {({D}, {FD}, {FF})}

Proper rationalizability

L01 = L∗1 L02 = L∗2
L11 = {({fd}, {d,ff }), ({d, fd}, {ff }), L12 = L∗2

({d}, {fd}, {ff }), ({fd}, {d}, {ff }),

({fd}, {ff }, {d})}

L21 = {({fd}, {d,ff }), ({d, fd}, {ff }), L22 = {({FD}, {D,FF}), ({D,FD}, {FF}),

({d}, {fd}, {ff }), ({fd}, {d}, {ff }), ({D}, {FD}, {FF}), ({FD}, {D}, {FF}),

({fd}, {ff }, {d})} ({FD}, {FF}, {D})}

L31 = {({d}, {fd}, {ff })} L32 = {({FD}, {D,FF}), ({D,FD}, {FF}),

({D}, {FD}, {FF}), ({FD}, {D}, {FF})}

({FD}, {FF}, {D})}

L∞1 = {({d}, {fd}, {ff })} L∞2 = {({D}, {FD}, {FF})}

Full permissibility

L01 = L̃∗1 L02 = L̃∗2
L11 = {({d}, {fd ,ff }), L12 = L̃∗2

({fd}, {d,ff }), ({d, fd}, {ff })}

L21 = {({d}, {fd ,ff }), L22 = {({D}, {FD ,FF}),

({fd}, {d,ff }), ({d, fd}, {ff })} ({FD}, {D,FF}), ({D,FD}, {FF})}

L31 = {({d}, {fd ,ff }), ({d, fd}, {ff })} L32 = {({D}, {FD ,FF})

({FD}, {D,FF}), ({D,FD}, {FF})}

L∞1 = {({d}, {fd ,ff }), ({d, fd}, {ff })} L∞2 = {({D}, {FD ,FF}), ({D,FD}, {FF})}
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Table 4: The functioning of the algorithms in game G4.

Permissibility

L0
1 = L̃∗1 L0

2 = L̃∗2
L∞1 = L̃∗1 L∞2 = {({U}, {M,D}), ({D}, {U,M}), ({U,D}, {M})}

Iterated admissibility

L0
1 = L∗1 L0

2 = L∗2
L1

1 = L∗1 L1
2 = {({U,D}, {M}), ({U}, {D}, {M}), ({D}, {U}, {M})}

L2
1 = {({L}, {R})} L2

2 = {({U,D}, {M}), ({U}, {D}, {M}), ({D}, {U}, {M})}

L∞1 = {({L}, {R})} L∞2 = {({U}, {D}, {M})}

Proper rationalizability

L0
1 = L∗1 L0

2 = L∗2
L∞1 = L∗1 L∞2 = {({D}, {U,M}), ({U,D}, {M}),

({U}, {D}, {M}), ({D}, {U}, {M}), ({D}, {M}, {U})}

Full permissibility

L0
1 = L̃∗1 L0

2 = L̃∗2
L1

1 = L̃∗1 L1
2 = {({U}, {M,D}), ({D}, {U,M}), ({U,D}, {M})}

L2
1 = {S2, ({L}, {R})} L2

2 = {({U}, {M,D}), ({D}, {U,M}), ({U,D}, {M})}

L3
1 = {S2, ({L}, {R})} L3

2 = {({U}, {M,D}), ({U,D}, {M})}

L4
1 = {({L}, {R})} L4

2 = {({U}, {M,D}), ({U,D}, {M})}

L∞1 = {({L}, {R})} L∞2 = {({U}, {M,D})}

34


	memo1017
	algorime

