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Instrumental variables with unordered treatments:
Theory and evidence from returns to fields of study*
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Abstract

We revisit the identification argument of Kirkeboen et al. (2016) who showed how
one may combine instruments for multiple unordered treatments with information
about individuals’ ranking of these treatments to achieve identification while allow-
ing for both observed and unobserved heterogeneity in treatment effects. We show
that the key assumptions underlying their identification argument have testable im-
plications. We also provide a new characterization of the bias that may arise if these
assumptions are violated. Taken together, these results allow researchers not only to
test the underlying assumptions, but also to argue whether the bias from violation of
these assumptions are likely to be economically meaningful. Guided and motivated
by these results, we estimate and compare the earnings payoffs to post-secondary
fields of study in Norway and Denmark. In each country, we apply the identifica-
tion argument of Kirkeboen et al. (2016) to data on individuals’ ranking of fields of
study and field-specific instruments from discontinuities in the admission systems.
We empirically examine whether and why the payoffs to fields of study differ across
the two countries. We find strong cross-country correlation in the payoffs to fields of
study, especially after removing fields with violations of the assumptions underlying
the identification argument.
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1 Introduction

Instrumental variables (IV) estimation of treatment effects is challenging if there are mul-
tiple unordered treatments. Not only does identification require (at least) one instrument
per alternative, but it is also necessary to deal with the issue that individuals who choose
the same treatment may have different next-best treatments. One way to resolve this issue
is to assume homogeneous treatment effects. If effects are heterogeneous across individ-
uals (conditional on observable characteristics), then standard 2SLS does not identify the
payoff to any individual or group of the population from choosing one treatment instead
of another.1

We revisit the identification argument of Kirkeboen et al. (2016) who showed how
one may combine instruments for multiple unordered treatments with information about
individuals’ ranking of these treatment to achieve identification while allowing for both
observed and unobserved heterogeneity in treatment effects.2 We show that the key as-
sumptions underlying their identification argument have testable implications. We also
provide a new characterization of the bias that may arise if these assumptions are vio-
lated.3 Taken together, these results allow researchers not only to test the underlying
assumptions, but also to argue whether the bias from violation of these assumptions are
likely to be economically meaningful. Guided and motivated by these results, we estimate
and compare the earnings payoffs to post-secondary fields of study in Norway and Den-
mark.4 In each country, we apply the identification argument of Kirkeboen et al. (2016)
to data on individuals’ ranking of fields of study and field-specific instruments from dis-
continuities in the admission systems. We then empirically examine the extent to which
and why the payoffs to fields of study differ across the two countries.

In Section 2, we begin by briefly reviewing IV in settings with multiple unordered
treatments, laying the groundwork for our analysis. As in the analysis of binary treatments
in Imbens and Angrist (1994), we allow for heterogeneous effects and assume that each
instrument is exogenous and satisfies a monotonicity condition. Our point of departure is

1A number of studies in diverse fields report evidence of unobserved heterogeneity in causal effects (see,
for example, the review article by Mogstad and Torgovitsky (2018)).

2Kirkeboen et al. (2016) contributes to a larger literature on identification of treatment effects in un-
ordered choice models. Heckman et al. (2006) and Heckman and Urzúa (2010) discuss the challenges
associated with the identification and interpretation of treatment effects in such models. See also the recent
work by Kamat (2017) and Lee and Salanié (2020).

3Throughout the paper, we use the term bias to describe the difference between two population quan-
tities, namely the IV estimand and the parameter of interest, that is the positively weighted average of
treatment effects for some complier group.

4There is a growing body of work on the payoffs to field of study or college major, reviewed in Altonji
et al. (2012, 2016), and Kirkeboen et al. (2016). The latter study also reports IV estimates of the payoffs to
fields of study from Norway. Thus, our empirical contribution is the new payoff estimates from Denmark,
the examination of the IV assumptions, and the comparison of payoffs to fields of study between Norway
and Denmark.
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the key result in Kirkeboen et al. (2016): IV can then be used to identify local average
treatment effects (LATEs) of unordered treatments under the additional assumptions that
the analyst observes individuals’ next-best alternatives and an irrelevance condition on
preferences.

The next two sections of the paper examine whether the additional assumptions of
Kirkeboen et al. (2016) have testable implications and the bias that may arise if they are
violated. To do so, it is useful to stratify the population into a set of instrument-dependent
groups, sometimes referred to as principal strata. These groups are defined by the manner
in which members of the population react to the instruments. In addition to the usual
compliers, always takers, and never takers of Imbens and Angrist (1994), there are two
so-called defier groups (both of which are distinct from the usual defier group that exists
if the usual monotonicity condition fails). The first is the next-best defiers. In the context
of our empirical application, this group consists of individuals who would choose their
preferred field if above the admission cutoff, but otherwise choose fields other than the
stated next-best alternative. The others are the irrelevance-defiers. In our context, the
irrelevance assumption means that if crossing the admission cutoff to a given field does
not make an individual choose that field, it should not affect her choice of other fields
either.

In Section 3, we use this stratification of the population to characterize the bias in the
IV estimands that may arise in the presence of next-best defiers, or irrelevance defiers, or
both. It is useful to observe that the bias due to each type of defier has a product structure:
It depends on the number of defiers compared to compliers, multiplied by the difference
between compliers and defiers in the average payoff to choosing one type of education
compared to another. Thus, there will be zero bias if there either are no defiers or if the
average payoff to choosing one type of education compared to another is the same for
defiers and compliers. Furthermore, the bias becomes large only if there are many defiers
relative to compliers and there are large differences in the payoff between compliers and
defiers.

In Section 4, we show that the shares of next-best and irrelevance defiers can be
bounded, but not point identified. We derive sharp bounds – which are nontrivial – and,
thus, provides testable implications of the additional assumptions of Kirkeboen et al.
(2016). We show that these results have implications for the recent work of Nibbering
et al. (2022) who propose an algorithm which aggregate fields into clusters based on es-
timated first-stage coefficients. The motivation for their approach is to avoid bias from
irrelevance and next-best defiers. We show that their approach requires point identifi-
cation of the shares of next-best and irrelevance defiers, and that it may produce biased
estimates even if effects are constant across individuals (in contrast to standard 2SLS).
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The last three sections of the paper take the theoretical results discussed above to
the data by comparing payoff estimates for two countries, Denmark and Norway. These
are two geographically and culturally close open-economies with very comparable edu-
cational institutions as well as similar tax, welfare and social benefits systems. It seems
therefore natural to expect that payoffs will – at least to a degree – be aligned, and that dif-
ferences can potentially be understood in light of violations of the assumptions underlying
approach outlined above and detailed below.

In Section 5, we present the institutional background and data sources in Denmark and
Norway. This section highlights the common institutional framework and data sources,
documents how educational classifications and outcomes are harmonized across coun-
tries, and discusses differences that may be consequential for the analysis and results. In
Section 6, we present the empirical specification that generates the payoff estimates for
the two countries, following closely Kirkeboen et al. (2016). Two challenges that must be
met when comparing estimates from two different populations are the reference popula-
tion and measurement error. Section 6 therefore also defines the population of compliers
that we use to anchor the estimates, and presents an error-in-variables approach that ad-
dresses bias arising from measurement error when comparing the noisy payoff estimates.

In Section 7, we present the estimation results. We first turn to the first-stages and,
building on the results from Section 4, document that in both countries the violations of
irrelevance or next-best are non-trivial and appear to be of similar magnitude but of a
different nature. In Norway, there is clear evidence of violations of next-best, but little
if any sign of violations of irrelevance; in Denmark, the two types of violations seem
to be equally frequent. The accompanying second-stages (with earnings measured eight
years after application) show that, on average, the estimated annual payoff to completing
a field-of-study instead of the next-best is about 2,200 USD in Denmark, while in Nor-
way the payoff estimates are substantially larger and around 22,000 USD. The payoffs in
Norway also exhibit a higher variance than in Denmark, and overall we strongly reject
that the payoffs are the same. Despite these differences in levels and variation the payoffs
significantly co-vary, and we estimate a correlation coefficient of 0.65 for our population
of interest.

This correlation substantially increases when we exclude the estimates with the most
violations of the irrelevance and next-best assumptions. However, violations of irrele-
vance and next-best do not appear to explain the lower level and variation of the pay-
offs in Denmark compared to Norway. Additional exploratory analyses show that these
across country differences are mostly driven by heterogeneity in next-best fields, and can
partly be explained by differences in selectivity (as measured by students’ high school
test scores).
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2 IV with multiple unordered treatments

2.1 Models and assumptions

We assume individuals choose between three mutually exclusive and collectively exhaus-
tive alternatives d ∈ {0,1,2}. To fix ideas we envision these as enrolling in three different
fields of study. We suppress the individual index and abstract from control variables. We
want to interpret IV estimates of the equation

y = β0 +β1d1 +β2d2 + ε (1)

where y is an observed outcome such as earnings, and d j ≡ 1[d= j] is a treatment indicator.
Without loss of generality we choose field 0 as reference field, so that β IV

1 (β IV
2 ) is the

payoff from choosing field 1 (2) over field 0.
We suppose individuals are randomly assigned to one of three mutually exclusive and

collectively exhaustive groups Z ∈ {0,1,2} and let z j = 1[Z= j] be an indicator variable
that equals 1 if an individual is assigned to group j and 0 otherwise. The indicator z j

can be thought of as an instrument shifting the costs or benefits of choosing field j. For
each individual, this gives three potential field choices dz and nine potential outcomes
yd,z. We let d denote the column vector of treatment indicators and z the column vector
of instruments. We define dz

j ≡ 1[dz= j] to be an indicator variable that tells us whether an
individual would choose field j for a given value of Z.

As in the analysis of binary treatments in Imbens and Angrist (1994), we allow for
heterogeneous effects and assume that each instrument satisfies the following assump-
tions:

Assumption 1. IV Assumptions

(a) Exclusion: yd,z = yd for all d,z

(b) Independence: yd,dz ⊥ Z for all d,z

(c) Rank: E[zd⊤] has full rank

(d) Monotonicity: dk
k ≥ dk′

k for each field assignment pair k,k′

Given our notation and assumptions, we can link the observed and potential outcomes
and choices as follows,

y = y0d0 + y1d1 + y2d2 (2)

d j = d0
j z0 +d1

j z1 +d2
j z2 for j = 0,1,2 (3)
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Table 1. Taxonomy of complier and defier groups with field 0 as the stated next-best
alternative

Potential
Group Field Choice Characteristics

d0 d1 d2

Instrument 1
- Compliers C1 0 1 d1

1 −d0
1 = 1 ∧ d1

2 = d0
2 = 0

- Irrelevance Defiers ID1 0 2 d1
1 = d0

1 = 0 ∧ d1
2 −d0

2 = 1
- Next-best Defiers ND1 2 1 d1

1 −d0
1 = 1 ∧ d1

2 −d0
2 =−1

Instrument 2
- Compliers C2 0 2 d2

2 −d0
2 = 1 ∧ d2

1 = d0
1 = 0

- Irrelevance Defiers ID2 0 1 d2
2 = d0

2 = 0 ∧ d2
1 −d0

1 = 1
- Next-best Defiers ND2 1 2 d2

2 −d0
2 = 1 ∧ d2

1 −d0
1 =−1

Note: The table characterizes compliers, irrelevance defiers and next-best defiers based on their potential
treatments.

These equations represent a model with multiple unordered treatment that permits un-
restricted unobserved heterogeneity in treatment effects. Extending the model (and our
theoretical results) to more than three choice alternatives is straightforward.

2.2 Principal strata

In Table 1 we invoke assumptions 1(a)–1(d) and characterize the principal strata, that
is, the groups of individuals defined by how their potential field choices depend on the
instrument. The table considers the (sub)population with field 0 as the stated next-best
alternative. For brevity, it does not include always takers of field 1 (2) (those who chose
field 1 (2) irrespective of instrument value) and never takers of field 1 (2) (those who
choose field 2 and 0 (1 and 0) irrespective of instrument value).

As shown in the table, there are two types of compliers, C1 and C2. The C1 (C2)
compliers are individuals who choose field 1 (2) when the instrument takes value 1 (2),
and the reference field 0 when the instrument takes the value 0. In addition, there are
four types of defiers, irrelevance and next-best defiers of instruments 1 and 2. Irrelevance
defiers ID1 (ID2) are individuals who choose field 2 (1) when the instrument takes value
1 (2) while choosing field 0 if the instrument takes value 0. Next-best defiers ND1 (ND2)
are individuals who choose field 2 (1) when the instrument takes value 0 while choosing
field 1 (2) if the instrument takes value 1 (2).

2.3 Identification result

Kirkeboen et al. (2016) suggest the following assumptions on the groups in Table 1 to

5



obtain identification:5

Assumption 2. Auxiliary Assumptions

(a) Irrelevance: dk
k −d0

k = 0 =⇒ dk
k′ = d0

k′ for all pairs k,k′

(b) Next-best: We are able to condition on d0
1 = d0

2 = 0 i.e. d0
0 = 1.

The irrelevance condition assumes that if changing z from 0 to 1 (2) does not induce
an individual to choose treatment 1 (2), then it does not make her choose treatment 2 (1)
either. In our context, for example, this assumption means that if crossing the admission
cutoff to field 1 does not make an individual choose field 1, it does not make her choose
field 2 either. The next-best alternative condition is effectively assuming that individuals’
stated next-best alternative is their actual next-best alternative. The following lemma is
immediate from these two assumptions:

Lemma 1. Suppose Assumptions 1–2 hold. Then β IV
1 ,β IV

2 have a causal interpretation

as positively weighted averages of treatment effects for compliers, and

β
IV
1 = E[y1 − y0 |C1]

β
IV
2 = E[y2 − y0 |C2]

Proof. For a proof, see Kirkeboen et al. (2016).

The core of Lemma 1 is that the IV estimand of β1 (β2) can be given an interpretation
as a local average treatment effect (LATE) of an instrument-induced shift from field 0 to
field 1 (2) for compliers when irrelevance and next-best defiers are assumed away.

3 Interpretation of IV estimands if auxiliary assumptions fail

If Assumptions 2(a)–2(b) do not hold, the IV estimand of β1 (β2) does not have a causal
interpretation as a positively weighted average of treatment effects of choosing field 1 (2)
over field 0. In the following, we characterize the bias that will occur in this case, and
discuss in which situations the bias will be large and small.

5Kirkeboen et al. (2016) are imprecise about whether auxiliary assumption 2(b) is imposed on everyone
or only those individuals whose treatment status depends on the instrument. However, this is immaterial for
their results, as well as ours. The reason is that always takers and never takers drop out of the IV estimand
because their treatment status does not change with the instrument.

6



3.1 Assuming only next-best

The IV estimands of β1 and β2 can be decomposed into a LATE for compliers and a
bias term using IV moment conditions. In particular, if only next-best holds, but not
irrelevance, we get the following decomposition, as shown in Appendix A.

Proposition 1. Suppose Assumptions 1(a)–1(d) and 2(b) hold. Then β IV
1 ,β IV

2 do not have

a causal interpretation as positively weighted averages of treatment effects for compliers,

β
IV
1 = E[y1 − y0 |C1]︸ ︷︷ ︸

A

+
P(ID1)P(ID2)

W ′︸ ︷︷ ︸
ω1

× (E[y1 − y0 |C1]−E[y1 − y0 | ID2]︸ ︷︷ ︸
∆1

) (4)

− P(ID1)P(C2)

W ′︸ ︷︷ ︸
ω2

× (E[y2 − y0 |C2]−E[y2 − y0 | ID1]︸ ︷︷ ︸
∆2

)

where W ′ = P(C1)P(C2)−P(ID1)P(ID2) and the expression for β IV
2 follows by symme-

try. A is the complier LATE, ω1 and ω2 are defier group weights, and ∆1 and ∆2 are

differences in the causal effects between compliers and irrelevance defiers.

Proof. See appendix A.

Imposing the constant effects assumption implies that the differences in the causal
effects between defier groups (∆1, ∆2) go to zero. In this case, β IV

1 (β IV
2 ) would recover

the causal effect, E[y1 − y0] (E[y2 − y0]). Imposing irrelevance implies that the defier
weights (ω1, ω2) go to zero. In this case, β IV

1 (β IV
2 ) would recover the complier LATE,

E[y1 − y0 |C1] (E[y2 − y0 |C2]).
A central question for empirical researchers is when the bias in Proposition 1 is likely

to be large. To answer this question, it is useful to observe that the two bias terms in
equation 4 are the products of a difference in causal effects and a defier weight consisting
of the product of the propensities of irrelevance defiers divided by the difference between
complier and defier propensity products.

Note that as long as P(C1)P(C2)> 2×P(ID1)P(ID2) the weight ω1 is below 1. This
will occur when there are many compliers relative to defiers. When the weight is below
1, the bias will always be smaller than the difference in causal effects. Due to the product
structure (ω j ×∆ j) the bias due to violations of the irrelevance assumption will be very
small when both ω j and ∆ j are small. Conversely, in order for a large bias to occur, there
needs to be both many defiers relative to compliers and a large difference in causal effects
between the compliers and the irrelevance defiers.

We illustrate this with two examples. In both examples, we fix the LATE for compliers
at $1000. We focus on the first instrument, fixing the propensities of compliers and irrele-
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(a) Varying Propensity
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(b) Varying Heterogeneity
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Note: Panel (a) shows the bias from irrelevance defiers for different defier propensities. The red line
assumes a difference in causal effects between compliers and defiers at 10% of the complier LATE, the
green at 20% and the blue at 50%. Panel (b) shows the bias from irrelevance defiers for different levels
of treatment effect heterogeneity. The red line assumes 10%, the green 20% and the blue 50% irrelevance
defiers. The number of defiers and compliers for instrument 2 is fixed at 20% and 80%.

Figure 1. Bias from irrelevance defiers under different defier weights and levels of het-
erogeneity.

vance defiers of instrument 2 to P(ID2)= 0.2 and P(C2)= 0.8, and, for simplicity, assume
no always takers or never takers for any of the instruments, such that P(C1) = 1−P(ID1).

In Figure 1a we show how the bias from the first term varies with the propensity
of irrelevance defiers. We let the difference in causal effects between compliers and in-
strument 2-defiers be fixed at three different levels: 10%, 20% and 50% of the complier
LATE. In Figure 1b we show the bias from the first term when varying the difference in
causal effects between compliers and defiers. We let the propensity of irrelevance defiers
be fixed at three different levels: low (0.1), middle (0.2), and high (0.5). The key take
away is that the bias will be small even when there is a sizable number of defiers and a
nontrivial difference in causal effects between the compliers and the defiers.

3.2 Assuming only irrelevance

If irrelevance holds, but next-best is not observed, we may decompose the IV estimand
into a complier LATE and a bias term.

Proposition 2. Suppose Assumptions 1(a)–1(d) and 2(a) hold. Then β IV
1 ,β IV

2 do not have

8



a causal interpretation as positively weighted averages of treatment effects for compliers,

β
IV
1 = E[y1 − y0 |C1]︸ ︷︷ ︸

A

+
P(ND1)P(C2)

Ŵ︸ ︷︷ ︸
ω3

× (E[y1 − y0 | ND1]−E[y1 − y0 |C1]︸ ︷︷ ︸
∆3

)

(5)

− P(ND1)P(C2)

Ŵ︸ ︷︷ ︸
ω4

× (E[y2 − y0 | ND1]−E[y2 − y0 |C2]︸ ︷︷ ︸
∆4

)

+
P(ND1)P(ND2)

Ŵ︸ ︷︷ ︸
ω5

× (E[y1 − y0 | ND1]−E[y1 − y0 | ND2]︸ ︷︷ ︸
∆5

)

− P(ND1)P(ND2)

Ŵ︸ ︷︷ ︸
ω6

× (E[y2 − y0 | ND1]−E[y2 − y0 | ND2]︸ ︷︷ ︸
∆6

)

where Ŵ = P(C1)P(C2)+P(C1)P(ND2)+P(ND1)P(C2) and the expression for β IV
2 fol-

lows by symmetry. A is the complier LATE, ω3 through ω6 are defier group weights and

∆3 through ∆6 are differences in the causal effects between complier and defier groups.

Proof. See appendix A.

Imposing the constant effects assumption implies that the differences in causal effects
between defier groups (∆3 through ∆6) go to zero. In this case, β IV

1 (β IV
2 ) would recover

the causal effect, E[y1 − y0] (E[y2 − y0]). Observing the next-best alternative implies that
the defier weights (ω3 through ω6) go to zero. In this case, β IV

1 (β IV
2 ) would recover the

complier LATE, E[y1 − y0 |C1] (E[y2 − y0 |C2]).
As in equation (4), the bias terms in equation (5) are the products of a difference in

causal effects and a weight consisting of the product of the propensities of defiers divided
by the sum of complier and defier propensity products.

Note that the weight in the first and second terms of equation (5) (ω3, ω4) are below 1,
but that the weights for the two latter terms (ω5, ω6) can be above 1 if P(ND1)P(ND2)>

P(C1)P(C2)+P(C1)P(ND2)+P(ND1)P(C2). When the weight is below 1, the bias from
the term will always be smaller than the difference in causal effects. Due to the product
structure (ω j ×∆ j) the bias due to violations of the next-best assumption will be very
small when both ω j and ∆ j are small. Conversely, in order for a large bias to occur,
we need both many defiers relative to compliers and a large difference in causal effects
between the different groups.

We keep the same numerical example as in Section 3.1 and focus on the term ω3×∆3.
In Figure 2a we show how the bias from this term varies with the propensity of next-best

9



(a) Varying Propensity
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(b) Varying Heterogeneity
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Note: Panel (a) shows one term of the bias from next-best defiers for different defier propensities. The red
line assumes a difference in causal effects between compliers and defiers at 10% of the complier LATE,
the green at 20% and the blue at 50%. Panel (b) shows the bias from irrelevance defiers for different levels
of treatment effect heterogeneity. The red line assumes 10%, the green 20% and the blue 50% irrelevance
defiers. The number of defiers and compliers for instrument 2 is fixed at 20% and 80%.

Figure 2. Bias from next-best defiers under different defier weights and levels of hetero-
geneity.

defiers. We let the difference in causal effects between compliers and defiers be fixed at
three different levels: at 10%, 20% and 50% of the complier LATE. In Figure 2b we show
the bias when varying the difference in causal effects between compliers and defiers. We
let the propensity of next-best defiers be fixed at three different levels: low (0.1), middle
(0.2), and high (0.5). The key take away is as above that the bias will be small even when
there is a sizable number of defiers and a nontrivial difference in causal effects between
the compliers and the defiers.

3.3 Assuming neither irrelevance nor next-best

If one neither makes the irrelevance assumption nor the next-best assumption, the IV
estimand becomes the sum of the complier LATE, all bias terms from Propositions 1 and
2, as well as a third set of interacted bias terms.

Proposition 3. Suppose Assumptions 1(a)–1(d) holds. Then β IV
1 ,β IV

2 do not have a causal

interpretation as positively weighted averages of treatment effects for compliers,

β
IV
1 = E[y1 − y0 |C1]︸ ︷︷ ︸

A

+
P(ID1)P(ID2)

W̄︸ ︷︷ ︸
ω1

× (E[y1 − y0 |C1]−E[y1 − y0 | ID2]︸ ︷︷ ︸
∆1

) (6)
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− P(ID1)P(C2)

W̄︸ ︷︷ ︸
ω2

× (E[y2 − y0 |C2]−E[y2 − y0 | ID1]︸ ︷︷ ︸
∆2

)

+
P(ND1)P(C2)

W̄︸ ︷︷ ︸
ω3

× (E[y1 − y0 | ND1]−E[y1 − y0 |C1]︸ ︷︷ ︸
∆3

)

− P(ND1)P(C2)

W̄︸ ︷︷ ︸
ω4

× (E[y2 − y0 | ND1]−E[y2 − y0 |C2]︸ ︷︷ ︸
∆4

)

+
P(ND1)P(ND2)

W̄︸ ︷︷ ︸
ω5

× (E[y1 − y0 | ND1]−E[y1 − y0 | ND2]︸ ︷︷ ︸
∆5

)

− P(ND1)P(ND2)

W̄︸ ︷︷ ︸
ω6

× (E[y2 − y0 | ND1]−E[y2 − y0 | ND2]︸ ︷︷ ︸
∆6

)

− P(ND1)P(ID2)

W̄︸ ︷︷ ︸
ω7

× (E[y1 − y0 |C1]−E[y1 − y0 | ID2]︸ ︷︷ ︸
∆7

)

+
P(ID1)P(ND2)

W̄︸ ︷︷ ︸
ω8

× (E[y1 − y0 | ND2]−E[y1 − y0 |C1]︸ ︷︷ ︸
∆8

)

− P(ID1)P(ND2)

W̄︸ ︷︷ ︸
ω9

× (E[y2 − y0 | ND2]−E[y2 − y0 | ID1]︸ ︷︷ ︸
∆9

)

where

W̄ = P(C1)P(C2)+P(C1)P(ND2)+P(ND1)P(C2)

+P(ND1)P(ID2)+P(ID1)P(ND2)−P(ID1)P(ID2)

and the expression for β IV
2 follows by symmetry.

Proof. See appendix A.

A is the complier LATE, ω1 and ω2 are defier weights which also occur when observ-
ing the next-best alternative, ω3 through ω6 are defier weights which also occur under
irrelevance and ω7 through ω9 are defier weights which occur only when neither assump-
tion holds. ∆1, ∆2 and ∆7 are differences in the causal effects between irrelevance defiers
and compliers, ∆3, ∆4 and ∆8 are differences in the causal effects between next-best de-
fiers and compliers, while ∆5 and ∆6 are differences in causal effects between next-best
defiers for the two different instruments, and ∆9 is the difference in the causal effects
between next-best defiers of instrument 2 and irrelevance defiers of instrument 1.
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Imposing the constant effects assumption implies that the differences in causal effects
between defier groups (∆1 through ∆9) go to zero. In this case, β IV

1 (β IV
2 ) would recover

the causal effect, E[y1 − y0] (E[y2 − y0]). Imposing the next-best assumption yields the
result from Proposition 1, as weights ω3 through ω9 go to zero. Imposing the irrelevance
assumption yields Proposition 2, as weights ω1, ω2 and ω7 through ω9 go to zero. Impos-
ing both irrelevance and observing the next-best alternative make all defier weights (ω1

through ω9) go to zero. Then β IV
1 (β IV

2 ) would recover the complier LATE, E[y1−y0 |C1]

(E[y2 − y0 |C2]).
Note that the bias in Proposition 3 is the sum of all bias terms from Propositions 2 and

1, in addition to three new bias terms (except for a different denominator of the weights).
These are terms following from interactions between irrelevance and next-best defiers,
and rely on both types of defiers being present and having differences in causal effects
between each other and with the complier group. As a result, the bias will be small unless
there are relatively many of both types of defiers and the causal effects are materially
different between these groups and the compliers.

4 Testable implications and aggregation

4.1 How to test the auxiliary assumptions

The first stage equations for the IV estimates of equation (1) are given by:

d1 = α
0
1 +α

1
1 z1 +α

2
1 z2 +ν1 (7)

d2 = α
0
2 +α

1
2 z1 +α

2
2 z2 +ν2 (8)

We now examine if it is possible to devise a test of whether the auxiliary assumptions
2(a)–2(b) hold empirically. To do so, it is useful to characterize the quantities that the first
stage coefficients recover:

Lemma 2. Suppose Assumptions 1(a)–1(d) hold. Then

α
0
1 = P(AT1)≡ P(OT2)+P(ND2) α

0
2 = P(AT2)≡ P(OT1)+P(ND1)

α
1
1 = P(C1)+P(ND1) α

2
2 = P(C2)+P(ND2)

α
1
2 = P(ID1)−P(ND1) α

2
1 = P(ID2)−P(ND2)

where AT1(AT2) are always-takers of field 1 (2) when z equals 0 or 1 (0 or 2), and OT1

(OT2) are global (for every value of the instrument) always takers of the other field 2 (1).

See Appendix Table A1 for formal definitions of these instrument-specific strata.

Proof. See appendix B.
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This result paves the way for the main result on the testability of the irrelevance and
next best assumptions:

Proposition 4. Suppose Assumptions 1(a)–1(d) hold. Then P(ID1) and P(ND1) are par-

tially identified.

P(ND1) ∈ [max{0,−α
1
2}, min{α

1
1 ,α

0
2}]

P(ID1) ∈ [max{0, α
1
2},max{0,α1

2 +min{α
1
1 ,α

0
2}}]

where results for P(ID2) and P(ND2) follow by symmetry.

Proof. See appendix B.

The practical implication of Proposition 4 is that we cannot point identify the defier
propensities without further assumptions. Yet, the assumptions are testable as the bounds
will generally be nontrivial. Furthermore, if either assumption 2(a) or 2(b) is known to
hold, the other assumption can be tested separately and P(ID1) or P(ND1) is point iden-
tified.

Corollary 1. Suppose Assumptions 1(a)–1(d) and 2(b) hold. Then P(ND1)=P(ND2)= 0
and we can test whether assumption 2(a) (irrelevance) holds, as α1

2 = P(ID1) and α2
1 =

P(ID2).

Corollary 2. Suppose Assumptions 1(a)–1(d) and 2(a) hold. Then P(ID1) = P(ID2) = 0
and we can test whether assumption 2(b) (next-best) holds, as α1

2 =−P(ND1) and α2
1 =

−P(ND2).

4.2 How aggregation may cause violations of the exclusion restriction

Nibbering et al. (2022) propose an algorithm which aggregates fields into clusters based
on estimated first-stage coefficients. The motivation for their approach is to avoid bias
from irrelevance and next-best defiers. Before discussing their approach, it is important
to observe that the resulting IV estimates between such clusters will, at best, identify a
positively weighted average of the causal effects of choosing one field versus a linear
combination of the other fields, for example, the effects of choosing field 1 versus field
0 or 2. Hence, this approach involves moving the goalpost from clearly defined field
contrasts that govern individuals’ educational investments to clusters of different fields.
In the discussion below, we accept at faith that such contrasts are parameters of interest.
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Table 2. Four Possible Clustering Scenarios.

Scenario Conditions Clusters Implied Restrictions on Defiers

α1
2 α2

1 S0 S1 S2

Control < 0 = 0 {0,2} {1} P(ND1)> P(ID1)≥ 0∧P(ID2) = P(ND2)≥ 0
Clustering < 0 > 0 P(ND1)> P(ID1)≥ 0∧P(ID2)> P(ND2)≥ 0

= 0 < 0 {0,1} {2} P(ID1) = P(ND1)≥ 0∧P(ND2)> P(ID2)≥ 0
> 0 < 0 P(ID1)> P(ND1)≥ 0∧P(ND2)> P(ID2)≥ 0

Treatment > 0 = 0
{0} {1,2}

P(ID1)> P(ND1)≥ 0∧P(ID2) = P(ND2)≥ 0
Clustering = 0 > 0 P(ID1) = P(ND1)≥ 0∧P(ID2)> P(ND2)≥ 0

> 0 > 0 P(ID1)> P(ND1)≥ 0∧P(ID2)> P(ND2)≥ 0
No Clustering = 0 = 0 {0} {1} {2} P(ID1) = P(ND1)≥ 0∧P(ID2) = P(ND2)≥ 0

Undefined∗ < 0 < 0
{0,2}/ {1}/

P(ND1)> P(ID1)≥ 0∧P(ND2)> P(ID2)≥ 0{0,1} {2}
Note: The table shows different clusterings ensuing from the algorithm proposed by Nibbering et al. (2022)
and their implied restrictions on defiers. The algorithm tests the null hypothesis of coefficients being zero.
The conditions in columns two and three specify which estimates must be observed for the clustering to be
chosen, where > 0 (< 0) indicate rejecting the null and observing a positive (negative) coefficient, while
“= 0” indicates not being able to reject.
∗It is unclear what Nibbering et al. (2022) do when both coefficients are negative. In that case, the ordering
of the coefficients will matter.

4.2.1 Bias From Exclusion Violation We continue to consider the situation with three
fields, discussed above. The algorithm takes as a starting point all individuals with a
certain reported next-best alternative (in our case taken to be 0), and test the hypothesis
that the off-diagonal coefficients, α1

2 and α2
1 , are zero. If this hypothesis is rejected, the

sign of the coefficient is evaluated and the treatments are clustered according to the rules
laid out in Table 2. For example, if α1

2 is negative and α2
1 is either zero or positive, fields

0 and 2 become the control cluster and field 1 the treatment cluster. Conversely, if α1
2 is

either zero or positive and α2
1 is negative, fields 0 and 1 become the control cluster and

field 2 the treatment cluster.
After performing the clustering based algorithm, Nibbering et al. (2022) estimate clus-

ter treatment effects: Let d̃(d) = 1[d∈S1] be the binary cluster treatment indicator and
z̃(Z) = 1[Z=d∈S1] the cluster instrument indicator. The no clustering-scenario is equivalent
to the field level. In the two other scenarios (control clustering or treatment clustering)
we consider IV estimates of the equation

y = β̃0 + β̃1d̃ + ε

where the first stage is
d̃ = π0 +π1,0z̃+ν

and π1,0 is the first stage coefficient. Observed and potential outcomes and choices are

14



linked as

y = ỹ0(1− d̃)+ ỹ1d̃ (9)

d̃ = d̃0 +(d̃1 − d̃0)z̃ (10)

where d̃ j ≡ 1[d̃ j=1] denotes the cluster-level potential treatment and ỹ j is the potential
outcome in cluster j. In Appendix C we show that this IV estimand does not, under
Assumptions 1(a)–1(d), have a causal interpretation as a positively weighted average of
treatment effects for the cluster complier groups. This result is summarized in Proposition
5.

Proposition 5. Suppose Assumptions 1(a)–1(d) hold.

(a) Under control clustering, β̃ IV
1 does not have a causal interpretation as a positively

weighted average of treatment effects for the cluster complier group. If the cluster-

ing is S1 = {1} and S0 = {2,0}, we have

β̃
IV
1,0 =

P(C1 ∪ND2)

π1,0
E[y1 − y0 |C1 ∪ND2]+

P(C2 ∪ND1)

π1,0
E[y1 − y2 |C2 ∪ND1]︸ ︷︷ ︸

A

+
P(ID1)

π1,0︸ ︷︷ ︸
ω̃1

E[y2 − y0 | ID1]︸ ︷︷ ︸
∆̃1

− P(ID2)

π1,0︸ ︷︷ ︸
ω̃2

E[y2 − y0 | ID2]︸ ︷︷ ︸
∆̃1

where π1,0 = P(C1∪C2∪ND1∪ND2). A is a positively weighted average of cluster

complier LATEs, ω̃1 and ω̃2 are defier group weights, and ∆̃1 and ∆̃2 are differences

in potential outcomes for irrelevance defiers in cluster S0, i.e. never takers of the

clustered treatment. The result for the clustering S1 = {2} and S0 = {1,0} is sym-

metric.

(b) Under treatment clustering, β̃ IV
1 does not have a causal interpretation as a pos-

itively weighted average of treatment effects for the cluster complier group. We

have

β̃
IV
1,0 =

P(C1 ∪ ID2)

π1,0
E[y1 − y0 |C1 ∪ ID2]+

P(C2 ∪ ID1)

π1,0
E[y2 − y0 |C2 ∪ ID1]︸ ︷︷ ︸

A

+
P(ND1)

π1,0︸ ︷︷ ︸
ω̃3

E[y1 − y2 | ND1]︸ ︷︷ ︸
∆̃3

− P(ND2)

π1,0︸ ︷︷ ︸
ω̃4

E[y1 − y2 | ND2]︸ ︷︷ ︸
∆̃4
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where π1,0 = P(C1 ∪C2 ∪ ID1 ∪ ID2). A is a positively weighted average of cluster

complier LATEs, ω̃3 and ω̃4 are defier group weights, and ∆̃3 and ∆̃4 are differences

in potential outcomes for irrelevance defiers in cluster S1, i.e. always takers of the

clustered treatment.

Proof. See Appendix C.

Imposing the irrelevance assumption under control clustering implies that the defier
weights (ω̃1, ω̃2) go to zero. In this case, β̃ IV

1,0 recovers a positively weighted average of
the causal effect of choosing field 1 over 0 for compliers of instrument 1 and next-best
defiers of instrument 2, and of choosing field 1 over 2 for compliers of instrument 2 and
next-best defiers of instrument 1, weighted by the number of compliers and defiers. Under
control clustering, this is the new parameter of interest.

Imposing the next-best assumption under treatment clustering implies that the defier
weights (ω̃3, ω̃4) go to zero. In this case, β̃ IV

1,0 recovers a positively weighted average of
the causal effect of choosing field 1 over 0 for compliers of instrument 1 and irrelevance
defiers of instrument 2, and of choosing field 2 over 0 for compliers of instrument 2 and
irrelevance defiers of instrument 1, weighted by the number of compliers and defiers.
Under treatment clustering, this is the new parameter of interest.

If neither irrelevance nor next-best assumptions hold, the IV estimand does not have
a causal interpretation as a positively weighted average of treatment effects for the cluster
complier group. The bias terms reflect that individuals may in response to changes in the
cluster instrument be switching across fields in the treatment cluster and/or across fields
in the control cluster. Such switches will generally involve changes in potential outcomes,
yet no change in the cluster treatment status. Thus, the exclusion restriction at the cluster
level will be violated. The reason for this bias is that the algorithm equates the sign of
the off-diagonal coefficients with the presence and absence of irrelevance and nex-best
defiers. As shown in Lemma 2, this is wrong. The off-diagonal coefficients tell us only
if there are more or less next-best defiers than irrelevance defiers. One cannot in general
use the sign of α1

2 (α2
1 ) to show that there are no irrelevance defiers of instrument 1 (2) if

α1
2 < 0 (α2

1 < 0) and no next-best defiers of instrument 1 (2) if α1
2 > 0 (α2

1 > 0).
It is also important to observe that the constant effects assumption is not sufficient for

β̃ IV
1,0 to recover a positively weighted average of treatment effects between clusters 0 and

1 and obtain a causal interpretation. This result is summarized in Proposition 6.6

Proposition 6. Suppose Assumptions 1(a)–1(d) hold and we further assume constant

treatment effects.
6One exception to this negative result is the special case in which the number of defiers for each instru-

ment happen to be equal, i.e. that P(ID1) = P(ID2) under control clustering or P(ND1) = P(ND2) under
treatment clustering.
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(a) Under control clustering, β̃ IV
1 does not recover the causal effect. If the clustering is

S1 = {1} and S0 = {2,0}, we have

β̃
IV
1,0 =

P(C1 ∪ND2)

π1,0
E[y1 − y0]+

P(C2 ∪ND1)

π1,0
E[y1 − y2]︸ ︷︷ ︸

A

+
P(ID1)−P(ID2)

π1,0︸ ︷︷ ︸
ω̇1

E[y2 − y0]︸ ︷︷ ︸
∆̇1

where π1,0 = P(C1 ∪C2 ∪ND1 ∪ND2). A is a positively weighted average of the

causal effects of choosing field 1 over 0 and of choosing field 1 over 2, ω̇1 is a dif-

ference between defier group weights, and ∆̇1 is the difference in potential outcomes

for irrelevance defiers in cluster S0, i.e. never takers of the clustered treatment. The

result for the clustering S1 = {2} and S0 = {1,0} is symmetric.

(b) Under treatment clustering, β̃ IV
1 does not recover the causal effect. We have

β̃
IV
1,0 =

P(C1 ∪ ID2)

π1,0
E[y1 − y0]+

P(C2 ∪ ID1)

π1,0
E[y2 − y0]︸ ︷︷ ︸

A

+
P(ND1)−P(ND2)

π1,0︸ ︷︷ ︸
ω̇2

E[y1 − y2]︸ ︷︷ ︸
∆̇2

where π1,0 = P(C1 ∪C2 ∪ ID1 ∪ ID2). A is a positively weighted average of the

causal effects of choosing field 1 over 0 and of choosing field 2 over 0, ω̇2 is a dif-

ference between defier group weights, and ∆̇2 is the difference in potential outcomes

for irrelevance defiers in cluster S1, i.e. always takers of the clustered treatment.

Proof. The constant effects assumption reduces all conditional expectations to uncondi-
tional expectations, i.e. E[y j − yk | G] = E[y j − yk] for any group G and any combination
of fields j,k. The result is immediate.

In contrast, the approach of Kirkeboen et al. (2016) recovers the causal effect under
the constant effects assumption. This shows that the clustering method relies on different,
not weaker assumptions than Kirkeboen et al. (2016).

The following auxiliary exclusion restriction can be made to obtain identification un-
der the clustering approach.

Assumption 3. Cluster Exclusion Assumptions
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(a) Control Cluster Exclusion: d̃1 = d̃0 = 0 =⇒ ỹ0,1 = ỹ0,0

(b) Treatment Cluster Exclusion: d̃1 = d̃0 = 1 =⇒ ỹ1,1 = ỹ1,0

Assumptions 3(a) and 3(b) ensure that the bias from switchers within clusters (irrel-
evance defiers under control clustering and next-best defiers under treatment clustering)
disappear, irrespective of the number of switchers. These assumptions are homogeneity
restrictions on potential outcomes across different fields, and, thus, difficult to justify.
Nevertheless, if one is willing to invoke Assumptions 3(a) and 3(b), one may obtain the
following identification result:

Proposition 7. Under control clustering, suppose Assumptions 1(a)–1(d) and 3(a) hold.

β̃ IV
1 has a causal interpretation as the positively weighted average of treatment effects for

cluster compliers. If the clustering is S1 = {1} and S0 = {2,0}, we have

β̃
IV
1,0 =

P(C1 ∪ND2)

π1,0
E[y1 − y0 |C1 ∪ND2]+

P(C2 ∪ND1)

π1,0
E[y1 − y2 |C2 ∪ND1]

where π1,0 = P(C1∪C2∪ND1∪ND2). The result for clustering S1 = {2} and S0 = {1,0}
is symmetric.

Under treatment clustering, suppose Assumptions 1(a)–1(d) and 3(b) hold. β̃ IV
1 has a

causal interpretation as a positively weighted average of treatment effects for cluster com-

pliers, and

β̃
IV
1,0 =

P(C1 ∪ ID1)

π1,0
E[y1 − y0 |C1 ∪ ID1]+

P(C2 ∪ ID1)

π1,0
E[y2 − y0 |C2 ∪ ID1]

where π1,0 = P(C1 ∪C2 ∪ ID1 ∪ ID2).

Proof. Assumption 3(a) (3(b)) eliminates the bias terms in the results from Proposition 5
by letting ∆̃1, ∆̃2 (∆̃3, ∆̃4) go to zero. The result is immediate.

5 Empirical analysis

Guided and motivated by the formal results above, we now turn to the empirical analysis
of the payoffs to field of study in Norway and Denmark.

5.1 Institutional settings

The Danish and Norwegian post-secondary education systems are similar in many re-
spects. Their post-secondary education sectors consist of public universities and a larger
number of public and private university colleges. The vast majority of students attend
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a public institution, and even the private institutions are publicly funded and regulated.
Universities all offer a wide selection of fields. By comparison, the university colleges
rarely offer fields like Law, Medicine, Science, or Technology, but tend to offer profes-
sional degrees in fields like Engineering, Health, Business, and Teaching. Obtaining a
post-secondary degree normally requires three to five years; there are no tuition fees;
most students receive financial support (in the form of grants/loans) from the state.

The admission process is centralized in both countries. Applications are submitted
to a central organization that handles the admission process to universities and university
colleges. An applicant ranks programs (up to 15 in Norway and 8 in Denmark), each
defined by a detailed field and an institution. The number of slots for each program
is effectively determined by each country’s ministry of education. For many programs,
demand exceeds supply. Most slots in programs with excess demand are filled based on an
application score derived from high school GPA. Offers are determined by the applicants’
application score: the highest ranked applicant receives an offer for her preferred program;
the second highest applicant receives an offer for her highest ranked program among the
remaining programs; and so on. This is repeated until either slots run out, or applicants
run out. This allocation mechanism corresponds to a so-called serial dictatorship, which
is both Pareto efficient and strategy-proof (Svensson, 1999) and should therefore elicit the
applicants’ true ranking of fields at the time of application.7 If students want to change
field or institution, they usually need to participate in next year’s admission process on
equal terms with other applicants.8

For both countries, the exact thresholds are unpredictable at the time of application.
They are not published until after the allocation process, and variation in thresholds over
time is considerable. For programs with excess demand, the admission process implies
that applicants scoring above a certain threshold are much more likely to receive an of-
fer for a program they prefer compared to applicants with the same program preferences
but marginally lower application score. This gives rise to credible instruments from dis-
continuities that effectively randomize applicants near admission cutoffs into different
programs.

As explained in greater detail in Kirkeboen et al. (2016), the instruments are defined
around local course rankings on students’ application lists. These local rankings define

7A possible threat to strategy-proofness is the truncation of the application list (at 15 programs in Nor-
way and 8 in Denmark) which might induce individuals to list a safe option as their last choice. However,
this is likely unimportant in practice, as less than 0.1 percent of Norwegian applicants are offered their 15th
choice, and less than 1 percent of Danish applicants list eight programs.

8Most programs in Denmark also have a standby (waiting) list and the GPA threshold for the standby list
is typically a little lower than the main threshold. On the application form, applicants can choose whether to
apply for the standby list. Applicants admitted to the standby list are guaranteed a study place the following
year, but they are not considered for any of the lower-ranked programs on their application. Appendix E
provides a more detailed discussion.
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the “preferred” and “next-best” alternatives. For example, consider two fields, A and B,
with A having a higher admission cutoff than B. Consider students who rank A just above
B and have an application score that is either just below or just above the admission cutoff
to A. These students will have A as the preferred field and B as the next-best field, no
matter if A and B are ranked at the top, in the middle or at the bottom of the list. In
other words, what matters for the relevance of instrument and the definition of preferred
and next-best is the local ranking at which individuals are shifted in or out of a program
because the application score is slightly above or below the relevant admission cutoff.

5.2 Data and descriptive statistics

For each country, we combine several sources of administrative data. For Norway, we
use data for all applications to post-secondary education for the years 1998–2004. For
Denmark, we use data for all applications to post-secondary education for the years 1994–
2002. For both countries we retain the individuals’ first observed application and exclude
those who had a post-secondary degree at the time of application. We link these ap-
plicants to the population register and other registers to obtain background information,
information on completed field, and annual earnings. In our main analysis we use data
on treatment (completed field) and outcome (annual earnings) eight years after applica-
tion as in Kirkeboen et al. (2016), and restrict the sample to those who have completed a
field within eight years from application. The measure of earnings includes wage income,
income from self-employment, and transfers that replace such income like short-term
sickness pay and paid parental leave (but excludes unemployment benefits). Earnings are
deflated using the CPI with 2011 as base year and converted to 1,000s of US dollars us-
ing the average exchange rates for the years 2010–2016 (6.5 Norwegian and 5.9 Danish
crowns per US dollar).

We aggregate detailed fields into nine broad fields of study. We essentially follow the
same classification of fields as in Kirkeboen et al. (2016). The only difference is that Tech-
nology now covers the integrated and more vocational/professional short and long cycle
degrees at university colleges and universities and consist mostly of computer science and
engineering degrees. Science corresponds to more open-ended bachelor programs in dif-
ferent sciences such as physics, biology and mathematics, as well as agriculture, forestry
and aquaculture. For the main analysis, we retain all applicants who applied to at least
two broad fields, where the most preferred field has an admission cutoff. If an applicant
applied to several programs within her preferred broad field we use the lowest program
cutoff as the effective cutoff to the preferred field.

While the full sample of applicants is of comparable size for the two countries, the fi-
nal estimation sample is smaller in Denmark than in Norway, primarily because of fewer
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Figure 3. Distribution of applicants’ completed field

fields with admission restrictions in Denmark. Figure 3 shows the distributions of com-
pleted field among applicants in Norway and Denmark eight years after applying. While
the distributions are similar, there are some notable differences. The share of applicants
completing teaching is substantially higher in Denmark than in Norway, as is the share
of applicants having completed a degree with Technology. On the flip side the shares in
Science, Social Science and Humanities are larger in Norway than in Denmark.9

As an indicator of relative selectivity, we standardize high school GPA within country
and show in sub-graph (a) of Figure 4 the average standardized GPA by field and country.
In both countries average GPA is relatively low in Teaching and Other Health. Average
GPA is very high for Medicine in both countries, but Law, Social Science and Science are
nearly equally selective as Medicine in Denmark.

Sub-graph (b) of Figure 4 compares earnings by field across country. Average earnings
levels, indicated by the red dotted lines, are very similar in the two countries. Earnings in
Medicine and Social Science are higher in Denmark consistent with their higher selectiv-
ity, but the same is not observed for Law and Science. Earnings are higher in Norway for

9Some of the cross-country differences may be due to differences in the classification of specific fields
into the nine broad fields. For instance, one reason why the share having completed Teaching is large in
Denmark is that all individuals having completed a bachelor’s degree in social education are included in
Teaching regardless of the specialization (e.g., kindergarten teacher, nursery teacher, nursery nurse, child
and youth worker, support worker), while some of the specializations could alternatively be classified as
Other Health if they were observed as separate educations.
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Figure 4. Applicants’ GPA and earnings in Norway and Denmark, average by country
and completed field of study

Technology. In both countries, earnings are particularly low for Humanities. However,
it is important to note that earnings are measured eight years after application, which is
very early in the career, especially for those choosing longer programs or programs char-
acterized by a more difficult school-to-work transition. We examine the importance of
this issue in a specification check that uses earnings measured later in the working life as
the outcome variable.

In Appendix Figures A1 and A2 we present results similar to Figures 3 and 4, but not
restricted to applicants. For Norway, data for Figures A1 and A2 consist of everybody
born 1979–1983 such that we have application data for the years they are aged 19–21.
Similarly, for Denmark the population sample consists of the cohorts born 1975–1981.
Completed field and earnings are measured at age 28. The results for these broader pop-
ulations are similar to the results for applicants in Figures 3 and 4.

6 How we estimate and compare payoffs

6.1 2SLS specification

The identification results in Sections 2 and 3 motivate and guide the specification of the
empirical model. We consider the following system of equations separately for individu-
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als with next-best field l (in the local field ranking):

y = ∑
j ̸=l

β jld j + x′γl +λ
k
l + εl (11)

d j = ∑
k ̸=l

α
k
jlzk + x′ψ jl +η

k
jl +u jl (12)

where (11) is the second stage equation, and (12) are the first-stage equations, one for
each field. In these equations, j denotes the completed field, l denotes the stated next best
alternative (in the local field ranking), and k denotes the preferred field (in the local field
ranking). The l index is necessary in these equations, since we are now considering all
possible preferred and next best fields (and not only focusing on field 0 as the stated next
best alternative, as we did in the simple example in equations (2)-(3)).

The instruments zk in (12) are the predicted offers for field k, and zk is therefore equal
to one if k is the individual’s preferred field and her application score exceeds the admis-
sion cutoff for field k and zero otherwise. We therefore have as many binary instruments
as treatments (one zk for each completed field dummy d j), and for a given individual at
most one of the instruments zk can equal 1 (namely the one of her preferred field in the
local field ranking).

Our estimation approach exploits the fuzzy regression discontinuity design implicit in
the admission process described above, where individuals with application scores above
the cutoff are more likely to receive an offer for their preferred field. Although the identifi-
cation in this setup is ultimately local, we use 2SLS because our sample sizes do not allow
for local non-parametric estimation. While the model laid out above abstracted from any
control variables, we now need to include certain covariates to ensure the exogeneity of
our instruments.

First, all equations include controls for the running variable. While our baseline spec-
ification controls for the application score linearly on each side of the admission cutoff,
Kirkeboen et al. (2016) reported results from several specification checks, all of which
support our main findings. Second, we control for individuals’ preferences by adding
fixed effects for preferring field k and having l as the next-best field (in the local field
ranking): λ k

l and ηk
jl . To gain precision, we estimate the system of equations (11)–(12)

jointly for all completed and next-best fields, allowing for separate intercepts for preferred
field and for next-best field by completed field (i.e. λ k

l = µk +θ j and ηk
jl = τk

j +σ k
j ). In a

robustness check, Kirkeboen et al. (2016) show that their estimates are robust to allowing
for separate intercepts for every interaction between preferred and next-best field. Finally,
to reduce residual variance we also add controls for gender, cohort and age at application,
which are pre-determined.
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From the resulting 2SLS estimation of equations (11)–(12) across all next-best fields,
we obtain a matrix of the payoffs to field j compared to k for those who prefer j and have
k as next-best field. In our baseline specification of the fields, we have 9 completed fields
( j), 9 possible preferred fields/instruments (k), 8 possible next-best fields (l).10 Because
preferred field can never be the same as the next-best alternative, we get 576 (and not 648)
unique first stage coefficients, αk

jl . Because ∑d j = 1 for each applicant, creating a within-
applicant correlation between different d j, we allow the residuals u jl to be clustered within
applicant.

6.2 Comparing payoff estimates

We want to compare payoffs to field of study across two different populations:

(β DK
jl −β

NO
) = a0 +a1(β

NO
jl −β

NO
)+ e jl (13)

where we have re-centered the payoffs relative to the average Norwegian payoffs for inter-
pretational convenience: it allows us to interpret the intercept a0 as the payoff difference
between Denmark and Norway at the average Norwegian payoff. The interpretation of
the slope a1 – which quantifies the average increase in the Danish payoffs for a one unit
increase in the Norwegian payoffs – is unaffected by the centering.

There are two considerations that we need to pay attention to when taking equation
(13) to the data: measurement error and across-population comparison. Unweighted es-
timation of (13) would assume that the estimated returns are from populations of similar
size. In practice, the return estimates in the two countries will have differently sized
groups, where some estimates are based on many applicants shifted by the instrument
(when there are many applicants with given preferred and next-best fields and the first
stage is large), while others are based on few applicants shifted (when there are less ap-
plicants in the preferred/next-best field cell or the first stage is close to zero).

To take these unequal underlying population sizes into account we will weigh our
regressions with a measure of the number of applicants that are shifted. For each payoff
estimate β c

jl in country c we calculate the net number of applicants that are shifted on that
margin as follows

nk,c
jl = |αk,c

jl | ·N
c
kl · z̄

c
kl

where αk
jl is the first-stage coefficient, Nkl the number of applicants with preferred field

k and next-best field l, and z̄ the share of these applicants above the cutoff. We then

10In both countries, the number of applicants with Medicine as next-best is very small and these are
therefore omitted in our analysis. Thus, there are 9 preferred fields but only 8 next-best fields.
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construct weights11,12

w jl = ∑
k
(nk,NO

jl +nk,DK
jl )

Measurement error concerns arise because rather than relating population payoffs as
in (13) we will be comparing two sets of noisily estimated population payoffs:

(β̂ DK
jl − β̂

NO
) = a0 +a1(β̂

NO
jl − β̂

NO
)+ ẽ jl (14)

It is well know that measurement error in explanatory variables results in estimation bias.
Assuming classical measurement error β̂ c

jl = β c
jl + εc

jl with εc
jl i.i.d. and σ2

ε,c ≡ var(εc
jl),

we can quantify the bias as follows13

â1 =
cov(β̂ DK

jl , β̂ NO
jl )

var(β̂ NO
jl )

→ a1
var(β NO

jl )

var(β NO
jl )+ var(εNO

jl )
= a1RNO

where the estimate of a1 is attenuated by a factor RNO = 1−σ2
ε,NO/σ2

β̂ ,NO
(with σ2

β̂ ,NO
≡

var(β̂ NO
jl )). RNO quantifies the reliability of β̂ NO

jl and, provided we can estimate it, im-
plies that we can adjust â1 by 1/R̂NO to recover an unbiased estimate of the true a1.14

We construct an estimate of RNO by plugging in the variance of the payoff estimates as
an estimate of σ2

β̂ ,c
, and using the average squared standard errors of the payoffs as an

estimate of σ2
ε,c.15 Finally, we can use the so-called total reliability RTotal =

√
RNO ·RDK

to construct an estimate of the correlation of the payoffs across the two countries

ρ̂ = ρ(β̂ DK
jl , β̂ NO

jl )/R̂Total → ρ ≡ ρ(β DK
jl ,β NO

jl )

Table 3 reports the standard deviation of the estimated payoffs, the square root of their
average standard errors squared, as well as the resulting estimated reliability ratios. The
first two columns report the unweighted estimates. We see that the payoff estimates vary
more in Norway than in Denmark and are on average also more noisily estimated. These
unweighted estimates do however not map into a population. The analysis in this paper
will therefore investigate weighted results and the next two columns report the weighted
reliability estimates. For shifted applicants the variability in the estimates and the average
standard error is reduced, especially for the Norwegian estimates. The estimated relia-

11It should be noted that in practice using these weights gives very similar results to using population
weights NNO

kl +NDK
kl .

12When we study distributions of first-stage coefficients we will also use the weights w jl .
13Classical measurement error in the dependent variable affects the precision but not the consistency of

the regression estimates.
14We use the Stata command -eivreg- to perform the error-in-variable regression.
15Sullivan (2001) shows that this approach is robust to measurement error heteroskedasticity.
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Table 3. Descriptive statistics and reliabilities, Norwegian and Danish payoff estimates

Unweighted Weighted

Norway Denmark Norway Denmark

SD of payoff estimates β̂ c
jl (σ̂

β̂ ,c) 40.4 20.0 31.6 18.6
Square root of average SE(β̂ c

jl)
2 (σ̂ε,c) 29.0 11.2 11.8 9.9

Reliability (Rc = 1− σ̂2
ε,c/σ̂2

β̂ ,c
) 0.48 0.71 0.86 0.72

Total reliability (RTotal =
√

RNO ·RDK) 0.58 0.79
Note: See section 6.2 for the definition of the first-stage weights ω jl .

bility of the Norwegian payoff estimates is 0.86 compared to 0.72 for the Danish ones.
Reliability is therefore high for both countries.16

7 Payoffs to fields of study

7.1 Examining the violation of next-best and irrelevance

We start by examining whether we can statistically reject the irrelevance and/or next best
assumptions. As shown above, these assumptions are rejected if any of the off-diagonal
first-stage coefficients are significantly different from zero. Joint tests strongly reject
this null-hypothesis for both countries (cf. Tables A4 and A6). This implies that there
are irrelevance-violators (detected by positive off-diagonal first-stage coefficients) and/or
next-best-violators (detected by negative off-diagonal first-stage coefficients). We tend to
detect such violation for most field of studies.

As a first indication of the relative importance of next-best vs. irrelevance violations
we consider the signs of the off-diagonal coefficients that are individually significant (Ta-
bles A5 and A7). For Norway this reveals that few if any of the positive coefficients are
individually significant, especially after adjusting for multiple testing (using the Bonfer-
roni correction). However, a large number of the negative off-diagonal coefficients are
significant, also after adjusting for multiple testing. For Norway, we therefore mostly find
evidence for violations of next-best. This stands in contrast to the results for the Danish
data, which are consistent with violations of the irrelevance and next-best assumptions
being approximately equally frequent.

With enough data any model can be rejected, no matter how minor the misspecifica-
tion. We therefore gauge the empirical relevance of the violations of the irrelevance and

16Using country-specific weights gives slightly higher but very similar estimates, namely a reliability of
0.89 for Norway and 0.78 for Denmark.
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Figure 5. Distribution of first-stage coefficients

next-best alternative conditions by quantifying the relative size of the associated applicant
groups. The results are reported in Figure 5, which shows the distribution of the relevant
first-stage coefficients weighted with the number of applicants shifted and where the den-
sities are rescaled so that they to sum to unity. The mass under each density – reported
in parenthesis in the Figure – quantifies the relative size of the complier/defier group in
question.

The left-panel of Figure 5 shows that at least 64% of the shifted applicants in Norway
are shifted at the expected (on-diagonal) margin. Of the remaining shifted applicants
nearly 90% are shifted on margins with negative coefficients. For Norway we therefore
continue to find evidence for violations of next-best but not irrelevance when we take
the size of the shifted applicant groups into account. The results for Denmark in the
right-panel of Figure 5 show that a similar share of applicants is shifted at the diagonal.
Off-diagonal the shifted applicants are however evenly distributed between positive and
negative margins. This reinforces the earlier conclusion, suggesting that violations of
the irrelevance and next-best assumptions are approximately equally frequent. It should
be emphasized however that, depending on their sign, the (absolute values of the) off-
diagonal first-stage coefficients give a lower bound on each type of violator, while the on-
diagonal coefficients provide upper bounds on the compliers. We therefore conclude that
in both countries the violations of irrelevance or next-best are quantitatively non-trivial,
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Figure 6. Distribution of payoffs by country

appear to be of similar magnitude, but of a different nature.

7.2 Comparison of payoffs

Figure 6 reports the reliability-corrected and weighted densities for the Norwegian and
Danish estimates of the payoffs of completing a field-of-study instead of the next-best.17

In each country, the payoffs are measured in terms of annual earnings eight years after
application. On average the annual payoff in Denmark is about 2,200 USD, while in
Norway the returns are substantially larger at about 22,000 USD. In addition, there is also
more variation in the payoffs in Norway compared to Denmark. A joint test of equality
of the payoffs across countries gives a χ2

64 statistic of 441.7 with a corresponding p-value
smaller than 0.0001. We therefore strongly reject that the payoffs are the same. In the
following we investigate these differences in more detail.

Figure 7 starts out with comparing the Norwegian and Danish payoff estimates di-
rectly. It plots the estimates in the two countries against each other, with the size of the
marker being proportional to the size of the sum of the Norwegian and Danish shifted ap-
plicant groups and, in addition to the 45-degree line, the figure also shows the regression
line from the following error-in-variables regression (14) described in section 6.2 above:

(β̂ DK
jl − β̂

NO
) = a0 +a1(β̂

NO
jl − β̂

NO
)+ ẽ jl (15)

17Appendix tables A8 and A9 report the payoff estimates.
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Figure 7. Payoffs in Denmark and Norway, all completed and next-best fields

Changes in the intercept a0 as we omit estimates with evidence of defiance shows whether
the average Danish payoff become more aligned with the average Norwegian payoffs. We
also report changes in the slope a1 and the estimated correlation between the Danish and
Norwegian payoffs ρ .

Figure 8 reports the results of this exercise and shows that, consistent with the low av-
erage and lower spread of the Danish estimates in Figure 6, the Danish estimates increase
less than one-to-one with the Norwegian estimates with an estimated slope of 0.38 (s.e.
0.07), and are on average substantially lower (the estimated payoff difference is -19.9
with a s.e. of 2.1). However, even though their levels are different, we find that the pay-
offs exhibit a relatively strong positive correlation of 0.65 after adjusting for measurement
error.

Above we found evidence of violations of the irrelevance and next-best assumptions
for both two countries. Can these violations explain the observed differences in the esti-
mated payoffs? We investigate this question by successively removing preferred-next-best
combinations with a high share of detected defiers, thus reducing the share of defiers in
the sample and see how this impacts the relationships between the Norwegian and Danish
payoff estimates.

We first compute, for each completed and next-best field in both countries, the share
of applicants that are shifted by off-diagonal instruments. This quantifies the net-flow of
irrelevance and next-best defiers at that particular margin. We then progressively drop
the estimates with the largest shares of net-defiance and estimate the weighted error-in-
variables regression on the resulting sub-sample of Danish payoffs on Norwegian payoffs.
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Figure 8. Regression coefficients and correlations as a function of defiers excluded
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Sub-graph (a) shows the estimated intercepts and their confidence intervals. The x-
axis in sub-graph (a) shows the maximum share of net-defiance allowed in the sample of
estimates for the two countries. Reducing this share one percentage point at a time we
re-estimate (15). The first estimate is dropped at about 66 percent net-defiance. Then
progressively more payoff estimates are excluded as we restrict the maximum share of
defiers below 50 percent. We see that a0 stays approximately constant close to -20 until
we restrict the share of defiers to be below 50 percent. After this a0 gradually increases,
and reaches -17 when we restrict the sample to max 20 percent defiers.

Sub-graph (a) also shows the shares of the 64 payoff estimates and of the shifted
applicants that are excluded. The pairs of completed/next-best fields that have the highest
shares of net-defiers have relatively few applicants shifted on the diagonal. Restricting
the maximum to 50 percent we exclude 9 percent of estimates and 2 percent of compliers.
Restricting further has a stronger impact on estimates and shifted applicants retained, and
when we ultimately restrict the sample to max 20 percent defiers only 4 out of 64 estimates
and 21 percent of the shifted applicants are retained.

In sub-graph (b) we plot a0 against the share of shifted applicants that are excluded.
As a function of applicants excluded, a0 rises about linearly. However, as can be seen
from the confidence bands in sub-graph (a), the estimated intercepts for different samples
are never significantly different.

In sub-graphs (c) and (d) we show similar results for the slope parameter a1 from (15).
While a1 increases somewhat in the beginning, it is mostly stable across the different
samples. Finally, in sub-graphs (e) and (f) we show the reliability-adjusted weighted
coefficient of correlation. This increases steadily with the share of compliers excluded,
from 0.65 in the full sample to 1 when restricting to less than 20 percent net-defiers.

While we found above that the Norwegian and Danish payoff estimates are strongly
correlated, this correlation substantially increases further when we exclude the estimates
with more evidence of defiance of irrelevance and next-best. The intercept and slope from
the regression (15) are however relatively stable, suggesting that violations of irrelevance
and next-best do not explain the lower level and variation of the payoffs in Denmark
compared to Norway.

7.3 Other explanations for differences in payoffs across the countries

To explore other explanations for the between-country differences in payoffs, we re-
estimate (15) while adjusting for completed and next-best field dummies, as well as dif-
ferences in average selectivity and earnings (cf. Figure 4) across completed and next-best
fields. Table 4 reports the results. The first column reproduces the basic results reported
above in Figure 7 where we found that the payoff difference was about 20,000 USD, and
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Table 4. Explaining payoff differences between Denmark and Norway

Earnings at Earnings at
t = 8 t = 13

(1) (2) (3) (4) (5) (6) (7) (8)

a0 -19.92 -19.92 -19.92 -15.62 -20.39 -15.70 -10.25 -4.31
(2.12) (1.56) (1.71) (3.15) (2.01) (3.15) (3.26) (5.52)

a1 0.37 0.29 0.70 0.56 0.41 0.56 0.70 0.91
(0.07) (0.07) (0.13) (0.10) (0.08) (0.10) (0.15) (0.17)

Controls X jl

- Completed field ✓
- Next-best field ✓
- ∆GPA ✓ ✓ ✓
- ∆Earnings ✓ ✓

R2 0.34 0.72 0.64 0.51 0.43 0.52 0.34 0.54

Note: Weighted error-in-variable estimates of (β̂ DK
jl − β̂

NO
) = a0 + a1(β̂

NO
jl − β̂

NO
)+X jlγ + ẽ jl . N = 64

for t = 8, N = 61 for t = 13. Standard errors in parentheses.

that the payoffs in Denmark increased by less than one for each unit increase in Norway
reflecting the smaller variance in the payoff distribution in Denmark.

We next investigate whether payoffs are more aligned across completed fields or
across next-best fields. The next two columns of Table 4 therefore adjust for completed
field and next-best field dummies. Keeping completed field fixed we now obtain a slope
estimate of 0.29 in column (2), while keeping next-best field fixed in column (3) increases
the slope substantially to 0.70. This shows that differences between next-best fields con-
tribute more to between-country differences in payoffs than differences between com-
pleted fields.

In a next step we investigate two potential explanation of such differences. First we
verify whether differential selectivity plays a role by adjusting for across country differ-
ences in average GPA in both the completed field j and the next-best field l. This changes
the interpretation of the intercept which now corresponds to the across country payoff
difference keeping the average GPA the same in the completed and next-best field. The
estimates in column (4) show that this reduces the payoff gap with 25% from about -
20,000 to -16,000 USD, while at the same time payoff become more evenly distributed as
shown by the increase in the slope coefficient from 0.37 to 0.56. A similar exercise using
average earnings in column (5) and (6) shows that this does not explain across country
differences.

As noted earlier, looking at earnings eight years after application corresponds to rel-
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Figure 9. Distribution of longer-run payoffs by country (13 years since applying)

atively early career outcomes, especially for 5-year programs and studies that are not
closely tied to a narrow set of occupations and which may therefore have longer and
more complex school-to-work transitions. We therefore also compare the Danish payoff
estimates 13 years after applying with the Norwegian estimates 13 years after applying.
Extending the time horizon by 5 years has some impact on the estimated reliability of the
Norwegian estimates which drops to 0.64, but the raw correlation between the t = 8 and
t = 13 estimates is high (0.80).18 For Denmark the reliability is slightly higher at t = 13
as is the raw correlation between the t = 8 and t = 13 estimates (0.86).

Figure 9 shows the estimated distributions of these longer-run payoffs across the two
countries. Compared to the early career payoffs, the Norwegian and Danish payoff dis-
tribution are now much more aligned in terms of location and scale. This can also be
seen in column (7) of Table 4. The average payoff gap between the two countries is now
about 10,000 USD, and the slope coefficient has increased to 0.70.19 Column (8) shows
that after adjusting for differential selectivity the payoff estimates are on average aligned
and we cannot reject that the intercept equals zero and the slope equals one (the corre-
sponding F-test gives a p-value of 0.67). However, the estimated (reliability corrected)
correlation coefficient between the Norwegian and Danish payoff estimates barely moves
when comparing t = 8 vs. t = 13 (0.66 vs 0.65).

18We need to exclude three very imprecisely estimated payoffs with Law as next-best field from the
t = 13 analysis (see appendix Table A10) to recover a non-negative reliability estimate.

19Appendix Tables A10 and A11 report the estimates, and appendix Figure A5 compares the payoff
estimates and reports the error-in-variables regression line.
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To summarize, we find that payoff estimates are strongly correlated across countries
but have initially different levels and dispersion. Violations of the irrelevance and next-
best assumptions that underpin the empirical approach do weaken the correlation, but
appear to have little consequence for the estimated level and variance differences. Over
time, the level and variance difference converge across countries, but this does not affect
the correlation of the payoffs. Additional exploratory analyses show that these across
country differences are mostly driven by heterogeneity in next-best fields which can partly
be explained by differences in selectivity.

8 Conclusion

We revisited the identification argument of Kirkeboen et al. (2016) who showed how one
may combine instruments for multiple unordered treatments with information about in-
dividuals’ ranking of these treatments to achieve identification while allowing for both
observed and unobserved heterogeneity in treatment effects. We showed that the key as-
sumptions underlying their identification argument have testable implications. We also
provided a new characterization of the bias that may arise if these assumptions are vi-
olated. Taken together, these results allow researchers not only to test the underlying
assumptions, but also to argue whether the bias from violation of these assumptions are
likely to be economically meaningful.

Guided and motivated by these results, we estimated and compared the earnings pay-
offs to post-secondary fields of study in Norway and Denmark. In each country, we
applied and assessed the identification argument of Kirkeboen et al. (2016) to data on in-
dividuals’ ranking of fields of study and field-specific instruments from discontinuities in
the admission systems. We empirically examined whether and why the payoffs to fields
of study differ across the two countries. We found strong cross-country correlation in the
payoffs to fields of study, especially after removing fields with violations of the assump-
tions underlying the identification argument.

While our empirical findings are specific to the context of postsecondary education
in the Nordic countries, there could be lessons from our work for other settings with
unordered choices. Our study highlights key challenges and possible solutions to under-
standing what the causal effects of these choices are. Examples can be found in obser-
vational studies that use IV to study workers’ selection of occupation, students’ choice
of education, firms’ decision on location, or families’ choice of where to live. Another
example is the frequent use of IV to analyze encouragement designs in experiments where
treatments are made available but take up is not universal (Duflo et al., 2007).
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Appendix

A Proof Of Bias When Auxiliary Assumptions Fail

Proof. We build on the notation from Section 2.1. IV uses the three moment conditions:

E[ε] = 0, E[εz1] = 0 and E[εz2] = 0

Expressing ε in terms of potential outcomes, we get:

ε = (y0 −β0)+(y1 − y0 −β1)d1 +(y2 − y0 −β2)d2 (16)

= (y0 −β0)+(y1 − y0 −β1)(d0
1 +(d1

1 −d0
1)z1 +(d2

1 −d0
1)z2)

+(y2 − y0 −β2)(d0
2 +(d1

2 −d0
2)z1 +(d2

2 −d0
2)z2)

We substitute into the moment conditions, and solve. Under independence, we get:

E[(y1 − y0 −β1)(d1
1 −d0

1)+(y2 − y0 −β2)(d1
2 −d0

2)] = 0

E[(y1 − y0 −β1)(d2
1 −d0

1)+(y2 − y0 −β2)(d2
2 −d0

2)] = 0

As shown by Kirkeboen et al. (2016), this implies, for k = 1,2, k′ = 2,1, that:

E[yk − y0 −βk | dk
k −d0

k = 1,dk
k′ −d0

k′ = 0]×P[dk
k −d0

k = 1,dk
k′ −d0

k′ = 0] (17)

+E[(yk − y0 − yk′ − y0)− (βk −βk′) | dk
k −d0

k = 1,dk
k′ −d0

k′ =−1]×P[dk
k −d0

k = 1,dk
k′ −d0

k′ =−1]

+E[yk′ − y0 −βk′ | dk
k −d0

k = 0,dk
k′ −d0

k′ = 1]×P[dk
k −d0

k = 0,dk
k′ −d0

k′ = 1] = 0 (18)

where we have assumed

P[dk
k −d0

k =−1,dk
k′ −d0

k′ = 0] = P[dk
k −d0

k = 0,dk
k′ −d0

k′ =−1] = 0

under monotonicity. To simplify notation, we rewrite equation 17 in terms of the notation
from Table 1:

E[yk − y0 −βk |Ck]×P(Ck)

+E[(yk − y0 − yk′ − y0)− (βk −βk′) | NDk]×P(NDk)

+E[yk′ − y0 −βk′ | IDk]×P(IDk) = 0
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We isolate βk for k = 1,2:

βk = βk′
P(NDk)−P(IDk)

P(Ck)+P(NDk)
+

E[yk − y0 |Ck]P(Ck)

P(Ck)+P(NDk)
(19)

+
E[yk − y0 − yk′ − y0 | NDk]P(NDk)

P(Ck)+P(NDk)
+

E[yk′ − y0 | IDk]P(IDk)

P(Ck)+P(NDk)

A.1 No Auxiliary Assumptions

We substitute equation (19) with k = 2 into (19) with k = 1 and get:

β1 =
E[y1 − y0 |C1]P(C1)

P(C1)+P(ND1)

+E[y2 − y0 | ID1]
P(ID1)

P(C1)+P(ND1)
+

E[y1 − y0 − y2 − y0 | ND1]P(ND1)

P(C1)+P(ND1)

+
P(ND1)−P(ID1)

P(C1)+P(ND1)
×
[
E[y2 − y0 |C2]P(C2)

P(C2)+P(ND2)
+E[y1 − y0 | ID2]

P(ID2)

P(C2)+P(ND2)

+
E[y2 − y0 − y1 − y0 | ND2]P(ND2)

P(C2)+P(ND2)
+β1

P(ND2)−P(ID2)

P(C2)+P(ND2)

]
Letting

Ẇ = 1− (P(ND1)−P(ID1))(P(ND2)−P(ID2))

(P(C1)+P(ND1))(P(C2)+P(ND2))

=
(P(C1)+P(ND1))(P(C2)+P(ND2))− (P(ND1)−P(ID1))(P(ND2)−P(ID2))

(P(C1)+P(ND1))(P(C2)+P(ND2))

and gathering β1-terms on the LHS gives:

β1Ẇ = E[y1 − y0 |C1]×
P(C1)

P(C1)+P(ND1)

+E[y2 − y0 | ID1]×
P(ID1)

P(C1)+P(ND1)

+E[y1 − y0 − y2 − y0 | ND1]×
P(ND1)

P(C1)+P(ND1)
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+E[y1 − y0 | ID2]×
(P(ND1)−P(ID1))P(ID2)

(P(C1)+P(ND1)(P(C2)+P(ND2))

+E[y2 − y0 |C2]×
(P(ND1)−P(ID1))P(C2)

(P(C1)+P(ND1))(P(C2)+P(ND2))

+E[y2 − y0 − y1 − y0 | ND2]×
(P(ND1)−P(ID1))P(ND2)

(P(C1)+P(ND1))(P(C2)+P(ND2))

Adding and subtracting

E[y1 − y0 |C1]
P(ND1)

P(C1)+P(ND1)
+E[y1 − y0 |C1]

(P(ND1)−P(ID1))(P(ND2)−P(ID2))

(P(C1)+P(ND1))(P(C2)+P(ND2))

on the RHS and gathering terms gives:

β1Ẇ = E[y1 − y0 |C1]Ẇ − E[y1 − y0 |C1]×
P(ND1)(P(C2)+P(ND2))

(P(C1)+P(ND1))(P(C2)+P(ND2))

+E[y1 − y0 |C1]×
(P(ND1)−P(ID1))(P(ND2)−P(ID2))

(P(C1)+P(ND1))(P(C2)+P(ND2))

+E[y2 − y0 | ID1]×
P(ID1)(P(C2)+P(ND2))

(P(C1)+P(ND1))(P(C2)+P(ND2))

+E[y1 − y0 − y2 − y0 | ND1]×
P(ND1)(P(C2)+P(ND2))

(P(C1)+P(ND1))(P(C2)+P(ND2))

+E[y1 − y0 | ID2]×
(P(ND1)−P(ID1))P(ID2)

(P(C1)+P(ND1)(P(C2)+P(ND2))

+E[y2 − y0 |C2]×
(P(ND1)−P(ID1))P(C2)

(P(C1)+P(ND1))(P(C2)+P(ND2))

+E[y2 − y0 − y1 − y0 | ND2]×
(P(ND1)−P(ID1))P(ND2)

(P(C1)+P(ND1))(P(C2)+P(ND2))

Dividing by Ẇ on both sides, and letting

W̄ = (P(C1)+P(ND1))(P(C2)+P(ND2))− (P(ND1)−P(ID1))(P(ND2)−P(ID2))

gives

β1 = E[y1 − y0 |C1] − E[y1 − y0 |C1]×
P(ND1)(P(C2)+P(ND2))

W̄
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+E[y1 − y0 |C1]×
(P(ND1)−P(ID1))(P(ND2)−P(ID2))

W̄

+E[y2 − y0 | ID1]×
P(ID1)(P(C2)+P(ND2))

W̄

+E[y1 − y0 − y2 − y0 | ND1]×
P(ND1)(P(C2)+P(ND2))

W̄

+E[y1 − y0 | ID2]×
(P(ND1)−P(ID1))P(ID2)

W̄

+E[y2 − y0 |C2]×
(P(ND1)−P(ID1))P(C2)

W̄

+E[y2 − y0 − y1 − y0 | ND2]×
(P(ND1)−P(ID1))P(ND2)

W̄

Rearranging, we get:

β
IV
1 = E[y1 − y0 |C1] +

P(ND1)P(C2)

W̄
× (E[y1 − y0 | ND1]−E[y1 − y0 |C1])

(20)

+
P(ND1)P(C2)

W̄
× (E[y2 − y0 |C2]−E[y2 − y0 | ND1])

+
P(ND1)P(ND2)

W̄
× (E[y1 − y0 | ND1]−E[y1 − y0 | ND2])

+
P(ND1)P(ND2)

W̄
× (E[y2 − y0 | ND2]−E[y2 − y0 | ND1])

+
P(ID1)P(ID2)

W̄
× (E[y1 − y0 |C1]−E[y1 − y0 | ID2])

+
P(ID1)P(C2)

W̄
× (E[y2 − y0 | ID1]−E[y2 − y0 |C2])

+
P(ID1)P(ND2)

W̄
× (E[y1 − y0 | ND2]−E[y1 − y0 |C1])

+
P(ID1)P(ND2)

W̄
× (E[y2 − y0 | ID1]−E[y2 − y0 | ND2])

+
P(ND1)P(ID2)

W̄
× (E[y1 − y0 | ID2]−E[y1 − y0 |C1])

where we can rearrange the denominator such that

W̄ = P(C1)P(C2)+P(C1)P(ND2)+P(ND1)P(C2)

+P(ND1)P(ID2)+P(ID1)P(ND2)−P(ID1)P(ID2)

and the expression for β IV
2 follows by symmetry.
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A.2 Assuming Only Next-best

We now want to find an expression of the bias assuming only next-best.

Proof. Next-best ensures P(ND1) = P(ND2) = 0. Equation 20 then reduces to

β
IV
1 = E[y1 − y0 |C1] +

P(ID1)P(ID2)

W ′ × (E[y1 − y0 |C1]−E[y1 − y0 | ID2]) (21)

+
P(ID1)P(C2)

W ′ × (E[y2 − y0 | ID1]−E[y2 − y0 |C2])

where

W ′ = P(C1)(P(C2)−P(ID1)P(ID2)

A.3 Assuming Only Irrelevance

We now want to find an expression of the bias assuming only irrelevance.

Proof. Irrelevance ensures P(ID1) = P(ID2) = 0. Equation 20 then reduces to

β
IV
1 = E[y1 − y0 |C1] +

P(ND1)P(C2)

Ŵ
× (E[y1 − y0 | ND1]−E[y1 − y0 |C1]) (22)

+
P(ND1)P(C2)

Ŵ
× (E[y2 − y0 |C2]−E[y2 − y0 | ND1])

+
P(ND1)P(ND2)

Ŵ
× (E[y1 − y0 | ND1]−E[y1 − y0 | ND2])

+
P(ND1)P(ND2)

Ŵ
× (E[y2 − y0 | ND2]−E[y2 − y0 | ND1])

where

Ŵ = (P(C1)+P(ND1))(P(C2)+P(ND2))−P(ND1)P(ND2))

= P(C1)P(C2)+P(C1)P(ND2)+P(ND1)P(C2)
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Table A1. Detailed taxonomy of behavioral groups.

Potential Field Choice Behavioral type

d0 d1 d2 z1-stratum z2-stratum

0 1 2 C1 C2

0 1 1 C1 ID2

0 1 0 C1 NT2

0 0 0 NT1 NT2

0 0 2 NT1 C2

2 2 2 OT1 AT2

1 1 1 AT1 OT2

1 1 2 AT1 ND2

2 1 2 ND1 AT2

0 2 2 ID1 C2

Note: The table decomposes the behavioral groups from Table 1 into subgroups (strata) where the z1 stratum
is the group defined by their potential field choices when changing the instrument from 0 to 1, and the z2
stratum is correspondingly defined for an instrument change from 0 to 2. The table shows the possible
behavioral responses under all states of the instrument. Note that other takers OT1 (OT2) refers to global
always takers of field 2 (1).

B Proof of Testable Implications

B.1 First Stage Quantities

We start by proving Proposition 2

Proof. We start by introducing a richer decomposition of behavioral groups, building on
Table 1. This is presented in Table A1.

Focusing on k = 1, we take expectations on both sides in equation (7). As E[ν1] = 0,
we get:

E[d1] = α
0
1 +α

1
1 ×E[z1]+α

2
1 ×E[z2] (23)

We decompose the LHS into potential outcomes, using that z0 = 1− z1 − z2. Under inde-
pendence we have:

E[d1] = E[d0
1 ]+E[d1

1 −d0
1 ]×E[z1]+E[d2

1 −d0
1 ]×E[z2] (24)

Using Table 1, as groups are disjoint, we have

E[d0
1 ] = P(d0

1 = 1) = P(AT1)

E[d1
1 −d0

1 ] = P(d1
1 −d0

1 = 1) = P(C1)+P(ND1)

E[d2
1 −d0

1 ] = P(d2
1 −d0

1 = 1)−P(d2
1 −d0

1 =−1) = P(ID2)−P(ND2)
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where we in both instances have assumed monotonicity and AT1 denotes always takers.
This turns equation (23) into:

α
0
1 −P(AT1)

+ [α1
1 − (P(C1)+P(ND1))]×E[z1]

+ [α2
1 − (P(ID2)−P(ND2))]×E[z2] = 0

By the rank condition (and symmetry for k = 2), this implies:

P(AT1) = α
0
1 P(AT2) = α

0
2 (25)

P(C1)+P(ND1) = α
1
1 P(C2)+P(ND2) = α

2
2 (26)

P(ID1)−P(ND1) = α
1
2 P(ID2)−P(ND2) = α

2
1 (27)

Since groups are disjoint we have

P(C1)+P(AT1)+P(NT1)+P(OT1)+P(ID1)+P(ND1) = 1 (28)

P(C2)+P(AT2)+P(NT2)+P(OT2)+P(ID2)+P(ND2) = 1 (29)

By combining equation (28) with equations (25)-(27) we get20

P(NT1) = 1−α
0
1 −α

0
2 −α

1
1 −α

1
2 (30)

P(NT2) = 1−α
0
1 −α

0
2 −α

2
2 −α

2
1 (31)

B.2 Partial Identification Of Defiers

We continue by proving Proposition 4

Proof. From Proposition 2, we get the following information on P(ND1):

P(ND1) =


−α1

2 +P(ID1)

α0
2 −P(OT1)

α1
1 −P(C1)

(32)

where the first line follows from equation (27), the second from (26) and the third from
combining equation 28 with 30 and 25. From equation (27) we know that P(ID1) =

20Where we use the following AT2 = OT1 ∪ND1 and AT1 = OT2 ∪ND2.
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α1
2 +P(ND1). Combining this with the information in equation (32) we have:

P(ID1) =


α1

2 +P(ND1)

α1
2 +α0

2 −P(OT1)

α1
2 +α1

1 −P(C1)

This gives the following bounds on P(ID1) and P(ND1)

P(ND1)≥−α
1
2 P(ID1)≥ α

1
2

P(ND1)≤ α
0
2 P(ID1)≤ α

1
2 +α

0
2

P(ND1)≤ α
1
1 P(ID1)≤ α

1
2 +α

1
1

where also, trivially, P(ID1),P(ND1)≥ 0. It follows that the bounds on P(ID1) are:

max{0,−α
1
2} ≤ P(ND1)≤ min{α

1
1 ,α

0
2}

max{0, α
1
2} ≤ P(ID1) ≤ max{0,α1

2 +min{α
1
1 ,α

0
2}}

and results for instrument 2 are symmetric.

B.3 Assuming Next-best

We now prove Corollary 1.

Proof. Assuming next-best, we have P(ND1) = P(ND2) = 0. This turns equation (26)
into:

P(AT1) = α
0
1 P(AT2) = α

0
2

P(C1) = α
1
1 P(C2) = α

2
2

P(ID1) = α
1
2 P(ID2) = α

2
1

B.4 Assuming Irrelevance

Lastly, we prove Corollary 2

Proof. Assuming irrelevance, we have P(ID1) = P(ID2) = 0. This turns equation (26)
into:

P(AT1) = α
0
1 P(AT2) = α

0
2
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P(C1) = α
1
1 +α

1
2 P(C2) = α

2
2 +α

2
1

P(ND1) =−α
1
2 P(ND2) =−α

2
1
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C Proof Of Violation of Exclusion Under Clustering

In the following, we derive an expression for the IV estimand under binary clustering, as
presented in Section 4.2.1.

C.1 Introduction

As mentioned in Section 4.2.1, we have the binary IV estimand in our set-up as:

β̃
IV
1 =

θ1

π1

where θ1 is the reduced form and π1 is the first stage between when clustering treatments
in two clusters, S0 and S1, and seeking to estimate the effect of going from the former to
the latter. In the following we will derive a general expression for this estimand.

C.1.1 First Stage We have the first stage given by the relation

d̃ = π0 +π1z̃+ν

Taking expectations on both sides with E[ν ] = 0, we get

E[d̃] = π0 +π1 ×E[z̃1]

Decomposing the LHS into potential outcomes using d̃ = d̃0 +(d̃1 − d̃0)× z̃ we get:

E[d̃] = E[d̃0]+E[d̃1 − d̃0]×E[z̃] (33)

i.e. we have
π0 +π1 ×E[z̃] = E[d̃0]+E[d̃1 − d̃0]×E[z̃] (34)

C.1.2 Reduced Form With respect to the reduced form, we have:

θ1 = E[y | z̃ = 1]−E[y | z̃ = 0]

We substitute for potential outcomes with y = ỹ0 × (1− d̃)+ ỹ1 × d̃

θ1 = E[ỹ0(1− d̃)+ ỹ1d̃ | z̃ = 1]−E[ỹ0(1− d̃)+ ỹ1d̃ | z̃ = 0]
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Since we do not assume cluster-level exclusion, we need to keep potential treatments and
outcomes instrument-dependent. Rearranging we get:

θ1 = E[ỹ0,1d̃1
0 | z̃ = 1]+E[ỹ1,1d̃1

1 | z̃ = 1]

−E[ỹ0,0d̃0
0 | z̃ = 0]−E[ỹ1,0d̃0

1 | z̃ = 0]

Rearranging, this becomes:

θ1 =E[ỹ0,1 | d̃1 = 0]P(d̃1 = 0)+E[ỹ1,1 | d̃1 = 1]P(d̃1 = 1)

−E[ỹ0,0 | d̃0 = 0]P(d̃0 = 0)−E[ỹ1,0 | d̃0 = 1]P(d̃0 = 1) (35)

Under control clustering, we will have

S1 = {1}, S0 = {0,2} or S1 = {2}, S0 = {0,1}

and under treatment clustering we will have

S1 = {1,2}, S0 = {0}

We will treat these scenarios separately, but focussing on the former control clustering
scenario as these are symmetric.

C.2 Control Clustering

We have S1 = {1}, S0 = {0,2} and seek to find an expression of the first stage, reduced
form and IV estimand. For brevity of notation, we use the taxonomy in Table A2 to denote
complier and defier groups.

C.2.1 First Stage Applying the taxonomy to the expectation in equation (33), under
field level monotonicity we get:

E[d̃1 − d̃0] = P[d̃1 − d̃0 = 1]−P[d̃1 − d̃0 =−1] = P(C)

From equation (34) we hence have by the rank condition

π1,0 = P(C)
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Table A2. Taxonomy of response groups under control clustering

Type Cluster Level Field Level Group

d̃0 d̃1 d0 d2 d1 Field Cluster

Compliers 0 1 0 1

C

C1

0 1 2 1 C2

0 1 2 1 ND1

0 1 0 1 ND2

Never Takers 0 0 2 0
NT

ID1

0 0 0 2 ID2

Note: The table shows potential treatments for field and cluster instruments for groups impacted by the
cluster instrument under control clustering. At the field level, d0 indicates which treatment is taken given
Z = 0,d2 indicates which treatment is taken given Z = 2 and d1 indicates which treatment is taken when
Z = 1. The notation is equivalent at the cluster level. Relative to the clustered instrument, C are compliers
and NT are never takers. Relative to the field instrument, C are compliers, ND are next-best defiers and ID
are irrelevance defiers, all relative to some field level instrument corresponding to a treatment in S1.

C.2.2 Reduced Form We use Table A2 to decompose the expectations in equation (35).
Under independence and field level monotonicity, we get:

θ1 = E[ỹ0,1 | NT ]×P(NT )

+E[ỹ1,1 |C]×P(C)

−E[ỹ0,0 |C∪NT ]×P(C∪NT )

Since sets are disjoint, we can rearrange:

θ1 = E[ỹ1,1 − ỹ0,0 |C]×P(C)

−E[ỹ0,1 − ỹ0,0 | NT ]×P(NT )

Using Table A2 to turn cluster level groups into field level groups, changing outcome
indices to reflect instruments relevant to the group in question, we get:

θ1 = E[y1,1 − y0,0 |C1]×P(C1)

+E[y1,1 − y2,2 |C2]×P(C2)

+E[y1,1 − y2,0 | ND1]×P(ND1)

+E[y1,1 − y0,2 | ND2]×P(ND2)

−E[y0,1 − y2,2 | ID1]×P(ID1)

−E[y2,1 − y0,0 | ID2]×P(ID2)
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At the field level, we assume exclusion, hence:

θ1 = E[y1 − y0 |C1]×P(C1)

+E[y1 − y2 |C2]×P(C2)

+E[y1 − y2 | ND1]×P(ND1)

+E[y1 − y0 | ND2]×P(ND2)

+E[y2 − y0 | ID1]×P(ID1)

−E[y2 − y0 | ID2]×P(ID2)

We divide by the first stage and rearrange. This gives us:

β̃
IV
1 =

P(C1)

π1,0
E[y1 − y0 |C1]︸ ︷︷ ︸

A

+
P(C2)

π1,0
E[y1 − y2 |C2]︸ ︷︷ ︸

A

+
P(ND1)

π1,0
E[y1 − y2 | ND1]︸ ︷︷ ︸

A

+
P(ND2)

π1,0
E[y1 − y0 | ND2]︸ ︷︷ ︸

A

+
P(ID1)

π1,0
E[y2 − y0 | ID1]︸ ︷︷ ︸

B

− P(ID2)

π1,0
E[y2 − y0 | ID2]︸ ︷︷ ︸

B

where

π1,0 = P(C1 ∪C2 ∪ND1 ∪ND2)

This can be rewritten as:

β̃
IV
1,0 =

P(C1 ∪ND2)

π1,0
E[y1 − y0 |C1 ∪ND2]+

P(C2 ∪ND1)

π1,0
E[y1 − y2 |C2 ∪ND1]

+
P(ID1)

π1,0
E[y2 − y0 | ID1]−

P(ID2)

π1,0
E[y2 − y0 | ID2]

C.3 Treatment Clustering

We have S1 = {1,2}, S0 = {0} and seek to find an expression of the first stage, reduced
form and IV estimand. We use the taxonomy in Table A3 to denote complier and defier
groups.
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Table A3. Taxonomy of response groups under treatment clustering.

Type Cluster Level Field Level Group

d̃0 d̃1 d0 d1 d2 Field Cluster

Compliers 0 1 0 2

C


C1

0 1 0 1 C2

0 1 0 1 ID1

0 1 0 2 ID2

Always Takers 1 1 1 2
AT

{
ND1

1 1 2 1 ND2

Note: The table shows potential treatments for field and cluster instruments for groups impacted by the
cluster instrument under treatment clustering. At the field level, d0 indicates which treatment is taken given
Z = 0, d1 indicates which treatment is taken when Z = 1 and d2 indicates which treatment is taken given
Z = 2. The notation is equivalent at the cluster level. Relative to the clustered instrument, C are compliers
and AT are always takers. Relative to the field instrument, C are compliers, ID are irrelevance defiers and
ND are next-best defiers.

C.3.1 First Stage Applying the taxonomy to the expectation in equation (33), under
field level monotonicity we get:

E[d̃1 − d̃0] = P[d̃1 − d̃0 = 1]−P[d̃1 − d̃0 =−1] = P(C)

From equation (34) we hence have by the rank condition

π1,0 = P(C)

C.3.2 Reduced Form We use Table A3 to decompose the expectations in equation (35).
Under independence and field level monotonicity, we get:

θ1 = E[ỹ1,1 |C]×P(C)

+E[ỹ1,1 | AT ]×P(AT )

−E[ỹ0,0 |C]×P(C)

−E[ỹ1,0 | AT ]×P(AT )

This rearranges to:

θ1 = E[ỹ1,1 − ỹ0,0 |C]×P(C)

−E[ỹ0,1 − ỹ0,0 | AT ]×P(AT )

Using Table A2 to turn cluster level groups into field level groups, further using that
groups are disjoint, and changing outcome indices to reflect instruments relevant to the
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group in question, we get:

θ1 = E[y2,2 − y0,0 |C1]×P(C1)

+E[y1,1 − y0,0 |C2]×P(C2)

+E[y1,2 − y0,0 | ID1]×P(ID1)

+E[y2,1 − y0,0 | ID2]×P(ID2)

−E[y2,2 − y1,0 | ND1]×P(ND1)

−E[y1,1 − y2,0 | ND2]×P(ND2)

At the field level, we assume exclusion, hence:

θ1 = E[y2 − y0 |C1]×P(C1)

+E[y1 − y0 |C2]×P(C2)

+E[y1 − y0 | ID1]×P(ID1)

+E[y2 − y0 | ID2]×P(ID2)

−E[y2 − y1 | ND1]×P(ND1)

−E[y1 − y2 | ND2]×P(ND2)

We divide by the first stage and rearrange. This gives us:

β̃
IV
1 =

P(C1)

π1,0
E[y2 − y0 |C1] +

P(C2)

π1,0
E[y1 − y0 |C2]

+
P(ID1)

π1,0
E[y1 − y0 | ID1] +

P(ID2)

π1,0
E[y2 − y0 | ID2]

+
P(ND1)

π1,0
E[y1 − y2 | ND1] − P(ND2)

π1,0
E[y1 − y2 | ND2]

where

π1,0 = P(C1 ∪C2 ∪ ID1 ∪ ID2)

This may be rewritten to

β̃
IV
1,0 =

P(C1 ∪ ID1)

π1,0
E[y1 − y0 |C1 ∪ ID1]+

P(C2 ∪ ID1)

π1,0
E[y2 − y0 |C2 ∪ ID1]

+
P(ND1)

π1,0
E[y1 − y2 | ND1]−

P(ND2)

π1,0
E[y1 − y2 | ND2]
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D Examining violations of next-best and irrelevance and payoffs

Table A4. Joint test of irrelevance and next-best by completed field, Norway

on-diagonal (α j
jl) off-diagonal (αk

jl, j /∈ {k, l})
Completed field first stages F-statistic p-value first stages F-statistic p-value

Science 7 28.2 <0.01 49 4.7 <0.01
Business 7 42.7 <0.01 49 7.6 <0.01
Social Science 7 26.2 <0.01 49 8.3 <0.01
Teaching 7 124.0 <0.01 49 5.2 <0.01
Humanities 7 20.6 <0.01 49 5.9 <0.01
Other Health 7 420.8 <0.01 49 4.7 <0.01
Technology 7 50.6 <0.01 49 4.3 <0.01
Law 7 94.9 <0.01 49 4.9 <0.01
Medicine 8 93.6 <0.01 56 5.7 <0.01

All 64 100.65 <0.01 448 10.57 <0.01

Table A5. Off-diagonal first stages by completed field, sign and significance, Norway

off-diagonal, # firsts stages that are

>0 <0

Completed Multi Multi
field All Sign. sign. All Sign. sign.

Science 18 2 31 17 6
Business 5 44 21 8
Social Science 4 1 45 24 12
Teaching 37 13 12 6 5
Humanities 12 3 1 37 15 8
Other Health 30 9 19 9 6
Technology 11 1 38 14 5
Law 11 38 18 4
Medicine 18 1 38 20 7

All 146 30 1 302 144 61
Note: Significant are first stages with p < .05, multi test-significant are first stages with p < .05/512 (i.e.
significant with a Bonferroni adjustment for multiple testing).
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Table A6. Joint test of irrelevance and next-best by completed field, Denmark

on-diagonal (α j
jl ) off-diagonal (αk

jl, j /∈ {k, l})

Completed field first stages F-statistic p-value first stages F-statistic p-value

Science 7 95.3 <0.01 49 2.1 <0.01
Business 7 2.8 <0.01 49 1.9 <0.01
Social Science 7 111.5 <0.01 49 3.9 <0.01
Teaching 7 12.7 <0.01 49 2.6 <0.01
Humanities 7 33.7 <0.01 49 1.8 <0.01
Other Health 7 61.5 <0.01 49 2.8 <0.01
Technology 7 38.2 <0.01 49 2.2 <0.01
Law 7 63.3 <0.01 49 1.4 0.04
Medicine 8 98.8 <0.01 56 1.6 <0.01

All 64 57.9 <0.01 448 3.3 <0.01

Table A7. Off-diagonal first stages by completed field, sign and significance, Denmark

off-diagonal, # firsts stages that are

>0 <0

Multi Multi
Completed field All Sign. sign. All Sign. sign.

Science 26 7 23 8 1
Business 23 5 1 26 6 1
Social Science 29 8 2 20 10 5
Teaching 30 4 19 4 1
Humanities 32 8 17 2
Other Health 30 7 3 19 2
Technology 26 2 23 7
Law 22 2 27 6
Medicine 24 2 32 13 1

Sum 242 45 6 206 58 9
Note: Significant are first stages with p < .05, multi test-significant are first stages with p < .05/512 (i.e.
significant with Bonferroni adjustment for multiple testing).
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E The Danish institutional setting and implications for empirical spec-
ification

Danish admission institutions For programs with restricted admission, student places
are allocated through two quotas.

The majority of places are allocated through Quota 1 based on applicants’ GPA from
high school, although some programs have additional specific requirements, e.g., a high-
level maths course from high school. In our data period grades were awarded on a 10-
point scale with integer values between 0 and 13 (omitting values 1, 2, 4 and 12). The
high school GPA is based on grades in all the subjects on the student’s study program,
and it is recorded to 1 decimal place. All applicants with a GPA strictly above the Quota
1 threshold level are admitted provided they also meet any specific entry requirements.
Because of the coarse GPA measure, there will often not be sufficient places for all appli-
cants with a GPA exactly equal to the threshold, and in this case the oldest are typically
admitted first. In our sample, about one third of the applicants with a GPA exactly equal
to the threshold are not admitted to their preferred program. It is important to note that
the minimum GPAs needed to be admitted (the GPA thresholds) are published after the
student places are allocated and that the variation in thresholds over time is considerable,
and thus applicants cannot predict the exact thresholds.

Most programs also have a standby (waiting) list and the GPA threshold for the
standby list is typically a little lower than the Quota 1 threshold. On the application form,
applicants can choose to apply for the standby list as well. If some of the applicants admit-
ted under Quota 1 drop out before the course starts or in the very early days of the course,
then their places are offered to applicants on the standby list. In any event, applicants ad-
mitted to the standby list are guaranteed a study place the following year. Applicants who
are admitted to a standby list are not considered for any of the lower-ranked programs on
their application.

Some of the available student places are reserved for admission via Quota 2 where
applicants are assessed based on other criteria besides their GPA from upper secondary
school, e.g. specific admission tests, admission interviews, or vocational qualifications.
The institutions have considerable discretion in deciding these criteria and the relative size
of Quotas 1 and 2 for their programs. Quota 2 applicants are automatically considered for
Quota 1, so if they meet the Quota 1 GPA criterion (and any additional specific criteria),
they are admitted via Quota 1.

We do not observe whether students apply for Quota 2 or standby, but for those who
are offered a program, we know whether admission was via Quota 1, standby or Quota 2.
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Specification of instrument The coarse application score variable and the standby list
option are handled by using the following instrument:

z = [GPA > Q1]+ [Std ≤ GPA ≤ Q1]×Offer

where Q1 and Stb are the Quota 1 and standby admission thresholds of the preferred field
of the applicant, respectively. The first term on the right-hand side captures the effect of
having an application score strictly above the Quota 1 threshold to the preferred field k.
When GPA = Q1 or GPA = Std the offer is a random draw (conditional on age which
is controlled for in the analysis, and for the standby threshold also conditional on having
applied for standby), and [GPA∈ {Q1,Std}]×Offer is therefore a valid instrument. When
[Std < GPA < Q1] those who applied to the standby list will receive an offer.
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F Extra results

(a) Number in population
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Note: Figures show the distribution of completed fields in the population for those born 1979-1983 (Nor-
way) or 1975-81 (Denmark) that have completed any higher education. Completed field is measured at age
28.

Figure A1. Distribution of completed field in the population

(a) GPA
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Note: Figure shows population-weighted average GPA of applicants and population earnings, based on the
populations in Figure A1. GPA is demeaned within country, but not otherwise standardized. Earnings are
measured at age 28.

Figure A2. GPA and earnings in Norway and Denmark, average by country and field
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(a) Numbers of applicants shifted by preferred field
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(b) Share of applicants shifted by preferred field
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(c) Numbers of applicants shifted by next-best field
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(d) Share of applicants shifted by next-best field
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Figure A3. Numbers and shares of applicants shifted by the instrument by violating
irrelevance or not and by preferred/stated next-best field, Norway
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(a) Numbers of applicants shifted by preferred field
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(b) Share of applicants shifted by preferred field
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(c) Numbers of applicants shifted by next-best field
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(d) Share of applicants shifted by next-best field
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Figure A4. Numbers and shares of applicants shifted by the instrument by violating
irrelevance or not and by preferred/stated next-best field, Denmark
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Note: Regression line from weighted
error-in-variables regression.

Figure A5. Payoffs in Norway and Denmark 13 years after applying, all completed and
next-best fields
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