
  

MEMORANDUM 
 

No 05/2022 
December/ 2022 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
   
 
 

 
 

 
 

Bård Harstad 

ISSN: 0809-8786 

Department of Economics 
University of Oslo 

	
A theory of pledge-and-review bargaining 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 



This series is published by the  
University of Oslo 
Department of Economics 
 

In co-operation with 
The Frisch Centre for Economic 
Research  

P. O.Box 1095 Blindern 
N-0317 OSLO Norway 
Telephone:  + 47 22855127 
Fax:             + 47 22855035 
Internet:      http://www.sv.uio.no/econ 
e-mail:        econdep@econ.uio.no 

Gaustadalleén 21 
N-0371 OSLO Norway 
Telephone: +47 22 95 88 20 
Fax:  +47 22 95 88 25 
Internet:  http://www.frisch.uio.no 
e-mail:  frisch@frisch.uio.no 

 

 
Last 10 Memoranda 

 

No 4/2022  Michael Graber, Magne Mogstad, Gaute Torsvik and Ola Vestad 
Behavioural responses to income taxation in Norway 

No 03/2022 

Eskil Heinesen, Christian Hvid, Lars Kirkebøen, Edwin Leuven and Magne 
Mogstad 
Instrumental variables with unordered treatments: Theory and evidence 
from returns to fields of study 

No 02/2022 Mikkel Gandil and Edwin Leuven 
College admission as a screening and sorting device 

No 01/2022 
Askill H. Halse, Karen E. Hauge, Elisabeth T. Isaksen, Bjørn G. Johansen 
and Oddbjørn Raaum  
Local Incentives and Electric Vehicle Adoption 

No 04/2021 Lars Kirkebøen  
School value-added and long-term student outcomes 

No 03/2021 Mikkel Høst Gandil 
Substitution Effects in College Admissions 

No 02/2021 
Karine Nyborg 
A perfectly competitive economy is an economy without welfare relevant 
endogenous learning 

No 01/2021 Elisabeth T. Isaksen & Bjørn G. Johansen 
Congestion pricing, air pollution, and individual-level behavioral responses 

No 02/2020 Manudeep Bhuller, Tarjei Havnes, Jeremy McCauley & Magne Mogstad 
How the Internet Changed the Market for Print Media 

No 01/2020 Anders Kjelsrud and Kristin Vikan Sjurgard  
Public work and private violence 

Previous issues of the memo-series are available in a PDF® format 
at:http://www.sv.uio.no/econ/english/research/unpublished-works/working-papers/ 



A THEORY OF PLEDGE-AND-REVIEW BARGAINING∗

Bard Harstad

bard.harstad@econ.uio.no
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Abstract

Inspired by the negotiations leading up to the Paris Agreement on climate change, I

study a bargaining game where every party is proposing only its own contribution,

before the set of pledges must be unanimously approved. I show that, with un-

certain tolerance for delay, each equilibrium pledge maximizes an asymmetric Nash

product. The weights on others’payoffs increase in the uncertainty, but decrease

in the correlation of the shocks. The weights vary pledge to pledge, and this im-

plies that the outcome is generically ineffi cient. The Nash demand game and its

mapping to the Nash bargaining solution follow as a limiting case. The model sheds

light on the Paris climate change agreement, but it also applies to negotiations be-

tween policymakers or business partners that have differentiated responsibilities or

expertise.
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1. Introduction

Standard bargaining models permit a proposer to propose a specific point in the space

of alternatives. In business as well as in politics, however, a party is often emphasizing —

or limiting attention to —its own individual contribution or demand.

For instance, the negotiations leading up to the 2015 Paris Agreement on climate

change have been characterized as "pledge and review" (P&R). Before the agreement was

signed, each party was asked to submit an intended nationally determined contribution.

For most developed countries, the pledge specified an unconditional cut in the emissions of

greenhouse gases in the years following 2020. Also in other situations —ranging from leg-

islative bargaining to negotiations among business partners and experts —it is frequently

the case that each party proposes only its own contribution or dimension, even though

everyone must accept the entire vector of contributions.

The novel feature of P&R bargaining, the way I formalize it, is that each party is

permitted to propose the outcome of only one single dimension of the vector describing

the outcome. This dimension can be interpreted as the party’s individual contribution. I

assume, for simplicity, that parties propose their pledges simultaneously. If some parties

find the vector of pledges unacceptable, the procedure can start again.

At first, the procedure appears rather nonsensical. In the absence of any uncertainty, a

country can always obtain approval for a contribution level that is slightly less than what

the other parties expect in the future, since disapprovals lead to costly delays. Therefore,

a trivial equilibrium of this game coincides with the noncooperative outcome, where every

party simply maximizes one’s own utility (Theorem 0).

There will, realistically, be uncertainty regarding the other parties’willingness to reject

and delay an agreement. In politics, for example, a negotiator’s willingness to reject and

delay depends on the media picture and the set of other issues urgently needing one’s

attention. A simple formalization of this uncertainty is to let each party’s discount rate

be influenced by shocks that are distributed i.i.d. over time. With such uncertainty, I

show that the parties may be willing to contribute significant amounts, since each party

may fear that a less attractive pledge can lead to rejections and delays.
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I first present a folk theorem (Theorem 1) stating that every strictly Pareto-optimal

vector of pledges can be supported in some subgame-perfect equilibrium (SPE) if the time

lag between offers is suffi ciently small. To make sharper predictions, I gradually narrow

the set of equilibria by considering standard refinements. Suppose, as a start, that the

strategies are stationary, Markov-perfect, or robust to a finite time horizon. With any

such a refinement, we face an upper boundary for what a contribution can be (Theorem 2).

With the additional refinement "local perfection", Theorem 3 states that, as a necessary

condition, equilibrium contribution levels must equal the upper boundaries presented in

Theorem 2. I verify the existence of such an equilibrium for an example.

In this equilibrium, each party’s equilibrium contribution level coincides with the

quantity that maximizes an asymmetric Nash product. The weight that a party places

on the payoff of another party depends on differences in the (expected) discount rates.

This result confirms findings in the existing literature (Footnote 3), but the analysis also

uncovers four novel results.

First, uncertainty helps. If it is more diffi cult to pin down a party’s minimum discount

rate, then that party’s preference will more strongly influence the others’ equilibrium

pledges. Intuitively, a marginally less attractive offer will be rejected with a larger chance,

and, to avoid a delay, other parties are willing to make more attractive pledges.1

Second, correlation hurts. If the discount rate shocks are positively correlated, then

one party’s cost of delay is likely to be small exactly when another party is willing to

delay by rejecting the offers on the table. In this situations, therefore, a party does not

find it necessary to reduce the risk. Consequently, the weights on other parties’payoffs

are smaller when the willingness to delay is correlated across the parties.

Third, the weight a party places on the payoff of another party is independent of how

many other parties there are. Consequently, if many parties benefit from the contributions,

then each party contributes more. This result might appear to be effi cient, altruistic, and

in line with other bargaining outcomes, but here the intuition is that when there are many

other parties, there is a larger risk that one of them will reject. The larger risk motivates

1The result that uncertainty improves the bargaining outcome is in contrast to much of the literature
(Rubinstein, 1985; Watson, 1998, and many others). Most recently, Friedenberg (2019) derives ineffi cient
equilibria simply with off-path strategic uncertainty.
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each party to make a more attractive pledge.

Finally, and in sharp contrast to the literature discussed below, each party maximizes

its own Nash product. The weights vary pledge-to-pledge, and the equilibrium vector is

thus not Pareto optimal. If, for example, the variances in the shocks are small, then every

party pays most attention to its own payoff.

Literature: By showing that each contribution maximizes an asymmetric Nash prod-

uct, I contribute to the "Nash program," aimed at finding noncooperative games imple-

menting cooperative solution concepts (Serrano, 2020). The Nash bargaining solution

(NBS), axiomatized by Nash (1950), is implemented by the alternating-offer bargaining

game of Rubinstein (1982) when each individual offer specifies a possible outcome; see

Binmore et al. (1986).2 The asymmetric NBS characterizes the outcome if there are

asymmetric discount rates, recognition probabilities, or voting rules.3 My contribution

to the Nash program is to show that, with P&R, each equilibrium pledge maximizes an

asymmetric Nash product where the weights not only reflect differences in the discount

rates (in line with this literature), but also the extent of uncertainty in shocks and the

correlation in shocks across the parties. More fundamentally, and in contrast to these

articles, with P&R the equilibrium weights vary from one party’s pledge to another’s,

implying that the bargaining outcome is not Pareto optimal.

The Nash demand game (NDG) was designed by Nash (1953) to implement the NBS.

There is now a large literature investigating the extent to which the NDG implements the

NBS.4 Even though I assume that every utility function is continuous in every pledge, the

NDG is a special case of my model if we in that game permit non-vanishing uncertainty

regarding whether demands are compatible. When this uncertainty does vanish and the

utility functions become discontinuous, then, in the limit, my results generalize Nash’s

mapping from the NDG to the NBS. This mapping is generalized in that P&R bargaining

2Although there can be multiple equilibria with more than two players (Sutton, 1986; Osborne and
Rubinstein, 1990), the NBS is the unique equilibrium if we impose stationarity or reasonable consistency
conditions (Asheim, 1992; Chae and Yang, 1994; Krishna and Serrano, 1996).

3See Miyakawa (2008), Okada (2010), Britz et al. (2010), and Laurelle and Valenciano (2008). Osborne
and Rubinstein (1990:310) note that the asymmetric NBS satisfies all axioms in Nash (1950) except for
symmetry.

4See Binmore et al. (1992), Abreu and Gul (2000), or Kambe (2000). Some contributions allow for
strategic uncertainty in the NDG (Binmore, 1987; Carlsson, 1991; Andersson et al., 2018). Chatterjee
and Samuelson (1990) study the repeated version.
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game allows for many parties, multiple rounds, veto-rights, and uncertainty regarding

the willingness to delay. With heterogeneous discount rates or shock distributions, the

NDG implements an asymmetric NBS, I show, and my characterization of the weights is

novel. If uncertainty does not vanish, then the outcome is ineffi cient. For the NDG, the

interpretation is that each party takes too much risk.

I also contribute to the literature on private provision of public goods by showing when

uncertainty can make the results consistent with larger contributions.5. Bagnoli and Lip-

man (1989), building on Palfrey and Rosenthal (1984), derive effi cient equilibria when

pledges are made simultaneously. They assume the public good is discrete, and contribu-

tions are refunded unless the cost threshold is met. This makes contributions strategic

complements and payoffs discontinuous in the contributions (violating my assumption).

The literature on limited specifiability is small. Yildiz (2003) finds an effi cient alloca-

tion when a proposer can only propose a price, while the other party can subsequently

select any traded quantity given the price. More recently, Fukuda and Kamada (2020)

present a general bargaining game where a party can propose a subset rather than a sin-

gleton in the set of alternatives. In contrast to my paper, negotiations must continue on

the intersection of subsets and their focus is on the difference between asynchronous and

synchronous moves. They show that asynchronicity of proposal announcements, and the

existence of a common-interest alternative, lead to sharper predictions.

Outline: The next section discusses applications to climate agreements, legislative

bargaining, issue linkages, and haggling among business partners or experts. Section 3

formalizes P&R bargaining and presents benchmark results before uncertainty is intro-

duced. Section 4 starts with a folk theorem, before the set of equilibria is gradually

reduced by referring to standard refinements. Section 5 shows that the Nash demand

game, and the mapping from that game to the NBS, can be both generalized and proven

in a special (limiting) case of the model. A number of generalizations are discussed in Sec-

tion 6. Section 7 concludes. Appendix A contains all proofs. Additional generalizations

5Because of the free-rider problem, which predicts small contributions, scholars have suggested that
contributions may be larger because of threshold effects (Marx and Matthews, 2000; Compte and Jehiel,
2004), refunds (Admati and Perry, 1991), voting (Ledyard and Palfrey, 2002), side payments (Jackson
and Wilkie, 2005), or irreversibility (Battaglini et al., 2014) and there may be a large set of equilibria
(Matthews, 2013).
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are investigated in Appendix B (for online publication only).

2. Applications: Climate treaties, legislative bargaining, and business linkages

The bargaining game is quite general and, as I will now explain, it might be applied to

negotiations among countries attempting to agree on climate change policies, among po-

litical representatives who request public funds and share the total burden of the expenses,

and among business partners that have different expertise or responsibilities.

Climate negotiations: Many analyses inspired by the Kyoto Protocol employ the NBS

(including my own: Harstad, 2012; 2016). The model below is inspired by the pledge-and-

review procedure associated with the Paris Agreement on climate change. P&R has been

referred to as a "bottom-up" approach since countries themselves determine how much to

cut nationally, without making these cuts conditional on other countries’emissions cuts.6

In the absence of a world government, the set of contributions must be acceptable by

everyone that contributes.7 The need for consensus motivates the review : "By subjecting

domestically determined mitigation pledges to the international review mechanism, the

Paris Agreement ensures that the gap between the required level of action and the total

sum of national measures becomes the subject of international policy deliberation and

coordination" (Falkner, 2016:1120). Although the pledges were not made simultaneously

in the Paris talks, the countries faced a common deadline and each of them was free

to revise its pledge before that deadline.8 Thus, it seems more reasonable to assume

6The New York Times (Nov. 28, 2015) wrote that: "Instead of pursuing a top-down agreement
with mandated targets, [the organizers] have asked every country to submit a national plan that
lays out how and by how much they plan to reduce emissions in the years ahead." Indeed, the
Paris Agreement (Art. 4.2) states: "Each Party shall prepare, communicate and maintain succes-
sive nationally determined contributions that it intends to achieve." The offi cial list of pledges is here:
http://www4.unfccc.int/ndcregistry but for an overview see http://cait.wri.org/indc/#/.

7Global climate treaties require consensus and individual countries can indeed veto them: Before the
2009 Copenhagen negotiations, when P&R was first attempted, many countries had submitted pledges.
However: "Objections by a small group of countries (led by Bolivia, Sudan, and Venezuela) prevented
the Copenhagen conference from ’adopting’the Accord ... as a COP decision, which requires consensus
(usually defined as the absence of formal objection)" (Bodansky, 2010:231; 238). As a consequence,
negotiations were delayed for years.

8According to the Paris Agreement (Art. 4.2), the treaty: "Invites Parties to communicate their first
nationally determined contribution no later than when the Party submits its respective instrument of
ratification, accession, or approval of the Paris Agreement. If a Party has communicated an intended
nationally determined contribution prior to joining the Agreement, that Party shall be considered to
have satisfied this provision unless that Party decides otherwise."
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simultaneous pledges than assuming that there is a fixed sequential order.

Leading scientists and political scientists, such as Keohane and Oppenheimer (2016:142),

have feared that "many governments will be tempted to use the vagueness of the Paris

Agreement, and the discretion that it permits, to limit the scope or intensity of their

proposed actions." They continue (p. 149): "What is less clear is whether the resulting

deals will [help] the world limit climate change. We can imagine high-level equilibria of

these games that would do so. These equilibria would induce substantial cuts in emissions

[but] we can also imagine low-level equilibria [that enable] both sides to pursue essentially

business as usual." The theoretical results in this paper are very much in line with the

various scenarios imagined by Keohane and Oppenheimer.

One lesson from this paper is that uncertain willingness to object and delay can mo-

tivate contributions that might be larger than without the uncertainty. In fact, pledge-

and-review can be relatively attractive in climate negotiations: Predicted contributions

are larger when there is a large number of parties, when the parties are very different and

associated with unexpected shocks that are not highly correlated, and when the negotia-

tions proceed so slowly that the future willingness to object and delay is hard to forecast.

All these characteristics are familiar to climate negotiators.

Furthermore, the modesty can deter free riding (Finus and Maus, 2008). My follow-up

paper (Harstad, 2022) embeds the pledge-and-review bargaining outcome in a dynamic

climate policy with endogenous emissions, technologies, participation, and compliance,

and shows that the P&R game can rationalize five facts regarding how the Paris Agreement

differs from the Kyoto Protocol of 1997.

Domestic politics: There is a large literature in political economy where each district,

or "spending minister," specifies one’s own level of spending although the sum of expenses

is a public bad that raises federal taxes, deficits, or debt (see the survey by Eraslan and

Evdokimov, 2019). The model comes in two extreme variants: (i) In the common-pool

setting (beginning with Weingast et al., 1981), there are no checks or balances, and no

one can veto others’spending decisions. (ii) In analyses of procedural rules or bargaining

situations, the ministers negotiate effi ciently (Baron and Ferejohn, 1989; von Hagen and

Harden, 1995). The model in this paper is an intermediate case that might be more
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realistic than the two extremes: each party is indeed permitted to decide on its own

level of spending or, equivalently, spending cut, but the party risks delays if the spending

levels are unacceptable to the others. One lesson is that the ineffi ciency is larger when

the ministers are familiar to one another and face correlated shocks.

In Morelli (1999), parties make competitive demands, but he focuses on the sequence

(determined by the head of state) and coalition formation (unanimity is not required),

and there is no relation to the NBS.

Business and issue linkages: The P&R game can describe a situation in which multiple

business partners must negotiate a package, and where each partner is recognized as an

expert in, or as being responsible for, only a single dimension of the package: one partner

describes the product quality, another offers a strategy for advertisements, while a third

manages a set of retailers, for instance. In such meetings, it might be unrealistic to assume

that a single partner is capable of proposing and describing a specific terminal outcome,

as is normally assumed in bargaining theory. Instead, it can be more reasonable that each

partner emphasizes what or how it can contribute, simply. After all, only the engineer

is endowed with the vocabulary to describe technical solutions, the advertiser with the

imagination to draw creative advertisements, and the manager sits on the alternative

retailers’names and track records.

Because the parties make proposal on different things, I contribute to our understand-

ing of issue linkages (see the survey by Maggi, 2016). Fershtman (1989) and In and

Serrano (2004) consider the case in which the parties can only negotiate on one issue at

the time. Fershtman analyzes disagreements over alternative fixed sequences. In and Ser-

rano allow the proposer to propose a solution on any (but only one) of the issues. In other

games, Horstmann et al. (2005) and Chen and Eraslan (2013) characterize the gains from

linking various issues. This paper, in contrast, does not compare the timing or whether

issues should be linked or not. The novel lesson from this paper is that when the parties

simultaneously make proposals on their individual offers, then each equilibrium pledge is

not only ineffi cient, but it also maximizes its own asymmetric Nash product where the

weighs on others’payoffs are determined by factors that are new to the literature. Some-

what surprisingly, I show that business partners that are unfamiliar to one another may
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contribute more, because they are more concerned with the possibility that the opponents

may otherwise reject.

3. A theory of pledge-and-review bargaining

3.1. A benchmark game

There are n parties, each endowed with a payoff function Ui : Rn → R, i ∈ N ≡

{1, ..., n}. A typical terminal outcome is referred to as x = (x1, ..., xn)∈ Rn. I assume, for

tractability, Ui to be concave and continuously differentiable. Concavity is natural when

xi measures contributions to a public good, for example, since party i would then begin

with the most cost-effective types of contributions. Both Ui and xi are measured relative

to the default outcome.9

Furthermore, I begin by making the additional assumptions ∂Ui (·) /∂xi < (>) 0 for

xi > (<) 0, and ∂Uj (·) /∂xi > 0, ∀i, j 6= i, so that the xi’s can be interpreted as additional

contributions to a public good above the individually rational level. Consequently, the

trivial Nash equilibrium in the one-stage game in which every i sets xi noncooperatively is

normalized at x = 0. Appendix A proves the main result, Theorem 3, and a generalization

of Theorem 2 without these additional assumptions. The additional assumptions are not

needed for Theorems 0 and 1.

The set of x’s such that everyone obtains a strictly positive payoff is the open set

fx ≡ {x ∈ Rn: Ui (x) > 0 ∀i} , and

fU ≡ U (fx) ≡ {U ∈ Rn : ∃x ∈ fx s.t. Ui (x) = Ui∀i ∈ N} .

I will assume that the set fU is bounded and convex.

Example E. Suppose n = 2 and

Ui (x) = xj − x2
i /2, where j ∈ N\i. (E)

9This is a normalization in the following sense: If the contributions were x̃ = (x̃1, ..., x̃n)∈ Rn, with
payoffs payoff Ũi (x̃) and default outcome x̃d, then we can define xi ≡ x̃i− x̃di and Ui (x) ≡ Ũi

(
x̃d + x

)
−

Ũi
(
x̃d
)

= Ũi (x̃)− Ũi
(
x̃d
)
. It follows that the default is x = 0⇒ Ui (0) = 0.
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Figure 1: For Example E, the left panel illustrates the open set fx of pairs (x1, x2) s.t.
U1 > 0 and U2 > 0. The right panel illustrates the corresponding set of utility pairs, fU.

The set fx is shaded in the left panel of Figure 1, while fU is in the right panel.

The bargaining game starts when every party i simultaneously proposes its own di-

mension, or contribution, xi ∈ R. After they observe x = (x1, ..., xn), each party must

decide whether to accept. (It will not matter whether the acceptance decisions are simul-

taneous or not.) If everyone accepts, every i ∈ N receives payoff Ui (x) and the game

ends. If one or more parties decline x, the game continues in the following period where

the players interact again in the same way. An indifferent party is assumed to accept.10

The lag between one acceptance stage and the next acceptance stage is ∆ > 0. With

continuous-time discount rate rj > 0, the discount factor between time t and t+ ∆ is

e−rj∆ ≈ 1− rj∆⇔ rj ≈ ρj ≡
(
1− e−rj∆

)
/∆,

where the approximation holds when ∆→ 0. Although I will not require ∆ to be small,

it will be convenient to refer to ρj ≡
(
1− e−rj∆

)
/∆ as the discount rate.

Thus, if party j declines an offer and expects the outcome x∗ in the next period, then

j’s present-discounted payoff is (1− ρj∆)Uj (x∗). Anticipating x∗ and Uj (x∗) > 0, j

10This assumption rules out uninteresting equilibria in which everyone rejects everything because no-
one is pivotal.

10



rejects x now if and only if:

Uj (x) < (1− ρj∆)Uj (x∗)⇔ Uj (x∗)− Uj (x)

ρj∆Uj (x∗)
> 1. (1)

3.2. A benchmark result

As I will explain in Section 4.1, there is typically a large number of subgame-perfect

equilibria in games with infinite time horizon. Section 4.2 follows much of the literature by

considering stationarity as a refinement. To appreciate the result in that section, consider

the stationary subgame-perfect equilibria (SSPEs) in the game developed so far.

There clearly exists a "trivial" SSPE consisting of the acceptance strategies (1) and a

vector x∗ = 0, so that the payoffs are Uj (x∗) = 0∀j. If this outcome is always expected,

there is no reason for any individual party to offer anything else. Unfortunately, no x ∈ fx
or, equivalently, U ≡ (U1, ..., Un)∈fU, can be supported as an SSPE outcome: For any

equilibrium candidate in which Uj (x∗) > 0∀j, contributing party i can suggest xi slightly

different from x∗i without satisfying (1). Thus, x
∗
i must coincide with i’s preferred level,

x∗i = arg maxxi Ui
(
xi,x

∗
−i
)
, which is zero under the above additional assumptions.11

Theorem 0. There is no SSPE with x ∈ fx or payoffs U ∈fU.

Theorem 0 contrasts with the NBS, predicting an effi cient outcome. In the standard

alternating offer bargaining game, where each party is recognized as the proposer of x

with probability 1/n, the NBS can be implemented by an SSPE, in the limit, when ∆→ 0

and ρj = ρ.12 The contrast arises when xj is not conditional on xi, j 6= i.

11There can be other equilibria in the game than the trivial equilibrium x∗ = U = 0. With the
additional assumptions, every x such that Ui (x) = 0 for at least two parties can be supported as an
SSPE, but no other x can be supported as an SSPE. In Example E, there is an equilibrium in which
x = (2, 2) and both payoffs are zero: if party i reduces xi, then Uj turns negative and j rejects.
12Then, party i’s problem is to propose the vector xi, given the shadow values on j’s acceptance

constraint, λij :

max
xi

Ui
(
xi
)

+ λij
∑
j 6=i

U

(
Uj
(
xi
)
− (1− ρ∆)

n∑
k=1

1

n
Uj
(
xk
))
, s.t.

λij

(
Uj
(
xi
)
− (1− ρ∆)

n∑
k=1

1

n
Uj
(
xk
))

= 0 ∀j 6= i,

11



3.3. Relaxing the "no uncertainty" assumption

From (1), we obtain that j rejects x, when x∗ can be expected in the next period,

with a probability, Fj (·) , that is either 0 or 1:

Fj

(
Uj (x∗)− Uj (x)

ρj∆Uj (x∗)

)
=

{
1 if Uj(x

∗)−Uj(x)

ρj∆Uj(x∗)
> 1

0 if Uj(x
∗)−Uj(x)

ρj∆Uj(x∗)
≤ 1

}
∈ {0, 1} . (2)

In reality, the parties cannot be certain of what opponents will accept. Therefore, Bas-

tianello and LiCalzi (2019:837), in their probability-based interpretation of the NBS,

"introduce uncertainty over which alternatives bargainers are willing to accept."

For similar reasons, I henceforth assume Fj to be a continuous function for which

Fj (0) = 0, while Fj > 0 if and only if its argument is strictly positive. In other words,

j certainly accepts the allocation that is expected in the next period, x∗, but there is

always a chance that j declines xi < x∗i .

Note that if we define a shock θj,t to be distributed as Fj, i.i.d. over time, then we

can equivalently say that j rejects x if and only if

Uj (x∗)− Uj (x)

ρj∆Uj (x∗)
> θj,t, (3)

since this event arises with probability Pr
(
θj,t <

Uj(x
∗)−Uj(x)

ρj∆Uj(x∗)

)
= Fj

(
Uj(x

∗)−Uj(x)

ρj∆Uj(x∗)

)
.

A microfoundation: It is worth mentioning that this uncertainty can be derived

from shocks in the utility functions, from the subjective beliefs over the delay following

rejections, or from the impatience. The results do not hinge on any particular form of

uncertainty, and Appendix B shows that all the mentioned uncertainties can generate

similar results.

In bargaining, uncertainty was first introduced though the discount rate (Rubinstein,

1985).13 After all, estimates of discount rates "differ dramatically across studies, and

when xk is party k’s stationary proposal. When ∆→ 0, xi → xk ∀ (i, k), which is party k’s equilibrium.
For details, please consult with the literature mentioned in Footnotes 2 and 3 (some articles also permit
ρj 6= ρi).
13See also Watson (1998) and Abreu et al. (2015). While I follow these scholars by letting the discount

rate be stochastic, our approaches are complementary in that they consider persistent shocks while I
consider temporary shocks.
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Figure 2: Proposals are made before the shocks are observed.

within studies across individuals. There is no convergence toward an agreed-on or unique

rate of impatience" (Gollier and Zeckhauser, 2005:879). There are conflicting views on

what the discount rate ought to be (Arrow et al., 2014), how it varies with the time

horizon (Frederick et al., 2002), across individuals (Andersen et al., 2008), how it should

be aggregated (Chambers and Echenique, 2018), and what form it takes: Consider the

cases for hyperbolic (Angeletos et al., 2001), quasi-hyperbolic (Laibson, 1997), beta (Dietz

et al., 2018), or gamma discounting (Weitzman, 2001). The discount rate can be smaller

when decisions are collective (Jackson and Yariv, 2014; Adams et al., 2014) or influence

others (for theory and evidence, see Dreber et al., 2016; Rong et al., 2019). Ramsey

(1928) argued the discount rate should simply be zero.

The discount rate can also be viewed as the Poisson rate of a bargaining breakdown.

Different parties may have fluctuating opinions regarding the level of this rate.

Given these controversies and debates, it seems unreasonable to assume the discount

rate to be common, deterministic, and known for every future period.

In international negotiations, it is reasonable that a policymaker’s tolerance for delay

is influenced by a number of (con)temporary domestic policy or economic issues that

compete for the policymaker’s attention. The impatience may also depend on today’s

probability of remaining in offi ce (Ortner, 2017; Harstad, 2020). Since no one can foresee

all these issues when the pledges are made, perhaps several months in advance, Figure 2

illustrates how the shocks may be realized and observed by everyone after the offers but

before acceptance decisions are made. This timing seems quite reasonable.14

Formally, write the discount rate as ρi,t = θi,tρi, where ρi ≡Eρi,t is the expected
14Because there can be a substantial lag between offers and acceptance decisions, it is natural that

policymakers in the meantime learn about how urgent it is for them to conclude the negotiations, or
about the attention they instead must give to other policy and economic issues.
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discount rate of i ∈ N , so that θi,t captures a shock with mean 1. When θi,tρi replaces the

discount rate in (1), we obtain that if Uj (x∗) > 0, then j ∈ N\i rejects x, after learning

θj,t, if and only if (3) holds:

Uj (x) < (1− θj,tρj∆)Uj (x∗)⇔ (3).

The shocks are assumed to be distributed according to a continuous probability density

function (pdf) f (θ1,t, ..., θn,t) ∈ (0,∞) on support
∏
i∈N

[
0, θi

]
. The marginal distribution

of θi,t is fi (θi,t) ≡
∫

Θ−i
f (θ1,t, ..., θn,t) dΘ−i, where Θ−i ≡

∏
j 6=i

[
0, θj

]
.

If the shocks were correlated over time, the game would be nonstationary and there

could be delay on the equilibrium path when one period’s shocks indicated that the

pledges could be more attractive in the future. If, in addition, θi,t were privately observed

by i, then i might reject to signal a small Eθi,t+1. These issues are interesting, but they

are partly analyzed already (see, for instance, Chen and Eraslan, 2014) and they are

orthogonal to the results that are novel in this paper. To isolate them, I assume that the

shocks are i.i.d. at each time t.

4. The pledge-and-review bargaining solution

4.1. A folk theorem

There are often many SPEs in games with infinite time horizon.

Theorem 1. There exists ∆ ∈ (0,∞) such that for every ∆ ∈ (0,∆], every outcome

x ∈ fx and payoffs U ∈fU can be supported as an SPE.

The additional assumptions are not needed for this result. To support any U∗∈fU as

an SPE, the proof (Remark 1 in Appendix A) considers the possibility that if i deviates,

then the continuation payoff vector is Ui, where U i
j = kijU

∗
j with k

i
i ∈ (0, 1) and kij = 1,

j 6= i. (I assume there is free disposal, so that if U∗ ∈ fU, then Ui ∈ fU.) The idea is

that if i deviates, then the parties "punish" i by switching from U∗ to Ui.

4.2. Stationary equilibria: Justifications

14



There are several reasons for why we may want to study the stationary equilibria in

this game. First, the set of equilibria permitted by folk theorems is too large to make

sharp predictions. Second, history-contingent strategies, as those permitted above, may

not be renegotiation proof and, third, they can be quite complicated to coordinate on.

Baron and Kalai (1993:292) explain that "simplicity is likely to be a major consideration

... when an equilibrium is being selected." For the bargaining game by Baron and Ferejohn

(1989), they define and prove that there is a unique "simplest equilibrium" —namely the

stationary one.

Bhaskar et al. (2013:925) write that arguments for focusing on stationary Markov

equilibria "include (i) their simplicity; (ii) their sharp predictions; (iii) their role in high-

lighting the key payoff relevant dynamic incentives; and (iv) their descriptive accuracy

in settings where the coordination implicit in payoff irrelevant history dependence does

not seem to occur." They prove that yet another foundation for stationarity arises when

social memory is bounded.

These arguments are especially relevant for negotiations among political representa-

tives. Bowen et al. (2014:2947) explain that imposing stationarity "is reasonable in

dynamic political economy models where there is turnover within parties since stationary

Markov equilibria are simple and do not require coordination." This argument is par-

ticularly relevant for the climate negotiations that inspire the present game: Because a

country’s chief negotiator is often and frequently replaced, it is quite attractive to rely on

strategies that can be played by new representatives who may not remember the history

of the game.

For all these reasons, I will now search for stationary subgame-perfect equilibria

(SSPEs) in pure strategies.

4.3. Stationary equilibria: Characterization

An SSPE is a vector, x∗, combined with a set of strategies for the acceptance stage.

A characterization of the SSPEs is especially interesting in light of Theorem 0, stating

that no U ∈fU can be supported as an SSPE in the game without uncertainty. With the

shocks introduced in Section 3.3, there is no xi < x∗i that is entirely "safe" in that it will
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be accepted with probability one. A deviating party may always face some risk.

As derived already, the optimal acceptance strategies are given by (3). Since θj,t is

drawn from a continuous distribution, the probability that j accepts will be continuous

in xi. On the one hand, this continuity can motivate positive contributions: x∗ ∈ fx can

be supported as a "nontrivial" SSPE if the marginal benefit for i, by slightly reducing xi,

is outweighed by the risk that at least one party might be suffi ciently patient to decline

the offer and wait for x∗. On the other hand, the punishment for trying to get xi < x∗i

accepted is simply the risk of delay. (In contrast, Section 4.1., which considered SPEs,

permitted the parties to move to another equilibrium outcome if i deviated.) Party i may

thus be quite tempted to take some risk and reduce xi, especially when x∗i is large and

costly to i. This temptation will limit how large the equilibrium x∗i can be.

Note that there cannot be delay on the equilibrium path: If i finds it optimal to offer

less than what j would prefer today, i will find this to be optimal later, as well. After

all, opponents cannot gain from rejecting a stationary offer. An equilibrium offer will

thus not be risky at the equilibrium path: x∗ will be proposed and (3) implies that, as a

result, the equilibrium proposal will be accepted without delay with probability 1. The

temptation to take (further) risks is merely generating an upper boundary for how large

x∗i can be, as shown in the following theorem.

Theorem 2. Consider an SSPE with x∗ ∈ fx and U ∈fU. For every i ∈ N :

x∗i ≤ x◦i if x
◦
i = arg max

xi

∏
j∈N

(
Uj
(
xi,x

∗
−i
))wij , where (4)

wij
wii

=
ρi
ρj
· fj (0) · E (θi,t | θj,t = 0) , ∀j 6= i.

The upper boundary on x∗i has a remarkably simple characterization: When (4) binds,

x∗i maximizes an asymmetric Nash product, where the payoffof every party j is associated

with some weight, wij. The theorem endogenizes the weights and shows how they depend

on three factors.15

15Theorem 2 endogenizes only the relative weights, wij/w
i
i, but this is suffi cient since

arg maxxi
∏
j∈N

(
Uj
(
xi,x

∗
−i
))wij stays unchanged if every weight wij is multiplied by the same positive
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First, the weight on j’s utility is larger if j is expected to be patient relative to i. This

is intuitive (and in line with existing papers on the Nash program, mentioned in Footnote

3): When j is patient, j is more tempted to reject an offer that is worse than what one

can expect in the next period, and thus i finds it too risky to reduce xi, especially when

i is likely to be impatient. As Figure 2 clarifies, i offers xi before learning θi,t.

Second, the weight on j’s payoff is larger when there is more uncertainty regarding j’s

shock. The intuition is that when it is uncertain whether j will accept, then i is willing

to offer more in order to reduce the risk of delay. As the shocks vanish, however, the

equilibrium payoff set converges to the origin. That is, if fj (0) → 0, or if the shock θj,t

were bounded away from zero, then wij → 0, and (4) converges to the trivial equilibrium

x∗ = 0. Appendix B shows how a version of the results survives even if fj (0)→ 0.

Third, the weight on j’s payoff is small in the presence of a small E(θi,t | θj,t = 0),

which measures i’s expected shock given that j’s θj,t is small. The intuition is that if i

can be expected to have a small discount rate exactly when j has a small discount rate,

then it matters less that j declines an offer in this circumstance. When the delay matters

less, i does not find it necessary to offer a lot. This result predicts that a party i may pay

less attention to the payoffs of those who face shocks that are positively correlated with

i’s shock.

Interestingly, the set of SSPEs does not depend on the level of∆ or on any requirement

that ∆ is small (for a fixed discount rate). The intuition is that a larger ∆ is increasing

j’s cost of rejecting (and delaying) any given offer by the same amount as it is increasing

i’s cost of making an unattractive offer.

As a comparison to Theorem 2, in the asymmetric NBS, each xi maximizes the same

asymmetric Nash product:

xAi = arg max
xi

∏
j∈N

(
Uj
(
xi,x

A
−i
))wj

, (5)

for some fixed weights, (w1, ..., wn). In this case, the vector xA will be Pareto optimal.

Also when (4) binds, the equilibrium x∗i maximizes an asymmetric Nash product,

number.
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Figure 3: For Example E, the dark area in the left panel illustrates the set of SSPE pairs
(x1, x2), while the dark area in the right panel illustrates the corresponding set of utilities.

but, in stark contrast to the asymmetric NBS, with P&R different parties apply different

weights (f.ex., wij/w
i
i 6= wjj/w

j
i ). The vector x

∗ is, for that reason, not Pareto optimal.

In particular, if wij/w
i
i < 1 for every (i, j), j 6= i, then it is possible to make every party

better off by increasing all contributions relative to x∗.

The dark region in Figure 3 illustrates the set of equilibria permitted by Theorem 2

when wij/w
i
i = w = 1

2
∀ (i, j) , j 6= i, in Example E. The multiplicity of SSPEs arises from

the inequality in (4). The logic leading up to Theorem 2 limits how large the xi’s can be,

but not how small the pledges can be. After all, there is no point for i to contribute more

than the equilibrium quantity, whatever the equilibrium is. (As noted, j always accepts

an SSPE vector given that θj,t ≥ 0 and Uj (x∗) ≥ 0.)

Existence: Theorem 2 states necessary conditions for an SSPE. Whether second-order

conditions hold depends on f . If n = 2, the second-order conditions hold when, for

example, the θi,t’s are uniformly distributed. Remark 2 in the Appendix verifies this

claim, and also proves the existence of an SSPE for Example E.

4.4. Locally perfect equilibria

There are two reasons for why we may want to refine the set of equilibria further.

First, the multiplicity of equilibria makes it diffi cult to establish sharp predictions.
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Second, some of the equilibria permitted by Theorem 2 are not very robust. To see

this, note that when x∗i is so small that (4) is nonbinding, then i is not indifferent to

a marginal reduction in xi, relative to x∗i . A marginal reduction is strictly worse for i,

because of the risks that are involved. Thus, in the presence of small trembles, where not

even x∗ is guaranteed acceptance, i might prefer to raise xi slightly above x∗i to reduce

the risk. With trembles, party i benefits from increasing x∗i as long as (4) is nonbinding.

This is the intuition for why a trembling-hand perfect SSPE will require (4) to hold with

equality.

Selten (1975:35) argued that "a satisfactory interpretation of equilibrium points in

extensive games seems to require that the possibility of mistakes is not completely ex-

cluded." With this reasoning, Selten introduced trembling-hand perfection in finite games.

When the action space is continuous, Myerson (1978) argued that the trembles should be

smaller for costlier errors. This reasoning is captured by the notion of "local perfection,"

defined by Simon (1987). The following definition of local perfection is a simplification of

the definition provided by Simon (1987).16

Definition of Local Perfection: Consider a perturbed game in which, when the

vector of submitted offers is x, then x+ εst is realized and observed, where st is a vector

of n trembles distributed i.i.d. over time, with bounded support, and with strictly positive

and continuous density on a neighborhood of 0. x∗ is a locally perfect equilibrium if

x∗i = limε→0 x
∗
i (ε)∀i ∈ N , where x∗ (ε) is an equilibrium of the perturbed game.

For our purposes, equilibrium refers to an SSPE.17

Theorem 3. Consider a locally perfect SSPE. Inequality (4) binds for every i ∈ N :

x∗i = arg max
xi

∏
j∈N

(
Uj
(
xi,x

∗
−i
))wij , where (6)

wij
wii

=
ρi
ρj
· fj (0) · E (θi,t | θj,t = 0) , ∀j ∈ N\i.

16I am grateful to Leo Simon for discussions on how the definitions relate. Carlsson (1991) and Simon
and Stinchcombe (1995) are also motivated by the need to generalize trembling-hand perfection to infinite
games.
17The definition follows Selten (1975) in that the trembles are uncorrelated over time (for further

justifications on this, see the final paragraph in Section 3). As with the θi,t’s, allowing the trembles to
be imperfectly correlated across parties comes at no costs for the analysis.
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The condition is necessary; the theorem claims neither suffi ciency nor uniqueness.

Nevertheless, local perfection allows us to make sharper predictions and to justify the

emphasis on the weights, wij/w
i
i, and what they depend on, and where the intuition for

the terms are discussed in Section 4.3.

The intuition for Theorem 3 is as described at the beginning of this subsection: With

trembles, party i is not confident that x∗i will be approved and thus i finds it beneficial to

raise xi as long as x∗i is small.
18

Although the equilibrium is not Pareto optimal, it is interesting to note that uncer-

tainty is beneficial for the parties in two ways in this model. First, it is the presence of the

θi,t’s that motivates the parties to pledge suffi ciently much so that everyone can be strictly

better off relative to the default outcome. Second, of all the SSPEs permitted by Theorem

2, trembles rule out the SSPEs with the smallest contributions, that is, contributions that

are so small that (4) is nonbinding.19

For Example E, Theorem 3 predicts the top-right corners in the dark-grey regions in

Figure 3. One can show that this point Pareto dominates all other SSPEs in Example 3

if w <
√

3 − 1 ≈ 0.73, as is assumed in Figure 3. Thus, focusing on equilibria that are

not Pareto dominated might in some cases replace the restriction to local perfection.20

Existence: Theorem 3 states necessary conditions for a locally perfect SSPE. If n =

2, the second-order conditions hold when, for example, the θi,t’s and the trembles are

uniformly distributed. Remark 3 in the Appendix verifies this claim, and also proves the

existence of a locally perfect SSPE for Example E.

4.5. Simplifications and corollaries

Theorem 3 has several important consequences: It describes how the equilibrium is

influenced by the different parties’utility functions, mean discount rates, shock distribu-

tions, and the correlation of the shocks (i.e., the θi,t’s). We can learn still more from the

18Chatterjee and Samuelson (1990) show that there continue to be multiple perfect equilibria in the
dynamic version of the NDG unless the stationarity assumption is maintained.
19As an additional benefit of uncertainty, note that if we also introduce perturbations in the accept-vs-

reject decision, then we no longer need to assume that each party votes as if pivotal (see Footnote 10),
since that will be part of the optimal strategy.
20I thank Asher Wolinsky for making this observation. Section 6 explains why local perfection can also

be replaced by trembles in the support of the shocks.
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theorem if we simplify to special cases.

Corollary 1. Suppose all parties share the same mean discount rate and shocks are

independent.

(i) If fi is single-peaked, then w
j
i /w

j
j < 1, ∀i ∈ N, j ∈ N\i.

(ii) If fi is single-peaked and symmetric, then w
j
i /w

j
j ≤ 1

2
, ∀i ∈ N, j ∈ N\i.

(iii) If fi is constant (uniform), then w
j
i /w

j
j = 1

2
, ∀i ∈ N, j ∈ N\i.

Intuitively, the corollary illustrates that each party is likely to weight the value of

others’payoffs less than the party weights its own payoff. Technically, the three parts of

the corollary follow from the formula for the weights combined with the fact that, for a

pdf,
∫ θi

0
fi (θi,t) dθi,t = 1.21

If the shock correlations and payoff functions are the same for all parties, then the

characterization can be simplified even further.

Corollary 2. Suppose all parties have the same payoff functions and marginal shock

distributions, fi, so that wij/w
i
i = fj (0) ·E(θi,t | θj,t = 0) = w for all i ∈ N, j ∈ N\i. In a

symmetric locally perfect SSPE, the equilibrium offers can be written as:

x∗i = arg max
xi

[Ui
(
xi,x

∗
−i
)

+ w
∑
j 6=i

Uj
(
xi,x

∗
−i
)
]. (7)

It is straightforward to check that the first-order condition of (7) coincides with the

first-order condition of (6) when wij/w
i
i = w and Ui (x∗) = Uj (x∗) for every i, j ∈ N . In

Example E, we simply get xi = w∀i.

If n > 2 in Example E, we get xi = (n− 1)w. The fact that contributions are

increasing in n holds more generally: This can be seen from Theorem 3, as well, under

the additional assumptions, so that j benefits when i 6= j contributes.

Corollary 3. Equilibrium contributions are larger when n is large.

21To see part (ii), for example, note that if fi (0) > 1/2, then, when fi (·) is single-peaked and symmetric
around the mean of one,

∫ 2
0
fi (θi,t) dθi,t > 1, violating the definition of a pdf. If the shocks are not

correlated, then E (θi,t | θj,t = 0) = 1.
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The intuition for this result is that when n is large, it is more likely that at least one

of the other parties will decline xi < x∗i . The larger risk motivates i to contribute more.

Note that the intuition for why a larger n raises contributions in standard conditional-

offer bargaining games is remarkably different: In those games, i is willing to contribute

more because it can then, simultaneously, ask other parties to contribute more.

5. Relationship to Nash’s demand game and bargaining solution

The P&R bargaining outcome is in stark contrast to the Nash bargaining solution,

predicting that the xi’s would follow from (5) with wij/w
i
i = 1∀ (i, j) ∈ N2. The NBS

is frequently used to describe multilateral bargaining outcomes partly because the NBS

results from noncooperative bargaining games. Nash (1953) introduced his "demand

game" (NDG) exactly because he could show that it implemented the NBS. Despite this

contrast, Nash’s result can be derived from Theorem 3 because the NDG can be shown

to be a limiting case of the P&R bargaining game.22

In the NDG, each player is demanding an ex post payoff level or, equivalently, a

variable (xi) that dictates i’s ex post demanded payoff, di (xi). The vector of demands is

feasible with probability p (x). If the vector is not feasible, everyone receives zero. Party

i’s expected utility is:

Ui (xi,x−i) = di (xi) p (x) . (8)

This utility function is permitted in the above analyses if the di’s and p are continuous

functions. As in Nash (1953:132), the continuity of p "should be thought of as representing

the probability of the compatibility of the demands d1 and d2. It can be thought of as

representing uncertainties in the information structure of the game, the utility scales, etc."

Note that this uncertainty comes on the top of the shocks (the θi,t’s) and the trembles

(the st’s) considered in Section 4. In the special case of (8), Theorem 3 can be rewritten

as follows.

Theorem 4. Consider pledge-and-review bargaining and suppose i’s expected utility is
22I am grateful to Jean Tirole for the motivation for this subsection.
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given by (8). If x∗ is a locally perfect SSPE, then:

x∗= arg max
x

∏
i∈N

di (xi)
%i p (x)$ and (9)

x∗ = arg max
x

∏
i∈N

di (xi)
%i s.t. p (x) = p (x∗) , where (10)

%i =
wii/

∑
j∈N w

i
j∑

k∈N

(
wkk/

∑
j∈N w

k
j

) and $ =
1∑

k∈N

(
wkk/

∑
j∈N w

k
j

) . (11)

Note that if the parties face the same distribution of the discount rates, thenwii/
∑

j∈N w
i
j

is the same for every i ∈ N , and, therefore, %i = 1∀i. Note also that if fi (0) approaches

or equals 0 for every i, then wii/
∑

j∈N w
i
j = %i = 1∀i. In both cases, x∗ coincides with

the NBS.

Corollary 4. Suppose all parties face identical expected discount rates and shock distrib-

utions, or that fi (0) → 0∀i ∈ N . In either case, %i = 1∀i ∈ N , and x∗ implements the

NBS:

x∗= arg max
x

∏
i∈N

di (xi) s.t. p (x) = p (x∗) .

The condition p (x) = p (x∗) fixes the total risk. If the uncertainty on the feasibility

constraint vanishes, in the sense that p (x) is close to 0 or 1 for almost every x, then it is

intuitive that x∗ must be close to an x that ensures p (x) ≈ 1. In this case, the constraint

p (x) = p (x∗) simply requires x to be feasible (see Binmore, 1987).

The result (by Nash, 1953) that the NDG implements the NBS is generalized by

Corollary 4 in several respects, since the corollary builds on the P&R bargaining model:

(i) According to Corollary 4, the mapping from the NDG to the NBS continues to

hold if, as with P&R, any party can veto the allocation x after which there will be a finite

delay before the demand game can be played again.

(ii) There can be n ≥ 2 parties, and not only 2 as in Nash (1953) and in the dynamic

version analyzed by Chatterjee and Samuelson (1990).

(iii) The parties can have stochastic discount rates. This uncertainty influences w,

but both the uncertainty and the common w are irrelevant for the mapping to the NBS if

the parties are symmetric. The intuition for why w is irrelevant is that, given the sharp
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feasibility constraint characterized by p (x) when uncertainty vanishes, i’s preferred xi

coincides with the effi cient level, given the other xj’s.

(iv) When the weights (wij/w
i
i) are heterogeneous, (10) shows that x

∗ characterizes an

asymmetric NBS: The bargaining power index (%i) is larger for those parties who are likely

to be patient or who face less uncertainty regarding the opponents’discount rates. This

finding is consistent with analyses of alternating-offer bargaining games (see Footnote 3);

Theorem 4 shows that it holds also in this generalization of the NDG.

(v) Theorem 4 also uncovers the limitation of the mapping from the NDG to the NBS.

When the uncertainty on the feasibility constraint vanishes, Ui becomes discontinuous in

xj, technically violating the assumption in Section 3.1. If instead each Ui (x) is continuous

in every xj, as when the uncertainty on the feasibility constraint is not vanishing, then

Theorem 4 shows that x∗ is technically different from the NBS, thanks to the condition

p (x) = p (x∗) in eq. (10). Eq. (9) shows that i places less weight on the (collective) risk

if wij/w
i
i is small for every j 6= i because, then, $ is small, as well, according to (11).

Therefore, when the feasibility of x is uncertain, as reflected by the continuous function

p, then each party i takes too much risk in that i sets xi, and demands di (xi), without

internalizing that the risk may be large for everyone.

(vi) More generally, the NDG, leading to the expected payoff (8), is only one of many

cases permitted in the analysis of Section 4. If the parties do not demand utility levels,

but pledge contribution levels, as in Example E, then Ui (x) is likely to be continuous in

all the xj’s. This continuity makes the P&R outcome ineffi cient in that each x∗i maximizes

its own asymmetric Nash product, as described by Theorem 3.

6. Robustness and generalizations

To proceed with the analysis above in a tractable and pedagogical way, several as-

sumptions were introduced. This section contains a brief discussion of how some of them

can be relaxed (some details are available in the Appendices; further details on request).

1. Relaxing local perfection: Trembles and local perfection were introduced in Section

4.4 in order to refine the set of equilibria. The same refinement can be obtained if, instead

of trembles, we relax the assumption thatΘ−i ≡
∏
j 6=i

[
0, θj

]
. Suppose thatΘ−i ≡

∏
j 6=i

[
θj, θj

]
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with θj < 0∀j. A negative θj,t would imply that j would prefer to agree on x next period

rather than immediately. The interpretation of a negative discount rate may be that, in

some circumstances, a party prefers to delay signing agreements because of other urgent

economic/policy issues that require the decision makers’attention. If θj ↑ 0, the claims

in Theorem 3 continue to hold without imposing local perfection.

Theorem 5. Suppose f (θj,t) > 0 ⇔ θj,t ∈
[
εθj, θj

]
, where θj < 0, ε > 0. Consider an

SSPE with contributions x∗ (ε). For x∗ ≡ limε→0 x
∗ (ε), (4) binds, ∀i ∈ N .

If θj < 0 is bounded below zero, then there will be delay on the equilibrium path with

some probability, but otherwise the results above will essentially continue to hold.

2. Relaxing Stationarity: In the model with uncertainty, the theorems continue to

hold if, instead of restricting attention to stationary SPEs, there is a finite time horizon,

T < ∞, T → ∞, and there is a terminal outcome xT , interpreted as the outcome that

would be implemented unless the parties completed the negotiations before the time

expires. In this case, the set of SPEs can be derived with backward induction. With a

unique SPE, strategies cannot depend on the history.

Theorem 6. Suppose T − t <∞.

(i) Consider a unique SPE with x∗t and limT−t→∞ x
∗
t =x∗. Then, (4) holds, ∀i ∈ N .

(ii) Suppose the equilibrium in (i) is locally perfect, as well. Then, (4) binds, ∀i ∈ N .

3. Uncertainty other than on the discount rate: For the results above, it is important

that the acceptance criterion, (2), is uncertain. As mentioned in Section 3.3, the shock

does not need to be related to the discount rate. Equation (3), and thus the subsequent

results, would continue to hold if θj,t represented a shock on j’s subjective belief regarding

the lag (∆) before the next acceptance stage, rather than a shock regarding j’s discount

rate. Appendix B permits such an alternative shock, and also the possibility that the

shock can represent a shock on j’s utility and/or marginal utility. In lab experiments,

Lippert and Tremewan (2021) find that my results hold, qualitatively, without my exact

specification of the uncertainty.

4. Relaxing the assumption fi (0) > 0: Appendix B also contains a discussion of

how the results would be modified if there were uncertainty but the density of θi,t at
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zero were zero, that is, if fi (0) = 0∀i. In the model above, this case would imply that

wij/w
i
i = 0∀j 6= i. However, these weights (and thus contributions) can be positive even

if fi (0) = 0∀i, if the model is modified in another direction. To be specific, suppose the

pledge xi must be a discrete number, implying that if i wanted to reduce xi, i would

have to reduce xi by the magnitude ∆x > 0, or more. For example, we may require the

pledge to be written with a finite number of decimals. If ∆/∆x is a finite and strictly

positive number, then one can sustain equilibria with strictly positive contributions even if

fi (0) = 0∀i, and even if ∆x → 0, if just ∆→ 0 at the same time, so that ∆/∆x continues

to be a finite and strictly positive number. Appendix B shows that this modification of

the model can permit equilibria with strictly positive contributions, generalizing the main

insight of this paper. These equilibria cannot be formulated as neatly as in Theorems 2

and 3, however. Thus, fi (0) > 0 is assumed for tractability.

5. Relaxing the "additional assumptions:" Section 3.1 made the "additional assump-

tions" that ∂Ui (·) /∂xi < (>) 0 for xi > (<) 0, and ∂Uj (·) /∂xi > 0, j 6= i. These

assumptions are not needed for Theorems 3 and 4, and a generalization of Theorem 2 is

proven in Appendix A without these additional assumptions.

7. Future research

This paper presents a model and an analysis of pledge-and-review bargaining. The

novelty of this bargaining game is that each party proposes how much to contribute

independently —not conditional on what other parties pledge —before the parties agree to

the vector of pledges. If there is some uncertainty regarding what other parties are willing

to accept, for example due to shocks on the short-term discount rate, then contributions

can be larger if there is a substantial variance in these shocks. With standard equilibrium

refinements, each party’s contribution level maximizes an asymmetric Nash bargaining

solution, where the weights on others’payoffs reflect the distribution and correlation of

shocks. Since the weights vary from pledge to pledge, the bargaining outcome is not

Pareto optimal.

The model is simple and can be extended in several directions. Future research should

relax the unanimity requirement, allow for persistent shocks, or study alternative equilib-
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rium refinements that stationarity, for example. On the applied side, the model can be

more tightly connected to the situations where bargaining takes place between business

partners or policymakers, to mention two applications discussed in Section 2.
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APPENDIX A: PROOFS

Proof of Theorem 1

The first part of this proof follows the same steps as the proof of Theorem 2. To economize

on space, the additional steps, required for Theorem 1, are introduced and discussed at the

end of the proof of Theorem 2. ‖

Proof of Theorem 2

As advertised in Section 4, the following generalization of Theorem 2 is here proven

without the additional assumptions ∂Ui (·) /∂xi < (>) 0 for xi > (<) 0, and ∂Uj (·) /∂xi > 0,

∀j 6= i.

Theorem A-2. If x∗ is an SSPE in which Ui (x∗) > 0∀i, then, for every i ∈ N , we have:

(a) if ∂Ui (x∗) /∂xi ≤ 0,

−∂Ui (x
∗) /∂xi

ρiUi (x∗)
≤
∑
j 6=i

max

{
0,
∂Uj (x∗) /∂xi
ρjUj (x∗)

}
fj (0)E (θi,t | θj,t = 0) ; (12)

(b) if ∂Ui (x∗) /∂xi > 0,

∂Ui (x
∗) /∂xi

ρiUi (x∗)
≤
∑
j 6=i

max

{
0,−∂Uj (x∗) /∂xi

ρjUj (x∗)

}
fj (0)E (θi,t | θj,t = 0) .

With the constraint xi ≥ 0∀i ∈ N , and the additional assumptions ∂Ui (·) /∂xi < 0,

∂Uj (·) /∂xi > 0, ∀j ∈ N\i, (12) corresponds to the first-order condition of the right-hand

side of (4).

Proof of part (a): First, note that in any SSPE we must have Ui (x∗) ≥ 0∀i, since

otherwise a party with Ui (x∗) < 0 would always reject x∗ in order to obtain the default

payoff, normalized to zero. I will search for equilibria in which Ui (x∗) > 0∀i.

Consider an equilibrium x∗, satisfying Uj (x∗) > 0∀j. When x∗ is proposed, it will be

accepted with probability 1 since ρj,t ≥ 0. Therefore, i will never offer xi > x∗i when
∂Ui(x

∗)
∂xi

≤ 0, so to check when x∗ is an equilibrium, it is suffi cient to consider a deviation by

i, xi, such that xii < x∗i while x
i
j = x∗j , j 6= i.
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Acceptable offers: Let P (xi;x∗) be the probability that at least one j 6= i rejects xi, and

P−j (xi;x∗) the probability that at least one party other than j and i rejects xi, given an

equilibrium x∗.

Since party j’s discount factor can be written as 1− ρj,t∆ = 1− θj,tρj∆, j 6= i rejects xi

if and only if:

(
1− P−j

(
xi
))
Uj
(
xi
)

+ P−j
(
xi
)

(1− ρj,t∆)Uj (x∗) < (1− ρj,t∆)Uj (x∗)⇐⇒

θj,t < θ̃j
(
xi
)
≡ max

{
0,
Uj (x∗)− Uj (xi)

ρj∆Uj (x∗)

}
. (13)

Note on the derivative: Since we only need to consider xi ≤ x∗i and Uj is a function

concave, Uj (x∗) ≤ Uj (xi) holds if ∂Uj (xi) /∂xi ≤ 0. In this case, j benefits from the

deviation so j accepts xi with probability 1, θ̃j (xi) = 0, and ∂θ̃j (xi) /∂xi = 0. If, instead,

Uj (x∗) > Uj (xi), ∂θ̃j (xi) /∂xi = [−∂Uj (xi) /∂xi] /ρj∆Uj (x∗) < 0. For both cases, it holds

that:
∂θ̃j (xi)

∂xi
= −max

{
0,
∂Uj (xi) /∂xi
ρj∆Uj (x∗)

}
≤ 0.

When the joint pdf of shocks θt = (θ1,t, ..., θn,t) is represented by f (θt), the probability

that every j 6= i accepts xi can be written as follows if every θ̃j (xi) ≤ θj (when dxi is small,

then θ̃j (xi) is proportional to dxi):

1− P
(
xi
)

= G
(
θ̃1

(
xi
)
, ..., θ̃i−1

(
xi
)
, θ̃i+1

(
xi
)
, ...θ̃n

(
xi
))

(14)

≡
∫ θi

0

[∫ θ1

θ̃1(xi)

...

∫ θi−1

θ̃i−1(xi)

∫ θi+1

θ̃i+1(xi)

...

∫ θn

θ̃n(xi)

f (θt) dθ−i,t

]
dθi,

note that the identity defines G as a function of n− 1 thresholds, each given by (13). If we

take the (right) derivative of (14) w.r.t. xii and use the chain rule, we get:

−∂P (xi)

∂xi
=
∑
j 6=i

−max

{
0,
∂Uj (xi) /∂xi
ρj∆Uj (x∗)

}
G′j

(
θ̃1

(
xi
)
, ..., θ̃i−1

(
xi
)
, θ̃i+1

(
xi
)
, ...θ̃n

(
xi
))
.
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So, at the equilibrium, xi = x∗, we have:

∂P (x∗)

∂xi
=
∑
j 6=i

max

{
0,
∂Uj (x∗) /∂xi
ρj∆Uj (x∗)

}
G′j (0) = −

∑
j 6=i

max

{
0,
∂Uj (x∗) /∂xi
ρj∆Uj (x∗)

}
fj (0) ,

where, as written in the text already, fj (0) is defined as the marginal distribution of θj,t at

θj,t = 0.

Equilibrium offers: When proposing xi, party i’s problem is to choose xi ≤ x∗i so as to

maximize (
1− P

(
xi
))
Ui
(
xi
)

+ P
(
xi
) (

1− EθRi,tρi∆
)
Ui (x

∗) , (15)

where EθRi,t is the expected θi,t conditional on being rejected (this will be more precise in eq.

(18)).

To derive a necessary condition for when it is optimal to propose the equilibrium pledge,

x∗i , suppose i considers a small (marginal) reduction in xi relative to x
∗
i , given by dxi =

xii − x∗i < 0. If accepted, this gives i utility

Ui
(
xi
)
≈ Ui (x

∗) + dxi∂Ui (x
∗) /∂xi > Ui (x

∗) , (16)

but xi is rejected with probability

P
(
xi
)
≈ P (x∗) +

∂P (x∗)

∂xi
dxi = 0−

∑
j 6=i

max

{
0,
∂Uj (x∗) /∂xi
ρj∆Uj (x∗)

}
dxifj (0) , (17)

where each of the n−1 terms represents the probability that a θj,t is so small that j rejects if

xi is reduced by dxi, i.e., Pr
(
θj,t ≤ θ̂j

)
for θ̂j ≡

∂Uj(xi)/∂xi
ρj∆Uj(x∗)

|dxi|. Naturally, the probability

that more than one party has such a small θj,t vanishes when |dxi| → 0 since f is assumed

to have no mass point.

If we combine (15), (16), and (17), we find party i’s expected payoff when proposing xii.

This payoff, written on the left-hand side in the following inequality, is smaller than i’s
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payoff if i sticks to the SSPE by proposing x∗i if and only if:(
1 +

∑
j 6=i

max

{
0,
∂Uj (x∗) /∂xi
ρj∆Uj (x∗)

}
fj (0) dxi

)(
Ui (x

∗) + dxi
∂Ui (x

∗)

∂xi

)
(18)

−
∑
j 6=i

max

{
0,
∂Uj (x∗) /∂xi
ρj∆Uj (x∗)

}
dxifj (0)

(
1− E

(
θi,t | θj,t ≤ θ̂j,t

)
ρi∆

)
Ui (x

∗) ≤ Ui (x
∗) ,

where E
(
θi,t | θj,t ≤ θ̂j

)
follows from Bayes’rule:

E
(
θi,t | θj,t ≤ θ̂j

)
≡
∫ θ̂j

0

∫
Θ−j

θi,tf (θt) dθjdΘ−j∫ θ̂j
0

∫
Θ−j

f (θt) dθjdΘ−j
, E (θi,t | θj,t = 0) ≡ lim

dxi↑0

∫ θ̂j
0

∫
Θ−j

θi,tf (θt) dθjdΘ−j∫ θ̂j
0

∫
Θ−j

f (θt) dθjdΘ−j
,

and, as already defined, Θ−j ≡
∏
k 6=j

[
0, θk

]
and θ̂j ≡ ∂Uj(x

∗)/∂xi
ρj∆Uj(x∗)

|dxi| .

When both sides of (18) are divided by |dxi| and dxi ↑ 0, (18) can be rewritten as (12).

The proof of part (b) is analogous and thus omitted.

Remark 1– On the proof of Theorem 1 (Folk theorem): I will now construct strategies

that can support as an SPE any U∗∈fU, where fU is an open set. In this case, if U∗ can

be supported as an SPE, then so can also Ui, where U∗j = kjU
i
j for kj = 1 when j 6= i, and

ki ∈ (0, 1). The idea is that if i deviates, then the parties punish i by switching from U∗ to

Ui. In this situation, i loses from the deviation if and only if (i.e., eq. (18) becomes):

(
1 +

∑
j 6=i

[
max

{
0,
∂Uj (x∗) /∂xi
ρj∆Uj (x∗)

}
fj (0) dxi

])(
Ui (x

∗) + dxi
∂Ui (x

∗)

∂xi

)
−
∑
j 6=i

[
max

{
0,
∂Uj (x∗) /∂xi
ρj∆Uj (x∗)

}
dxifj (0)

(
1− E

(
θi,t | θj,t ≤ θ̂j,t

))]
ρi∆kiUi (x

∗) ≤ Ui (x
∗) .

If ∆ ↓ 0, while dxi 9 0, then P (xi) grows and hits 1, so such a deviation cannot be
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beneficial to i. Suppose, thus, that dxi ↑ 0. The inequality can then be written as:

(−dxi)
(
−∂Ui (x

∗)

∂xi

)
≤

(−dxi)
∑
j 6=i

max

{
0,
∂Uj (x∗) /∂xi
ρj∆Uj (x∗)

}
fj (0)

[
1−

(
1− E

(
θi,t | θj,t ≤ θ̂j,t

)
ρi∆

)
ki

]
Ui (x

∗)⇒

− ∂Ui (x
∗)

∂xi
≤
∑
j 6=i

max

{
0,
∂Uj (x∗) /∂xi
ρjUj (x∗)

}
fj (0)

[
1− ki

∆
+ E

(
θi,t | θj,t ≤ θ̂j,t

)
ρiki

]
Ui (x

∗) .

When ki = 1, as in the proof of Theorem 2, the role of ∆ vanished. With ki ∈ (0, 1), the

right-hand side increases without bounds when ∆ ↓ 0, ensuring that there exists ∆ ∈ (0,∞)

such that the inequality holds for every ∆ ∈ (0,∆] and, in this case, i does not benefit from

the deviation. Note that the conclusion is the same if ρj, instead of ∆, is small.

Since ki > 0, U i
j > 0∀ (i, j) ∈ N2, so deviations from the punishment can be deterred in

the same way.

Remark 2– On suffi ciency and existence: I will now verify the second-order condition

and existence for a special case. Consider Example E with n = 2 and where (θ1,t, θ2,t) is

uniformly distributed on
[
0, θ
]2
. Thus, the marginal distribution of θi,t has density 1/θ.

With (13) and Uj (xi) ≤ Uj (x∗), (14) becomes

1− P
(
xi
)

=
Uj (x∗)− Uj (xi)

θρj∆Uj (x∗)
, so

∂P (xi)

∂xi
=
∂Uj (xi) /∂xi

θρj∆Uj (x∗)
if Uj (x∗) > Uj

(
xi
)
.

Party i’s problem is:

max
xi

Ui
(
xi
)
P
(
xi
)

+
(
1− P

(
xi
)) (

1− E
(
θi,t | θj,t ≤ θ̂j,t

)
ρi∆

)
Ui (x

∗) ,

where E
(
θi,t | θj,t ≤ θ̂j,t

)
= θ/2. The necessary first-order condition for i’s optimal xi is:

∂Ui (x
i)

∂xi
P
(
xi
)

+
∂Uj (xi) /∂xi

θρj∆Uj (x∗)

[
Ui
(
xi
)
−
(

1− θ

2
ρi∆

)
Ui (x

∗)

]
≥ 0, if xi ≥ x∗i ,

∂Ui (x
i)

∂xi
P
(
xi
)

+
∂Uj (xi) /∂xi

θρj∆Uj (x∗)

[
Ui
(
xi
)
−
(

1− θ

2
ρi∆

)
Ui (x

∗)

]
= 0, if xi < x∗i .

Thanks to the constant density θ, the suffi cient second-order condition is that for every
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triple
(
xi, x

∗
i , x
∗
j

)
,

∂2Ui (x
i)

(∂xi)
2 P

(
xi
)

+
∂Ui (x

i)

∂xi

∂Uj (xi) /∂xi

θρj∆Uj (x∗)
+
∂Ui (x

i)

∂xi

∂Uj (xi) /∂xi

θρj∆Uj (x∗)

+
∂2Uj (xi) / (∂xi)

2

θρj∆Uj (x∗)

[
Ui
(
xi
)
−
(

1− θ

2
ρi∆

)
Ui (x

∗)

]
≤ 0,

which holds because all four terms are negative.

In equilibrium, when xi = x∗, the first-order condition becomes:

∂Ui (x
∗)

∂xi
+

1

2

ρi
ρj

Ui (x
∗)

Uj (x∗)

∂Uj (x∗)

∂xi
≥ 0.

For Example E, this condition implies:

xi ≤
1

2

ρi
ρj

xj − x2
i /2

xi − x2
j/2

.

When ρi = ρj, every xi = xj ∈ [0, 1/2] satisfies this condition, as well as the corresponding

first-order condition for j’s optimal xj. This verifies existence. ‖

Proof of Theorem 3

A continuum of x∗’s can satisfy the equilibrium condition in Theorem A-2. To provide

an illustration of this, note that if (12) binds then (12) continues to be satisfied when x∗i is

reduced. The idea of local perfection is to introduce trembles such that equilibrium offers can

be rejected (i.e., P (x∗) > 0) and thus we must check that i cannot benefit from marginally

increasing or decreasing xii from x∗i to reduce P (xi).23 It will now be proven that, with

trembles, i will strictly benefit from dxi > 0 when (4) is strict, and thus it must hold with

equality at x∗.

The vector st is i.i.d. over time according to some cdf, p (·), with is assumed to have a

bounded support and ∂p (0) /∂si,t > 0 on a neighborhood of 0. When j considers whether

to accept Uj (xi + εst), after i has deviated and the vector of pledges is xi, then j faces

the continuation value Vj (x∗) by rejecting, where Vj (x∗) takes into account that x∗ can be

23Above, P (·) was the probability that any j ∈ N\i rejects. For simplicity, I here refer to P (·) as the
probability that anyone (including i) rejects. This simplification is inconsequential when the trembles
vanish, as I assume.

37



rejected in the future (if the future si,t’s are suffi ciently small):

To write the equation for Vj (x∗), note that it is the combination of the si,t’s and the

θj,t’s that determines whether j rejects x∗: let ΦA (x∗) be the set of si,t’s and θj,t’s such

that every j accepts x∗, while ΦR (x∗) is the complementary set.24 We then have P (x∗) =

Pr {(st, θt) ∈ ΦR (x∗)}, where θt = (θ1,t, ..., θn,t), and:

Vj (x∗) = (1− P (x∗))Est:(st,θt)∈ΦA(x∗)Uj (x∗ + εst) (19)

+P (x∗)Vj (x∗)Eθj,t:(st,θt)∈ΦR(x∗) (1− θj,tρj∆) .

The shocks, combined with the option to reject, imply that Vj (x∗) > 0 even if Uj (x∗) = 0,

so there is no longer any need to assume Uj (x∗) > 0∀j.

With this, party j 6= i rejects xi if and only if:

(
1− P−j

(
xi
))
Uj
(
xi + εst

)
+ P−j

(
xi
)

(1− ρj,t∆)Vj (x∗) < (1− ρj,t∆)Vj (x∗)⇔

1− θj,tρj∆ >
Uj (xi + εst)

Vj (x∗)
⇐⇒ θj,t < θ̃j

(
xi
)
≡ Vj (x∗)− Uj (xi + εst)

ρj∆Vj (x∗)
. (20)

Here, θ̃j (xi) is a function of st. To simplify the notation, I assume θ̃j (xi) ∈
(
0, θi

)
for

every st when dxi < 0 is small (when dxi is small, then θ̃j (xi) is proportional to dxi). The

probability that every j 6= i accepts can then be written as:

1− P
(
xi
)

=

∫
st

G
(
θ̃1

(
xi
)
, ..., θ̃i−1

(
xi
)
, θ̃i+1

(
xi
)
, ...θ̃n

(
xi
))
dp (st)

≡
∫
st

∫ θi

0

[∫ θ1

θ̃1(xi)

...

∫ θi−1

θ̃i−1(xi)

∫ θi+1

θ̃i+1(xi)

...

∫ θn

θ̃n(xi)

f (θt) dθ−i,t

]
dθidp (st)⇒

−∂P (xi)

∂xi
= Est

∑
j 6=i

−∂Uj (xi + εst) /∂xi
ρj∆Vj (x∗)

G′j

(
θ̃1

(
xi
)
, ..., θ̃i−1

(
xi
)
, θ̃i+1

(
xi
)
, ...θ̃n

(
xi
))
.

24By referring to (20), below, ΦA (x∗) and ΦR (x∗) are defined as:

ΦA (x∗) =

{
(st, θt) : θj,t ≥

Vj (x∗)− Uj (x∗ + εst)

ρj∆Vj (x∗)
∀j
}
,

ΦR (x∗) =

{
(st, θt) : θj,t <

Vj (x∗)− Uj (x∗ + εst)

ρj∆Vj (x∗)
for at least one j

}
.
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The condition under which i does not benefit from a marginal change dxi < 0 is given

by an equation that is analogous to (18), although we now have to take into account the

trembles:

Est:(st,θt)∈ΦA(xi)

(
1− P (x∗)− ∂P (x∗)

∂xi
dxi

)(
Ui (x

∗ + εst) +
∂Ui (x

∗ + εst)

∂xi
dxi

)
+ (21)

E(st,θt):(st,θt)∈ΦR(xi)

[
P (x∗) +

∑
j 6=i

[
∂Uj (x∗ + εst) /∂xi

ρj∆Vj (x∗)
dxiG

′
j

(
V1 (x∗)− U1 (x∗ + εst)

ρ1∆V1 (x∗)
, ...

)]]

· (1− θi,tρi∆)Vi (x
∗) ≤ Vi (x

∗) .

Since the trembles imply that P (x∗) > 0, i might benefit from reducing this risk and

consider a marginal increase dxi > 0. Party i will not benefit from dxi > 0 if (21) holds

with the reverse inequality sign (≥); the proof for this is analogous to the proof above for

when party i would not benefit from dxi < 0. Consequently, (21) must hold with equality

for no marginal deviation to be beneficial to i. (Note that (21) must hold with equality

regardless of whether Ui (·) would increase when dxi > 0 or when dxi < 0, so, we do not

need to impose the assumptions ∂Ui (·) /∂xj > 0 for j 6= i and < 0 for j = i.)

When we let ε→ 0, so that the trembles vanish, then we can see from (19) and (20) that

P (x∗) → 0 and Vj (x∗) → Uj (x∗). When these limits are substituted into (21), holding

with equality, and we divide both sides by dxi before we let dxi → 0 and εst → 0, then (21)

can be rewritten as:

∂Ui (x
∗)

∂xi
+
∑
j 6=i

∂Uj (x∗) /∂xi
ρj∆Uj (x∗)

fj (0)E (θi,t | θj,t = 0) ρi∆Ui (x
∗) = 0, (22)

which coincides with the first-order condition of

arg max
xi

∏
j∈N

(
Uj
(
xi,x

∗
−i
))wij ,

when
wij
wii

= ρi
ρj
fj (0)E(θi,t | θj,t = 0), ∀j 6= i.

Remark 3– On suffi ciency and existence: Continuing from the same case as in Remark

2, I now add a tremble ε ∼ U [−ε/2, ε/2] on party 1’s pledge, so that when party 1 intends
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to pledge x1, the realized pledge is x1 + ε. In Example E, there is no need to introduce a

tremble on x2 (I explain this fact below). From (20), party 2 rejects with probability:

1− P
(
x1
)

=

∫ ε/2

−ε/2

V2 (x∗)− (x1 + ε− x2
2/2)

εθρ2∆V2 (x∗)
dε, so

∂P (x1)

∂x1

=

∫ ε/2

−ε/2

1

εθρ2∆V2 (x∗)
dε =

1

θρ2∆V2 (x∗)
, (23)

which holds even at x1 = x∗ (and P (x1) < 1 at x1 = x∗) because the distribution of the

tremble has positive support at ε = 0.

When E|ε| → 0, party 1’s problem, first-order condition, and first-order condition at the

equilibrium pledge become:

max
x1
Eε
(
x2 − (x1 + ε)2 /2

)
P
(
x1
)

+
(
1− P

(
x1
))(

1− θ

2
ρ1∆

)
V1 (x∗)⇒

−x1P
(
x1
)

+

[
x2 − x2

1/2−
(

1− θ
2
ρ1∆

)
V1 (x∗)

]
θρ2∆V2 (x∗)

= 0⇒

−x∗1 +
1

2

ρ1

ρ2

x2 − x2
1/2

x1 − x2
2/2

= 0. (24)

Thus, the second-order condition holds.

To derive the first-order condition for x2, note that:

1− P
(
x2
)

=

∫ ε/2

−ε/2

V1 (x∗)−
(
x2 − (x1 + ε)2 /2

)
εθρ1∆V1 (x∗)

dε, so

∂P (x2)

∂x2

=

∫ ε/2

−ε/2

1

εθρ1∆V1 (x∗)
dε =

1

θρ1∆V1 (x∗)
,

which is analogous to (23), even though, now, the tremble is on the opponent’s offer.

Consequently, the first-order condition for x2 becomes analogous to (24). With this, we

have two equations determining (x∗1, x
∗
2). When ρ1 = ρ2, both equations are satisfied at

(x∗1, x
∗
2) = (1/2, 1/2). ‖

Proof of Theorem 4
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With (8), a binding (4) implies:

x∗i = arg max
xi

∏
j∈N

(dj (xj) p (x))w
i
j = arg max

xi
di (xi) p (x)

∑
j w

i
j/w

i
i

= arg max
xi

di (xi)
wii/

∑
j w

i
j p (x) = arg max

xi

∏
j∈N

dj (xj)
wjj/

∑
k w

j
k p (x) , so

x∗= arg max
x

∏
j∈N

dj (xj)
wjj/

∑
k w

j
k p (x) ,

which can be written as (9), given the definitions %i and ω. Given x∗, (9) can be rewritten

as (10). ‖

Proofs of Theorems 5 and 6

These proofs are similar to the ones above, and thus omitted.
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APPENDIX B: P&R Bargaining and Uncertainty

This online appendix builds on the proof of Theorem A-2 to investigate conditions under

which contributions can be positive with P&R bargaining and how the outcome can be

characterized under alternative assumptions. In short, I show that contributions can be

positive even if fj (0) = 0 if instead either ∆→ 0 or if there is a boundary for how small the

reduction in xi might be. For simplicity, I make the additional assumptions that increasing

xi > 0 is costly for i but beneficial for everyone else.

No uncertainty: I start with the basic situation in which there is no uncertainty on the

discount rates. Consider the restriction that xi = ∆x
i ς, where ς can be any positive integer.

That is, if i reduces xi from x∗i , i must reduce xi by at least the amount ∆x
i . For example,

if xi must be described by a real number with at most ϑi decimals, then ∆x
i = 1/10ϑi . I am

especially interested in the limit ∆x
i → 0, so that xi can approximate any real number. If

both ∆x
i → 0 and ∆→ 0, χi ≡ ∆x

i /∆ might be a finite and strictly positive number.

If i deviates by offering xii = x∗i −∆x
i , then j rejects if and only if:

Uj
(
xi
)
< (1− ρj∆)Uj (x∗) .

When ∆x
i is small, this inequality is approximated as:

Uj
(
xi
)

= Uj (x∗)− ∂Uj (x∗)

∂xi
∆x
i < (1− ρj∆)Uj (x∗)⇔

∂Uj (x∗) /∂xi
Uj (x∗)

>
ρj
χi
. (25)

Thus, for x∗ to be an equilibrium, ∂Uj(x
∗)/∂xi

Uj(x∗)
cannot be very small for every j, since then

every j would have accepted a small reduction in xi instead of waiting for x∗. However, the

condition does not rule out that x∗i can be above i’s preferred level: if j anticipates x
∗ � 0,

then j will reject a smaller xi whenever x∗i is so small that
∂Uj(x

∗)/∂xi
Uj(x∗)

is larger than ρj/χi.

Theorem B-1. Consider a situation with no uncertainty. If Ui (x∗) > 0∀i ∈ N , x∗ can

be a part of a nontrivial SSPE if and only if for every i ∈ N , there exists some j 6= i such
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that:

1 <
∂Uj (x∗) /∂xi
ρjUj (x∗)

χi. (26)

Intuitively, with P&R bargaining, i is willing to contribute beyond i’s bliss point if j is

willing to reject a reduction of ∆x
i . The number ∆x

i can be arbitrarily close to zero if also

∆ is close to zero. For any χi ≡ ∆x
i /∆ ∈ (0,∞), the right-hand side of (26) will grow

when the contributions fall since then ∂Uj (x∗) /∂xi grows while Uj (x∗) approaches zero.

For suffi ciently small (but positive) contributions, (26) holds.

Uncertainty under alternative assumptions.– Section 3 assumed ρj,t = θρj,tρj (although

the shock θρj,t was then referred to as θj,t). We might also consider the possibility that j’s

expectation over the lag before the next acceptance stage is ∆j,t = θDj,t∆, where ∆ is the

common mean for this expectation, while θDj,t is a shock with mean 1. This shock might

capture a situation in which the delay or lag before the next proposal stage is unknown

and different parties obtain different subjective beliefs regarding what the lag will be. Simi-

larly, with a stochastic
∂Uθj (x∗)/∂xi

Uθj (x∗)
, suppose we can write

∂Uθj (x∗)/∂xi

Uθj (x∗)
=

∂Uj(x
∗)/∂xi

Uj(x∗)
/θUj,t, where

E
(
1/θUj,t

)
= 1. Here, θUj,t can be interpreted as a shock that influences j marginal utility of

xi, j’s absolute level of utility, or both. All shocks are realized and observed after offers

but before acceptance decisions are made, and all shocks are i.i.d. over time.25 As will be

shown in the proof below, the rejection condition becomes uncertain in the presence of any

of these three shocks (or with two or all three of them): of importance is the product of the

three shocks:

θj,t ≡ θρj,tθ
D
j,tθ

U
j,t.

The θj,t’s are assumed to be jointly distributed according to F , as before. Clearly, the

support of θj,t will include zero as long as zero is included in the support of at least one

of the three shocks. I will say that there is no uncertainty if every θρj,t, θ
D
j,t, and θUj,t is

deterministic.
25Admittedly, the sources of the various shocks are here simply black boxes. A more serious future

investigation should provide a careful micro-foundation for the shocks and relate them to the primitives
of the model as well as to real-world evidence.
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The condition under which j rejects, (25), can now be written as:

θj,t ≡ θρj,tθ
D
j,tθ

U
j,t < θ̃j

(
xi
)
≡ ∂Uj (x∗) /∂xi

ρjUj (x∗)
χi, (27)

replacing (13). With this definition of θ̃j (xi), we can define the cdf G just as in (14). This

G, which is the probability that (27) fails for every j (i.e., everyone accepts the deviation

xi), is clearly a function of ∆x
i . Write this function as Gi,x∗ (∆x

i ).

As in the proof of Theorem A-1, i seeks to maximize (15). For x∗ to be part of an SSPE,

i cannot benefit from proposing marginally less. Party i does not benefit from offering the

marginal amount ∆x
i less if and only if:

E [Ui (x
∗)− (∂Ui (x

∗) /∂xi) ∆x
i ]Gi,x∗ (∆x

i ) + (1−Gi,x∗ (∆x
i ))Ui (x

∗) (1− ρi,t∆i,t)

< EUi (x∗)⇔(
−∂Ui (x

∗) /∂xi
Ui (x∗) ρi

)
χi ≤

1−Gi,x∗ (∆x
i )

Gi,x∗ (∆x
i )

. (28)

The right-hand side of (28) is a positive number when χi > 0 as long as it is possible that θj,t

is small enough to satisfy (27) for some j 6= i. When all contributions fall, the right-hand

side of (27) increases and approaches infinity when Uj (x∗) → 0, so naturally (27) will be

satisfied before all contributions are zero.

Theorem B-2. Consider a situation with uncertainty and a nontrivial SSPE in which

Ui (x
∗) > 0∀i. For every i ∈ N , (28) holds.

As in Section 4.4 and Theorem 3, we can impose trembling-hand perfection to show that

the inequality in (28) must bind in a locally perfect SSPE.

Theorem B-2 limits how large the contributions can be. However, strictly positive contri-

butions can be supported in equilibrium for the same reason as in Section 4: Any deviation

by i may be rejected by one of the opponents with a suffi ciently large probability. As above,

∆i,t can be arbitrarily small if also ∆ is small. Intuitively, if the contributions and payoffs

are small, it doesn’t take much for a party to reject an offer if the party, in return, can
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expect a marginally better offer quite soon. Thus, the threshold θ̃j is strictly positive and it

does not approach zero even if ∆x
i → 0, if just χi ≡ ∆x

i /∆ > 0. On the contrary, if χi > 0,

θ̃j grows without bounds when contributions and payoffs become small.

These results prove that the qualitative result of Section 4– that P&R bargaining can

lead to positive contributions– does not hinge on the assumption that the discount rate can

be arbitrarily close to zero. However, the assumptions in Section 3 are helpful because the

outcome simplifies and it can be related to the asymmetric NBS in a way that is not possible

under the alternative assumptions considered here.

To see this, the proof below shows that a second-order Taylor expansion of the right-hand

side of (28) implies:

−∂Ui (x
∗) /∂xi

Ui (x∗) ρi
≤
∑
j 6=i

fj (0)
∂Uj (x∗) /∂xi
ρjUj (x∗)

+
χi
2

∑
j 6=i

∑
k 6=i

∂fj (0)

∂θ̃k

(
∂Uj (x∗) /∂xi
ρjUj (x∗)

)(
∂Uk (x∗) /∂xi
ρkUk (x∗)

)

+ χi

(∑
j 6=i

∂fj (0)

∂θ̃j

∂Uj (x∗) /∂xi/

ρjUj (x∗)

)2

.

If χi → 0, the last two terms are zero and we are left with the same condition as in

Theorem A-1(a). If instead fj (0) → 0, the first term on the right-hand side is zero. The

second term is zero if shocks are uncorrelated, and, in that case, we are left with the final

term. The inequality can then be written as:

−∂Ui (x
∗) /∂xi

Ui (x∗) ρi
≤ χi

(∑
j 6=i

∂fj (0)

∂θ̃j

∂Uj (x∗) /∂xi/

ρjUj (x∗)

)2

.

Here, the right-hand side is positive (and positive contributions can be supported) even if

fj (0) = 0 if just ∂fj (0) /∂θ̃j > 0. The fact that the term on the right-hand side is quadratic

implies that the outcome cannot easily be related to the asymmetric NBS.

Corollary B-1. Consider Example E with parameters, Ui (x) = α
∑

j 6=i xj − βx2
i /2, and

symmetric χi = χ.

(i) Suppose there is no uncertainty. Symmetric positive contributions x∗i can be a part of a
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nontrivial SSPE if and only if:

x∗i ∈
(

0,
α (n− 1)

β
− α

β

√
(n− 1)2 − 2βχ/αρ

)
.

(ii) Suppose there is uncertainty and χ→ 0. If x∗i > 0 is a part of a symmetric nontrivial

SSPE in which Ui (x∗) > 0∀i, then:

x∗i ≤ (n− 1)
α

β
f θ (0) .

(iii) Suppose there is uncertainty, shocks are uncorrelated, and fj (0) → 0∀j. If x∗i > 0 is

part of a symmetric nontrivial SSPE in which Ui (x∗) > 0∀i, then the second-order Taylor

approximation of (28) implies:

x∗i ≤ (n− 1)
∂fj (0)

∂θj

χα2

2βρ

The comparative static w.r.t. the mean discount rates, for example, is the same as in

Section 4. The above inequalities also give a new comparative static: If χ is larger (so that

the time lag ∆ goes to zero very fast relative to how finely one can set xi), then the upper

boundary for the thresholds is larger.

Part (ii) suggests that Theorem 2 may continue to hold if χ → 0 (as in the main text)

when fj (0) > 0, even if the shock θj,t can be derived from the alternative sources, as defined

in (27). The proof below confirms this to be the case.

Corollary B-2. Suppose χ → 0 and fj (0) > 0∀j ∈ N. Theorems 2, 3, and 4 continue to

hold with θj,t defined by (27).
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Proofs of Theorem B-2, Corollary B-1, and Corollary B-2

From (14) we can define:

G′i,x∗ ≡
dGi,x∗ (0)

d∆x
i

=
∑
j 6=i

∂G (0)

∂θ̃j

∂Uj (x∗) /∂xi
ρj∆Uj (x∗)

, and (29)

G′′i,x∗ ≡
d2Gi,x∗ (0)

(d∆x
i )

2 =
∑
j 6=i

∂G (0)

∂θ̃j

∂2Uj (x∗) / (∂xi)
2

ρj∆Uj (x∗)

+
∑
j 6=i

∑
k 6=i

∂2G (0)

∂θ̃j∂θ̃k

(
∂Uj (x∗) /∂xi
ρj∆Uj (x∗)

)(
∂Uk (x∗) /∂xi
ρk∆Uk (x∗)

)
.

Consider a second-order Taylor expansion of the right-hand side of (28), 1−G
G
. To derive

this, note that:

d

d∆x
i

(
1−G
G

)
=
−G′G− (1−G)G′

G2
=
−G′
G2

, and

d2

(d∆x
i )

2

(
1−G
G

)
=
−G′′G2 + 2G′G′G

G4
=
−G′′ + 2G′G′/G

G2
.

Therefore, the second-order Taylor expansion of the right-hand side of (28) is given by:

1−Gi,x∗ (∆x
i )

Gi,x∗ (∆x
i )

≈ 1−Gi,x∗ (0)

Gi,x∗ (0)
+
−G′i,x∗

(Gi,x∗ (0))2 ∆x
i +

(∆x
i )

2

2

(
−G′′i,x∗ + 2

(
G′i,x∗

)2
/Gi,x∗ (0)

(Gi,x∗ (0))2

)
.

The first term is zero since Gi,x∗ (0) = 1. If we substitute in for G′i,x∗ and G
′′
i,x∗ using (29),

we get:

1−Gi,x∗ (∆x
i )

Gi,x∗ (∆x
i )

≈ −∆x
i

∑
j 6=i

∂G (0)

∂θ̃j

E (∂Uj (x∗) /∂xi) /Uj (x∗)

ρj∆
(30)

− (∆x
i )

2

2

∑
j 6=i

∂G (0)

∂θ̃j

E
(
∂2Uj (x∗) / (∂xi)

2) /Uj (x∗)

ρj∆

− (∆x
i )

2

2

∑
j 6=i

∑
k 6=i

∂2G (0)

∂θ̃j∂θ̃k

(
E (∂Uj (x∗) /∂xi) /Uj (x∗)

ρj∆

)(
E (∂Uk (x∗) /∂xi) /Uk (x∗)

ρk∆

)

+ (∆x
i )

2

(∑
j 6=i

∂G (0)

∂θ̃j

E (∂Uj (x∗) /∂xi) /Uj (x∗)

ρj∆

)2

.

Note that the second term is zero when ∆x
i → 0, even if ∆x

i /∆→ χi > 0.
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If ∆x
i /∆ → 0, the third and fourth terms in (30) also become zero, so we are left with

only the first term. When this term is substituted into (28), we arrive at

−∂Ui (x
∗) /∂xi

Ui (x∗) ρi
≤
∑
j 6=i

(
−∂G (0)

∂θ̃j

)
E (∂Uj (x∗) /∂xi) /Uj (x∗)

ρj
,

which is the same condition as in Theorem A-2(a) since −∂G(0)

∂θ̃j
= fj (0). This implies

that Theorem 2 continues to hold in this case, as claimed by Corollary B-2. The fact

that Theorems 3 and 4 hold, as well, follows because the proofs of Theorems 3 and 4 are

unchanged even though the definition of θj,t is changed. The proof of Corollary B-1, part

(ii), follows straightforwardly.

If instead −∂G(0)

∂θ̃j
= fj (0) ≈ 0, so that the density of the shocks on θ̃j is zero when θ̃j → 0,

then the first and fourth terms in (30) become zero, and we are left with only the third term.

When we substitute this term into (28), and divide both sides by ∆x
i

∆
, (28) becomes:

−∂Ui (x
∗) /∂xi

Ui (x∗) ρi
≤ χi

2

∑
j 6=i

∑
k 6=i

(
−∂

2G (0)

∂θ̃j∂θ̃k

)(
∂Uj (x∗) /∂xi
ρjUj (x∗)

)(
∂Uk (x∗) /∂xi
ρkUk (x∗)

)
,

where −∂2G(0)

∂θ̃j∂θ̃k
=

∂fj(0)

∂θk
. If the shocks are not correlated, ∂fj(0)

∂θk
= 0 when k 6= j, and this

inequality simplifies to:

−∂Ui (x
∗) /∂xi

Ui (x∗) ρi
≤
∑
j 6=i

f ′j (0)

(
E (∂Uj (x∗) /∂xi) /Uj (x∗)

ρj

)2
χi
2
,

where the right-hand side is positive when some fj (θj) is strictly convex at θj = 0. When

this inequality is combined with Ui (x) = α
∑

j 6=i xj−βx2
i /2, it can be rewritten to Corollary

B-1. ‖
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