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1 Introduction

Identification and instrumental variables (IVs or instruments, for short) are core concepts

in classical and modern econometrics. The former relates to model properties and is

a ‘pre-observation’ concept concerning, briefly, whether it is possible from knowledge

of the distribution of a model’s observable endogenous variables (conditional on the

exogenous variables) to ‘uncover’ the value of a specific parameter of interest, θ. The

latter are elements in several procedures for estimating from data the value of θ, given

that identifiability is assured, including Two-Stage and Three-Stage Least Squares (2SLS,

3SLS) and the General Method of Moments (GMM). The sharp distinction that in

general should be made between ‘model’ and ‘method’ in empirical research, implies that

it is essential to separate the parts of an investigation that relates to model description

and identification from those relating to the use of IVs in statistical procedures. Among

the conclusions that follow from this are that ‘identification by using IVs’ and ‘an IV

model’, which mix the two, are expressions that should be avoided.1 Likewise, ‘IV-

estimand’ is a misnomer, since in common language, an estimand is that which is to be

estimated in a statistical analysis, irrespective of method, usually a parameter.2

On the other hand, from the conditions for identification of the coefficients of a certain

equation may, under certain conditions, be derived a requirement that a minimal number

of IVs for its variables should exist if an analyst considers using procedures that involve

IVs. Likewise, an examination of properties of the model outside of the equation will

often suggest IV candidates for the latter and hence give a model for which IVs exist.

But this should not be called ‘an IV model’.

Koopmans and Reiersøl, in a classical article on identifiability and identification prob-

lems, state:

“One might regard problems of identifiability as a necessary part of the specification
problem ..... Identification problems are not problems of statistical inference in a strict
sense, since the study of identifiability proceeds from a hypothetical exact knowledge
of the probability distribution of observed variables rather than from a finite sample of
observations. However ..... the study of identifiability is undertaken in order to explore
the limitations of statistical inference.” [Koopmans and Reiersøl (1950, pp.169–170)]

Aldrich summarizes the ‘history of IVs’ by:

“The method’s rise to prominence can be divided into three phases. In the 1940s the
method was introduced for use with errors in variables model. In the 1950s it was re-
lated to methods devised for the errors in equations model. More recently it has been
transformed into an organising principle underlying many apparently distinct models .....
According to Reiersøl (1950, p. 378), the “idea of using instrumental variables” was in-
troduced independently by himself in 1941 and by Geary in 1943. .... As Morgan (1990,
p. 226) remarks, Reiersøl’s contribution was “hidden in amongst a number of extensions
to Frisch’s confluence analysis.” ..... Frisch held that a combination of measurement er-
ror and multicollinearity makes economic data difficult to analyse ..... his influence on
Reiersøl’s work of 1941 and 1945 was overwhelming.” [Aldrich (1993, p. 247–249)]

The third and fourth elements in the title, omitted variables and rudimentary models,

are related to the first two, and the four elements are entwined. It is for example well

known, and usually spelt out in econometric textbooks, that criteria for identifiability
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of the coefficients of an equation in a linear multi-equation model relate to properties

of variables which occur somewhere in the model, but do not enter the equation of

interest. An important matter for empirical research then becomes in which detail should

the rest of the model (have to) be specified to draw conclusions on identifiability and

availability of IVs for its equations. Can we do with models that are not specified in such

a detail that the existence of valid IVs follows logically from the models’ assumptions?

Rudimentary models is the label we attach to such models, while model specifications

containing theoretical underpinnings which directly motivate the IV-properties will be

called models for limited information inference. The question above may be answered by

a qualified yes, as it has been known for about sixty years that even from rudimentary

models, consistent estimation of one (or a subset) of its equations is possible, if some

additional assumptions, usually of an ad hoc nature, are met.

For some years there has been what Keane (2010, pp. 3–4) calls a conflict between

‘the “structural” and “experimental” camps in econometrics’, labels to be used also

in this text. While both give core roles to IVs and omitted variables, there seems to

be terminological disagreement along with disagreement about the status and require-

ments of formalized models in research. In particular, there are reasons to ask whether

a changed use of the terms ‘identification’ and ‘instrumental variables’ has occurred.3

My answer is in the affirmative, and when using the term identification, I stick to the

definition often called point identification (as opposed to e.g., ‘set identification’), re-

lating to the non-existence of observationally equivalent structures or parameter points,

see Rothenberg (1971, p. 578) and to the concept named the Haavelmo distribution, by

Spanos (1989); see also Aldrich (1994) and Hendry and Johansen (2015, Section 2). Signs

of changed focus and distortion of terminology are the declining attention many practi-

tioners of ‘empirical economics’ pay to identification problems in the classical sense and

to the related concepts structural parameter, see Marschak (1953) and Koopmans (1953),

and autonomy, see Frisch (1938, 2005) and Aldrich (1989), as well as the growing ten-

dency to use ‘identify’ and ‘estimate’ interchangeably.

Since the concepts in the title are entwined, relevant questions become: How is

identification related to the existence of IVs? How are criteria for identification related

to omitted variables? Does omission/inclusion of variables from a model’s equations

belong to the definition of IVs? How draw the borderlines between omitted variables

and disturbances and between omitted, non-modeled variables, latent variables modeled

via proxies or measurement error mechanisms, and omitted, observable variables? Is

exogeneity a critical claim to an IV? Can ‘omitted variables’ in a single equation be

given a definite meaning when the equation’s ‘environment’ is incompletely described?

Is it possible to distinguish operationally between ‘exactly identified’ and ‘overidentified’

equations in incompletely specified models?

Having no ambition of fully answering these questions, I will address some of them,

including: (i) The contrast between rudimentary models used by many ‘experimentalists’

and models for limited information inference used by most ‘structuralists’, the latter

containing full lists of exogenous and endogenous variables, without listing all unknown

coefficients by equation. (ii) The distinction between exogeneity of variables and the
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claim of orthogonality between an IV and the relevant disturbance or error. (iv) The way

of motivating the requirement that IVs be correlated with the ‘instrumented variables’

(sometimes denoted as ‘the full rank condition’), (iv) Predetermined variables in dynamic

equations and their role in selecting IVs. (v) The role of IVs in ‘handling’ omitted

variables, taking into account the ‘reason’ for the omission.

The conflict between the ‘structuralists’ (the ‘structural approach’) and the ‘experi-

mentalists’ (the ’treatment effect approach’) in economics and the way they invoke IVs

can be illustrated by a few quotations. Pearl (2015, p.169), with address to two propo-

nents of the ‘experimentalist movement’, for example asks:

“..... why did the “experimentalists” end up with the primitive, single-equation exercises
reported in Angrist and Pischke (2010)? ..... The answer usually given is that “experi-
mentalists” are a priori skeptical about the assumptions embedded in structural models,
and feel more comfortable with those involved in instrumental variables design. How-
ever, since the very choice of an instrument rests on the type of modeling assumptions
that “experimentalists” attempt to avoid, namely, exclusion and exogeneity ..... why did
“experimentalists” embrace the former and reject the latter?”

The following quotations indicate positions in this conflict more succinctly, the first

distinguishing between natural experiments and ‘natural natural experiments’ :4

“The advantage of the natural natural experimental approach is that the assumption
of randomness for the instrumental variables employed is more credible than for those
instruments used in almost all other studies. But a weakness of many of the studies that
adopt this approach is that the necessary additional ..... assumptions needed to justify
the authors’ interpretations of the estimates obtained are absent. The impression left .....
is that if one accepts that the instruments are perfectly random and plausibly affect the
variable whose effect is of interest, then the instrumental-variables estimates are conclusive
..... However, the absence of models in the natural natural experiment literature does not
mean that there are no important and implausible assumptions being implicitly used.”
(my italics) [Rosenzweig and Wolpin (2000, pp. 828-829)]

“..... the natural experiments approach to instrumental variables is fundamentally
grounded in theory, in the sense that there is usually a well-developed story or model
motivating the choice of instruments ..... this approach contrasts favorably with studies
that provide detailed but abstract theoretical models, followed by identification based on
implausible and unexamined choices about which variables to exclude from the model and
assumptions about what statistical distribution certain variables follow.” (my italics)
[Angrist and Krueger (2001, pp. 72–76)]

“Evaluating the impacts of public policies, forecasting their effects in new environments,
and predicting the effects of policies never tried are three central tasks of economics .....
The structural approach emphasizes clearly articulated economic models that can be used
to accomplish all three tasks under the exogeneity and parameter policy invariance assump-
tions presented in that literature. Economic theory is used to guide the construction of
models and to suggest included and excluded variables ...... The treatment effect literature
..... focuses on ..... evaluating the impact of a policy ..... in the special case where there
is a “treatment group” and a “comparison group” ..... The literature on treatment effects
has given rise to a new language ..... where the link to economic theory is often obscure
and the economic policy questions being addressed are not always clearly stated. Differ-
ent instruments answer different economic questions that typically are not clearly stated.
Relationships among the policy parameters implicitly defined by alternative choices of
instruments are not articulated.” (my italics) [Heckman and Vytlacil (2005, p, 669–670)]
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The rest of the paper, containing at several places selected commented examples

and quotations, proceeds as follows: In Section 2, the connection between identification

and IVs is considered with reference to five examples of different complexity and to the

mentioned conflict between ‘structuralists’ and ‘experimentalists’. The discussion of the

examples is expanded in Section 3 with supplementary remarks, and in Section 4, with

comments on the way ‘IV-regression’ and endogeneity, relative to exogeneity, external-

ity, and orthogonality, are dealt with in some recent texts. In Section 5, connections

between omitted and unobserved variables on the one hand and coefficient identification

on the other are illustrated by examples. Section 6, moves attention from models hav-

ing only observed variables, to examples containing some latent (structural) variables,

emphasizing the role of the latter in motivating IV candidates. This section contains

examples showing (in contrast to not uncommon belief) that an equation may well have

as IVs variables that are endogenous in the model to which it belongs, inter alia, by

reference to the distinction between interdependent and recursive models and between

fully exogenous and conditionally exogenous variables.5 Interesting in this connection

is Koopmans’ (1950, p. 393) distinction between exogeneity according to the “departe-

mental principle” and the “causal principle”. Section 7 switches attention from static

to dynamic models and exemplifies model-based IV-selection when autoregressive struc-

tures interact with disturbance memory. Concluding remarks follow in Section 8.

2 Instrumental variables and identification: Five example models

This section exposes, by five examples, A through E, the definition of an IV and its re-

lation to identification. An important distinction between them, for a specific equation

of interest, is whether potential IVs belong to the equation together with other variables

(C and E) or do not belong to it (A, B and D). In this respect there seems to be some

confusion and disagreement in the literature, which may reflect that many applications,

not least in the ‘natural experiment’ literature and in some elementary expositions in

textbooks, are concerned with only the very simplest case where one variable in need of

an IV is inside the equation and only one or a few IV candidates are available outside of

it. Another distinction is that Examples A, B and C have one equation and additional

assumptions from which IVs can be defined, these supplements being tacit about the

form and properties of the other equations, whiles Examples D and E have one equation

containing several endogenous variables needing IVs, and as a supplement a list of the

full set of endogenous and exogenous variables in the model to which the equation be-

longs. The latter are models for limited information inference, ‘limited’ indicating that

they lack detailed descriptions of these supplementary equations beyond what is required

to establish the identification status of the equation of interest.6

A. One investigational variable,7 one instrument. Consider the simple equation,

(1) y=α+xβ+u,

with (y, x) assumed observable and cov(x, u) ̸= 0. An IV, z, for x, with coefficient β,

should, according to the classical definition, satisfy:
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(2) z is observable, cov(z, x) ̸=0, cov(z, u)=0.

This prescribes neither how such a z could be found, nor, if found, how it should be

used.8 The above definition restricts the joint theoretical distribution of y, x, z, u, relative

to (1), which should be founded on theory or some theory element. ‘Exogenous’ is not

a label attached to z, nor is ‘endogenous’ attached to y and x.9 If, at one extreme

z = x, cov(x, u) = 0 (=⇒ cov(y, u) ̸= 0), x is a potential IV for itself. This is the

situation assumed in regression analysis with regressor x. If, at the other extreme, z=y,

cov(y, u) = 0 (=⇒ cov(x, u) ̸= 0), y is a potential IV for itself. This corresponds to

regression analysis of the inverse relation with regressor y. From (1) and (2) it follows

that

(3)

cov(z, y) = cov(z, x)β ̸= 0 =⇒ β =
cov(z, y)

cov(z, x)
≡

ρzy
ρzx

σy

σx

⇐⇒

cov(z, x) = cov(z, y)β−1 ̸= 0 =⇒ β−1 =
cov(z, x)

cov(z, y)
≡ ρzx

ρzy

σx

σy

,

where ρ and σ, with appropriate subscripts, denote, respectively, theoretical (population)

correlation coefficients and standard deviations. It follows that z is an IV for y as well,

with coefficient β∗, in the reverse relationship

(4) x= α∗+yβ∗+u∗, α∗ = −α/β, β∗ = 1/β, u∗ = −u/β.

Therefore: [1] z, satisfying (2), is a potential IV for both x and y in both the direct

and reverse relationships, with coefficients β and β∗, respectively. [2] x can never be

an IV for y, and y can never be an IV for x. [3] The IV-estimators motivated by

expressions like those for β or β−1 in (3) follow by replacing, in the expressions for these

parameters, theoretical second-order moments with their empirical counterparts, say

β̂IV = SZY /SZX , where S, with appropriate subscripts, denotes second-order moments

obtained from the sample.

B. One investigational variable, several IVs, none in the equation. Now let z1, . . . , zK
be IVs for x in (1), assumed to have the same form as in Example A, with coefficient β,

cov(x, u) ̸= 0. Then (2) and (3) are extended to

(5) zk observable, cov(zk, x) ̸=0, cov(zk, u)=0, β =
cov(zk, y)

cov(zk, x)
, k = 1, . . . , K.

Defining in general

βk =
cov(zk, y)

cov(zk, x)
≡

ρzk,y
ρzk,x

σy

σx

, k = 1, . . . , K,

it follows that (5), by imposing that ρzk,y/ρzk,x is k-invariant, imposes

β = β1 = · · · = βK .

Here a multitude of IVs for x exist: any w =
∑K

k=1 akzk, with a1, . . . , aK prescribed,

satisfying (5) and
∑

k akcov(zk, x) ̸=0, is such an IV, and implies
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cov(w, x) ̸=0, cov(w, u)=0,

β =
cov(w, y)

cov(w, x)
≡

∑
k akcov(zk, x)βk∑
k akcov(zk, x)

.

The IV-estimator of β follows by replacing, in the last expression for the chosen a1, . . . , aK ,

theoretical second-order moments by their empirical counterparts.

C. One investigational variable, two IV candidates, one in the equation, one outside.

Extend (1) to

(6) y=α+x1β1+x2β2+u,

with (y, x1, x2) assumed observable, x1, with cov(x1, u) ̸= 0, corresponding to x in

(1), x2 being an additional explanatory variable, uncorrelated with the disturbance u,

cov(x2, u) = 0, with coefficient β2. An IV, z, for x1, with coefficient β1, satisfies the

following modification of (2):

(7) z is observable, cov(z, x1|x2) ̸=0, cov(z, u)=0.

From (6) and (7) it follows that

cov(z, y)=cov(z, x1)β1+cov(z, x2)β2,

cov(x2, y)=cov(x2, x1)β1+var(x2)β2,
=⇒(8) [

β1

β2

]
=

[
cov(z, x1) cov(z, x2)

cov(x2, x1) var(x2)

]−1 [
cov(z, y)

cov(x2, y)

]
,

as cov(z, x1|x2) ̸= 0 =⇒ cov(z, x1)var(x2) ̸= cov(x2, x1)cov(z, x2) ⇐⇒ ρz,x1 ̸= ρz,x2ρx2,x1,

ensures that a solution exists.10 It also follows that any linear combination of z and x2,

(9) z∗ = za1 + x2a2, a1 ̸= 0, a2/a1 ̸= −cov(z, x1)/cov(x2, x1),

is a potential IV for x1 since cov(z∗, x1) ̸= 0 and cov(z∗, u)= 0. Therefore, also in this

example, a multitude of potential IVs exist, all of which ‘contain’ x2, exist
11 and hence

(8) can be generalized to

cov(z∗, y)=cov(z∗, x1)β1+cov(z∗, x2)β2,

cov(x2, y)=cov(x2, x1)β1+var(x2)β2,
=⇒[

β1

β2

]
=

[
cov(z∗, x1) cov(z∗, x2)

cov(x2, x1) var(x2)

]−1 [
cov(z∗, y)

cov(x2, y)

]
Further, z∗ is an IV for y as well, with coefficient β∗

1 , in the reverse relationship

x1= α∗+yβ∗
1+x2β

∗
2 + u∗, α∗ = −α/β1, β∗

1 = 1/β1, β∗
2 = −β2/β1, u∗ = −u/β1,

and hence,

cov(z∗, x1)=cov(z∗, y)β∗
1+cov(z∗, x2)β

∗
2 ,

cov(x2, x1)=cov(x2, y)β
∗
1+var(x2)β

∗
2 ,

=⇒[
β∗
1

β∗
2

]
=

[
cov(z∗, y) cov(z∗, x2)

cov(x2, y) var(x2)

]−1 [
cov(z∗, x1)

cov(x2, x1)

]
.
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The distinctive property of this example is that any z∗ (with a2 ̸=0) contains the equa-

tion’s exogenous explanatory variable, so that x2 serves the double role as an exogenous

variable in the equation and a component of the IV for x1. The IV-estimators of (β1, β2)

and (β∗
1 , β

∗
2) follow by replacing, in the above expressions, for the chosen a1 and a2 the-

oretical moments by their empirical counterparts.

Examples A–C are simple, containing only one investigational variable in need of an IV.

The last two examples increase applicability by allowing for a vector of such variables.

D. Several investigational variables and several IVs, none in the equation. Let the equa-

tion of interest be the following generalization of (1):

(10) y = xAβA + uA,

where y is the variable to be ‘explained’, the ‘left-hand side (LHS) variable’, xA is the

(1 × N) vector of ‘explanatory variables’, ‘right-hand side (RHS) variables’, including

a one entry for the intercept, and βA is the (N × 1) vector of coefficients, including

the intercept. The equation belongs to a multi-equation model where: (i) y and xA are

jointly endogenous, (ii) zB is an observable exogenous (1 ×M)-vector, which does not

enter (10), and (iii) uA is the disturbance, the first element of the model’s full disturbance

vector u = (uA,u
′
B)

′. This setup describes the equation’s ‘environment’ in more detail

than Examples A–C, by specifying properties of the full model to which (10) belongs

without specifying the model in full detail. Exogeneity of zB may be defined in several

ways, see Engle et al. (1983) and Hendry (1995, Ch. 5). The definition to be used here

is E(z′
Bu)=0, where 0 is a zero vector. This is a claim to the disturbance vector of the

full model, that implies orthogonality between the IVs, zB, and the disturbance in the

equation of interest, i.e., E(z′
BuA)=0. These assumptions imply that zB is an IV-vector

for xA, relative to (10), satisfying a generalization of (2):

(11) zB is observable, rank[E(z ′
BxA)] = N , E(z′

BuA) = 0.

Postulating (11) as separate requirements would be superfluous, for two reasons. First,

since exogeneity is a stronger claim than IV-disturbance orthogonality, it follows that

(12) E(z′
By) = E(z′

BxA)βA.

Second, the specification of the ‘environment’ of (10) allows us to establish the reduced

form (RF) equation for xA (a similar equation exists for y), which has the form

(13) xA = zBΠAB + ϵA, E(z′
BϵA) = 0,

where in normal cases ΠAB, the (M×N)-matrix of coefficients in this RF-equation, has

rank N , and E(z′
BϵA) = 0 is implied by the exogeneity of zB in combination with the RF

status of (13) because ϵA is a linear transformation of u = (uA,u
′
B)

′. This guarantees

that E(z′
BxA)=E(z′

BzB)ΠAB has rank N provided that E(z′
BzB) has full rank N . Such

an element is missing in typical ‘natural experiment’ studies and other studies being

content with using rudimentary models. Using zBΠAB [≡ E(xA|zB) ≡ xA−ϵA] as ‘IV
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vector’ for xA in (10) (pretending for a moment that ΠAB is known, and therefore using

quotation marks), gives

Π′
ABE(z

′
By) = Π′

ABE(z
′
BxB)βA.

Since (13) implies

E(z′
BxA)=E(z′

BzB)ΠAB ⇐⇒ ΠAB = [E(z′
BzB)]

−1[E(z′
BxA)],

the ‘IV-vector’ for xA can be written as zBΠAB=zB[E(z
′
BzB)]

−1[E(z′
BxA)], so that the

coefficient vector of interest can be written as

βA =
{
[E(x′

AzB)][E(z
′
BzB)]

−1[E(z′
BxA)]

}−1 {
[E(x′

AzB)][E(z
′
BzB)]

−1[E(z′
By)]

}
.(14)

If (10) is exactly identified, i.e., M =N , x′
AzB quadratic, ΠAB is quadratic and imma-

terial, and (14) specializes to

(15) βA = [E(z′
BxA)]

−1[E(z′
By)].

Replacing in (14) E(x′
AzB), etc., by their empirical counterparts X ′

AZB/n, etc., where

n is the number of observations and XA, ZB, etc., are the observation matrices (with n

rows) corresponding to the row vectors zB, xA, etc. gives the IV-estimator, applicable

under exact identification as well as overidentification,

β̂
IV

A =
{
[X ′

AZB][Z
′
BZB]

−1[Z ′
BXA]

}−1 {
[X ′

AZB][Z
′
BZB]

−1[Z ′
By]

}
.(16)

E. Several investigational variables and IVs. Exogenous variables in the equation. Let

the equation of interest be the following generalization of (10):

(17) y = zAγA + xAβA + uA,

where zA is a (1×K) vector of exogenous RHS variables, and γA its (K × 1) coefficient

vector. The equation belongs to a multi-equation model where y, xA and xB are jointly

endogenous. Now both zA and zB are assumed exogenous, and both xB and zB are

excluded from the equation. The exogeneity claim is stronger than the corresponding

claim in Example D, as more variables are involved. These assumptions imply that the

[1 × (K+M)]-vector (zA

...zB) is a valid IV-vector for xA relative to (17), satisfying the

following generalization of (5) and (11):

(18) (zA

...zB) is observable, rank{E[(zA

...zB)
′(zA

...xA)]} = K+N, E[(zA

...zB)
′uA] = 0.

First, exogeneity of (zA

...zB) is a stronger claim than IV-disturbance orthogonality rel-

ative to (17). The former implies E(z′
Au) = 0, E(z′

Bu) = 0, while the latter expresses

that E(z′
AuA)=0 and E(z′

BuA)=0 (the dimensions of the zero vectors and matrices are

not indicated and usually differ). Hence, (12) is generalized to

(19)

[
E(z′

AzA) E(z′
AxA)

E(z′
BzA) E(z′

BxA)

] [
γA

βA

]
=

[
E(z′

Ay)

E(z′
By)

]
.
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Second, the specification of the ‘environment’ of the equation of interest, (17), allows us

to establish the RF equation vector for xA (similar equations exist for y and xB) which

now has the form

(20) xA = (zA

... zB)

[
ΠAA

ΠAB

]
+ ϵA, E[(zA

...zB)
′ϵA] = 0,

whereΠAA andΠAB are (K×N)- and (M×N)-matrices, respectively, and ϵA has the same

interpretation as in Example D.12 Using in (17) zAΠAA + zBΠAB [≡ E(xA|zA, zB) ≡
xA−ϵA] as an ‘IV vector’ for xA (pretending for a moment that ΠAA and ΠAB are

known, and therefore again using quotation marks), while letting zA serve as IV vector

for itself, or equivalently, using

(zA

... zB)

[
I ΠAA

0 ΠAB

]
as IV vector for (zA

...xA),

and hence,[
I 0

Π′
AA Π′

AB

] [
E(z′

AzA) E(z′
AxA)

E(z′
BzA) E(z′

BxA)

] [
γA

βA

]
=

[
I 0

Π′
AA Π′

AB

] [
E(z′

Ay)

E(z′
By)

]
,

it finally follows, as a generalization of (14),[
γA

βA

]
=

{[
I 0

Π′
AA Π′

AB

] [
E(z′

AzA) E(z′
AxA)

E(z′
BzA) E(z′

BxA)

]}−1

(21)

×
{[

I 0

Π′
AA Π′

AB

] [
E(z′

Ay)

E(z′
By)

]}
.

If (17) is exactly identified, i.e., M=N , x′
AzB quadratic, we know that ΠAB is quadratic

and that ΠAA and ΠAB are immaterial, since the partitioned matrices occurring as the

first factor in the expressions in curly brackets are block-diagonal and cancel. Then (21)

simplifies to the following generalization of (15):[
γA

βA

]
=

[
E(z′

AzA) E(z′
AxA)

E(z′
BzA) E(z′

BxA)

]−1 [
E(z′

Ay)

E(z′
By)

]
.(22)

Replacing in (21) E(x′
AzB), etc., by their empirical counterparts X ′

AZB/n, etc.,

and replacing ΠAA and ΠAB with their OLS estimates obtained from (20) gives the

IV-estimators of γA and βA, which is applicable under exact identification as well as

overidentification.

As is well known, the procedure for IV-estimation just described is equivalent to

applying Two-Stage Least Squares (2SLS) in estimating a single equation of interest.

The equivalence relies on the orthogonality between OLS residuals and OLS fitted values.

In general, 2SLS prescribes an OLS estimation of the RF equations for the relevant

endogenous variables (first stage) followed by a modified OLS estimation of the equation

on interest (second stage), as proposed by Theil (1953, 1954) and Basmann (1957, pp. 80–

81) (see Eqs. (20) and (31)–(35) in the latter). This procedure is also strongly related to
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Anderson and Rubin (1949, 1950) and Sargan (1958), as well as to Anderson (1974, 2005)

for formal expansions on the ‘limited information’ concept in this context and relationship

between 2SLS and Limited Information Maximum Likelihood (LIML). These pioneers,

more than 60 years ago, gave ‘first-stage’ and ‘second-stage’ a definite meaning relative

to an interdependent model. I will later explain how, unfortunately, this usage has

been perverted in recent years by proponents of ‘natural experiments’, contributing to

confusion in the applied literature.

3 Examples A–E: Supplementary remarks

The above examples, contrasting identification criteria and IV-definitions, will in this

section be expanded by five remarks.

1. Variable exclusion restrictions mixed into IV-definitions: The IV-definitions (2) and

(7), related to equations (1) and (6), respectively, are in conflict with definitions used

(or implied) by proponents of ‘natural experiments’ (and in many other studies as well).

An example is:13

“A good instrument is correlated with the endogenous regressor for reasons the researcher
can verify and explain, but uncorrelated with the outcome variable for reasons beyond its
effect on the endogenous regressor.” (my italics) [Angrist and Krueger (2001, p. 73)]

First, contrast this quotation with Example A, associating “instrument”, “endogenous

regressor” and “outcome variable” with z, x and y, respectively. Now, the classical

definition of an IV contains no requirement that z be uncorrelated with y “beyond its

effect on” x. Maybe the quotation suggests that a model of an equation of interest,

specified as E(y|z) = α+E(x|z)β, is supplemented by, say, E(x|z) = γ+zδ? Then it is

true that the order condition (OC) for identification unequivocally says that the absence

of z in the expression for E(y|z), combined with δ ̸= 0, ensures identification of β and

δ. However, δ ̸= 0 is not part of the definition of z being an IV for x with coefficient

β, because variable inclusion/exclusion is a property of the full model. Next, contrast

the quotation with Example C, associating in the quotation “instrument”, “endogenous

regressor” and “outcome variable” with, respectively, z∗, x1 and y, the former satisfying

(9), in the model E(y|z∗, x2)=α+ E(x1|z∗, x2)β1 + x2β2 and E(x1|z∗, x2)=γ+z∗δ1+x2δ2.

The OC then unequivocally says that the absence of z∗ in the equation for E(y|z∗, x2),

combined with δ1 ̸=0, ensures identification of β and δ. However, y is correlated with x1

‘corrected for the impact of z∗’, x1−z∗δ1, when β2 and δ2 are non-zero. Again, requiring

that IV z be uncorrelated with y “beyond the effect of z on the investigational variable”

x1, (“endogenous regressor” in the Angrist-Krueger vocabulary) is not to the the point.14

A passage from the same text, Angrist and Krueger (2001, p. 70): “certain “curve

shifters”, what we would now call instrumental variables” (my italics), there quoted with

reference to Wright (1928, p. 312),15 confuses claims to IV and criteria for identification

of equations. Other examples are:

“A valid instrumental variable, which helps determine whether an individual is treated,
but does not determine other factors that affect the outcomes of interest...” (my italics)
[Oreopoulos (2006, p. 152)]
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“..... instrumental variables change the incentives for agents to choose a particular level
of the treatment without affecting the potential outcomes associated with the treatment”
(my italics) [Imbens (2014, p. 328)]

“One definition of instrumental variable estimation is the use of additional “instrumental”
variables, not contained in the equation of interest, to estimate the unknown parameters
of that equation ..... two derivations of the instrumental variable estimator as the solution
to the identification problem .....” (my italics) [Stock and Trebbi (2003, pp. 179-180)]

The Stock-Trebbi quotation – whose last passage moreover perverts the distinction

between IV-estimation and identification – is from a paper, “Who invented instrumen-

tal variable regression?”, setting out to scrutinize evidence in P.Wright (1928) and

S.Wright (1934) (father and son) concerning the origin of the IV approach. However,

their findings may equally well be interpreted as answering the question “Who clarified

identification as a requirement for decent estimation?” P.Wright (1928) has the follow-

ing lucid passage on the statistical analysis of simple market models, which obviously

reveals his awareness of ‘curve shifting’ as a pathway to identification:16

“In the absence of intimate knowledge of demand and supply conditions, statistical meth-
ods for imputing fixity to one of the curves while the other changes its position must be
based on the introduction of additional factors. Such additional factors may be factors
which (A) affect demand conditions without affecting cost conditions or which (B) affect
cost conditions, without affecting demand conditions.” [P.Wright (1928, pp. 311–312)]

2. Exclusion restrictions mixed into IV-definitions, examples from medicine: Regarding

the IV claims exemplified by (2) and (7), it is of interest to notice misconceptions about

the IV requirements in medical research studies from the last two decades. This is a

relevant digression as strong indications exist that medical applications, sometimes re-

ferring to viewpoints from genetics, have formed part of the inspiration of proponents of

the ‘natural experiment’ (‘treatment research’) movement in empirical economics in the

last decades. Even the use of the term ‘treatment’ gives associations to medical doctors’

and nurses’ treatment of patients and their diseases.17 Typical examples are:

“Instrumental variables estimation uses one or more IVs – observable factors that influence
treatment but do not directly affect patient outcomes to mimic a randomization of patients
to different likelihoods of receiving alternative treatments.” (my italics) [McClellan et
al. (1994, p. 860)]

“An instrumental variable is a factor that is correlated with the exposure ..... but is not
associated with any confounder of the exposure–outcome association, nor is there any
pathway by which the instrumental variable can influence the outcome other than via the
exposure of interest...... an instrumental variable is in some way external to the relationship
between the exposure and outcome..... ” (my italics) [Burgess et al. (2017, p. 2333)]

“In epidemiological research, the causal effect of a modifiable phenotype or exposure on a
disease is often of public health interest. Randomized controlled trials to investigate this
effect are not always possible and inferences ..... can be confounded. However, if we know
of a gene closely linked to the phenotype without direct effect on the disease, it can often
be reasonably assumed that the gene is not itself associated with any confounding factors
– a phenomenon called Mendelian randomization. These properties define an instrumental
variable and allow estimation of the causal effect, despite the confounding, under certain
model restrictions.” [Didelez and Sheehan (2007, p. 309)]
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The first quotation exemplifies, once again, the unfortunate mixing of IV requirements

and variable exclusion as part of identification criteria. In the second quotation, “exposure-

outcome”, “confounder” and “instrumental factor” can be associated with, respectively,

y, x and z in Example A. However, the lack of both specified model elements and

awareness of identification issues is worrying, an impression strengthened by the vague

passuses “any pathway” and “in some way external to the relationship”. The third quo-

tation, explicitly refers to Mendelian randomization, whose origin is in genetics;18 see

also Smith (2010) and Hinke et al (2016, Section 2.1).

3. Experimentalists’ requirements to IVs: The third remark supplementing the discus-

sion of the examples relates to the way IVs are applied and motivated by adherents to

‘natural experiments’. Imbens (2014, pp. 338–339) explains the primary assumptions as

follows:

“There are four key ..... assumptions underlying instrumental variables methods ..... The
first assumption concerns the assignment to the instrument ..... requires that the instru-
ment is as good as randomly assigned ..... The second ..... limits or rules out completely
direct effects of the assignment ..... on the outcome, other than through the effect of the
assignment on the receipt of the treatment of interest..... This is the most critical .....
and most controversial assumption ..... sometimes viewed as the defining characteristic of
instruments ..... A third assumption ..... monotonicity ..... rules out the presence of units
who always do the opposite of their assignment ..... Finally, we need the instrument to be
correlated with the treatment.” (my italics)

The “random assignment” and “direct effects ..... completely ruled out” assumptions, are

notably stronger accentuated than is the “IV-treatment correlation” assumption, which

is mentioned almost as a brief addendum.

What precisely, should be meant by recovering from a “random assignment design”

agents’ responses to ‘stimuli’? Some clarification is provided by:19

“Random selection refers to how sample members (study participants) are selected from
the population for inclusion in the study. Random assignment is an aspect of experimental
design in which study participants are assigned to the treatment or control group using
a random procedure. Random selection requires the use of some form of random sam-
pling ..... Random assignment takes place following the selection of participants for the
study. ...... A study using only random assignment could ask ..... to select the [potential
respondents which] are most likely to enjoy participating in the study, and the researcher
could then randomly assign this sample ..... to the treatment and control groups. In
such a design the researcher could draw conclusions about the effect of the intervention
but couldn’t make any inference about whether the effect would likely to be found in the
population. .....” (my italics)

This quotation also explains the critical concepts “internal validity” and “external va-

lidity”, crucial in judging how far the applicability of ‘natural experiment’ results may

be stretched:

“..... the lack of random assignment to be in the treatment or control group would make
it impossible to conclude whether the intervention had any effect. Random selection is
thus essential to external validity, or the extent to which the researcher can use the results
of the study to generalize to the larger population. Random assignment is central to
internal validity, which allows the researcher to make causal claims about the effect of the
treatment.” (my italics)
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Heckman and Urzua (2010) clarify basic differences between the questions posed and

answers given by ‘structuralists’ and ‘experimentalists’, when using IVs, as follows:20

“The problem that plagues the IV approach is that the questions it answers are usually
defined as probability limits of estimators and not by well-formulated economic problems.
Unspecified “effects” replace clearly defined economic parameters as the objects of em-
pirical interest. ..... for many problems of policy analysis, it is not necessary to identify
fully specified structural models with parameters that are invariant to classes of policy
modifications ..... All that is required to conduct many policy analyses or to answer many
well-posed economic questions are combinations of the structural parameters that are of-
ten much easier to identify than the individual parameters themselves. ..... Most IV studies
do not clearly formulate the economic question being answered by the IV analysis. The
probability limit of the IV-estimator is defined to be the object of interest.” (pp. 28, 34, my
italics)

This passage, in terms of stringency, contrasts with the rather vague description of the

two ‘perspectives’ on modeling and IV-use in Stock and Watson (2011, p. 448–449):

“There are two main approaches, which reflect two different perspectives on economet-
ric and statistical modeling. The first approach is to use economic theory to suggest
instruments .... The second approach to constructing instruments is to look for some ex-
ogenous source of variation in X arising from what is, in effect, a random phenomenon
that induces shifts in the endogenous regressor” (my italics)

Finally, the reminders and warnings of Rubin, expressed more than 40 years ago, re-

lated to a much simpler situation than typical “natural experiment” cases in economics

and with no mention of instrumental variables, should be observed:

“..... estimating the typical causal effect of one treatment versus another is a difficult task
unless we understand the actual process well enough to (a) assign most of the variability in
Y to specific causes and (b) ignore associated but causally irrelevant variables ..... Almost
never do we have a random sample from the target population of trials, and thus we must
generally rely on the belief in subjective random sampling, that is, there is no important
variable that differs in the sample and the target population ..... In both randomized and
nonrandomized studies, the investigator should think hard about variables besides the
treatment that may causally affect Y and plan in advance...” [Rubin (1974, p. 699-700)]

4. Rudimentary models versus models for limited information inference: While Exam-

ples A–C belong to what I call rudimentary models, Examples D and E are models

for limited information inference. Example E, like C, has exogenous variables in the

equations defining IVs. A claim to models for limited information inference, originating

from formal claims in economic theory, known by any student of economics, is that the

number of variables to be explained (endogenous variables) should equal the number of

equations. On the other hand, in such specifications and unlike most ‘theory models’, no

claim is made that the form of all equations should be specified in detail.21 Nevertheless,

in his review, Imbens (2014, p. 329) asserts about simultaneous equations and IVs that:

“Simultaneous equations are both at the core of the econometrics canon and at the core
of the confusion concerning instrumental variables methods in the statistics literature.”

This statement, remarkably, follows one page after a statement on IVs, incentives, treat-

ment level and potential outcomes (p. 328)), see also Imbens (2010, p. 403), on the “al-

most complete lack of instrumental variables in the statistical literature”. Angrist and
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Pischke (2008, p. 84) express their view by

“Simultaneous equations models (SEMs) have been enormously important in the history
of econometric thought. At the same time, few of today’s most influential applied papers
rely on an orthodox SEM framework, though the technical language used to discuss IV
still comes from this framework.

The motivation for these controversial statements is far from clear. Regarding the first,

it has to be said a remarkable number of ‘natural experiment’ studies are sloppy in

counting equations and endogenous variables, refraining from convincing readers that

the models intended for data confrontation satisfy the fundamental claim in economic

theory of being ‘determined’; see Koopmans (1950, p. 393). In the second statement,

the passages “today’s most influential applied papers”, “an orthodox SEM framework”

and “technical language” strongly need precise explanations. As it stands, without any

references to the multifaceted contributions of founders of classical econometrics and

their impact, this statement contains assertions with no basis.

5. Misuse of the term ‘2SLS’ in experimental studies: In the ‘natural experiment’ lit-

erature, often considering setups with only two equations, there seems to be a growing

tendency to refer to two separate model blocks (most often single equations) – denoted

as the “first-stage” and “second-stage model” (“first-stage” and “second-stage equa-

tion”), although sometimes knit together via correlated disturbances – handled by sep-

arate OLS/IV regressions. This is an unfortunate ‘practice’, terminologically as well as

methodologically, far away from the succinct exposition made by the pioneers of 2SLS

(Theil, Basmann, Anderson, Rubin, Sargan) referred at the end of Section 2, in relation

to Example E.

A typical case occurs in Angrist et al. (1996, p. 445), with binary, endogenous “treat-

ment indicator” for unit i, Di, determined by an underlying latent, continuous variable,

D∗
i . The model having the elements (1) Yi = β0 + β1Di + ϵi, (2) D

∗
i = α0 + α1Zi + νi,

(3) Di = 1 and 0 for D∗
i > 0 and D∗

i ≤ 0, respectively, (4) E(Ziϵi) = E(Ziνi) = 0,

(5) cov(Di, Zi) ̸= 0. The authors describe it as follows:

“β1 represents the causal effect of D on Y ..... The assumption that the correlation between
ϵ and Z is zero and the absence of Z in Equation (1) captures the notion that any effect
of Z on Y must be through an effect of Z on D. This is a key assumption in econometric
applications of instrumental variables.... In general Di ..... is potentially correlated with ϵi
because ..... ϵi and νi are potentially correlated. This implies that the receipt of treatment
Di is not ignorable ..... and, in econometric terminology, not exogenous.”

The following four quotations, from studies using two-equation applications similar to

this prototype and relying on the “key” IV-assumption “that any effect of Z on Y must

be through an effect of Z on D”, are marred by the same misuse of IV terminology.22

The first three studies relate to economics (respectively, disability pension influenced

by social interaction, disability pension influenced by within-family contagion, females’

career influenced by births):
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“Operationally, we implement a two-stage linear probability model (2SLS)..... The first-
stage equation predicts the disability participation ..... The second-stage equation deter-
mines the likelihood that a worker who is employed ..... draws disability.....” (my italics)
[Rege et al. (2012, pp. 1215–1216)]

“We perform two-stage least squares (2SLS) with equation ..... as the first stage and equa-
tion ..... as the second stage, with the goal of consistently estimating the parameter ......”
(my italics) [Dahl et al. (2014, p.1723)]

“... we use a two-stage least squares model to estimate ..... The first and second-stage
regressions are ..... ” (my italics) [Lundborg et al. (2017, p. 1619)]

In neither of these examples (and several others not quoted here) the reader is informed

of how the two “stages” are supposed to be related within a common structural model.

As explained in Section 2 in presenting Example E, the two ‘model elements’ under

estimation in the two stages of the classical form of 2SLS, (i) have as their origin the

same structural model, and (ii) do not form a recursive or block-recursive system. The

non-recursivity follows from the definitions of the the disturbances involved in the first

stage (system of RF equations of the relevant endogenous variable) and the second stage

of the method (the structural equation of interest). These two properties are neglected in

the above quotations, which invalidates application of the 2SLS label. The fourth study

is from medicine and concerns the relationship between infants’ birth weight, mothers’

smoking and interventions and misuses the term ‘recursive model’:

“It is implicit in this formulation that intervention has no effect on birth weight other than
through its effect on smoking. ..... ϵ1, and ϵ2 [disturbances in the equations explaining
smoking and birth weight, respectively] are likely to be correlated. This is the mathematical
formulation of the selection effects: Women who smoke more than others with the same
intervention status may tend systematically to have heavier or lighter infants for reasons
other than smoking. In this case [smoking] is a random variable correlated with ϵ2 .....
This is a simple example of what is known in the econometric literature as a recursive
system of simultaneous equations.” (my italics) [Permutt and Hebel (1989, p. 620)]

4 ‘IV-regression’: remarks on terminology and on some recent texts

This section completes the rather detailed, somewhat technical, discussion of Examples D

and E in Section 2, and parts of Section 3, by giving commented quotations from recent

texts which describe applications and interpretations of IV and 2SLS procedures, also

outside of the ‘natural experiment’ field.

Stock and Watson (2011, p. 419) explain the idea behind IVs for the case where one

endogenous RHS-variable, X, is in an equation with disturbance u, as follows:

“..... think of the variation in X as having two parts: one part that, for whatever reason, is
correlated with u ..... and a second part that is uncorrelated with u. If you had information
that allowed you to isolate the second part, you could focus on those variations in X that
are uncorrelated with u and disregard the variations in X that bias the OLS estimates....”
(my italics).

This passage might have been quite meaningful if the authors had supplemented the

text by the essential information that the equation belongs to a simultaneous model,

had introduced its reduced form as an element resembling (13) and had explained the
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role of the latter in “isolating” the two parts of X. Later (p. 421) they assert:

“If an instrument is relevant, then the instrument is related to the variation in X. If in
addition the instrument is exogenous, then that part of the variation of X captured by the
instrumental variable is exogenous. Thus an instrument that is relevant and exogenous
can capture movements in X that are exogenous. This exogenous variation can in turn
be used to estimate the population coefficient.... The first stage begins with a population
regression linking X and Z.” (my italics).

Four remarks are in order. First, the meaning of “population coefficient” hangs in the

air when the equation’s status relative to a full model, in structural form, remains un-

explained. Second, “capturing exogenous movements”, “exogenous variation” and the

indicated distinction between IVs that are “relevant and exogenous” and those that are

“relevant”, but not “exogenous” are equally void of content as long as the text is non-

informative about the rest of the model. What about IVs that are “relevant”, but not

“exogenous”? Third, the passage neglects that classical IV-requirements may well be

satisfied for endogenous variables, as will be shown by examples in Section 6 and Ap-

pendix A. Fourth, the passage is silent about the status of the “population regression

linking X and Z”. The meaning of “population” here obviously differs from its meaning

in “population coefficient”. Both with respect to style and precision of argument this

text represents a substantial step backwards relative to the succinct (and far from tech-

nically advanced) expositions, in, e.g., Koopmans (1953) and Marschak (1953), which

build on the work of the pioneers of econometrics. Angrist and Pischke (2008, p. 94)

have a similar passage,23 which can best be described as exemplifying ‘obscurum per

obscurius’, distinguishing between dependent and “independent endogenous variables”:

“..... “2SLS aficionados live in a world of mutually exclusive labels: in any empirical study
involving instrumental variables, the random variables to be studied are either dependent
variables, independent endogenous variables, instrumental variables, or exogenous covari-
ates.” (my italics).

Stock and Watson (2011, p. 420) explain terminology by:

“Instrumental variables regression has some specialized terminology to distinguish vari-
ables that are correlated with the population error term u from those that are not. Vari-
ables correlated with the error term are called endogenous variables, while variables uncor-
related with the error term are called exogenous variables. The historical source of these
terms traces to models with multiple equations....” (my italics)

while they later (p. 430) describe types of variables in an ‘IV regression model’ (Y , X,

W , Z apparently corresponding to y, zA, zA, zB in Example E) by:

“The general IV regression model has four types of variables: the dependent variable,
Y ; problematic endogenous regressors ..... which are correlated with the error term and
which we will label X; additional regressors, called included exogenous variables, which
we will label W ; and instrumental variables, Z ..... The relationship between the number
of endogenous variables and the number of endogenous regressors has its own terminology.
The regression coefficients are said to be exactly identified if the number of instruments
..... equals the number of endogenous regressors ..... The coefficients are overidentified if
the number of instruments exceed the number of endogenous regressors ..... ” (my italics).

These two passages are strongly misconceived, the addendum in the first, “historical
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source of these terms traces to .....” being almost void of content. First, since exo-

geneity/endogeneity are model properties, related to a full setup with an equal number

of endogenous variables and equations, invoking specific estimation methods in defining

them (confer “are said to be”) can bring nothing but confusion. Second, suggesting iden-

tification, a pre-observation concept, to be related to a particular estimation method is

equally misleading. They continue (pp. 433–434) by:

“When there is one included endogenous variable but multiple instruments, the condition
for instrument relevance is that at least one Z is useful for predicting X given W . When
there are multiple included endogenous variables, this condition is more complicated be-
cause we must rule out perfect multicollinearity in the second-stage population regression.
Intuitively when there are multiple included endogenous variables, the instruments must
provide enough information about the exogenous movements in these variables to sort out
their separate effects on Y .”

Even when taking into account that this text is most likely intended for technically

non-advanced readers, the lack of stringency of phrases like “perfect multicollinearity in

the second-stage population regression” and “enough information about the exogenous

movements to sort out.....” is remarkable. And why should IV relevance require “at least

one Z useful for predicting X given W”?

Angrist and Pischke (2010, p. 12), in the same vein, assert:

“When using instrumental variables, for example, it’s no longer enough to mechanically
invoke a simultaneous equations framework, labeling some variables endogenous and oth-
ers exogenous, without substantially justifying the exclusion restrictions and as-good-as-
randomly-assigned assumptions that make instruments valid.” (my italics)

This raises the questions: What is meant by “mechanically” and what should a “non-

mechanically invoked simultaneous equations framework” be? How define exclusion re-

strictions without specifying a complete model? How circumscribe an IV set for a model’s

equations without drawing a borderline between its exogenous and endogenous variables?

Deaton (2010, pp.430-431) brings in the term ‘externality’ (and use a narrower defi-

nition of ‘exogeneity’ than the present one), in a paper concerned with ‘natural experi-

ments’ as basis for policy recommendations in development economics, and clarifies by:

“According to Merriam Webster’s dictionary, “exogenous” means “caused by factors or an
agent from outside the organism or system,” ..... However, the consistency of IV-estimation
requires that the instrument be orthogonal to the error term ..... in the equation of inter-
est... Heckman (2000) suggests using the term “external” ..... for variables whose values
are not set or caused by the variables in the model and keeping “exogenous” for the orthog-
onality condition that is required for consistent estimation in this instrumental variable
context. ..... The main issue, however, is ..... that we can see when the argument being of-
fered is a justification for externality when what is required is a justification for exogeneity
..... Failure to separate externality and exogeneity or to build a case for the validity of the
exclusion restrictions has caused, and continues to cause, endless confusion....... Whether
any of these instruments is exogenous ..... depends on the specification of the equation of
interest, and is not guaranteed by its externality. And because exogeneity is an identifying
assumption that must be made prior to analysis of the data, empirical tests cannot settle
the question.” (my italics)
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5 Omitted and unobserved variables and identification

This section, organized around three examples that resemble typical setups in the ‘nat-

ural experiment’ literature, has as its primary aim to illustrate how variable exclusion

and parameter restrictions may affect a model’s identification status and why ‘omitted

variables’ is an elusive concept.24 Elimination of unobserved variables by combining

equations is common in econometric practice, which makes it interesting also to ex-

plore the impact of such dimension-reducing changes on coefficient identification and

availability of IVs.

Since there are several reasons why variables may disappear from an equation, it

seems futile to believe that one remedy may ensure consistent estimation of parame-

ters of interest irrespective of which mechanism is in effect. Even the ‘simple’ problem

of ‘omitted regressors’, discussed in most econometric textbooks, may in many cases

raise identification problems that may not be ‘cured’ by invoking IVs.25 Nevertheless,

three of the proponents of ‘natural experiments’ cited above assert, in an optimistic tone:

“..... a flowering of recent work uses instrumental variables to overcome omitted variables
problems ..... The instrumental variables methods allow us to estimate the coefficient of
interest consistently ..... without actually having data on the omitted variables or even
knowing what they are.” (my italics) [Angrist and Krueger (2001, pp. 72–76)]

“IV solves the problem of missing or unknown control variables, much as a randomized
trial obviates the need for extensive controls in a regression.” (my italics) [Angrist and
Pischke (2008, p. 84)

Reasons why a variable, q, is missing may be: (i) q is genuinely latent, and even the

strongest efforts possible cannot make it observable. (ii) q is latent, but we have a theory

connecting it to observable variables by an equation. (iii) Theory says that q is irrelevant

in the actual equation and should be omitted, while it is relevant in other equations.

(iv) Not insisting on having q represented in the model, we decide to eliminate it through

dimension-reducing operations. (v) q is endogenous, and rather than specifying a full

system of structural equations, we are satisfied by operating on the reduced form (RF)

equations of the remaining endogenous variables.

The discussion of the following three example models (intercepts for simplicity omit-

ted throughout), with exogenous, endogenous, and excluded variables indicated – and

not least their variants – illustrate why the categorical statements about IVs remedies

for handling omitted variables in the last two quotations are problematic.

Model 1: Simplified two-equation model with two exogenous variables.

The first is a five-variables model:

(23)

(a) y = βx+ γz + u, w excluded,

(b) z = µw + v, (y, x) excluded,

(x,w) ⊥ (u, v).

exogenous: x,w; endogenous: y, z.

It satisfies cov(z, u)=σuv, while y=βx+γµw+(u+γv) and Eq. (b) are the RF equations

of y and z. The five variants below exemplify (i) z or w observed versus unobserved,
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(ii) (u, v) correlated versus uncorrelated, and (iii) µ being given versus unknown:

Variant 1: y, x, z, w observed, σuv ̸= 0:
The OC is necessary and implies that β, γ, µ are identified. Using w as IV for z in Eq. (a)
is a feasible, consistent procedure. OLS on Eq. (b) is consistent for µ.

Variant 2: y, x, z, w observed, σuv = 0 =⇒ cov(z, u) = 0:
The last restriction, making the model recursive, changes the status of z to becoming
conditionally exogenous in Eq. (a). No IV is needed. OLS on Eq. (a) and on Eq. (b)
are consistent. Although using w as IV for z is feasible and consistent, OLS on Eq. (a),
exploiting the stronger restrictions, is more efficient. Moreover, overidentification prevails,
as it follows that var(y|x,w) = σ2

u + γ2σ2
v and var(z|x,w) = σ2

v , cov(y, z|x,w) = γσ2
v , and

hence γ, can alternatively be obtained as γ = cov(y, z|x,w)/var(z|x,w).

Variant 3: y, x, w observed, z unobserved:
Since no proxy for z in Eq. (a) exists, as Eq. (b) is uninformative, β and γµ are
identified from the RF of y. Therefore, if µ is known, γ is identified, and vice versa. The
intuitive explanation for the former is that µ known and w observed implies E(z|w) known.

Variant 4: y, x, z observed, w unobserved, σuv ̸= 0:
This variant, relative to variant 3, switches the observation status of z and w. The
lack of w-observations implies that there will be no IV for z in Eq. (a), still Eq. (b)
is uninformative. As a consequence, β, γ, µ are unidentified according to the OC, and
because cov(z, u)=σuv ̸=0, OLS on Eq. (a) is inconsistent.

Variant 5: y, x, z observed, w unobserved, σuv=0:
The last restriction makes the model recursive and, relative to variant 4, changes the
status of z to becoming conditionally exogenous in Eq. (a). This makes β and γ identified,
while µ is unidentified. No IV for z is needed, the recursivity makes OLS on Eq. (a)
consistent. This is a case where lack of observations on a potential IV is (partly)
compensated by the covariance restriction.

Model 2: Three-equation model with one exogenous variable.

This is a five-variables model which can be viewed as a modification of Model 1 with

Eq. (b) replaced by two equations, Eqs. (b) and (c):

(24)

(a) y = βx+ γz + u, w excluded,
(b) w = bz + ϵ, (x, y) excluded,
(c) z = λx+ v, (y, w) excluded,

x ⊥ (u, v, ϵ).

exogenous: x, endogenous: y, z, w.

The RF equations of y, w and z are: y=(β+γλ)x+(u+γv), w=bλx+(ϵ+bv), and Eq. (c).

The four variants below exemplify (i) z observed versus unobserved, (ii) w observed ver-

sus unobserved, (iii) disturbances correlated versus uncorrelated, and (iv) λ being given

versus unknown.

Variant 1: y, x, z, w observed :
The OC is necessary and implies that β, γ, λ, b are identified. OLS on Eq. (c) is consistent
for λ, and using x as IV for z in Eq. (b) is consistent for b, while OLS on Eq. (b) is
inconsistent when σvϵ ̸=0.
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Variant 2: y, x, z observed, w unobserved, σuv ̸= 0:
With observations on w unavailable, which makes Eq. (b) uninformative, the OC implies
that β, γ, b are unidentified. On the other hand, λ is identified.

Variant 3: y, x, z observed, w unobserved, σuv = 0:
The last restriction makes the model recursive and, relative to variant 2, changes the
status of z to becoming conditionally exogenous in Eq. (a), while Eq. (b) uninformative.
Therefore, β, γ, λ are identified and can be consistently estimated by OLS, while b is
unidentified. Briefly, the lack of w observations is (partly) compensated by the covariance
restriction.

Variant 4: y, x, w observed, z unobserved:
This variant, relative to variant 2, switches the observation status of z and w. Since no
proxy for z in Eq. (a) exists, Eq. (c) being uninformative, it follows that β + γλ and bλ
are identified from the RF of y and w. Hence, λ known makes b identified and vice versa.
The intuitive explanation for the former is that λ known and w observed implies E(z|x)
known. Moreover, (b, β) known makes (λ, γ) identified, and vice versa.

Model 3: Two-equation model with two exogenous variables

This is another two-equation, five-variables model:

(25)

(a) y = βx+ γz + u, w excluded,
(b) z = λx+ µw + v, y excluded.

(x,w) ⊥ (u, v).

exogenous: x,w, endogenous: y, z.
It satisfies cov(z, u)=σuv, while y = (β + γλ)x+ γµw+ (u+ γv) and Eq. (b) are the RF

equations of y and z, respectively. The three variants below exemplify: (i) z observed

versus unobserved, (ii) disturbances (u, v) correlated versus uncorrelated, and (iii) µ pre-

scribed versus unknown:

Variant 1: y, x, z, w observed, σuv ̸= 0:
The OC is necessary and implies that β, γ, λ, µ are identified. Using w as IV for z in
Eq. (a) is a feasible, consistent procedure. OLS on Eq. (b) is consistent.

Variant 2: y, x, z, w observed, σuv = 0 =⇒ cov(z, u) = 0:
The model is recursive. z is conditionally exogenous in Eq. (a). OLS on Eq. (a) and
on Eq. (b) is consistent. No IV is needed. Overidentification prevails, as it follows
that var(y|x,w) = σ2

u + γ2σ2
v and var(z|x,w) = σ2

v , cov(y, z|x,w) = γσ2
v . Hence, γ can

alternatively be obtained as γ = cov(y, z|x,w)/var(z|x,w).

Variant 3: y, x, w observed, z unobserved :
Eq. (b) is uninformative, β+γλ and γµ are identified, z being eliminated by inserting
Eq. (b). β, γ, λ, µ are unidentified. µ known makes γ identified from RF of y, because
with observations on w available, lack of z-observations is compensated by knowledge of
coefficients. Further, (λ, µ) known makes (β, γ) identified from RFs of y and of z. The
intuitive explanation is that (λ, µ) known and (x,w) observed imply E(z|x,w) known.

6 Latent variables, omitted variables and IV-motivating models

Next, three versions of regression models will be considered, for which error-free mea-

sures of some variables are unavailable while latent variables connected to observed ones
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through relationships may be a recourse. Omitted variables may well be latent variables

or variables represented by proxies. For each model and model transformation, the ex-

cluded variables, and hence their possible connection to exogeneity and implied IVs, will

be indicated.26

Model 4: Simple EIV model with a proxy variable equation: Consider a structural errors-

in-variables (EIV) model where y is connected to x (error-ridden) via the latent variable,

ξ, where ξ is connected to z (observable) via a ‘proxy-variable-equation’, in the termi-

nology of Leamer (1978, pp. 245, 251). The model is27

(26)

y = βξ + u, (x, z, ν, ϵ) excluded,

x = ξ + ν, (y, x, u, ϵ) excluded,

z = bξ + ϵ, (y, x, u, ν) excluded,

u ⊥ ν ⊥ ϵ ⊥ ξ,

observed, endogenous: y, x, z,

latent, exogenous: ξ.

All observed variables are endogenous, the only exogenous variable, ξ, is latent. All

equations are in RF format, with uncorrelated disturbances. Elimination of ξ leads to

the two-equation ‘reduced form counterpart’28 in observed variables:

(27)
y = βx+ (u− βν), z ⊥ (u−βν), (z, ϵ) excluded,
z = bx+ (ϵ− bν), y ⊥ (ϵ−bν), (y, u) excluded.

While the disturbances in (26) are uncorrelated, the disturbances in (27), which contain

the errors ν and ϵ, are correlated and are also correlated with the respective regressors.

The status of (27) with respect to excluded variables differs from that of (26). The

error/disturbance variances apart, the model has 3 parameters, (β, b, σ2
ξ ) and 3 implied

covariance equations between the observable variables:

(28)
cov(y, x)

β
=

cov(z, x)

b
=

cov(y, z)

βb
= σ2

ξ .

Identification is ensured, as

(29)

β = cov(z, y)/cov(z, x), motivating z as IV for x to estimate β,

b = cov(y, z)/cov(y, x), motivating y as IV for x to estimate b.

σ2
ξ = cov(y, x)/β = cov(z, x)/b = cov(y, x)cov(x, z)/cov(y, z).

The IVs valid for the equations in (27) are different, endogenous and omitted from the

respective equations. There are no ‘exogenous IVs’. The validity of the IVs and the

variables exclusion in (27) are implied by the full model (26). These properties do not

emerge if its equations are examined separately. Two variants are of interest.

Variant 4a: Replace in (26) x= ξ+ν by x= dξ+ν (d unknown), i.e., replace a simple

measurement error equation for ξ by a less restrictive proxy variable equation. Then

(28) changes to:
cov(y, x)

βd
=

cov(z, x)

bd
=

cov(y, z)

βb
= σ2

ξ ,
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which is equivalent to

cov(y, x)

β∗ =
cov(z, x)

b∗
=

cov(y, z)

β∗b∗
= σ∗2

ξ ,

with β∗ = β/d, b∗ = b/d and σ∗
ξ = dσξ, the latter expression having the same form

as (28). Defining ξ∗ = dξ, a model of the same form as (26) with (ξ, β, b) replaced by

(ξ∗, β∗, b∗) in (29) emerges, in which only (β∗, b∗) can be identified. The IVs and the

exclusion properties are the same as in the main model.

Variant 4b: Allow for correlation between the error elements by replacing u⊥ ν⊥ ϵ⊥ ξ

by (u, ν, ϵ)⊥ ξ, denoting the covariances by σuν , σuϵ, σνϵ, respectively. This makes the

reduced form (RF) disturbances correlated both when the RF is expressed in terms of

latent variables and in terms of observed variables. It follows that cov(z, x)= bσ2
ξ+σνϵ

and cov(z, u−βν)=σuϵ−βσνϵ, while (28) changes to:

cov(y, x)−σuν

β
=

cov(z, x)−σνϵ

b
=

cov(y, z)−σuϵ

βb
= σ2

ξ .

Hence, b ̸=0 (and b ̸= −σνϵ/σ
2
ξ ) suffices for satisfying the IV-requirement cov(z, x) ̸=0,

while βσνϵ ̸= 0 (and σuϵ ̸= βσνϵ) violates cov(z, u−βν) = 0. Therefore, allowing for

correlated errors violates (27) and (28), as the model now has 6 parameters and only 3

implied covariance equations. This destroys identification of β and b and destroys the

validity, respectively, of z as IV for x in estimating β, and y as IV for x in estimating b.

Model 5: Two-equation EIV model with no proxy variable equation29

(30)

y1 = β1ξ + u1, (y2, x, u2, ν) excluded,

y2 = β2ξ + u2, (y1, x, u1, ν) excluded,

x = ξ + ν, (y1, y2, u1, u2) excluded,

u1 ⊥ u2 ⊥ ν ⊥ ξ,

observed, endogenous: y1, y2, x,

latent, exogenous: ξ.

Eliminating ξ gives:

(31)
y1 = β1x+ (u1−β1ν), y2 ⊥ (u1−β1ν), (y2, u2) excluded,
y2 = β2x+ (u2−β2ν), y1 ⊥ (u2−β2ν), (y1, u1) excluded.

While the disturbances in (30) are uncorrelated, the (composite) disturbances in (31) are

correlated and correlated with the respective regressors. The status of (31) with respect

to excluded variables differs from that of (30). The error/disturbance variances apart,

the model has 3 parameters, (β1, β2, σ
2
ξ ), and 3 implied covariance equations between the

observable variables:

(32)
cov(x, y1)

β1

=
cov(x, y2)

β2

=
cov(y1, y2)

β1β2

= σ2
ξ .

It follows that identification is ensured, as
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(33)

β1 = cov(y1, y2)/cov(x, y2), motivating y2 as IV for x to estimate β1,

β2 = cov(y2, y1)/cov(x, y1), motivating y1 as IV for x to estimate β2,

σ2
ξ = cov(x, y1)/β1 = cov(x, y2)/β2 = cov(x, y1)cov(x, y2)/cov(y1, y2).

Two variants are of interest.

Variant 5a: Assume that we know that β1+β2=1. This replaces the second equation of

(30) by y2= (1−β1)ξ+u2 and implies y1+y2=ξ+ u1 + u2. Consequently, not only x, but

also y1+y2 emerges as an error-ridden measure of ξ. Then (32) becomes

cov(y1, x)

β1

=
cov(y2, x)

1−β1

=
cov(y1, y2)

β1(1− β1)
=σ2

ξ ,

implying

β1=
cov(y1, y2)

cov(x, y2)
=

cov(x, y1)

cov(x, y1+y2)
,

β2=1−β1=
cov(y1, y2)

cov(x, y1)
=

cov(x, y2)

cov(x, y1+y2)
,

σ2
ξ =cov(x, y1+y2) =

cov(x, y1)cov(x, y2)

cov(y2, y1)
.

The interpretation is the following: Utilizing the restriction β1+β2 = 1 and inserting

ξ = x−v and ξ=y1+y2−(u1+u2) in the first equation of (30) give, respectively,

y1 = β1x+ (u1−β1ν),
y1 = β1(y1 + y2) + (1− β1)u1−β1u2.

The implied overidentification changes the ‘match’ between IV and investigational vari-

able: IVs for estimating β1 are, respectively, y2 for x and x for y1+y2 (or equivalently,

IVs for estimating β2 are, respectively, y1 for x and x for y1+y2).

Variant 5b: Again, impose β1+β2 = 1 and in addition replace x= ξ+v by x= dξ+v.

Then the overidentification disappears, and (32) changes to

cov(x, y1)

β1d
=
cov(x, y2)

(1− β1)d
=
cov(y1, y2)

β1(1−β1)
=σ2

ξ ,

and hence,

dσ2
ξ =cov(x, y1+y2),

β1

d
=
cov(y2, y1)

cov(y2, x)
,

β1=
cov(x, y1)

cov(x, y1+y2)
, β2=1−β1=

cov(x, y2)

cov(x, y1+y2)
,

d=
cov(x, y1)cov(x, y2)

cov(x, y1+y2)cov(y1, y2)
,

σ2
ξ =

[cov(x, y1+y2)]
2cov(y1, y2)

cov(x, y1)cov(x, y2)
.

The interpretation is the following: Eliminating ξ from the first equation of (31) by

inserting ξ = (x−ν)/d and ξ = y1+y2−(u1+u2) gives, respectively,
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y1 = (β1/d)x+ [u1−(β1/d)ν],
y1 = β1(y1 + y2) + [(1− β1)u1−β1u2].

Once again, the ‘match’ between IV, investigational variable and relevant parameter, as

well as the exclusion properties changes. Now y2 is an IV for x in estimating β1/d, x is

an IV for y1+y2 in estimating β1. Equivalently, y2 is an IV for y1 in estimating d/β1 from

the (inverted) first equation, x is an IV for y1 in estimating 1/β1 from the (inverted)

second equation. Hence, although d cannot be estimated by an IV-estimator directly,

it can be estimated as the ratio between two IV-estimators one for β1, one for β1/d, or

equivalently, as the ratio between the IV-estimators for d/β1 and 1/β1.

Model 6: Two-equation EIV model with a proxy variable equation: We augment Model 5

by an IV, z, and its ‘IV equation’, introducing z as a proxy for ξ, to obtain

(34)

y1 = β1ξ + u1, (y2, x, z, u2, ν, ϵ) excluded,
y2 = β2ξ + u2, (y1, x, z, u1, ν, ϵ) excluded,
x = ξ + ν, (y1, y2, z, u1, u2, ϵ) excluded,
z = bξ + ϵ, (y1, y2, x, u1, u2, ν) excluded,
u1 ⊥ u2 ⊥ ϵ ⊥ ν ⊥ ξ,

observed, endogenous: y1, y2, x, z,

latent, exogenous: ξ.

Eliminating ξ, we obtain the system, extending (31):

(35)
y1 = β1x+ (u1 − β1ν), (y2, z)⊥(u1−β1ν), (y2, z, u2, ϵ) excluded,
y2 = β2x+ (u2 − β2ν), (y1, z)⊥(u2−β2ν), (y1, z, u1, ϵ) excluded,
z = bx+ (ϵ− bν), (y1, y2)⊥(ϵ−bν), (y1, y2, u1, u2) excluded.

The model has 4 parameters, (β1, β2, b, σ
2
ξ ), 6 implied covariance equations, which sig-

nalize overidentification, and imply that (32) is extended to

cov(y1, x)

β1

=
cov(y2, x)

β2

=
cov(y1, y2)

β1β2

=(36)

cov(y1, z)

β1b
=

cov(y2, z)

β2b
=

cov(x, z)

b
= σ2

ξ .

It follows that

(37)

β1 = cov(y1, y2)/cov(x, y2) = cov(y1, z)/cov(x, z),

β2 = cov(y2, y1)/cov(x, y1) = cov(y2, z)/cov(x, z),

b = cov(z, y1)/cov(x, y1) = cov(z, y2)/cov(x, y2),

σ2
ξ = cov(y1, x)/β1 = cov(y2, x)/β2 = cov(x, z)/b.

We now proceed by estimating β1 by using y2 or z (both endogenous) as IV for x, esti-

mating β2 by using y1 or z (both endogenous) as IV for x, and estimating b by using y1
or y2 (both endogenous) as IV for x. Two variants are of interest.

Variant 6a: Replacing the measurement error equation x= ξ+ν by the proxy variable

equation x = dξ+ν leads to 6 covariance equations in 5 parameters, (β1, β2, b, d, σ
2
ξ ),
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extending (36) to:30

cov(x, y1)

β1d
=

cov(y2, x)

β2d
=

cov(y1, y2)

β1β2

=

cov(z, y1)

β1b
=

cov(y2, z)

β2b
=

cov(x, z)

bd
= σ2

ξ .

‘Full overidentification’ of β∗
1 =β1/d, β

∗
2=β2/d and b∗=b/d is obtained since:

β1/d = cov(y1, y2)/cov(x, y2) = cov(y1, z)/cov(x, z),

β2/d = cov(y2, y1)/cov(x, y1) = cov(y2, z)/cov(x, z),

b/d = cov(z, y1)/cov(x, y1) = cov(z, y2)/cov(x, z).

When d is unknown, β1, β2 and b are unidentified.

Variant 6b: Imposing β1+β2 = 1 while replacing the measurement error equation x=

ξ+v with the proxy variable equation x= dξ+v results in 6 covariance equations in 4

parameters β1, b, d, σ
2
ξ , changing (36) to:

cov(x, y1)

β1d
=
cov(x, y2)

(1−β1)d
=
cov(y1, y2)

β1(1−β1)
=

cov(z, y1)

β1b
=
cov(z, y2)

(1−β1)b
=
cov(x, z)

bd
= σ2

ξ .

It follows that

σ2
ξ =

cov(x, y1+y2)

d
=
cov(z, y1+y2)

b
,

β1

d
=
cov(y2, y1)

cov(y2, x)
,

β1

b
=
cov(y2, y1)

cov(y2, z)
,

and therefore,

b =
cov(x, z)

cov(x, y1 + y2)
,

d =
cov(z, x)

cov(z, y1 + y2)
,

β1=
cov(x, y1)

cov(x, y1+y2)
=

cov(z, y1)

cov(z, y1+y2)
,

σ2
ξ =

cov(x, y1+y2)cov(z, y1+y2)

cov(x, z)
.

The interpretation is the following: Inserting ξ=y1+y2−(u1+u2) in the first, third and

fourth equations of (34) gives, respectively,

y1 = β1(y1+y2) + (1− β1)u1−β1u2,

z = b(y1+y2) + (1− b)u1−bν,

x = d(y1+y2) + (1− d)u1−dν,

for which admissible IVs for y1+y2 for estimating β1, b and d are, respectively, (x, z),

(y2, x), and (y2, z). The restriction β1+β2=1 ensures identification of β1, β2 and b.
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This discussion of Models 4–6, with variants, motivates important conclusions : [1] En-

dogenous variables may serve as IVs for equations in a model with no error correlation

across equations. [2] ‘Omitted variables’ is an elusive concept, as for example, its interpre-

tation changes when latent structural variables are eliminated and the equations written

in terms of their manifest counterparts or when coefficients are subject to transforma-

tions. The meaning of ‘omitted’ is clearly context-specific. [3] Whether cross-equation

error correlation is present or absent, crucially affects identification and availability of

valid IVs, as is illustrated by contrasting Model 4 with variant 4b. [5] The parame-

ters or parameter combinations for which an IV is valid may not be invariant to the

model’s identification status, compare Models 5 and 6 with variants 5a–5b, and 6a–6b.

[6] Imposition of parameter restrictions may crucially affect the set of valid IVs, as il-

lustrated by comparing Models 5 and 6 with variants 5a–5b and 6a–6b. [7] Imposing

parameter restrictions that make some parameters overidentified, may well leave other

parameters unidentified, as illustrated by comparing Models 4 and 6 with variants 4a

and 6a. [8] Replacing a measurement error equation with a ‘proxy variable equation’,

or vice versa, will change the ‘metric’ of some variables’ and affect the identification

status of coefficients and the way IVs and coefficients are connected. This is illustrated

by contrasting Examples 4, 5 and 6 with variants 4a, 5b and 6a–6b.

Two extensions of Model 6 will be described in Appendix A, one with a latent ex-

ogenous variable added, and one with two latent exogenous variables and with both

measurement error mechanisms and proxy variables mechanisms represented. An inter-

dependent two-equation model, fully specified, with latent variables, which may also be

considered an extension of the models in the present section, is considered in Appendix B.

7 Instrumental variables in dynamic models

In the previous sections, the core topics identification, IVs, omitted variables, and their

interconnection, have been discussed within static contexts. Since their interest also ex-

tends to dynamic models, three versions of an autoregressive model in observed variables

are well worth considering. Dynamic models were among the first examples for which

the usefulness of IVs were demonstrated, see Reiersøl (1941, 1945).31 Therefore it is more

than remarkable that Angrist and Krueger (2001, p.76) ignore this literature, with the

following tirade:

“Indeed, one of the most mechanical and naive, yet common, approaches to the choice of
instruments uses atheoretical and hard-to-assess assumptions about dynamic relationships
to construct instruments from lagged variables in time series or panel data. The use of
lagged endogenous variables as instruments is problematic if the equation error or omitted
variables are serially correlated.” (my italics)

The phrases “naive, yet common, approaches” and “atheoretical and hard-to-assess as-

sumptions” definitely miss the point. This can be seen from the following models:

yt = βxt+γyt−1+ut, |γ|<1, (ut|X) ∼ IID(0, σ2
u),(38)

yt = βxt+γyt−1+ut, |γ|<1, ut=vt+θvt−1, (vt|X) ∼ IID(0, σ2
v),(39)

yt = βxt+γyt−1+ut, |γ|<1, ut=ρut−1+vt, |ρ|<1, (vt|X) ∼ IID(0, σ2
v),(40)
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whose disturbances are, respectively, white noise, MA(1) and AR(1) processes, and X

denotes the vector of xts observed. Symbolizing by L the lag-operator, it follows that

yt =
∑∞

i=0 γ
i(βxt−i+ut−i) =

βxt+ut

1−γL
,(41)

yt =
∑∞

i=0 γ
i(βxt−i + vt+θvt−1) =

βxt + (1+θL)vt
1−γL

,(42)

yt =
∑∞

i=0 γ
i(βxt−i +

∑∞
j=0 ρ

jvt−i−j) =
βxt

1−γL
+

vt
(1−γL)(1−ρL)

.(43)

Consistent estimation of the coefficients of Model (38) requires no IV; OLS ensures

consistency, even though cov(yt−1, ut−s) ̸= 0 for s=1, 2, . . .. This follows, according to

the famous theorem of Mann and Wald (1943), because yt remembers xt and ut infinitely

long back in time, while ut has no memory.

In Model (39) ut has a one period memory. It follows from (42) that IV-candidates

for yt−1 are xt−1, xt−2, . . . and yt−2, yt−3, . . .. They are all omitted from the equation, are

correlated with yt−1, and are uncorrelated with ut. Linear combinations of xt−1, xt−2, . . .

and yt−2, yt−3, . . . are also valid IVs for yt−1. The longer the lag, the smaller is the

number of effective observations (and degrees of freedom) available for application of

such IV procedures. The set xt−1, xt−2, yt−2 includes the IVs which give the smallest loss

of degrees of freedom.

In Model (40) ut has an infinite memory. It follows from (43) that IVs-candidates

for yt−1 are xt−1, xt−2, . . .. They are all omitted from the equation, are correlated with

yt−1, and uncorrelated with ut. Linear combinations of xt−1, xt−2, . . . are also valid IVs

for yt−1. The longer the lag, the smaller is the number of effective observations (and

degrees of freedom) available for application of such IV procedures. The set xt−1, xt−2

includes the IVs which give the smallest loss of degrees of freedom.

These conclusions clearly refute the assertion in the Angrist-Krueger quotation at

the beginning of the section. The suggestions for IV candidates for the two last cases

could not have been obtained if the model of the disturbance processes had not been

specified. The relevant orthogonality conditions are testable.

A latent variables extension of Model (40) is considered in Appendix C.

8 Concluding remarks

The primary conclusions, or reminders, can be summarized as follows:

First, identification is a model concept, IV-procedures belong to methods for statistical

inference. The existence of IVs should not be invoked in defining identification criteria.

Second, an IV is a variable, which is theoretically correlated with some variables in an

equation and uncorrelated with others. This theoretical correlation should be founded on

some economic theory cast in econometric terms. The classical IV-definition, applicable

to a class of linear multi-equation models, has a rank condition and an orthogonality

condition, of equal importance.
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Third, exclusion restrictions belong to classical criteria for identification. Considering

them as part of IV-definitions, as has seemingly become common in parts of the ‘natural

experiment’ literature, is not recommendable because its disguises the crucial distinction

between model elements and elements in methods, which is basic to empirical research.

Fourth, the contrast between ‘rudimentary models’ and models for ‘limited information

inference’, referring to specifications containing full lists of exogenous and endogenous

variables, without requiring all unknown coefficients to be listed equation by equation,

is important when motivating the use of IVs. For the choice to have a theoretical un-

derpinning, it is required that the full set of exogenous variables in the model to which

the relevant equation belongs be fully specified. The limited information format of many

classical linear multi-equation structural models departs essentially from the rudimen-

tary setups in typical ‘natural experiment’ studies.

Fifth, omitted variables is not a precise term. It may refer to a latent variable for which

a proxy exists, a variable observed with a random error, a variable which theory says

should not be in a specific equation, a variable pretended to be absorbed by equations’

disturbances, or a more general, irrelevant nuisance variable to be modeled or eliminated

from the equation system. Claiming the IV technique to be a general remedy to cope

with omitted variables is farfetched.

Sixth, the parameters or parameter combinations for which an IV is valid may not be

invariant to the model’s identification status. Imposition of parameter restrictions may

crucially affect the set of valid IVs. Replacing a measurement error equation with a

‘proxy variable equation’ changes the ‘metric’ of some variables’ and affect the identifi-

cation status of coefficients and the way IVs and coefficients are connected.

Seventh, distinguishing between the statements ‘X is exogenous’ and ‘X is orthogonal

to the disturbance’ when considering X an an IV candidate relative to an equation, is

crucial. While exogeneity in both single- and multi-equation contexts is a model prop-

erty, IV-requirements relate to one or a few of the model’s equations. A valid IV may be

endogenous, while if the model is recursive, such an IV may be conditionally exogenous.

Eighth, terms like ‘IV-estimand’, ‘IV-Model’, ‘first-stage’ and ‘second-stage equations’

violate classical econometric terminology and should be avoided. Like OLS, the term

2SLS (Two-stage least squares) has a definite meaning in the classical literature, which

should not be disguised or obscured by using it in contexts alien to those assumed by

the method’s constructors.

Ninth, classical econometrics is not alien to incorporating potential ‘experiments’ as

part of the model, if it can be convincingly argued that certain model elements, e.g.,

fiscal policy instruments or institutional rules, vary randomly relative to unexplained el-

ements. However, if a kind of a ‘natural experiment’ setup involving economic variables

is considered, it should not be handled in isolation. The (often rather few) equations

which describe the ‘experiments’ and their set of orthogonality conditions should be

embedded in a more comprehensive system of stochastic equations describing the econ-

omy. The latter should include equations that are not intended to ‘directly’ answer the
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economic-policy or economic-behavioural question(s) of primary interest. Relying solely

on rudimentary models can be ‘dangerous’.

Tenth, certain proponents of ‘natural experiment’ approaches in empirical economics call

their results ‘credible causal inference’, some even using the label ‘the credibility revolu-

tion’ for the ideas they promote. Interesting in this connection is the observation that

Ioannidis (2012) and Ioannidis and Doucouliagos (2013), in a survey of key parameters

that may influence credibility of research findings in general, and in economics in partic-

ular, ask “why science is not necessarily self-correcting?”, and remain sceptical. Anyway,

a legitimate question is: Can ‘loaded’ words as ‘credibility’ and ‘revolution’ adequately

characterize a scientific approach with as many loose ends as described in the previous

sections? My answer is: definitely not.

Appendix A: Two extensions of Model 6

In this appendix, two extensions of Model 6 are briefly considered.

Two-equation EIV model with observed regressor added: We extend (30) to

(a.1)

y1 = β1ξ + γ1z + u1, (y2, x, u2, ν) excluded,

y2 = β2ξ + γ2z + u2, (y1, x, u1, ν) excluded,

x = ξ + ν, (y1, y2, z, u1, u2) excluded,

u1 ⊥ u2, (u1, u2, ν) ⊥ (ξ, z),

observed, endogenous: y1, y2, x,

observed, exogenous: z,

latent, exogenous: ξ.

Eliminating ξ, we obtain

(a.2)
y1 = β1x+ γ1z + (u1 − β1ν), (y2, z)⊥(u1−β1ν), (y2, u2) excluded,

y2 = β2x+ γ2z + (u2 − β2ν), (y1, z)⊥(u2−β2ν), (y1, u1) excluded,

and hence,
cov(y1, y2) = β1cov(x, y2) + γ1cov(z, y2),

cov(y1, z) = β1cov(x, z) + γ1var(z),

cov(y2, y1) = β2cov(x, y1) + γ2cov(z, y1),

cov(y2, z) = β2cov(x, z) + γ2var(z),

which motivates estimating (β1, γ1) and (β2, γ2) by using, respectively, (y2, z) as IVs for (x, z), and
(y1, z) as IVs for (x, z).

Generalizing the measurement error equation x= ξ+v to the proxy variable equation x=dξ+v, again
changing the ‘metric’ of x, leads to a model with the same covariance equations as above except that β1

and β2 are replaced with β1/d and β2/d. This suggests estimating (β1/d, γ1) by using (y2, z) as IVs for
(x, z), and estimating (β2/d, γ2) by using (y1, z) as IVs for (x, z), which leaves β1 and β2 unidentified.
Relative to (a.2), z is both an IV for itself and serves as IV for x together with y2 in the first equation
and for x together with y1 in the second equation, and z is not excluded from any of these two equations.
This model therefore also emerges as an extension of the Example C model in Section 2.

Two-equation model, with two latent explanatory variables and error and proxy mechanisms represented:
We further extend (30) and (34) to a model with two latent variables which enter both equations and
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having six observed variables, two of which being proxies and two being standard error-ridden:

(a.3)

y1 = β1ξ + γ1κ+ u1, (y2, z, s, x, q, u2, ν, δ, ϵz, ϵs) excluded,

y2 = β2ξ + γ2κ+ u2, (y1, z, s, x, q, u1, ν, δ, ϵz, ϵs) excluded,

x = ξ + ν, (y1, y2, q, z, s, u1, u2, δ, ϵz, ϵs) excluded,

q = κ+ δ, (y1, y2, x, z, s, u1, u2, ν, ϵz, ϵs) excluded,

z = bzξ + ϵz, (y1, y2, s, x, q, u1, u2, ν, δ, ϵs) excluded,

s = bsκ+ ϵs, (y1, y2, z, x, q, u1, u2, ν, δ, ϵz) excluded,

u1⊥u2⊥ν⊥δ⊥ϵs⊥ϵz⊥ξ⊥κ,

observed, endogenous: y1, y2, x, q, z, s,

latent, exogenous: ξ, κ.

This system, in RF format, after elimination of (ξ, κ), becomes:

(a.4)
y1 =β1x+γ1q + (u1−β1ν−γ1δ), (y2, z, s)⊥(u1−β1ν−γ1δ), (y2, z, s, u2, ϵs, ϵz) excluded,

y2 =β2x+γ2q + (u2−β2ν−γ2δ), (y1, z, s)⊥(u2−β2ν−γ2δ), (y1, z, s, u1, ϵs, ϵz) excluded.

Hence, there is overidentification and it follows that:

cov(y1, y2) = β1cov(x, y2) + γ1cov(q, y2),

cov(y1, z) = β1cov(x, z) + γ1cov(q, z),

cov(y1, s) = β1cov(x, s) + γ1cov(q, s),

cov(y2, y1) = β2cov(x, y1) + γ2cov(q, y1),

cov(y2, z) = β2cov(x, z) + γ2cov(q, z),

cov(y2, s) = β2cov(x, s) + γ2cov(q, s).

This suggests estimating (β1, γ1) by using (y2, z, s) as (endogenous) IVs for (x, q) and estimating (β2, γ2)
by using (y1, z, s) as (endogenous) IVs for (x, q). This model exemplifies a case where only endogenous
variables serve as IVs, which crucially hinges on the last, orthogonality assumption in (a.3). Since also

(a.5)
z = bzx+ (ϵz − bzν), (y1, y2, s, q)⊥(ϵz − bzν), (y1, y2, s, q, u1, u2, δ, ϵs) excluded,

s = bsq + (ϵs − bsδ), (y1, y2, z, x)⊥(ϵs − bsδ), (y1, y2, z, x, u1, u2, ν, ϵz) excluded,

and hence,

bz =
cov(z, y1)

cov(x, y1)
=

cov(z, y2)

cov(x, y2)
=

cov(z, s)

cov(x, s)
=

cov(z, q)

cov(x, q)
,

bs =
cov(s, y1)

cov(q, y1)
=

cov(s, y2)

cov(q, y2)
=

cov(s, z)

cov(q, z)
=

cov(s, x)

cov(q, x)
.

a suggested way of estimating bz is by using (y1, y2, s, q) (endogenous) as IV for x and estimating bs by
using (y1, y2, z, x) (endogenous) as IV for q.

Appendix B: Interdependence, measurement error, and IVs

In this appendix an interdependent, two-equation model involving both ‘simultaneity’ (feedback between
endogenous variables) and mismeasured variables, and ways of using IVs, is considered. Like the models
in Appendix A, it may be considered an extension of the models in Section 6.

(b.1)

η = αξ + γz + u,

ξ = βη + δq + v,

y = η + ϵy,

x = ξ + ϵx,

(u, v) ⊥ (ϵy, ϵx) ⊥ (z, q).

Here (η, ξ) are the endogenous latent variables, (y, x) their observed counterparts, (z, q) are the exoge-
nous variables, assumed free of measurement errors, (u, v) are the structural form disturbances, and
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(ϵy, ϵx) are the measurement errors. Correlation between the two measurement errors and between the
two disturbances, as well as correlation between the exogenous variables, are allowed for. Eliminating
the latent endogenous variables, the structural equations expressed in observed variables become:

(b.2)
y = αx+ γz + ϵy−αϵx+u, q ⊥ (ϵy−αϵx+u), (q, v) excluded

x = βy + δq + ϵx−βϵy+v, z ⊥ (ϵx−βϵy+v), (z, u) excluded

This suggests (i) using q as an IV for x in the first equation (z serving as IV for itself), when estimating
α and γ, or, equivalently, as an IV for y in the reverse equation when estimating 1/α and γ/α and
(ii) using z is an IV for x in second equation (q serving as IV for itself), when estimating β and δ, or,
equivalently, as an IV for y in the reverse equation when estimating 1/β and δ/β.

Since (b.1)–(b.2) lead to the following RF equations for the observed variables:

(b.3)

y =
γz + αδq

1−αβ
+

u+ αv

1−αβ
+ ϵy,

x =
δq + βγz

1−αβ
+

v + βu

1−αβ
+ ϵx,

the marginal covariances between the observed endogenous variables and the exogenous variables and
their conditional counterparts are, respectively,

cov(y, z) =
γvar(z) + αδcov(q, z)

1−αβ
, cov(y, z|q) = γvar(z|q)

1−αβ
,

cov(y, q) =
γcov(z, q) + αδvar(q)

1−αβ
, cov(y, q|z) = αδvar(q|z)

1−αβ
,

cov(x, z) =
δcov(q, z) + βγvar(z)

1−αβ
, cov(x, z|q) = βγvar(z|q)

1−αβ
,

cov(x, q) =
δvar(q) + βγcov(q, z)

1−αβ
, cov(x, q|z) = δvar(q|z)

1−αβ
.

This implies that the coefficient of the latent endogenous variables can be expressed by

α =
cov(y, q|z)
cov(x, q|z)

or α =
cov(y, q)

cov(x, q)
when γ = 0,

β =
cov(x, z|q)
cov(y, z|q)

or β =
cov(x, z)

cov(y, z)
when δ = 0.

From (b.3) we further have

var(y|z, q) = σ2
u + 2ασuv + α2σ2

v

(1−αβ)2
+ σ2

ϵy,

var(x|z, q) = σ2
v + 2βσuv + β2σ2

v

(1−αβ)2
+ σ2

ϵx,

cov(y, x|z, q) = βσ2
u + (1 + αβ)σuv + ασ2

v

(1−αβ)2
+ σϵyϵx.

If z is excluded from (b.1) (and hence vanishes from the model) (γ=0, δ ̸=0), q is the IV-candidate for x
in estimating α in its first equation, while β and δ in its second equation are unidentified. Symmetrically,
if q is excluded from (b.1) (and hence vanishes from the model) (δ=0, γ ̸=0), z is the IV-candidate for
y in estimating β in its second equation, while α and γ in its first equation are unidentified. Why it is
necessary to have specified a full two-equation EIV model, is obvious.

The first and second equation in (b.2) satisfy, respectively:

cov(y, z) = α cov(x, z) + γ var(z),

cov(y, q) = α cov(x, q) + γ cov(z, q),

cov(x, z) = β cov(y, z) + δ cov(q, z),

cov(x, q) = β cov(y, q) + δ var(q),
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expressing, respectively, that (q, z) are IVs for (x, z), while (z, q) are IVs for (y, q). It γ ̸= 0, δ ̸= 0,

α =
var(z)cov(y, q)− cov(z, q)cov(y, z)

var(z)cov(x, q)− cov(x, z)cov(z, q)
,

γ =
cov(x, q)cov(y, z)− cov(x, z)cov(y, q)

var(z)cov(x, q)− cov(x, z)cov(z, q)
,

β =
var(q)cov(x, z)− cov(q, z)cov(x, q)

var(q)cov(y, z)− cov(y, q)cov(q, z)
,

δ =
cov(y, z)cov(x, q)− cov(y, q)cov(x, z)

var(q)cov(y, z)− cov(y, q)cov(q, z)
.

If the two exogenous variables (IVs) are uncorrelated (cov(z, q)=0), the expressions simplify to

α =
cov(y, q)

cov(x, q)
,

β =
cov(x, z)

cov(y, z)
,

γ =
cov(x, q)cov(y, z)− cov(x, z)cov(y, q)

var(z)cov(x, q)
=

cov(y, z)

var(z)
(1− αβ),

δ =
cov(y, z)cov(x, q)− cov(y, q)cov(x, z)

var(q)cov(y, z)
=

cov(x, q)

var(q)
(1− βα).

Appendix C: IV use in a dynamic model in error-ridden variables

This appendix extends one of the dynamic models in Section 7 to a latent variables variant of (38):

(c.1)

ηt = βξt+γηt−1+ut, |γ|<1,

yt = ηt + ϵt,

xt = ξt + δt,

ut ⊥ ϵt ⊥ δt ⊥ ξt,

where ξt, ηt are latent variables. The form of the processes for ut, ϵt, δt, ξt will influence the set of IV
for xt. It follows that:

yt = βxt + γyt−1 + vt,(c.2)

vt = ut + ϵt − γϵt−1 − βδt,(c.3)

and that

(c.4)
cov(xt, xt−s) = cov(ξt, ξt−s) + cov(δt, δt−s),

cov(xt−s, vt) = −βcov(δt−s, δt).

This can be used to define the valid IVs for xt in (c.2). It follows that cov(xt, xt−s) ̸= 0 and
cov(xt−s, vt) = 0 when cov(ξt, ξt−s) ̸= 0 and cov(δt, δt−s) = 0 hold jointly. These conditions there-
fore ensure that xt−s is a valid IV for xt. This is a specific, theoretically founded, statement about the
validity of s-period lagged observed regressors xt−s as IV for the one period lagged one xt−1, contingent
on the relative memory of ξt and δt and of the signal and noise components of xt.
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Notes

1Stock and Watson (2011), in their textbook, remarkably, use the term ‘IV Model’ (pp. 420,430–433,
etc.). See also Chesher (2010), Chesher and Smolinski (2012) and Heckman et al. (2006, Section III).

2In empirical studies in, e.g., economics there is an increasing tendency to use ‘IV-estimand’ as
synonymous with the probability limit of a suggested statistic involving one or more variables declared as
IVs, without ensuring (and convincing readers) that this probability limit is an interesting interpretable
parameter in a statistical model declared for a certain purpose; cf. footnote 20. See, for example, Angrist
et al. (1996), Angrist et al. (2000), Heckman and Vytlacil (2005, 2007), and Imbens (2014).

3Lewbel (2017) starts a recent survey of the ‘Identification Zoo’ by saying: “Econometric identifi-
cation really means just one thing: model parameters being uniquely determined from the observable
population that data are drawn from. Yet well over two dozen different terms for identification now
appear in the econometrics literature”, and in the concluding section remarks: “Unlike statistical infer-
ence, there is not a large body of general tools or techniques that exist for proving identification. As a
result, identification proofs are often highly model specific and idiosyncratic.”

4Rosenzweig and Wolpin let the label, with the word ‘natural’ repeated, indicate experiments where
random “treatments ... have arisen serendipitously”.

5On conditional exogeneity and its relation to recursivity, see e.g., White and Chalak (2010) and
White and Pettenuzzo (2014).

6A full information specification would contain detailed descriptions of all equations, including omit-
ted and included variables, coefficients, as well as exogeneity and orthogonality assumptions.

7This term is used by, e.g., Geary (1949, p. 30). Instrumented variable is more often used today.
8On the origin of the name Instrumental Variable in the 1940s and its utilization by Reiersøl in the

early history of econometrics, see Willassen (2000, pp. 118–119).
9Although x and z cannot be latent, they may be connected to common latent variables, as will be

demonstrated by examples in Section 6.
10Reminder: ρz,x1|x2=[ρz,x1−ρz,x2ρx2,x1]/[(1−ρ2z,x2)(1−ρ2z,x1)]1/2 is the (partial) correlation coefficient

between z and x1, given x2.
11a1=0 would have given an infeasible IV, with x2 serving both an IV for x1 and being an exogenous

variable in the equation. Although no IV is needed for x2, we might, for symmetry reasons, consider
x2 as being an IV for itself, or, more generally, consider the pair z∗ = za1+x2a2 and z∗∗ = zb1+x2b2,
representing a one-to-one transformation from (z, x2) to (z∗, z∗∗), as an IV pair for (x1, x2) in (6).

12Bowden and Turkington (1984, Sec. 4.3), see also Turkington (2013, Sec. 6.6), denote such a ‘model’,
combining an equation in an interdependent model, (17), with the RF-equations of its endogenous
RHS-variables, (20) (in my view not very aptly) a ‘limited-information model’.

13See also Pearl (2009, Section 7.4.5).
14Certain texts even denote the primary claims to IVs as ‘instrument relevance’ and ‘instrument

exogeneity’, the former meaning that the IV is ‘correlated with the endogenous regressor’ and the latter
meaning that the IV is ‘uncorrelated with the error term of the actual equation and has no direct effect
on the variable it explains’.

15Angrist and Krueger (2001, p. 72) also remark: “The observed association between the outcome and
explanatory variable ..... is likely to be misleading in the sense that it partly reflects omitted factors
that are related to both variables. If these factors could be measured and held constant in a regression,
the omitted variables bias would be eliminated. In practice, however, economic theory typically does
not specify all of the variables that should be held constant while estimating a relationship, and it is
difficult to measure all of the relevant variables accurately even if they are specified” (my italics). Do
the authors really consider an analyst of economic data an acting person who, when running regressions,
can force variables to ‘be held constant’? I hope not.

16Passages from S.Wright (1934, pp. 161,175), on the utilization of ‘path coefficients’ in exploring
causal relations, point in the same direction: “..... the method of path coeffcients ..... was developed
primarily as a means of combining the quantitative information given by a system of correlation coef-
ficients with such information as may be at hand with regard to causal relations ...... and thus making
quantitative an interpretation which would otherwise be merely qualitative ..... The setting up of a qual-
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itative scheme depends primarily on information outside of the numerical data and the judgement as to
its validity must rest primarily on this outside information...” (my italics). Confer also the passages
on shifts in the supply curve to ‘see’ the demand curve, and vice versa, from a text published in 1906,
referred to in Kærgaard (1984, p. 441) – an obvious early illustration of the identification problem.

17Laudably, to prevent confusion, Hinke et al. (2016, p. 193) states “Depending on the discipline, the
terms ‘treatment’, ‘risk factor’, ‘exposure’, ‘predictor’, or ‘intermediate phenotype’ have all been used
to denote the variable of interest that potentially causes the outcome”.

18By Wikipedia described as the “method of using measured variation in genes of known function to
examine the causal effect of a modifiable exposure on disease in observational studies”.

19Extract from https://www.socialresearchmethods.net/kb/random.htm.
20Adherents to ‘natural experiments’ often consider the mentioned probability limits of suggested ‘IV-

estimators’ the ‘research objects’, replacing the parameters of the ‘structuralists’ and (inaptly) labeled
‘IV-estimands’ ; cf. footnote 2. Labeling a declared coefficient, β an ‘IV-estimand’ must be judged
superfluous and confusing; β might equally well (and equally confusing) be labeled an ‘OLS-estimand’,
a ‘GLS-estimand’, an ‘ML-estimand’ and much else. A Google search gave more than 1600 entries using
this term (and 240 entries using ‘OLS-estimand’, but only 3 entries using ‘ML-estimand’)! There is a

strong discrepancy between having θ and having plim(θ̂IV ) (or plim(θ̂OLS) or plim(θ̂ML)) in the focus
of a study.

21For extensions and modifications of this setup, mostly strengthening assumptions, see Wegge (1965),
Brundy and Jorgenson (1971, 1974), Hausman (1974), Hausman et al. (1987), and Schmidt (1990).

22Their setups resemble that in Models 1–3 to be discussed in Section 5.
23A passus on p. 133 violates classical terminology twice (confer italics): “Consider the 2SLS estimand

based on the first-stage equation”. In the same vein, Paxton et al. (2011), in a textbook on “nonrecursive
models, endogeneity and reciprocal relationships”, misguide readers by explaining the first stage of 2SLS
by: “In most cases the first-stage equation will be the reduced-form equation.” (p. 49, my italics; see
also p. 60).

24Recall that the classical OC is necessary (but not sufficient) for identification of an equation in
a certain kind of linear simultaneous equations models, the corresponding rank condition being both
necessary and sufficient. Neither are applicable to rudimentary models as in Examples A, B and C in
Section 2 and by typical setups in studies following ‘natural experiment’ ideas. Neither are these order
and rank conditions useful for models containing latent structural variables. Geraci (1976) discusses the
identification criteria in interdependent models with measurement error.

25See also the discussion in Clarke (2005) of the ‘Phantom Menace’ of omitted variables and (relevant
and irrelevant) control variables.

26All models, except Model 4, variant 4b, assume error-disturbance orthogonality, as in Leamer (1987,
Sections 2 and 4).

27In considering this model and Models 5 and 6 (as well as the extended models in Appendices A
and B) I, for simplicity, (i) omit intercepts, say α and a in the first and third equation of (26), written
explicitly as y = α+ βξ+ u and z = a+ bξ+ ϵ, and (ii) omit equations expressing the expectations and
variances of the observed variables, say in (28) E(y), E(x), E(z), var(y) = β2σ2

ξ + σ2
u, var(x) = σ2

ξ + σ2
ν ,

and var(z) = b2σ2
ξ + σ2

ϵ , whose only function is to identify E(ξ), α, a, σ2
u, σ

2
ν and σ2

ϵ . Then we in (28)
are left with the equations for the covariances.

28I hesitate to call it an RF, because of its endogenous RHS-variables. A ‘hybrid model form’ is a
more appropriate label.

29Although this model can be interpreted as a two-equation EIV model, (30) is formally a reparame-
terization of (26) with (y1, y2, u1, u2) corresponding to (y, z, u, ϵ), the second structural equation in (30)
corresponding to the proxy variable equation in (26).

30Letting ξ∗ = dξ we get, after reparameterization, a model of the same form as the first model in
Appendix A, (a.1), with ξ replaced by ξ∗, and β1, β2 and b replaced by β∗

1 , β
∗
2 and b∗ in (35).

31Frisch also showed interest in IVs in connection with his work on Confluence Analysis, Frisch (1934),
according to unpublished material from the Frisch-Archives of the University of Oslo. I thank Olav
Bjerkholt for turning my attention to, and giving me access to, this material. It is also worth noting
that the familiar theorem of Frisch and Waugh (1933) may be considered a particular application of
what was later to become known as the IV-technique.
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