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Abstract

We consider an effort-maximizing principal distributing a prize fund over
two consecutive all-pay auctions. The two contestants are doubly hetero-
geneous: one of them has a head start in the first contest; and winning
contest one gives an advantage in contest two that varies between players.
We show that, with a large head start, the principal chooses a zero prize
in contest two, i.e., runs a single contest. Otherwise, the laggard winning
contest one may overturn the leader’s head start, possibly inciting expected
efforts equal to the prize value, avoiding the laggard giving up, and this way
mitigating the Matthew effect.
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1 Introduction

Winning breeds winners, making success self-fulfilling. How then should an incen-
tive scheme be organized to ensure that laggards do not simply give up, leaving
the spoils to a superior competitor? In this paper, we discuss this question in
a contest setting where a principal has a prize fund available and must choose
whether to put all of it in a single contest or to spread it out over several contests.
There is a synergy between the contests which reflects the fact that success in a
previous contest affects the likelihood of success in the current one. We find that
the optimal prize division depends upon contestants’heterogeneity, in particular
on the interplay of their ex-ante heterogeneity and the difference in how they re-
spond to an early win to affect that ex-ante heterogeneity. When, in a case of
two participants, one contestant’s ex-ante head start is small relative to the other
contestant’s ability to use an early win to catch up with and even overtake the
rival, the principal should spread the prize fund over more than one contest in
order to maximize participants’total expected efforts. Indeed, the principal can
in some cases use the prize division to even out the ex-ante heterogeneity between
the contestants, capturing all of their surplus.
Contests are common constructs for analyzing competition between agents

who compete for a prize. In the all-pay auction, one of the most widely studied
contests, the highest bidder wins and all competitors pay the cost of their bid.
Numerous applications of this basic model can be found, from promotion or R&D
races, to sporting contests and political competition, or indeed military conflict.
Equilibrium in an all-pay auction with complete information, where contestants’
valuations of the prize is common knowledge, has been characterized by Hillman
and Riley (1989) and Baye, et al. (1996). Since then, economists have been
interested in analyzing how changes to the basic model affect bids, or efforts, in
this model. For example, Che and Gale (1998) consider the effect of placing an
upper bound on contestants’efforts, Baye, et al. (1993) examine how excluding
some competitors may increase efforts, and Barut and Kovenock (1998) allow
several prizes to be awarded in a single all-pay auction. Clark and Riis (1995) and
Konrad (2002) allow one player to have a head-start advantage, implying that he
can expend effort at a lower level than the opponent and still win the prize.
Many real-world applications of contests require extending the basic framework

to allow for competition over multiple stages (e.g., Sela, 2012). Here, the modeler
can choose from many types of contest architecture. An early analysis by Harris
and Vickers (1987) considers a race as a best-of-k contest, where there is a single
prize, and the winner of that prize is the first to win k stage contests. By winning
a stage contest, a competitor gets closer to the finish line so that leader-laggard
behavior can be examined.1 In a contest spanning several rounds, or a series of
contests, where the outcomes of previous rounds form the starting point for the
current stage contest, it is natural to consider such leader-laggard configurations.
This is indeed our point of departure in the current paper: we consider how

1See Konrad (2012) for a discussion of the “discouragement effect” that often arises in this
class of contests, where a laggard will at some stage simply give up.
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previous play in a series of contests affects the players’incentives to exert efforts
across the series. Here, previous play determines the identity of the player that
has a current head start in the stage contest, as well as the size of that head
start. Moreover, we solve a design problem in which a contest sponsor or principal
wishes to maximize efforts by dividing up a prize fund of fixed size over the stage
contests. There are thus two types of synergies between the contests in the series,
one that affects the direction and magnitude of the head start, and one due to the
fixed prize fund where more granted in the current contest leaves less to fight for
in the future.
The situation that we consider has a close relationship to the Matthew effect,

coined by Merton (1968) to describe situations in which the rich get richer or where
success breeds success. The idea is that an initial advantage can be self-amplifying,
and that such mechanisms are prevalent whether we consider "economic wealth,
political power, prestige, knowledge, or in fact any other scarce or valued resource"
(Perc, 2014; p. 1). The phenomenon can also be used to describe how certain nodes
in a network become preferred (as hubs), or how popular products become more
popular with social influence (Altszyler, et al., 2017). Faced with a contestant with
initial advantage, it may seem likely that the laggard will give up. How might the
principal divide his prize to mitigate this effect? We show that the answer depends
on the size of the initial advantage, and how this advantage evolves; there is no
guarantee that the initial leader will maintain the advantage in the future. In his
extensive review of the Matthew effect, Rigney (2010; p. 1) states that “[i]nitial
advantage does not always lead to further advantage, and initial disadvantage does
not always lead to further disadvantage”. By allowing for the possibility that an
initially disadvantaged player can catch up and surpass the initial leader, we show
that the principal can “beat the Matthew effect”and urge both players to exert
high efforts.
To be specific, we consider a two-player model of a series of two complete-

information all-pay auctions. At the beginning of the first contest, we allow one
player to have a head start in the sense that he may have less effort than the
opponent, and still win the stage prize.2 The head start is assumed to evolve
from one contest to the next according to the identity of the winner of the first
contest. Clark and Nilssen (2017) have looked at such dynamics in a long series
of contests with a common stage prize, terming the change in head start as the
“win advantage”. Hence, the winner of the first contest does not only gain the
stage prize, but also affects the head start in the second contest. The source of
this win advantage is elaborated on below. Should the player with the initial head
start win the first contest, his head start is increased at the start of contest two.
If the initial underdog should win, then there are two possibilities for the head
start: either it will still be in the favour of the original leader, but reduced, or
the leader will be overturned so that the underdog now becomes the favorite in
contest two.3 In setting the stage prizes, the principal must be mindful of the fact

2This head start may reflect for example an incumbency advantage in political competition,
a prior investment made by a player, or some technological superiority.

3Such cases, where yesterday’s winner has a head start today, irrespective of whether he was
a leader or a laggard yesterday, resemble incumbency contests, as studied by Ofek and Sarvary
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that the relationship between the head start and the prize in a stage contest will
determine whether the players will exert effort, or if one player gives up, as well
as the magnitude of efforts. The principal must also take account of how the head
start will evolve for various outcomes of the first contest. We characterize the
equilibrium of this game, and use it to demonstrate when the two-contest series
can be used to improve on running a single contest, in the sense of yielding more
effort in equilibrium. Indeed, we identify situations in which a judicious setting
of the contest prizes can neutralize the initial asymmetry between the players,
giving an expected level of effort exactly equal to the gross value of the prize; such
a full dissipation result is common when players are symmetric, but less so with
asymmetry.4

The synergy in the head start across rounds of competition has been discussed
in many wide-ranging applications, although not directly related to contests. A
market leader seeks mechanisms to keep and augment his advantage, so that the
lead becomes self-enforcing; while laggards will attempt to break the dominance,
catch up, and even surpass the better rival. Merton (1968), in analyzing the soci-
ology of science, purported the Matthew effect at a micro and a macro level: at the
micro level, it is suggested that high-status scientists get more credit than their
peers for comparable scientific achievements, and at the macro level this process
leads to a cumulative advantage to the distinguished scientists. Gallini and Scotch-
mer (2002; p. 54) suggest that competing for grants is easier for those with high
status than others: “[F]uture grants are contingent upon previous success. The
linkage between previous success and future funding seems even more specific in the
case of the National Science Council”. Those who succeed in obtaining research
grants hence experience an increase in status, and win a grant to fund current
work; in sum, this gives an advantage in future rounds of competition for scarce
research funding.5 In the case of innovation contests, Davis and Davis (2004; p.
20) discuss reputational gains associated with winning a contest, stating: “[T]he
impact of prizes on reputation, we feel, is a much overlooked phenomenon. They
alone can provide the economic justification for a sponsor to design the contest
and for contestants to enter.”Winning a contest, and enhancing one’s reputation,
can be so lucrative that contestants are willing to invest to gain an incumbency
advantage (Konrad, 2002). Having established a lead in a product market, for
example, a firm will want to fight to retain the ascendancy, while rivals will want
to become the market leader; this mechanism may be particularly important in
markets with network economies since these often have the winner-take-all feature
of contests. Frank and Cook (1995) discuss in this connection the competition
between the VHS and Betamax video recorder platforms, which both vied to be-
come the market standard. Whilst Betamax was widely regarded as the superior

(2003) and Mehlum and Moene (2006, 2008).
4In the context of a single all-pay auction with a head start, Li and Yu (2012) and Franke,

et al. (2016) show how the principal may set the head start to achieve maximum effort.
5In UK academia, Elton (2000) documents the fact that the early rounds of the Research As-

sessment Excercise created a transfer market for academics as universities attempted to improve
their rank by purchasing the publication lists of high-status academics. This may be seen as a
"catching up" strategy similar to that considered by us here.
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technology, VHS allowed longer recording times and consequently had more users,
leading to more available film titles, more service workshops and so on. Hence,
VHS overturned the initial lead of the superior technology, and was helped in the
competition for later consumers by having won over earlier purchasers. In a similar
argument made by Arthur (1989), widely-used technologies will attract a dispro-
portionate amount of R&D effort, leading to improvements and more chances of
capturing future customers; he refers to this as "lock-in through learning".
Our purpose is to model how the experience of winning and losing affects

behavior in contests, and how a principal should divide the prize mass in response
to this. It is the actual fact of winning that creates the advantage here, not the
winning margin. A research team that wins a grant has the possibility to conduct
its research program, and position itself for future applications.6 Losing teams
have to use time looking for alternative —presumably less attractive —funding. In
sales-force management, it is customary to give awards to the Seller of the Month
and the like. And in such sales forces, it is not uncommon for the more successful
agents to be given less administrative duties, better access to back-offi ce resources,
more training than the less successful, and better territories; see, e.g., Skiera and
Albers (1998), Farrell and Hakstian (2001), and Krishnamoorthy, et al. (2005).
Being a winning salesperson gives a head start in later contests, and this is not
necessarily tied to the size of the winning margin. In a best-of-two, all-pay auction
model, Krumer (2013) attributes a psychological momentum to the first contest
winner, who then has a lower cost of competing in the second compared to the
losing opponent. A similar effect is investigated by Clark, et al. (2018) in a series
of Tullock contests.7

A phenomenon related to the dynamic win effect that we consider here are
dynamic effort effects, where efforts in an early contest, rather than winning it,
gives a player benefits later on. Clark and Nilssen (2013) interpret this as learning
by doing in a model of two rounds of contests. Relatedly, Kovenock and Roberson
(2009) and Joffrion and Parreiras (2013) model a dynamic advantage as a function
of a player’s past net effort, i.e., his effort over and above that of the other player.
In Kovenock and Roberson’s (2009) two-contest model, a high net effort in the first
contest will, with some decay, give a player a head start in the second. Joffrion
and Parreiras (2013) model a single all-pay auction carried out in multiple rounds,
with players’effort costs in each round being convex and players observing their
standings, i.e., the leader’s head start, after each round. These papers consider a
different strategic setting to us since, in the early contests, the margin of victory
is important; our model limits the advantage to what can be gained from winning,
and this is independent of previous efforts. A key issue in papers with effort
advantages is how transferable effort is between time periods, i.e., the extent to
which current effort decays in future rounds. We do not have effort spillovers

6It is of course not just the actual written application that is evaluated in deciding the winners
of research grants. The quality of the team, and the amount and level of previous research by
the team on the topic is also highly relevant. Each research team has its status at the beginning
of the application procedure, and winners will enhance theirs in future grant rounds.

7Clark, et al. (2018) discuss a design issue similar to ours: how to distribute the prize fund
over time; but they do it in the context of Tullock contests with symmetric players.
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between contests, and the rate of catching up or lead enhancement is exogenously
fixed; hence the effect of a pure win advantage can be examined.
Our analysis is based on two premises: a stage game consisting of a complete-

information two-player all-pay auction with a head start, and the principal wish-
ing to maximize the total expected level of effort over the series of contests. Head
starts in a single contest have been analyzed by several authors, notably by Kon-
rad (2002), Meirowitz (2008), Kirkegaard (2012), Li and Yu (2012), Hirata (2014),
Segev and Sela (2014), Siegel (2014), and Franke, et al. (2016). Among these pa-
pers, Konrad (2002) and Hirata (2014) discuss two-stage situations where players
can take actions in the first stage that create head starts in the second stage, while
Li and Yu (2012) and Franke, et al. (2016) discuss the principal’s optimal choice
of head start in a single contest in order to maximize expected effort.
With two players, Li and Yu (2012) show that the optimal head start is given to

the player with the lowest valuation at an amount equal to the difference between
the valuations of the two players. This shifts the stronger player’s equilibrium
effort distribution upwards by the amount of the head start, whilst that of the
weaker player is unchanged. Hence, the stronger player has an increase in effort
that offsets the head start, and this increase accrues to the contest organizer.
Franke, et al. (2016) extend this to the case of several players, and where a head
start may be combined with a bias term that amplifies the efforts of players in the
contest success function. In this case, the head start can first be used to exclude
players, and then to induce revenue-maximizing behavior among those who are
left.
We also consider a principal who wishes to maximize contest effort or revenue,

but we do not assume that a head start is something that a contest designer can
control; neither can the principal control how this head start evolves with the
experience of winning.8 However, the logic behind the result of Li and Yu (2012)
belies one of the mechanisms at work in our story: while the principal cannot
manipulate the head start directly, he can affect the valuations of the players of
winning by a judicious division of the prize mass across contests. In one of our
cases, it is possible for the principal to appropriate all of the surplus of the players
by neutralizing the head start advantage exactly, in the sense of Li and Yu (2012).
In other cases, this is not possible, however, and one of the players expects a
surplus that then reduces the payoff of the principal. We find that, when the
ex-ante difference between the players is large (i.e., there is a large head start
in the first contest), the principal’s optimal choice is to spend all the money in
the first contest, which in practice means running only that first contest. This is
because the win advantages play only a small role in this case; the same result
occurs if the players have symmetric win advantages. When the ex-ante head
start is suffi ciently small, however, it is the difference in win advantages that plays
the key role. In particular, when the ex-ante laggard has a suffi ciently greater
win advantage, the principal prefers to run two contests. How much surplus he

8Revenue maximization may not be the only goal of the principal. Groh, et al. (2012) look
at how seeding can be set in an elimination tournament in order to achieve maximum effort, the
largest probability that the two top seeds will meet in th final, or the probability that the top
seed wins overall.
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can extract from the players depends on the extent that the initial laggard can
overturn the head start.
This paper is organized as follows. Section 2 presents the stage game for our

model, a single all-pay auction in which one player has a net head start, and the
players have different valuations of the prize. Results from this are then utilized
in setting up and solving our two-contest model in Section 3. Section 4 considers
the reference case of symmetry, and Section 5 concludes. All proofs are contained
in an appendix.

2 Preliminaries

Before we go on to consider our two-contest model, it is useful to state a prelimi-
nary result for a single all-pay auction in which two risk-neutral players, i = 1, 2,
have asymmetric head starts (Si), and different valuations (Vi) of winning the
prize. In the all-pay auction, a player is given a score which is comprised of his
initial head start and his effort to win the prize: Si + Xi. Without loss of gener-
ality, we shall assume that S1 ≥ S2. Define ∆ := S1 − S2 ≥ 0. The probability
that player 1 wins the prize, ρ1 (X1, X2), is given by the following contest success
function:

ρ1 (X1, X2) =


1 if S1 +X1 > S2 +X2
1
2
if S1 +X1 = S2 +X2

0 if S1 +X1 < S2 +X2

The probability that player 2 wins is ρ2 (X1, X2) = 1− ρ1 (X1, X2). The expected
utilities of the two players can be written as

EUi = ρi (X1, X2)Vi −Xi, i = 1, 2

Let Fi(Xi) represent the cumulative distribution function of player i’s mixed
strategy. Clark and Riis (1995) prove the following result:9

Proposition 1 (Clark and Riis 1995).
(i) If ∆ ≥ V2, then X1 = X2 = 0, EU1 = V1, and EU2 = 0.
(ii) If V2 − V1 ≤ ∆ < V2, then the unique mixed-strategy Nash equilibrium is

F1 (0) =
∆

V2

; F1 (X1) =
∆ +X1

V2

, X1 ∈ (0, V2 −∆] ;

F2 (0) = 1− V2 −∆

V1

; F2 (X2) = 1− V2 −X2

V1

, X2 = (∆, V2] .

Expected efforts and win probabilities are

EX1 =
(V2 −∆)2

2V2

;EX2 =
V 2

2 −∆2

2V1

; (1)

ρ1 = 1− V 2
2 −∆2

2V1V2

; ρ2 =
V 2

2 −∆2

2V1V2

;

9Li and Yu (2012) present a similar result in their Lemma 1.
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with expected net payoffs

EU1 = V1 − V2 + ∆;EU2 = 0. (2)

(iii) If 0 ≤ ∆ ≤ V2 − V1, then the unique mixed strategy Nash equilibrium is

F1 (0) = 1− V1

V2

; F1 (X1) = 1− V1 −X1

V2

, X1 ∈ (0, V1] ;

F2 (0) = 0; F2 (X2) =
X2 −∆

V1

, X2 ∈ (∆, V1 + ∆] .

Expected efforts and win probabilities are

EX1 =
V 2

1

2V2

;EX2 =
V1

2
+ ∆;

ρ1 =
V1

2V2

; ρ2 = 1− V1

2V2

;

with expected net payoffs

EU1 = 0;EU2 = V2 − V1 −∆.

When the net head start of player 1 is suffi ciently large (case (i) in Proposition
1), player 2 cannot catch up, and no effort is used. Player 1 wins the prize,
gaining a surplus of V1. In the more interesting cases (ii) and (iii), the head start
is suffi ciently small that player 2 may exert positive effort, and this encourages 1
to exert effort also. The two cases differ according to whether the heterogeneity
in head starts or the one in valuation is the larger. With player 1 having a net
head start, ∆ ≥ 0, he also has an initial advantage in the contest. However, who
is the stronger player of the two is determined by the combination of ∆ and the
valuations, and two distinct possibilities are delineated by parts (ii) and (iii) of the
Proposition. In part (ii), V1 + ∆ ≥ V2. Hence, player 1 is the stronger contestant,
since this player has the possibility of making a bid at or below 2’s valuation (in
the interval (V2 −∆, V2]) and winning with certainty. In part (iii), on the other
hand, player 2 is the stronger contestant, since he can make a bid slightly above
the maximum score that 1 can attain (in the interval (V1 + ∆, V2]) and win with
certainty.
When part (ii) of Proposition 1 holds, player 1 gives a positive bid with prob-

ability V2−∆
V2
, using a uniform distribution over [0, V2 −∆] conditional on the bid

being positive, while player 2 has a probability of V2−∆
V1

of giving a positive bid,
which in this case is generated from a uniform distribution on [∆, V2]. Note that
the head start affects the equilibrium strategies and expected efforts of both play-
ers in this case; in particular, the expected effort of each player is lower, the larger
is ∆. Furthermore, by (2), EU1 = ∆−(V2 − V1) ≥ 0, andEU2 = 0, reinforcing the
idea of player 1 being the strong player in this case. The players’total expected
efforts, by (1), can be written as

EX∗ = EX1 + EX2 = V2 −∆ +
(V 2

2 −∆2) (V2 − V1)

2V1V2

(3)
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Hence, if players have symmetric valuations and V1 = V2 = V > ∆, then EX∗ =
V − ∆ is the total amount of effort.10 Starting from this symmetric valuation,
increasing V1 will cause expected effort to fall, as is clear from (3). Hence the
asymmetry in valuations reinforces the initial advantage of player 1 yielding lower
expected effort. If, on the other hand, it is V2 that is increased from the symmetric
valuation, then expected effort will increase. Li and Yu (2012) show that expected
efforts are maximized when V2 − V1 = ∆ > 0. In this case, parts (ii) and (iii) of
Proposition 1 coincide, and EU1 = EU2 = 0. The asymmetry in the players’
valuations (with player 2 having the larger) is neutralized by the head start in
favour of the player with the lower valuation. This result will be useful in the next
section.
When the player with a head-start disadvantage has suffi ciently more to gain

from winning than the rival, then part (iii) of Proposition 1 gives expected efforts in
equilibrium. Player 1 submits a positive bid with probability V1

V2
, with the positive

bid generated by a uniform distribution over the interval [0, V1]. Player 2 submits
a positive bid with certainty, generated by a uniform distribution on [∆, V1 + ∆].
Here, it is only the equilibrium strategy of player 2 that is affected by the head
start, shifting effort upwards by the amount of this parameter; this is a difference
from the result in part (ii) of the Proposition in which both players’ expected
efforts fall in ∆. When part (iii) applies, EU1 = 0, and EU2 = V2 − V1 −∆ ≥ 0;
this indicates that player 2 is the stronger in this case.

3 The model and result

A risk-neutral principal has a prize fund of size 1 to distribute among two risk-
neutral contestants. He does this by setting up two consecutive all-pay auctions
with a prize of 1 − v available in the first and a prize of v in the second, where
0 ≤ v ≤ 1.11 In the first contest, we assume that one of the players —player 1
without loss of generality —has a head start h > 0, which means that this player
can win the contest with less effort than the rival. Specifically, we assume the
following contest success function for player i = 1, 2, in contest 1, given efforts
xi,1:

p1,1 (x1,1, x2,1) =


1 if h+ x1,1 > x2,1
1
2
if h+ x1,1 = x2,1

0 if h+ x1,1 < x2,1

p2,1 (x1,1, x2,1) = 1− p1,1 (x1,1, x2,1)

The winner of the first contest gets not only the stage prize 1− v, but also an
advantage in the second, a mechanism that has been explored by Clark and Nilssen
(2017) in a symmetric version of the model with a general number of contests and
a fixed stage prize. The experience of winning gives an advantage in the next
contest.
10With symmetric valuations, player 1 is surely the strong player, and only part (ii) in Propo-

sition 1 is relevant.
11The principal may choose to award the prize in a single contest, in which case v = 0.
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We call si the win advantage of player i. Should player 1 win the first contest,
he builds upon his initial head start so that it becomes h + s1 at the start of
contest two. In the second contest with effort x1,2, player 1 has a contest score of
h + s1 + x1,2; the score of player 2 will simply be his effort in contest two, x2,2.
Should player 2 win the first contest, his score in the second augments his effort
x2,2 by s2 > 0, giving him a contest score of s2 + x2,2; player 1 in this case has a
second-contest score of h+ x1,2.
Two interesting possibilities can occur: (i) either the net lead of player 1 gets

reduced to h − s2 ≥ 0, or (ii) player 2 takes over the head start, s2 − h > 0, so
that he starts contest two with an initial score of s2 compared to h for player 1.
No efforts are carried over from the first contest to the second. The player with
the largest score in contest two is designated the winner of that contest, gaining
the stage prize v. The game then ends.
Formally, let pi,2 (x1,2, x2,2; j) indicate the win probability for player i in the

second contest, given that player j has won the first.

p1,2 (x1,2, x2,2; 1) =


1 if h+ s1 + x1,2 > x2,2
1
2
if h+ s1 + x1,2 = x2,2

0 if h+ s1 + x1,2 < x2,2

p2,2 (x1,2, x2,2; 1) = 1− p1,2 (x1,2, x2,2; 1) ,

and

p1,2 (x1,2, x2,2; 2) =


1 if h+ x1,2 > s2 + x2,2
1
2
if h+ x1,2 = s2 + x2,1

0 if h+ x1,2 < s2 + x2,1

p2,2 (x1,2, x2,2; 2) = 1− p1,1 (x1,2, x2,2; 2) .

In what follows, we shall suppress the effort arguments in the probability function,
writing simply pi,2(j).
Similarly, denote by πi,2 (j) the expected payoffof player i in the second contest,

given that j has won the first. Then

πi,2 (j) = pi,2 (j) v − xi,2,

since the loser gains 0 in this final contest. Denoting the expected equilibrium
payoff in contest two with an asterisk, we can write the expected payoff function
of player i in contest one as

πi,1 = pi,1
[
1− v + π∗i,2 (i)

]
+ (1− pi,1) π∗i,2 (j)− xi,1, i 6= j.

Should player i win the first contest, he gains the stage prize 1− v and the payoff
that the contest-one winner expects in the second contest, π∗i,2 (i). If player i loses
the first contest, then he gains no stage prize and expects π∗i,2 (j) in contest two.
Given the structure of the game, the principal wishes to distribute the fixed

budget between the two contests in order to obtain the most effort in aggregate.
Effort in the first contest is affected by the amount of the asymmetry (h), the
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stage prize, and the value of the continuation payoff. Intuitively, saving more of
the prize for the second contest will increase the efforts in that contest. However,
the efforts in that contest will also be affected by the net head start that evolves
after the first contest. The asymmetry may be larger in magnitude than in the
first contest (if player 1 wins contest one), less in favour of player 1 (if player 2
wins and h− s2 > 0), or in favour of player 2; player 2 surpasses the head start of
player 1 from the first contest if s2 − h > h > 0.
Note that the contest analyzed in the previous section forms a stage game for

our model. When deciding how to distribute the prize mass, the principal must
be mindful of the fact that the choice of prize in the first contest will affect the
type of behavior in contest two. Specifically, the principal knows that equilibrium
play in the second contest will progress according to either part (ii) or part (iii)
of Proposition 1, or there will be no effort induced (part i), depending on the
underlying parameters h, s1, and s2, and the prize division.
The following proposition, proved in the Appendix, solves for the optimal

division of the principal’s budget between the two contests.

Proposition 2 Consider a sequence of two all-pay auctions with two players and
a total prize budget equal to 1, so that the prize in the second contest is v ∈ [0, 1]
and the prize in the first contest is 1−v. Let player 1 have a head start h ∈ (0, 1),
and let there be a win advantage to each player of si ∈ (0, 1) , i = 1, 2. A principal
who wants to maximize total expected effort over the two contests should set v as
follows:
(i) If s2 ≤ h < 1, then v = 0 is optimal and gives rise to total expected efforts

of 1− h.
(ii) If s2−s1

2
< h < s2, then any v ∈ [0, s2 − h] is optimal, giving total expected

efforts of 1− h.
(iii) If s2−s1

3
< h ≤ s2−s1

2
, then any v ∈ [s2 − h, 1] is optimal, giving total

expected efforts of 1− 3h+ s2 − s1.
(iv) If 0 < h ≤ s2−s1

3
, then v = 2h+ s1 is optimal, giving total expected efforts

of 1.

In case (i), player 1 has such a large initial head start that his net advantage
in contest two will still be positive, even after a loss in contest one. In the other
cases, it is the winner of contest one that has the head start in contest two.
Figure 1 depicts the parameter space, delineating the cases addressed in Propo-

sition 2, assuming that all four cases exist. Note that case (iv) cannot exist if
h ≥ 1

3
, and case (iii) disappears if h ≥ 1

2
.

Note, from Proposition 1, that, if the principal puts v = 0 and a single contest
is run —with a prize of 1, and a head start of h for one of the players — then
the amount of expected effort from the players is 1 − h. More effort than this
can only be achieved when the parameters are such that cases (iii) and (iv) in
Proposition 2 exist. Hence, the scope for using this design to induce extra effort
depends upon the initial head start (h) not being too large, and that the degree
of potential catching up by the initial laggard (s2) is suffi ciently large compared
to the win advantage of the initial leader (s1). How much s2 must be larger than
s1 is discussed below.
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s2
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(i)

(ii)

(iii)
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(s2­s1)/2 = h(s2­s1)/3 = h

h

2h

3h

Figure 1: Delineation of cases

Figure 2 depicts the optimal prize v∗ in the second contest, as well as the types
of contest behavior that one may see there. The areas here depict parameter
combinations that lead to effort in contest two no matter who wins contest one
(area A), no effort in contest two (area B), and effort in contest two dependent on
who has won the first contest (area C only if player 2 has won, and area D only
if player 1 has won).12 The figure is drawn for the case of s2 > s1; when s1 ≥ s2,
we are left with only cases (i) and (ii) of Proposition 2 and area D disappears.
In Figure 2, v∗ can be seen for each of the cases of Proposition 2. When the
initial head start is large, h ∈ [s2, 1), then v∗ = 0, which is case (i). The optimal
second contest prize for cases (ii) and (iii) are a range of prizes, represented by
the checkered areas in Figure 2. Finally, for low values of the initial head start,
h ∈ (0, s2−s1

3
), the optimal second round prize follows the line v∗ = 2h+ s1; this is

case (iv) of the Proposition.
For high values of the head start, h > s2−s1

2
, the principal can do no better

than run a single contest. In the other cases, it is interesting to consider how
much of the prize is “saved”for contest two. In case (iii), a range of possibilities
occurs since the principal can choose the second-contest prize from an interval. In
the extreme, he can distribute the whole prize mass in the second contest, so that
the first is simply a contest for position. In case (iv), the prize must be set at a
certain level in order to gain the maximum level. Given the restriction on h in
this case, one can consider parameter values for which more than half of the prize
is awarded in the second contest (i.e., where 2h+ s1 >

1
2
). This can occur only if

s2 > max
{
s1,

3
4
− s1

2

}
.

A final illustration of the results in Proposition 2 is provided in Figure 3, which

12We shall return to the intuition behind these areas below.
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Figure 2: Optimal second-contest prize, for s2 > s1

depicts the connection between the initial head start and the total expected effort
over the two contests. Whilst we have set up the possibility that the principal may
use two contests in order to solicit the most effort, it is fully possible to award the
whole prize in the first one. As noted above, total expected effort here is 1 − h,
which forms a minimum effort that the principal seeks to increase by judicious
setting of the prize instrument. This is only possible when a win for player 2 gives
a suffi cient leap past player 1 in terms of head start, should player 2 win the first
contest. From Figure 3, it is clear that the initial head start for player 1 must be
below s2−s1

2
in order to achieve more expected effort than 1 − h. The minimum

head start for player 2 in contest two that is needed to achieve higher effort is
s2 − s2−s1

2
= s1+s2

2
, and expected effort of magnitude 1 can be reached as long as

the head start of player 2 is at least s2 − s2−s1
3

= 1
3

(2s2 + s1).
In considering different distributions of the prize mass, the principal must take

account of the way in which contest two may develop. If player 1 wins the first
contest, he has a net head start in contest two of h + s1. Should player 2 win
the first contest, then either player 1 will get a reduced head start in contest two
(h − s2), or player 2 will have a net head start of s2 − h, depending on which of
these expressions is positive. If the prize in contest two, v, is set below the net
head start, then it will not be profitable for the disadvantaged player to make
any positive effort, and the advantaged player wins this contest with no effort. In
Figure 2, the lines v = h+ s1, v = h− s2, and v = s2 − h distinguish cases where
there is effort in the second contest. In area B, we have v < h+ s1 and v < h− s2,
for h > s2; and v < s2 − h, for h < s2. Hence, whoever wins the first contest, the
loser will not fight at contest two. In area A, the second contest prize is above
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Figure 3: Total expected effort

all of the possible net head starts, and thus this prize is fought over, no matter
who wins the first contest. For (v, h) combinations in area C, the prize on offer
is so low that player 2 cannot profitably make effort in the second contest if he
loses the first; this follows since the prize is below the head start of 1 in this case.
On the other hand, the prize is above both of the potential head starts that can
occur if player 1 wins the first contest. Hence, in area C, there will be effort in
contest two if and only if player 1 wins the first. Area D is characterized by the
fact that the second-contest prize is below the net head start of player 2 if that
player won contest one, so that player 1 will not exert effort in this case and 2
wins effortlessly; also, the prize is above the head start of player 1 in contest two,
if he has won the first. Thus, there is effort in contest two in this case if and only
if player 1 has won the first.
When the second-contest prize is determined, the players and the principal can

calculate the value of winning the first contest for each player, given the amount of
the prize mass that is left for the second contest. In terms of Proposition 1, let us
denote by Vi the value to player i of winning the first contest and set∆ = h. When
the Vi and h are such that part (ii) of Proposition 1 applies, then total expected
effort in equilibrium is given by (3). It turns out that, for optimal choices made by
the principal, equilibrium behavior is always determined by part (ii) of Proposition
1 (see the Appendix).13 Hence, (3) gives the total expected amount of effort for
each of the cases in Proposition 2. We now explain the intuition underlying each
case in Proposition 2.
Consider case (i), in which player 1 has a large head start that will still be

13In case (iv) of Proposition 2, we have h = V2 − V1, so that parts (ii) and (iii) of Proposition
1 give identical results.
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positive in the second contest even if the rival wins the first. Suppose that player
1 wins the first contest so that the head start in contest two is h + s1. With a
second-contest prize v < h + s1, player 2 will not find it worthwhile to fight, and
player 1 wins v with no effort. Hence, the total effort would come simply from the
first contest. But with v > h+ s1, there will be effort in the second contest. If, in
this case, player 2 should win the first contest, then player 1’s head start in the
second one is reduced to h− s2. If v < h− s2, then player 2 will not exert effort in
contest two, independent of who wins the first contest, and player 1 has a payoff
in the second contest of v whilst 2 gets 0. In contest one, the players fight over
the same prize 1 − v, since the payoff in contest two is not affected by who wins
the first. Given that player 1 has a head start of h, total efforts are 1 − v − h,
which is maximized for v = 0, the optimal second-contest prize in case (i). Most
effort is gained by inducing no effort in contest two, and as much effort as possible
in contest one. In terms of the discussion above, each player fights for the same
prize in contest one, V1 = V2 = 1, so that x∗ = 1− h, following from (3).
The intuition for case (ii) is broadly similar, although now it is the winner of

contest one that will have the head start in contest two. It is player 2 that has
the lower positive head start in contest two, since s2 − h < h + s1 in this case.
By the same reasoning as above, setting a prize of v < s2 − h in contest two
will induce no effort in that contest, and the winner of the first contest wins also
the second-contest prize v. Seen from the first contest, the value of winning is
(1− v) + v = 1 for each player, and hence total efforts are 1− h given the initial
head start; again, V1 = V2 = 1 in (3). Any second-contest prize up to s2 − h will
achieve this result, since no prize in this range induces effort in contest two.
In case (iii), it is possible to induce the same result —expected effort of 1−h —

by setting 0 ≤ v < h+ s1. This is since, in this region, s2 − h > h+ s1, and such
a second-contest prize induces no effort there, irrespective of who wins the first.
However, it is possible to improve upon this result, as indicated in Figure 3. The
second-contest prize is optimally set suffi ciently high that there will be effort in
contest two, irrespective of who wins the first, v ∈ [s2 − h, 1]. The winner of the
first contest is thus the player with a positive expected payoff in contest two. The
value of winning the first contest is hence, for each player, the stage prize 1 − v
plus the expected payoff in contest two: V1 = 1−v+h+s1, and V2 = 1−v+s2−h.
Player 2 has more to gain, since V2 − V1 = (s2 − h)− (h + s1) > 0. Equation (3)
gives a total expected effort of 1− 3h + s2 − s1 > 1− h; the inequality holds for
the parameter space of case (iii).
In case (iv), the optimal prize structure induces effort in contest two only

if player 1 wins the first. Indeed, in this case, the optimal prize distribution
induces a total expected effort that is equal to the total prize fund, in spite of
the players being asymmetric at the outset. In the proof of Proposition 2 in
the Appendix, we show, for this case, that the initial head start of player 1 is
completely cancelled out by the induced difference in the players’valuations in the
first contest: h = V2 − V1, and hence neither player expects a positive surplus.14

With a prize of h + s1 ≤ v ≤ s2 − h in contest two, the players compete in that
14See the discussion around Proposition 1.
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contest only if player 1 wins the first; in which case the players contest the same
prize (v) in contest two, player 1 expects a second-contest payoff of h + s1, and
player 2 expects zero. Hence, total effort in the second contest, by (3), equals
v−h−s1. Seen from the first contest, player 1 has a value of winning of 1−v (the
stage prize in the first contest) plus h+ s1 from contest two: V1 = 1− v + h+ s1.
Player 2 wins the second contest with certainty if he wins contest one, gaining
prize v, and winning contest one gives a stage prize of 1− v: V2 = 1− v + v = 1.
Hence V2 − V1 = v − h − s1. Furthermore, part (ii) of Proposition 1 determines
equilibrium behavior for h + s1 ≤ v ≤ 2h + s1. From (3), with ∆ = h, we see
that V2 is independent of v, and the second term in this expression is decreasing
in V1; hence, V1 should be as low as possible, which is achieved by fixing v at the
top of its range: v = 2h+ s1. Hence V2 − V1 = h, and total expected effort in the
first contest is given, by (3), as 1− h(1−h)

2
. The probability of positive effort in the

second contest is the probability that player 1 wins the first, which from part (ii)
of Proposition 1 is 1−h

2
, and with v at 2h + s1, we have an expected effort in the

second contest of h. Hence, total expected effort is 1 − h(1−h)
2

+ h(1−h)
2

= 1. The
principal captures all of the surplus in this case.
It is clear from Figure 3 that total expected efforts decrease as the initial head

start increases. With a small head start, it is possible to design the contests in
such a way that the whole value of the prize is dissipated in expectation. The
larger the head start is at the outset, the larger payoff the advantaged player
achieves, reducing the amount of effort in equilibrium; for these larger values of h,
it is optimal to just induce effort in the first contest, i.e., to run a single contest.

4 Symmetric win advantages

An interesting special case of Proposition 2 occurs when there is symmetry in the
win advantages: s1 = s2 = s. Indeed, with such symmetry, the principal can
achieve no better than the minimum level of expected effort. Considering s1 = s2

in Figure 1, it is immediate that the only cases that exist in Proposition 2 are (i)
and (ii). Hence, the cases that allow the principal to adjust the prize mass and
increase effort above the minimum (single contest) level disappear.

Corollary 1 Suppose that s1 = s2 = s. A principal who wants to maximize total
expected effort over the two contests should set v as follows, depending on the
relation between the ex-ante asymmetry, measured by h, and the (symmetric) win
advantage measured by s:
(i) If h

s
∈ [1,∞), then v = 0 is optimal and gives rise to a total expected effort

of 1− h.
(ii) If h

s
∈ (0, 1), then any v ∈ [0, s − h] is optimal and gives rise to a total

expected effort of 1− h.

These results follow from Proposition 2, parts (i) and (ii). The optimal prize
distribution for symmetric win advantages depends upon the relative magnitudes
of the initial head start and the win advantage. In case (i) of Corollary 1, the
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initial head start is large in relation to the win advantage, so that player 1’s head
start is little affected should 2 win the first contest. Both contests are asymmetric,
and the principal chooses to induce all effort in the first contest. Due to the initial
asymmetry, the whole of the prize is not dissipated, leaving an expected payoff for
player 1 of h.
In case (ii) of Corollary 1, the head start is small in relation to the win advan-

tage. Should player 2 win contest 1, then he takes over the head start in contest
two. The principal maximizes aggregate efforts by setting a suffi ciently low value
of v that there is effort in contest one only. The exception here is that, with v
exactly at s− h, there will be effort in contest one, and in contest two if and only
if player 2 wins the first.
Hence, in the symmetric case, the principal prefers to leave so little of the prize

for the second contest that there will be no effort there. This leaves an expected
payoff for player 1 of h so that the principal cannot capture efforts equal to the
whole value of the prize. Comparing with the general case above, it is interesting to
note the limitations of the contest design through prize distribution when players
have the same win advantage. The principal can use the difference in the win
advantages to design a prize scheme that can achieve more effort in expectation
than he can in the symmetric case. In the symmetric case, the principal cannot
improve upon the situation in which he runs a single contest with the whole prize
available at once.

5 Conclusion

A head start in a contest may reflect a previous investment made by a competitor,
some technological superiority, or an incumbency advantage. In some situations,
the initial advantage can be self-amplifying, leading to the Matthew effect where
“success breeds success”. In a contest setting, this may lead to discouragement of
the laggard, and a fall in contest efforts. With the same set of contestants and a
series of contests, we suggest that the head start can adjust over time to reflect
previous contest outcomes. A win by the initial leader will augment his head
start, whereas a win for the underdog will reduce the advantage of the leader, or
even turn it in favor of the initially disadvantaged player. In this setting, we have
considered a design question in which a principal may divide up the prize mass
in order to maximize the expected effort of the players. When the ex-ante head
start is large and the degree to which the underdog can catch up small, then the
principal can do no better than to run a single contest with the whole prize mass
on offer. If the amount that the underdog can overturn the initial disadvantage is
suffi ciently large, then the principal prefers to run two contests, dividing the prize
mass between the two. When the win advantage is the same for each player, then
again the principal chooses a single contest. The design problem would seem to be
quite complex since the synergy between contests makes the principal mindful of
the fact that the prize division can lead to contests in which the contestants prefer
not to compete, and he also needs to take into account the development of the head
start from one contest to the next. We have shown that a quite simple design can
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increase the amount of expected effort over the single contest, and that it can even
lead to full dissipation of the prize, hence “beating”the Matthew effect. Elsewhere
(Clark and Nilssen, 2018), we have shown that this analysis carries over to a case
in which a competitor does not have a head start, but has a bias which multiplies
his effort by a factor greater than one in the contest success function. This is a
somewhat simpler design problem since, with payoffs there being continuous, one
does not have to take into account the fact that some prize divisions will lead to
one opponent giving up, as we do in the present analysis. Nevertheless, we show
also for that case, that for suffi ciently small initial heterogeneity, the principal can
capture all of the surplus of the competitors.
Extending the analysis to more than two contests is an obvious, but challeng-

ing, extension of our analysis. One may also like to consider a combination of a
win advantage and an effort advantage where some part of previous efforts may
affect the net head start; we have simply assumed exogenous win advantages here.
Also, the win advantage does not necessarily modify the head start in a linear
way, as we have assumed. Nevertheless, we believe that our analysis opens up
an interesting design issue in a setting with synergy in the head start between
contests in a series.

A Appendix

This Appendix contains the proof of Proposition 2. For the purpose of this proof,
let player i’s expected equilibrium effort in contest t be x∗it, total expected equi-
librium effort across the two players in contest t be x∗t := x∗1t + x∗2t, and total
expected equilibrium efforts across contests be x∗, for i, t ∈ {1, 2}. Furthermore,
denote the equilibrium win probability of player i in contest 1 by ρ∗i .

Proof. Part (i). Let s2 < h. Consider contest two, and suppose first that player
1 wins contest one, so that, in terms of Section 2, contest two has ∆ = h+ s1 and
V1 = V2 = v. If 0 ≤ v ≤ h + s1, then, by part (i) of Proposition 1, there are no
efforts, and so x∗2 = 0, π1,2 (1) = v, and π2,2 (1) = 0. If h + s1 < v ≤ 1, then, by
part (ii) of Proposition 1, we have

x∗12 =
(v − h− s1)2

2v
; x∗22 =

v2 − (h+ s1)2

2v
; x∗2 = v − h− s1; (A1)

π∗1,2 (1) = h+ s1; π∗2,2 (1) = 0.

Suppose next that player 2 wins contest one. This reduces player 1’s head
start by s2, so that it becomes h − s2 in contest two, and thus also ∆ = h − s2.
If 0 ≤ v ≤ h− s2, then, by part (i) of Proposition 1, there are no efforts: x∗2 = 0,
π1,2 (1) = v, and π2,2 (1) = 0. If h − s2 < v ≤ 1, then, by Proposition 1 part (ii),
we have

x∗12 =
(v − h+ s2)2

2v
; x∗22 =

v2 − (h− s2)2

2v
; x∗2 = v − h+ s2; (A2)

π∗1,2 (1) = h− s2; π∗2,2 (1) = 0.
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Consider next contest one. Suppose that h+ s1 < v ≤ 1, so that we will have
efforts in contest two, regardless of who wins contest one. In terms of Section 2,
we have ∆ = h. Even if player 2 wins contest one, he will have zero expected
payoff in contest two, as we saw above, implying that V2 = 1 − v. Player 1 will
have 1− v+h+ s1 if he wins contest one and h− s2 if he loses it, so that his value
of winning that contest is V1 = (1− v + h+ s1)− (h− s2) = 1− v + s1 + s2, and
V1 − V2 = s1 + s2.
There are three subcases that can occur:
(a) 1− h ≥ h+ s2.
(b) h+ s1 ≥ 1− h ≥ h− s2.
(c) h− s2 ≥ 1− h > 0.
We shall give a detailed analysis of subcase (a), and more cursory ones of (b)

and (c) since they follow closely.
For case (a), if 1 − h ≤ v ≤ 1, then h ≥ 1 − v, i.e., ∆ ≥ V2, and so player

1 wins contest one without effort, by part (i) of Proposition 1. Total expected
efforts are therefore the ones in contest two following a contest-one win by player
1, which we found above to be v − h − s1, and this is maximized at v = 1, with
total expected efforts at 1− h− s1.
If instead h+ s1 ≤ v ≤ 1− h, then there will be efforts also in contest one. By

using the expressions for expected efforts and win probabilities in Proposition 1,
part (ii), as well as those for contest-two expected efforts in equations (A1) and
(A2), we find that total expected efforts over the two contests in this case equal

x∗ = x∗11 + x∗21 + ρ∗1 (v − h− s1) + ρ∗2 (v − h+ s2)

=
(1− v − h)2

2 (1− v)
+

(1− v)2 − h2

2 (1− v + s1 + s2)

+

(
1− (1− v)2 − h2

2 (1− v + s1 + s2) (1− v)

)
(v − h− s1)

+
(1− v)2 − h2

2 (1− v + s1 + s2) (1− v)
(v − h+ s2)

= 1− 2h− s1.

Suppose next that h− s2 ≤ v ≤ h+ s1, so that we will have efforts in contest
two if and only if player 2 wins contest one. We still have ∆ = h and V2 = 1− v
in contest one, but now, since player 1 will win contest two effortlessly if he wins
contest one, V1 = (1− v + v) − (h− s2) = 1 − h + s2, and V1 − V2 = v − h + s2.
By using Proposition 1, part (ii), and equation (A2) and recalling that there will
be efforts in contest two only if player 2 wins contest one, we have

x∗ = x∗11 + x∗21 + ρ∗2 (v − h+ s2)

=
(1− v − h)2

2 (1− v)
+

(1− v)2 − h2

2 (1− h+ s2)

+
(1− v)2 − h2

2 (1− h+ s2) (1− v)
(v − h+ s2)

= 1− v − h.
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Thus, x∗ is maximized in the low end of this range, at v = h− s2, for which total
expected efforts equal 1− 2h+ s2.
Finally, suppose that 0 ≤ v < h − s2, so that player 1 wins contest two

without any effort, regardless of who wins contest one. In this case, the only
efforts exerted are in contest one. Now, V1 = V2 = 1 − v, so that V1 − V2 = 0,
while still ∆ = h. This is a well-known static contest with head start h and a
symmetric prize valuation at 1− v, where x∗ = 1− v − h. To maximize this, the
principal sets v = 0, so that total expected efforts become 1− h.
For case (b) above, a similar analysis shows that, for 1 ≥ v ≥ h+ s1, player 1

wins contest one with no effort. Hence, total effort is that exerted in the second
contest: v−h− s1, which is maximized at v = 1. For h+ s1 > v ≥ 1−h, player 1
wins the first contest with no effort, while there would be effort in contest two only
if player 2 won the first; hence, x∗ = 0. When 1− h > v ≥ h− s2, there is a fight
in the first contest, but the second-contest prize is contested only if player 2 wins.
As above, this yields expected effort of 1−v−h, which is maximized at v = h−s2,
yielding x∗ = 1−2h+s2. Finally, for case (b), when h−s2 > v ≥ 0, there is effort
only in the first contest, in the magnitude 1− v − h, which is maximal for v = 0.
Since 1 − h > 1 − 2h + s2, and 1 − h > 1 − h − s1, expected effort is maximized
for case (b) by setting v = 0.
For case (c), the following values of expected effort can be determined: if

1 ≥ v ≥ h + s1, then x∗ = 1 − h − s1; if h + s1 > v ≥ 1 − h, then x∗ = 0; if
1− h > v ≥ 0, then x∗ = 1− v − h, which is maximized at v = 0. Again 1− h is
the maximum level of expected effort.
To conclude the analysis of part (i), we find that the principal maximizes total

expected effort by choosing v = 0, giving rise to a total expected effort of 1− h.
For parts (ii) through (iv) of the Proposition, we have s2 > h, implying the

winner of contest one has a head start in contest two. Suppose, first, that player
1 has won contest one, so that, in terms of Section 2, contest two has ∆ = h+ s1

and V1 = V2 = v. If 0 ≤ v ≤ h + s1, then, by part (i) of Proposition 1, there are
no efforts, and so x∗2 = 0, π1,2 (1) = v, and π2,2 (1) = 0. If h + s1 < v ≤ 1, then,
by part (ii) of Proposition 1, we have

x∗12 =
(v − h− s1)2

2v
; x∗22 =

v2 − (h+ s1)2

2v
; x∗2 = v − h− s1; (A3)

π∗1,2 (1) = h+ s1; π∗2,2 (1) = 0.

Suppose next that player 2 wins contest one, so that player 2 has a net head
start in contest two of ∆ = s2−h, with V1 = V2 = v. If 0 ≤ v ≤ s2−h, then there
are no efforts, and so x∗2 = 0, π1,2 (2) = 0, and π2,2 (2) = v. If s2−h < v ≤ 1, then

x∗12 =
v2 − (s2 − h)2

2v
; x∗22 =

(v + h− s2)2

2v
; x∗2 = v + h− s2 (A4)

π∗1,2 (1) = 0; π∗2,2 (1) = s2 − h.

The three cases differ in contest-one outcomes. We take them in turn.
Part (ii). Let s2−s1

2
< h < s2, implying h + s1 > s2 − h > 0. Consider contest

one, and suppose first that h + s1 < v ≤ 1, so that we have efforts in contest
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two, regardless of who wins contest one: there will be efforts in contest two if
v > max {h+ s1, s2 − h}, which here equals h + s1. In terms of Section 2, we
have ∆ = h; moreover, V1 = 1 − v + h + s1, and V2 = 1 − v + s2 − h, so that
V1 − V2 = 2h− (s2 − s1) > 0.
If v ≥ 1−2h+s2, then∆ ≥ V2 in contest one, and so, by part (i) of Proposition

1, there are no efforts there, with player 1 therefore winning and moving to contest
two with a head start of h+ s1. Total expected effort will be x∗ = v−h− s1. This
is maximized at v = 1, giving a total expected effort of 1− h− s1.
If instead h + s1 < v < 1 − 2h + s2, then there will be positive efforts also in

contest one. By using the expressions for expected efforts and win probabilities
in Proposition 1, part (ii), as well as those for contest-two expected efforts in
equations (A3) and (A4), we find that total expected efforts over the two contests
in this case equal

x∗ = x∗11 + x∗21 + ρ∗1 (v − h− s1) + ρ∗2 (v + h− s2)

=
(1− v + s2 − 2h)2

2 (1− v + s2 − h)
+

(1− v + s2 − h)2 − h2

2 (1− v + s1 + h)

+

(
1− (1− v + s2 − h)2 − h2

2 (1− v + s1 + h) (1− v + s2 − h)

)
(v − h− s1)

+
(1− v + s2 − h)2 − h2

2 (1− v + s1 + h) (1− v + s2 − h)
(v + h− s2)

= 1− 3h+ s2 − s1. (A5)

Suppose next that s2 − h ≤ v ≤ h+ s1, so that we will have efforts in contest
two if and only if player 2 wins contest one. If player 1 wins contest one, then he
will win contest two also, without efforts, so that π∗1,2 (1) = v and π∗2,2 (1) = 0. If
player 2 wins contest one, then our findings in (A4) apply, so that x∗2 = v+h− s2,
π∗1,2 (1) = 0, and π∗2,2 (1) = s2 − h. In terms of Section 2, we still have ∆ = h
and V2 = 1 − v + s2 − h in contest one, but now V1 = 1 − v + v = 1, so that
V1 − V2 = v − s2 + h. By using Proposition 1, part (iii), and equation (A4), and
recalling that there will be efforts in contest two only if player 2 wins contest one,
we have

x∗ = x∗11 + x∗21 + ρ∗2 (v + h− s2)

=
(1− v + s2 − 2h)2

2 (1− v + s2 − h)
+

(1− v + s2 − h)2 − h2

2

+
(1− v + s2 − h)2 − h2

2 (1− v + s2 − h)
(v + h− s2)

= 1− v − 2h+ s2.

This is maximized when v is at the low end of the range, i.e., at v = s2−h, giving
total expected efforts at 1 − h > 1 − 3h + s2 − s1, where the inequality follows
from the supposition that h > s2−s1

2
.

Finally, consider the case of 0 ≤ v < s2 − h. Now, there will be no efforts
in contest two, irrespective of who wins the first contest: the winner of contest
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one will win contest two without efforts. In terms of Section 2, we now have
V1 = V2 = 1, so that V1 − V2 = 0, while still ∆ = h. All the effort takes place in
contest one, and so this case is of a well-known static contest with a head start of
h and a symmetric prize valuation at 1. Total expected effort is 1− h.
To conclude the analysis of part (ii), we find that the principal maximizes total

expected effort by choosing any v ∈ [0, s2 − h], giving rise to a total expected effort
of 1− h.
Part (iii). Let s2−s1

3
≤ h ≤ s2−s1

2
, implying h ≥ s2 − s1 − 2h ≥ 0. Consider

contest one. Suppose first that s2 − h < v ≤ 1, so that we will have efforts in
contest two, regardless of who wins contest one; now s2 − h > h + s1, so this
is the relevant restriction. In terms of Section 2, we have ∆ = h; moreover,
V1 = 1 − v + h + s1, and V2 = 1 − v + s2 − h, so that ∆ > V2 − V1 > 0, with
V2 − V1 = s2 − s1 − 2h.
We can now disregard the possibility of player 1 winning in contest one without

effort, since this only happens when∆ ≥ V2, which here amounts to v ≥ 1−2h+s2.
Given the restriction v ≤ 1, this would require h ≥ s2

2
, which breaches with the

supposition, here in part (iii), that h ≤ s2−s1
2
.

Since ∆ > V2 − V1, Proposition 1, part (ii), applies, with an analysis identical
to that in the proof of part (ii), so that, following equation (A5), we have x∗ =
1− 3h− s1 + s2.
Suppose next that h+ s1 ≤ v ≤ s2 − h, so that we will have efforts in contest

two if and only if player 1 wins contest one. If player 2 wins contest one, then
he will in this case win contest two also, without any efforts, with π∗1,2 (1) = 0
and π∗2,2 (1) = v. If player 1 wins contest one, then he will have a head start in
contest two of h + s1, and our analysis in (A3) applies, with x∗2 = v − h − s1,
π∗1,2 (1) = h+ s1, and π∗2,2 (1) = 0. In terms of Section 2, we now have, in contest
one, ∆ = h, V1 = 1 − v + h + s1, and V2 = 1 − v + v = 1. This implies that
∆ > V2 − V1 ≥ 0, with V2 − V1 = v − h − s1. The inequality V2 − V1 ≥ 0 follows
from the restriction that v ≥ h + s. The inequality V2 − V1 < h is equivalent to
v < 2h+ s1, which holds under the restriction that v ≤ s2 − h, since here in part
(iii) we have 3h > s2 − s1. By using Proposition 1, part (ii), and equation (A3),
and recalling that there will be efforts in contest two only if player 1 wins contest
one, we have

x∗ = x∗11 + x∗21 + ρ∗1 (v − h− s1)

=
(1− h)2

2
+

1− h2

2 (1− v + h+ s1)

+

(
1− 1− h2

2 (1− v + h+ s1)

)
(v − h− s1)

= 1 + v − 2h− s1, (A6)

so that x∗ is maximized when v is in the upper end of its range, at v = s2 − h,
giving total expected efforts at 1− 3h+ s2 − s1.
Finally, suppose that 0 ≤ v < h + s1. Now, there will be no efforts in contest

two, irrespective of who wins contest one: the winner of contest one will win also
contest two without efforts. In this case, contest one has V1 = V2 = 1, so that
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V2−V1 = 0, while still ∆ = h. Total expected efforts equal 1−h < 1−3h+s2−s1,
where the inequality follows from the supposition that h ≤ s2−s1

2
.

To conclude the analysis of part (iii), we find that the principal maximizes
total expected efforts by choosing any v ∈ [s2 − h, 1], giving rise to total expected
profits equal to 1− 3h+ s2 − s1.
Part (iv). Let 0 < h < s2−s1

3
, implying s2 − s1 − 2h > h > 0. Consider contest

one. Suppose first that s2−h < v ≤ 1, so that we will have efforts in contest two,
regardless of who wins contest one. As in part (ii), we can disregard the case of
player 1 winning contest one without effort. Also, as in part (iii), we have ∆ = h,
V1 = 1− v+ h+ s1, V2 = 1− v+ s2− h, and V2− V1 = s2− s1− 2h, but now this
implies ∆ < V2 − V1, since h ≤ s2−s1

3
. We therefore use Proposition 1, part (iii),

together with equations (A3) and (A4), to obtain

x∗ = x∗11 + x∗21 + ρ∗1 (v − h− s1) + ρ∗2 (v + h− s2)

=
(1− v + h+ s1)2

2 (1− v + s2 − h)
+

1− v + h+ s1

2
+ h

+
1− v + h+ s1

2 (1− v + s2 − h)
(v − h− s1)

+

(
1− 1− v + h+ s1

2 (1− v + s2 − h)

)
(v + h− s2)

= 1 + 3h− (s2 − s1) .

Suppose next that h+s1 ≤ v ≤ s2−h, so that we will have efforts in contest two
if and only if player 1 wins contest one. If player 2 wins contest one, he will in this
case win contest two also, without any efforts, with π∗1,2 (1) = 0 and π∗2,2 (1) = v.
If player 1 wins contest one, then he will have a head start in contest two of
h + s1, and our analysis in (A3) applies, with x∗2 = v − h − s1, π∗1,2 (1) = h + s1,
and π∗2,2 (1) = 0. In terms of Section 2, we now have, in contest one, ∆ = h,
V1 = 1− v + h + s1, V2 = 1− v + v = 1, and V2 − V1 = v − h− s1. ∆ < V2 − V1

holds if and only if v > s1 + 2h. Since s2 − h > 2h + s1 when h < s2−s1
3
, we have

that Proposition 1, part (ii), applies for h+ s1 ≤ v ≤ 2h+ s1, and Proposition 1,
part (iii), for 2h + s1 < v ≤ s2 − h. Using Proposition 1, part (iii), in this latter
case together with equation (A3), and recalling that there are efforts in contest
two only if player 1 wins contest one, we have

x∗ = x∗11 + x∗21 + ρ∗1 (v − h− s1)

=
(1− v + h+ s1)2

2
+

1− v + h+ s1

2
+ h

+
1− v + h+ s1

2
(v − h− s1)

= 1− v + h+ s1,

so that x∗ is maximized when v is at the lower end of its range, at v = 2h+s1, giving
rise to total expected efforts equal to 1−h. For 2h+ s1 ≥ v ≥ h+ s1, Proposition
1, part (ii), applies, giving expected effort as in (A6): x∗ = 1 + v− 2h− s1, which
is maximized at the higher end of this range, at v = 2h+ s1, giving x∗ = 1.
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Finally, suppose that 0 ≤ v < h + s1. Now, there will be no efforts in contest
two, irrespective of who wins contest one: the winner of contest one will win also
contest two without efforts. In this case, contest one has V1 = V2 = 1, so that
V2 − V1 = 0, while still ∆ = h. Total expected efforts equal 1− h.
To conclude the analysis of part (iv), we find that the principal maximizes

total expected efforts by choosing v = 2h + s1 to obtain total expected profits
equal to 1.
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