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Abstract

Since 1980, there has been a steady increase in earnings inequality alongside rapid
technological growth in the U.S. economy. To what extent does technological change
explain the observed increase in earnings dispersion? How does it affect the optimal
progressivity of the tax system? To answer these questions, we develop an incomplete
markets model with occupational choice. We estimate an aggregate production func-
tion with capital-occupation complementarity and four occupations that differ with
respect to cognitive complexity and routine task intensity. We calibrate our model
to resemble the U.S. economy in 1980 and find that technological transformation can
fully account for the increase in earnings dispersion between 1980 and 2015. The
main driver is the rising relative wage of non-routine cognitive occupations, which
benefit the most from complementarity with capital. Although technological growth
is associated with higher earnings inequality, it leads to a significant drop in optimal
tax progressivity. Lower progressivity leads to an inflow of workers into higher-paid
occupations. This increases output but also raises the wages of the occupations at the
bottom of the wage distribution, dampening the redistributive gains from progressive
taxation.
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1 Introduction

Earnings inequality in the U.S. has increased steadily since 1980, see Figure 1 (left panel).
What accounts for the large increase in inequality, and what are the policy implications?
There is a heated debate about these questions among academics, policymakers, and the
public press. A common view, and perhaps conventional wisdom, is that one should
meet increased inequality with higher and more progressive taxes.

Alongside the increase in inequality, there has also been technological progress. The
right panel of Figure 1 displays a rapid fall in the relative price of equipment invest-
ment goods, which can be viewed as reflecting Investment-Specific Technological Change
(ISTC) such as cheaper access to computing power and storage (Krusell et al., 2000;
Karabarbounis and Neiman, 2014). In this paper, we answer the following questions: (i)
to what extent does technological change explain the observed increase in earnings in-
equality? (ii) how does it affect the optimal progressivity of the tax and transfer system?

The literature on technological change and the labor market has emphasized task
specificity and the degree to which workers’ tasks are complementary to capital as cru-
cial determinants of wages. Autor et al. (2003) introduce a framework where occupations
differ in terms of the nature of the tasks that are being performed. There are four main
categories of tasks: Non-routine cognitive (NRC), non-routine manual (NRM), routine
cognitive (RC) and routine manual (RM). To study the evolution of inequality and the
implications for optimal tax policy, we adopt this categorization and develop an incom-
plete markets, heterogeneous agent model with technological change and occupational
choice.

Our first contribution is to expand on the seminal paper by Krusell et al. (2000) by
specifying and estimating an aggregate production function with labor inputs based on
occupation categories rather than the education levels of the workforce. We provide
novel estimates for the elasticities of substitution between structures, equipment capital,
and these four occupation categories, which have been extensively used in the literature
that studies the impact of technological change on labor markets.

Second, and more importantly, we are the first to explain the increase in earnings
inequality in the U.S. in a framework with technological growth by estimating a pro-
duction function with capital-skill complementarity. The previous literature focused on
the education skill premium or the labor share of earnings, using representative agent

frameworks®. We can both explain the changes in wage premia between our four occu-

'In fact Figure 1 shows a steady increase since 1970. However, our paper will, for the most part, focus
on the period from 1980 to 2015 due to the limited availability of other data before 198o.
2Krusell et al. (2000) show how capital-skill complementarity can explain the evolution of the college
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Figure 1: Inequality and ISTC.

pation groups and the increase in earnings inequality, measured as the variance of log
earnings, between 1980 and 20153.

Our third contribution is to investigate the quantitative implications of technologi-
cal change for optimal tax progressivity in our framework with occupational choice. It
is well known that optimal progressive taxation usually comes down to a trade-off be-
tween redistribution and insurance on the one hand and efficiency on the other and that
introducing margins such as human capital or capital production externalities tilts this
trade-off in favor of efficiency. But how strong are these effects? We take a more quanti-
tative approach to this question than the previous literature. We first estimate the aggre-
gate production technology and then study optimal progressivity in our model, which
has both human capital (through occupational choice) and a production externality from
physical capital (through capital-occupation complementarity), and which furthermore
succeeds at explaining the increase in U.S. earnings inequality over time. We show that

wage premium, but they do not study other measures of inequality. Eden and Gaggl (2018) focus on the
evolution of the labor share and the routine v.s. non-routine labor share. Finally, Vom Lehn (2020) stud-
ies the relative wages of three types of workers as opposed to our four. Using a nested CES production
function, where capital equipment is directly substitutable with routine workers only, and a different cali-
bration strategy, he concludes that technological change cannot account for the labor market polarization
in wages.

3Neither the wage premia nor earnings inequality is targeted by the production function estimation
procedure. Explaining them depends on the endogenous savings and labor supply responses of the agents
in our model after treating it with the changes in the price of equipment and the levels of technology
between 1980 and 2015.



the technological transformation between 1980 and 2015, particularly ISTC, calls for a
significant drop in tax progressivity.

Our model is, in some respects, a standard life-cycle model with incomplete markets
and idiosyncratic risk. On the household side, it is, however, distinguished by a once
and forever choice between our four occupations at the beginning of work-lifet. Agents
make their choice based on an idiosyncratic cost of acquiring the necessary skills and on
the expected lifetime utility from consumption and work effort in each profession.

A major departure from previous literature and of crucial importance for the quanti-
tative results of the paper lies in the aggregate production function we use. Our produc-
tion function has six inputs: four occupations, capital equipment and capital structures.
There are three sources of technological growth: ISTC, latent occupation-biased techno-
logical change (LAT) and TFP growth. To quantify the labor inputs in each occupation,
we apply the cross-walk classification table developed by Cortes et al. (2020) to map tasks
into occupation codes. The extent to which labor demand and wages in each of these
occupation categories will affect the wage distribution is determined by their respective
roles in the production function, by latent occupation-biased technological change, and,
in particular, by their complementarity with capital equipment. The effect of a fall in the
price of equipment investment goods (ISTC) is to spur capital accumulation and create
increased demand for workers in occupations with tasks that are more complementary
to capital relative to those that are less so. Since there are barriers to mobility between
occupations and different entry costs, the rise in labor demand for some occupations
creates a wage premium relative to workers in other occupations.

We parameterize the model in two steps. First, we use the firms’ first order condi-
tions and a no-arbitrage condition, which restricts the net return of equipment to be the
same as of structures, to estimate the production function. We use a simulated pseudo
maximum likelihood (SPML) approach, as proposed in Ohanian et al. (1997) and Krusell
et al. (2000), that implicitly targets the wage bill ratios of the NRC, NRM and NRM occu-
pations to the RM occupation from 1968 to 2015. Our estimates deliver not only a good
tit to the targeted moments but also a good fit to two non-targeted data moments: the
wage premia of each of the three occupations, NRC, NRM and NRM, relative to the RM
occupation® and the growth rate of total factor productivity from 1968 to 2015. Second,
we insert the estimated production function into our incomplete markets model, and we

calibrate the remaining parameters to resemble the U.S. economy in 1980.

4Some workers do of course retrain; however, Cortes et al. (2020) provide evidence of the fall in routine
employment in the U.S. being primarily caused by declining inflow rates among younger workers.

5This is using quantities of labor and capital from the data. It will also turn out to work in our model
with endogenous savings and labor supply decisions.



Inserting the growth of ISTC, LAT and TFP, we find that technological change (in par-
ticular ISTC) can fully account for the changes in wage premia and increase in earnings
inequality between 1980 and 2015°. Neither the wage premia nor earnings inequality is
targeted by the production function estimation procedure, and explaining them is de-
pendent on the endogenous savings and labor supply responses of the agents in our
model after treating it with the changes in the price of equipment (ISTC) and the levels
of LAT and TFP between 1980 and 2015. The main driver of the increase in earnings
inequality is the rising relative wage of non-routine cognitive occupations, which bene-
fit the most from complementarity with capital. Thus, investment-specific technological
change stands as a major engine behind the growth of earnings dispersion. ISTC alone
accounts for about 2/3 of the increase in earnings dispersion, and latent occupation-
biased technological change accounts for the remaining 1/3.

Our optimal tax experiment is to maximize the expected steady-state welfare of an
unborn individual with respect to the progressivity and level of the labor income tax
code, taking government expenditure and other taxes as exogenously given?. We then
study the interaction between optimal tax progressivity and our three sources of tech-
nological growth, and we use the framework of Flodén (2001) (see also Benabou (2002)
for a similar approach) to decompose the welfare effects of progressive taxation into the
contributions resulting from its impact on efficiency, redistribution and insurance.

We apply a non-linear tax function as in Benabou (2002) and Heathcote et al. (2017),
Yo = 1— Goy_el, where y, denotes after-tax income and 6y and 6; define the level and
progressivity of the tax system, respectively. For 1980, we find the optimal value of our
measure of tax progressivity, 01, to be 0.15 (close to the estimated benchmark value of
0.19), whereas, in 2015, a value of 0.05 is optimals. To give an interpretation in terms
of actual tax rates: The average tax rate for an individual with Average Earnings (AE)
is 15% both with 6; = 0.15 and 6; = 0.05. The average tax rates for two individuals
making 0.5AE and 2AE are, however, 5.7% and 23.4% with 68; = 0.15 and 12.0% and
17.9% with 61 = 0.05. The main mechanisms driving this result are the high productivity

of NRC professions in 2015, the positive effect of shifting workers to NRC occupations

®This finding is consistent with Barro (2000) who finds that across rich counties, inequality and eco-
nomic growth are correlated.

7This is the classic tax experiment in the literature on incomplete market models with heterogeneous
agents. The recent literature also studies transitions, but given the complexity of our model relative to this
literature (we do, for example, have to solve for five prices in equilibrium), we are restricted to studying
steady states for now. Recent contributions to the optimal taxation literature in macroeconomics with
transitions such as Boar and Midrigan (2022), Ferriere et al. (2022) work with the standard Aiyagari (1994)
model.

8Indeed, there is evidence of some reduction in tax progressivity in the U.S. since 1980. Wu (2021)
finds that this measure of progressivity has fallen from 0.19 to 0.14 between 1980 and 2015.
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on the wages of lower-paid occupations, and the higher returns to wealth with the 2015-
technology?. Reducing tax progressivity shifts workers towards higher-paying occupa-
tions'®, which raises output as well as the wages in lower-paying occupations, but also
reduces the benefits of redistribution and insurance from the tax system. This tradeoff is,
however, tilted towards flatter taxes with the technological transformation between 1980
and 2015.

Among our three sources of technological growth, ISTC is solely responsible for the
drop in optimal tax progressivity (LAT and TFP growth pulls in the other direction).
From the perspective of the social planner, all three welfare impacts of progressive tax-
ation (efficiency, redistribution and insurance) are tilted towards lower optimal progres-
sivity with higher ISTC. First, the efficiency channel is stronger because there is more
capital and stronger complementarity with high-earning professions. The benefit from
lowering the marginal tax rates on high earners and getting people to select NRC profes-
sions is thus higher. Second, although there is more earnings inequality in 2015, which
creates additional incentives for redistribution, more agents moving from low-earning
to high-earning occupations increases the wage rates of low earners and decreases the
wage rates of high earners. The positive effects that people moving to high-earning oc-
cupations have on the wages of low-earning occupations dampens the redistributional
loss from flatter taxes. Finally, ISTC is responsible for the increased returns on capital in
2015, which dampens the insurance motive. A higher return on capital makes it easier
to self-insure and weakens the insurance role of a progressive tax system.

The rest of the paper is organized as follows. Section 2 contains a brief survey of the
related literature. In Section 3, we describe the model. In Section 4, we estimate our
aggregate production function. Section 5 is devoted to calibrating our model. In Section
6, we present our quantitative results on inequality and optimal taxation. We conclude

in Section 7.

2 Relation to the Literature

This paper relates to two main strands of literature. First, the literature investigating the
impact of technological change on wages and inequality and, second, the literature on

optimal Ramsey taxation in incomplete markets models with heterogeneous agents.

9See Jorda et al. (2019) for evidence of higher return rates on wealth in the U.S. Moll et al. (2019) also
argue that technological growth raises the return on wealth.

Without occupational choice there is only a slight drop in optimal progressivity between 1980 and
2015, see Section G of the Online Appendix



Our work builds on the classic paper by Krusell et al. (2000). We expand their frame-
work by specifying and estimating an aggregate production function with labor inputs
based on occupations rather than the education levels of the workforce. Krusell et al.
(2000) document the impact of skill-biased technological change and capital-skill comple-
mentarity on the skill premium (i.e., the college premium) and can explain its evolution
over time using this mechanism. Their approach is, however, a purely production-side
approach with two types of labor (high-skilled and low-skilled). They do not model
households” endogenous savings and labor supply decisions, and they do not study
other inequality measures, such as the variance of earnings. Using our framework with
four types of labor but also rich agent heterogeneity in the forms of income risk, age,
savings and permanent ability, we can both explain the changes in skill premia between
our four occupation groups as well as the increase in earnings inequality in the U.S.,
measured as the variance of log earnings between 1980 and 2015. This result depends on
our estimation of the production function and the endogenous savings and labor supply
decisions of the agents in our model in response to the changes in the price of equipment
(ISTC) and the levels of LAT and TFP.

Instead of dividing the population by education level, Autor et al. (2003) argues that
the most empirically relevant interaction between technology and worker productivity
comes from the types of tasks a worker performs (although these are correlated with
education). They study the effect of computerization on changes in employment by
occupation categories and posit that some occupations have a prevalence of tasks that
can easily be automated and solved by machines (routine tasks). In contrast, others
involve complex problem-solving and interactions (so-called non-routine tasks) which
are very costly or impossible to automate. The other key distinction of tasks is whether
they are cognitive or manual. We adopt the occupation taxonomy of Autor et al. (2003)
and use the cross-walk classification table developed by Cortes et al. (2020) to map tasks
into occupation codes to calculate equilibrium quantities of labor input by occupation
category''.

There is a growing literature classifying labor inputs by tasks and studying the inter-
action with automation technologies. Eden and Gaggl (2018) also estimate an aggregate
production function for the U.S. using the routine/non-routine paradigm and investi-
gate the welfare implications of investment-specific technological change for the welfare
of a representative agent. Our work instead uses the four task dimensions postulated by
Autor et al. (2003). Also, it allows for labor-augmenting technological change at the occu-

See Online Appendix A for additional details on data treatment. We use these data to construct time
series on employment and wages by occupation category. To calculate wage premia, we use the method
of Krusell et al. (2000), as described in Online Appendix B.
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pation level, which will be important for our findings below showing that workers at the
bottom of the wage distribution have enjoyed wage growth relative to the center of the
distribution as a result of technological change. Vom Lehn (2020) maps tasks into three
labor types and proposes an aggregate function that is closer, but still quite different'?,
from our aggregate production function specification. In contrast to our results, he finds
that his calibrated model cannot reproduce the job market polarization in wages. The
difference between his findings and ours possibly stems from the different production
function specifications, the calibration procedures or the different classifications of labor
inputs. Other papers using a task-based framework to study the impact of technologi-
cal growth on inequality include Acemoglu and Autor (2011), Acemoglu and Restrepo
(2018), Moll et al. (2019), Kaplan and Zoch (2020). We do not follow some of these
studies in modeling tasks explicitly. We thus forego a more detailed characterization of
the production process in favor of the ability to measure the inputs in production more
accurately, enabling the estimation of the production technology in Section 4 below.

This paper is also related to the literature on optimal progressive Ramsey taxation in
incomplete markets models with heterogeneous agents. Due to the complexity of our
model we focus on maximizing steady state welfare, as in Conesa and Krueger (2006),
Conesa et al. (2009), Peterman (2016), Heathcote et al. (2017) Heathcote et al. (2020),
Wu (2021). In the same tradition, there is also a recent sizeable literature considering
transitions after once and forever tax changes, see e.g. Bakis et al. (2015), Kindermann
and Krueger (2022), Boar and Midrigan (2022), Ferriere et al. (2022) and a much smaller
literature studying optimal dynamic taxation during a transition, see e.g. Acikgoz et al.
(2022), Dyrda and Pedroni (2021). All these papers with transitions do, however, have
in common that they work with the classical Aiyagari (1994) model. Our contribution is
to quantify the impact of technological change and human capital (through occupational
choice) on optimal tax progressivity. These are two factors of crucial importance to
inequality as well as the trade-offs between efficiency, redistribution and insurance that
one must consider when designing optimal tax systems.

Some recent studies have raised the question of how the tax system should respond
to increasing inequality caused by various sources. Closest to ours are Wu (2021) and
Heathcote et al. (2020). Wu (2021) considers an ageing population, shrinking gender
wage gap, increased idiosyncratic risk, and increased skill premium (modeled with a pa-
rameter governing the returns to human capital investment). In total, these changes lead
to a slight drop in optimal tax progressivity. The effect of an increase in the skill premium

In his production function, abstract and manual labor inputs are substitutes or complement to a
bundle composed of routine labor input and capital equipment. In contrast, in our framework, NRC,
NRM and RC all have a constant elasticity of substitution with capital equipment directly.



(he captures it with a parameter governing the returns to human capital investments) on
optimal progressivity is, however, almost neutral. Heathcote et al. (2020) study the im-
pact of technological change on optimal progressivity in an incomplete markets model
with skill choice. They also find that skill-biased occupational choice is almost neutral
concerning optimal tax progressivity. However, their focus is on college education and
skill-biased technological change, and there is no role for capital in production. Our
paper takes an occupation-based approach and focuses on the role of capital-occupation
complementarity. In contrast to these two studies, we find a striking drop in optimal tax
progressivity due to ISTC.

Related to our work is also Ales et al. (2015) who study Mirrlesian taxation in a talent
assignment model in a static model without capital but with technical change. They find
that technical change should lead to a slightly more progressive tax system. Scheuer and
Werning (2015) study the impact of superstars on optimal Mirrlesian taxation. They find
the impact of superstars on the optimal tax system to be neutral. Guerreiro et al. (2022),
study optimal capital taxation in a less quantitative model than ours but with the possi-
bility of automation of tasks and endogenous choice between two skills/occupations’.
In their model, which has fewer state variables than ours, it is possible to study transi-
tional dynamics. They find that one should tax robots in the short run but not in the
long run, even if it leads to higher inequality. Our contribution is distinct from theirs in
that we take the model to data and look at the implications of the changes in the price
of equipment and technology that has taken place over time for optimal taxation. We
also broaden the analysis to include the cognitive/manual dimensions of tasks, and we
include idiosyncratic income risk (adding an insurance motive to the optimal taxation
problem).

Finally, our paper which has human capital investments modeled as occupational
choice relates to the literature studying the impact of human capital investments on
inequality and the interaction with government policy, such as Huggett et al. (2011),
Guvenen et al. (2014), Holter (2015), Herrington (2015), Badel and Huggett (2017). In
our case, like in most of the literature, we find that reduced tax progressivity leads to
higher inequality; however, this is not necessarily negative as long as most households
(including the bottom earners) become richer.

BLike us they assume that older generations cannot change occupations. This is in line with the
evidence provided by Cortes et al. (2020), who argue that the fall in routine employment in the U.S. has
been primarily caused by declining inflow rates among younger workers.
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3 A Model of Labor Market Inequality and Technological
Change

Our model is a life-cycle version of the Bewley-Aiyagari-Hugget model:'4 An incomplete
markets economy with overlapping generations of heterogeneous agents and partially
uninsurable idiosyncratic risk that generates both an income and a wealth distribution.
Households derive utility from consumption and leisure.

Before entering the labor market, households choose their occupation type based on
an idiosyncratic cost of acquiring the necessary skills to perform it. For tractability, we
assume that this decision is irreversible and mutually exclusive and determines from
which labor market the household will draw its wage throughout its lifetime."> After
labor market entry, households face a stream of idiosyncratic wage shocks and make
joint decisions about consumption, savings and hours worked.

For the production side of the economy, we draw heavily on the modeling strategy of
Krusell et al. (2000) and Karabarbounis and Neiman (2014). There are three final goods
sectors in the economy: the consumption goods, structure capital goods, and equipment
capital goods sectors. This formulation allows us to express the price of equipment
goods as a function of the level of technology in that sector relative to the consumer
goods sector, which is the formulation that Krusell et al. (2000) adopts to incorporate
investment-specific technological change.

The centerpiece of the model is the production function for the intermediate input,
which uses a combination of the different occupation and capital types to produce final
goods. We build on the production function introduced by Greenwood et al. (1997) and
extend it to encompass four labor varieties: Non-routine cognitive, non-routine manual,
routine cognitive, and routine manual.

Technological progress, in the form of total factor productivity growth, occupation-
biased technological change, and investment-specific technological change, affects the
capital and labor demand and occupation wage premia. This framework creates a rich
interaction between capital accumulation, technological change, and the wages of dif-
ferent occupations and allows us to map the dynamics of these variables into earnings
inequality measures.

One key mechanism driving wage inequality in this economy is investment-specific

™See Bewley (2000), Aiyagari (1994), and Hugget (1993).

5Cortes et al. (2020) provide evidence of the main driver of the decline in routine employment being a
reduction in inflow rates rather than an increase in outflow rates. This is consistent with our assumption
of an inability to change occupation type in the middle of working life, despite changing wage premia in
other occupation types.



technological change: As equipment prices fall, firms substitute routine manual labor for
equipment capital and other types of labor more complementary to capital. Shifting de-
mand for different labor varieties coupled with limited labor mobility produces changes
in wage premia over time.

Below, we describe the household problem, the production side of the economy, and
the definition of equilibrium in more detail.

3.1 Demographics

We assume the economy is populated by a set of | = 81 overlapping generations, as in
Brinca et al. (2016). A period in the model corresponds to one year, and households begin
life at age 20. Thus, j, the household’s age, varies between o (for age 20 households) and
8o (for age 100 households).

Before joining the labor market, agents must make an irreversible and mutually exclu-
sive occupation choice, deciding which labor market will determine their wages through-
out their lives. Thus, a household i draws idiosyncratic utility, x;,, from acquiring the
necessary skills to join occupation type 0 € O = {NRC,NRM, RC,RM}. This term can
be viewed as the personal cost (or benefit, if positive) of acquiring skills to perform the
tasks associated with a given occupation type, such as the effort (or joy) from studying
in the case of cognitive occupations, for example.

We assume that «;, follows a type 1 extreme value distribution, H,, with location
parameter py, and scale parameter oy, in the tradition of discrete choice modeling of
McFadden (1973)."® Households choose the occupation where total utility is highest:

Vio = Kip + Vo, (1)

where V, is the expected discounted lifetime utility from choosing occupation type o,
ki, is the idiosyncratic utility draw for occupation o. Assuming oy, = 1, Vo € O, this
formulation allows us to write the probability of choosing an occupation o before «;, is

known as:
e,”o"‘vo

B Yico et Vi’

As a result, equation 2 is also the closed-form expression for the employment share of

Po (2)

occupation 0.7 Other than occupation, households differ in the value of their persistent,

16Concretely, this formulation is the same as that used for unordered multinomial models where dis-
crete choices are modeled as outcomes from an additive random utility model. See Cameron and Trivedi
(2005) for a detailed exposition.

7To find V, for each occupation, we calibrate and solve a version of the model where occupations
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idiosyncratic productivity shock, ujj, permanent ability, a;, and asset holdings, bi]'. Work-
ing age agents have to choose how much to work, nij, how much to consume, Cijs and
how much to save, b;j 1, to maximize utility.

After retiring at age 65 (model age 45), households face an age-dependent probability
of dying, 7t(j), dying with certainty at age 100. s; = 1 — 7; defines the age-dependent
probability of surviving, so that in any given period, using a law of large numbers, the
mass of retired agents of model-age j > 45 is equal to §; = Hijﬁ S¢—1-

Dying households leave bequests which are redistributed evenly in a lump-sum man-
ner between the households that are currently alive, denoted by I'. We include a bequest
motive in this framework to make sure that the age distribution of wealth is empirically
plausible, as in Brinca et al. (2021).

Retired households make consumption and saving decisions and receive a retirement
benefit, ¥(a;). For simplicity, we assume that the public retirement benefit is constant
until the agent’s death and is equal to a fraction, s, of the average earnings of an agent
with permanent ability a; at age j = 44 working 1/3 of its time. 1 is set to ensure that
the Social Security system breaks even in equilibrium.

3.2 Preferences

The momentary utility function, u(c;j, n;j), depends on consumption, c;;, and labor sup-

ply, njj € (0,1], and is given by:*®

ni
ij
u(cij, nij) = logcij — X1 7 (3)

where 7 is the inverse Frisch elasticity of labor supply. Log utility from consumption
ensures the existence of a balanced-growth path for the economy. The utility function of
retired households has one extra term, as they gain utility from the bequest they leave to

living generations:
D(bijy1) = @log(bijs1)- (4)

are randomly assigned in such a way that we match the employment weights of each occupation type in
1980. The employment shares used are computed from CPS data and are: pnrec = 0.302, pnrm = 0.109
prc = 0.243. We then compute the expected utility for each occupation type, V,, at age 20, which we use
to solve and calibrate the version of the model with occupational choice.

BWe assume that disutility of work depends only on working time, not on occupation type.
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where b;j 1 is the level of liquid savings of household i. The expected discounted lifetime
utility of household i after the occupational choice is given by:

I .
V =E, lz B! [sju(cij, nij) + (1 —sj)D(bij41)] | , (5)
=1
where B is the discount factor and s; = 1 for j < 45.

3.3 Labor Income

Labor productivity depends on three elements that determine the efficiency units of labor
each household is endowed with in each period: Age, j, permanent ability, 4;, and the

idiosyncratic productivity shock, u;;, which we assume follows an AR(1) process:
wij = putij_1 + €5, €j ~ N(0,07). (6)
Thus, household i’s wage at age j is given by:
w;(j,0,a;, Mz’j) — woe’YO+’Ylj+'72j2+73j3+ai+”ijl (7)

where 71, 72 and <3 are estimated directly from the data to capture the age profile of
wages, and 7 is set such that the age polynomial is equal to zero at age 20 in the model.
Households’ labor income also depends on the wage per efficiency unit of labor w,, 0 €
O = {NRC,NRM, RC,RM}, where o is the labor variety supplied by the household
and chosen at the beginning of the work life. Permanent ability is assigned at labor
market entry and has variance 0;, which depends on the occupation, to match within-
occupation earnings dispersion. Online Appendix D describes the implementation of
this procedure in the numerical algorithm.

3.4 Technology

In this framework, there exist three competitive final goods: consumption goods, struc-
ture investment goods, and equipment investment goods. Each is produced by trans-
forming a single intermediate input using a linear production technology. All payments
are made in the consumption good, which is the numeraire.

The consumption good is obtained by transforming a quantity Z.; of intermediate

input into output, which is then sold at price p.: to households and the government.

12



The transformation technology is:
Ct+ Gt = Zey, (8)

where Z.; is the quantity of input, purchased at p,; from a representative intermediate
goods firm. Given that the consumption good is competitively produced, its price equals

the marginal cost of production:

Pet =1=pst. (9)

Likewise, structure investment good firms produce output with a similar technology:
Xst = Zst, (10)

and therefore p;; = 1. The production of X, ;, the equipment investment good, uses the

transformation technology:
Ze,t

&’

where Z,; is the quantity of input z used in the production of the final equipment goods.

Xet = (11)

1/¢; is the level of technology used in the production of X, relative to the final consump-
tion good. As ¢; declines, the relative productivity in assembling the equipment good
increases. We assume that ¢; evolves exogenously. We obtain the price of the equipment

goods from the zero profit condition:

Pet = CtPzt = Ct, (12)

where i = pet/ pcs is interpreted as the relative price of the equipment good.

A representative intermediate goods firm produces Z.; + Z;; + Z,; using a constant
returns to scale technology in capital and labor inputs, y¢ = F(Ks¢, Ket, NNrC t NNRM. £/
Ngrct, Nrmt), where Ky is structure capital and K, is capital equipment. The firm
rents structure capital at rate rs;, equipment at r{ and each labor variety at w,;, 0 € O.
Aggregate demand, measured in terms of the consumption good: Y; = C; + Gt + X +
¢t Xet, factor prices, and the price of the intermediate good p,; are taken as given. The

tirm chooses capital and labor inputs for each period to maximize profits:

It = poyr — 15t Ksp — 1e 1 Kot — Z Wot Not, (13)
0€0
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subject to:
Yt =Zep+ Zsp+ Zep = Ct + G + X p + Gt Xep = Vi (14)

This setup implies that Z.; = Ci + Gt, Zst = Xst, Zep = CtXer, and F(.) = YV =
Ct + Gt + Xt + Ct Xet. We assume that the production function of intermediate goods is
Cobb-Douglas over structure capital and CES over the remaining inputs:

o(1—a)

3 1 3 N
Z (1 - Z q’i) NR%/I,t] ’ (15)

F(.) = AtG(.) = AKS,
=1

01 02

i p1—1 Pl 1] e—1 p2—1 Pz 1 e
— % _ 0
Zip = ‘PlKe,t1 + (1 =¢1)N, NRCt » Lop = ‘PZKe, ? +(1—-¢2)N NRMt ’

Zzp = |$3K, ;> + (1= ¢3)Nicy

-~ P3
p3-1 P3 1] p3-1
7

where A; is total factor productivity, ¢; and ¢; are distribution parameters where [ =
1,2,3, correspond to the occupation types NRC, NRM, and RC, respectively™. p; is the
elasticity of substitution between capital and the nested labor variety i, and ¢ is the
elasticity of substitution between each composite Z;; and routine manual labor. Com-
plementarity between the two inputs in Z;; requires that p; < ¢, as in Krusell et al.
(2000).

Each variety of labor input is measured in efficiency units, Ny = hy 00, where h,; is
the quantity of hours worked in the aggregate and ¢, is an efficiency index representing
the latent quality per hour worked in occupation type o in period t. g, can be interpreted
as an occupation-specific technology level due to research and development or as human
capital accumulation. Firm maximization implies that marginal products equal factor

prices>®

9Krusell et al. (2000), Karabarbounis and Neiman (2014), and Eden and Gaggl (2018) use CES pro-
duction functions where capital equipment is nested with all labor varieties except for unskilled /routine
manual labor, which is introduced in isolation. The reason for this setup is the set of symmetry restrictions
on substitution elasticities imposed by the CES functional form, as explained in Krusell et al. (2000). In
a nutshell, this nesting form allows for complementarity between capital and differentiated labor (NRC
NRM, RC) while permitting the elasticities of substitution between routine manual labor and other labor
varieties to be different. Our version extends this framework with a finer breakdown of labor varieties.
In estimating the production function, we use the Simulated pseudo-Maximum Likelihood Estimation
(SPMLE) method proposed by Ohanian et al. (1997) which was also applied in Krusell et al. (2000). Our
application is described in the next section.

*°The first-order conditions can be found in section F of the Online Appendix.
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Capital laws of motion are given by:

Kgpr1 = (1 —0s)Ks i+ Xs 1, (16)
Ke,t+1 = (1 - 5@)Ke,t + Xe,tz (17)

where é; and 6, are the depreciation rates of structures and equipment, respectively.

3.5 Government

The social security system is managed by the government and runs a balanced budget.
The revenues are collected from taxes on employees and on the representative firm at
rates Tss and Tss, respectively, and are used to pay retirement benefits, Y.

The government taxes consumption, 7., and capital income, T, at flat rates. The labor
income tax follows a non-linear functional form as in Benabou (2002), Heathcote et al.
(2017) and Holter et al. (2019):

Ya=1—6y™ %, (18)

where 0y and 6; define the level and progressivity of the tax schedule, respectively. y is
the pre-tax labor income and y, is after-tax labor income.**

Tax revenues from consumption, labor and capital income taxes are used to finance
public consumption, G;, which clears the budget constraint. Denoting social security
revenues by R}® and the other tax revenues as T;, the government budget constraint is
defined as:

Ty =Gy, (19)

Tt (Z Q]> :R?S (20)

j>45

3.6 Asset Structure

Households hold two asset types: Structures capital, ks ;;, and equipment capital, ke ;.
There is no investment-specific technological change in the steady state, i.e., §;11 = ¢ =

¢, so we drop the time index on return rates for this exposition. Thus, the return rates

21See the Online Appendix of Holter et al. (2019) for a detailed discussion of the properties of this tax
function.
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must satisfy:

%[c+ (re = €8)(1 = 1)) = 1+ (rs = &) (1 — %), (1)

which follows from non-arbitrage: Investing in equipment capital must yield the same
after-tax return as investing the same amount in structures. Total assets for the consumer
are defined as:

bij = Ckeij + ks,ij, (22)

3.7 Household Problem

In any given period a household is defined by its age, j, occupation o;, asset position b;;,
permanent ability 4;, and a persistent idiosyncratic productivity shock u;;. A working-
age household chooses consumption, ¢;;, work hours, 7;;, and future asset holdings, b;; 1,
to solve its problem of maximizing expected utility. The household budget constraint is

given by:

¢ij(1+7c) + Ckejjr1 + ksijr1 = [§ + (re — §0) (1 — )] ke ij
[1+ (rs = 65) (1 — 1) ks jj + gL + YV, (23)

where YN is the household’s labor income after social security and labor income taxes,
and g =1/(1+7rs(1 —1)). Using 21, in equilibrium we can rewrite the budget constraint
as:
cii(14 ) + bijpr = (b + D)1+ r(1 — )] + YV (24)
The household problem can be formulated recursively as:
V(j, bij, 0i,a;,ui5) = max [u (cijymij) + BEu;,, [V(j + 1/bij+110izﬂi/uij+1)]]
CijMij,bij 41
s.t.:
Ci]'(l + Tc) + bi]'+1 = (bz’j + F) [1 + 1’(1 — Tk)] + YN

YN _ nz-]-w (], 0;,4a;, 1/[1']') (1 -7 [njjw (], 04,4, l/li]') ] )

1 + fss 1 + ;ESS
njj € (0, 1], bi]' >0, bpyp=0 Vi, Cij > 0.

The problem of a retired household differs in three ways: There is a positive age-
dependent probability of dying, 7(j), a bequest motive D(b;;;1), and labor income is
replaced by constant retirement benefit depending on permanent ability, ®(a;). The
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retired household’s problem can be written as:

V(j, bi]‘, Eli) = max [Z/l (Ci]', bij—H) + ‘3(1 — ﬂ(]))V(] +1, bij—l—l/ a;) + 7T(]')D(b,']'_|_1)}

Cijbij1
s.t.:
cij(1+ ) + bjjy1 = (bjj + T)[1+7r(1 — )] + ¥(a)
bijv1 >0, c¢j>0.

3.8 Stationary Recursive Competitive Equilibrium

Letting ®(j, b, 0,a, u) be the measure of agents with corresponding characteristics (j, b,0,a,u),

we define a stationary recursive competitive equilibrium as follows?*:

1. Taking factor prices and initial conditions as given, the value function V (j, b,0,a,u)
and the policy functions, o(x,), c(j,b,0,a,u), b'(j,b,0,a,u), and n(j,b,0,a,u), solve
the household’s optimization problem.

2. Markets clear:
K, + K, = /b+Fd<I>,

NRrM = ORM / nrmM AP, Nrc = ORC / nrc AP,
NNRM = ONRM / nNrRM AP,  NNRC = OrRM / nNrc AP,
C+ G + 6;Ks + £6.K, = F(Ks, Ke, Nnre, NNrRM, NrC, NrM) -

3. The prices of the production factors equal their marginal products (Equations A-
24-A-28 hold).

4. The government budget balances:

nw(j,o,a,u)

G:/Tkr(b—i—l”)—i—rcc—i—nrll Tz
SS

| 2o

5. The social security system balances:

¥ = st s / nw dd
j>45 14+ T \ Jj<ss '

2?The time index is dropped from aggregate variables, given that this is characterization of the steady
state.
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6. The assets of the deceased at the beginning of the period are uniformly distributed
among the living:

F/w(j)dcp:/(l—w(j))hd@.

4 Estimating the Production Function

The production function in Equation 15 that transforms our four labor varieties and two
types of capital into output goods is crucial to our quantitative results. In this section,
we describe the stochastic specification of the production function model, the equations
to be estimated, and the results. The estimation strategy follows Krusell et al. (2000).
When we calibrate our model, we will treat the parameter estimates from this section as
exogenously given. When we study the impact of changes in technology over time on

inequality, we will insert our results from this section in the model?3.

4.1 Stochastic Specification

The stochastic elements in our model are the unobserved technology components: (i)
the relative technological level of the investment good sector; (ii) the set of labor-specific
efficiency indices; and (iii) the factor-neutral technological process. We assume that the
relative price of equipment (¢; = &:/&;_1) is trend stationary, and confirm this with a
Dickey-Fuller test. We assume that the labor efficiency index processes have different

linear trends for each labor variety. Defining the processes in logs, we have:

e =log(er), $r =1+t +ut, (25)

where {1 is a (4 x 1) vector of the log of the latent efficiency indices, 1y is a (4 x 1) vector
of constants which specify the value of the indices at the beginning of the sample, ; is
a (4 x 1) vector of growth rates, and v; is a (4 x 1) vector of shock processes that we
assume to be multivariate normal, i.i.d. with covariance matrix (: v; ~ N(0,Q). The
iid. assumption simplifies the identification of the factor-neutral technological change,
A;, which is described below.

4.2 Equation Specification

We use a system with two sets of equations obtained from the first order conditions

of agents to estimate the model: (i) the wage bills relative to the routine manual labor

23The data used in the estimation is described in Online Appendix B.
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variety; and (ii) a no-arbitrage condition between investing in equipment and structure
capital. These are defined as follows:

_Wothor  _ Wbt (1, X1; 6), 0 € O = {NRC,NRM, RC}, (26)
WRM,thRM ¢
and
F , X¢41;0
1+ [Fx, (Y141, Xi41;0) — b5 441] = E (%) (1= 8erg1) + Kﬁ(wtﬂgt 1) (27)

where equation 27%* is obtained from equation 21, assuming that ¢; # ¢;+1, and where
we substituted the return rates by factor marginal productivities.

Depreciation rates are indexed by t since they change over the time®>. The relative
wage bills in the model wbr,; are functions of X; and 6. X; is the vector of inputs
and depreciation rates {Ks ¢, Ket, INRC t, INRM.£, BRC - BRM. £, 05 t, Oe ¢} The vector 6 is the
set of parameters {«, p1,02, 03, P1, P2, $3, P1, P2, ¥3, Yo, ¥1, S, Yw, Ke o}, including the first
observation of the equipment capital stock, which we estimate jointly with the other
parameters. 7], is the standard deviation of the error term in the equipment price equa-
tion, which we specify below. Like Krusell et al. (2000), we assume that there is no risk
premium in equation 27, and that the tax treatment is identical between equipment and
structure capital returns. Finally, we substitute the first term on the right hand side of
equation 27 with E¢ (§;11/8t) (1 — det[1 — T ¢]) + wr, where wy is the ii.d. forecast error
and w; ~ N (0,72). This set of assumptions imply that A; = Y;/G(.) from equation 15.

Given that this is a non-linear system of eight equations with unobserved state vari-
ables, standard linear Kalman filter techniques cannot be applied to estimate the param-
eter vector . Ohanian et al. (1997) propose a two-step version of the SPML estimator to
find 6 for this type of problem?.

The parameter vector 8 has dimension 36. Our sample contains 49 observations for
each equation. We reduce the number of parameters estimated by external calibration or
by setting a priori restrictions. First, we impose that S be a diagonal matrix and that the
variance of the disturbances is identical for all labor types. Thus, S = 2I;, where 72 is
the common innovation variance and I4 is a (4 x 4) identity matrix. Second, we fix ¢4,

the initial level of the latent efficiency index of routine manual workers, which is not

*4Note that this no-arbitrage equation applies on capital returns net of depreciation. Hence, in equilib-
rium, we are allowing for different capital gross returns across the two types of capital because they have
different depreciation rates.

25See Online Appendix B

26See details in Online Appendix C.
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identified. Third, we set the income share of structures to 0.04 as in Krusell et al. (2000).
Finally, we regress the variation rate of the relative price of equipment on a linear trend to
calibrate the forecast error variance of the equipment price index. We set 7, to be equal
to the estimated standard deviation of the error term in the regression ¢, = 0.032. This
reduces the number of parameters to be estimated to 19: The common variance of the
latent processes, 772, the elasticities, o, p1, 02, 03, the production function share parameters,
1, 2, P3, 91, P2, @3, the parameters governing the latent state variables, except for 4,
and the initial level of capital equipment, K, .

4.3 Estimation Results and Model Fit

The model is estimated using data from 1967 to 2016 and the Simulated Pseudo Maxi-
mum Likelihood Estimation (SPMLE) procedure. Table 1 shows the resulting estimates.

Elasticity estimates for the nested occupation types are all consistent with capital-
occupation complementarity, i.e., ¢ > p;, i = 1,2,3. The estimation of these elasticities is
one of the contributions of this paper to the literature.

The most comparable estimates are provided by Eden and Gaggl (2018), who specify
a CES production function with non-routine labor nested with capital. In contrast to
our estimates of 0.5 and 2.1 for NRC and NRM labor, they estimate an elasticity of
substitution of 1.4 for non-routine labor. For routine manual labor, their estimate is
8.0 for routine occupations, compared to our elasticity of 5.6 for RM. Although less
comparable, Krusell et al. (2000) obtain a value of 0.6y for skilled labor and 1.67 for
unskilled labor. For the processes of occupation-specific technology, we estimate that
only the non-routine cognitive occupations have experienced positive growth. At the
same time, routine manual labor has suffered the largest decline®”.

Figure 2 shows model fit to targeted moments over time. Figure 2a displays aggregate
ex post return rates of equipment and structures implied by our model, which are zero
in expectation as per our assumption. They have a 4% average, as in Krusell et al. (2000),
although a slightly increasing trend from the early 2000s onward.

Figure 2b plots wage bill ratios implied by the model, as specified by the set of
equations (26), and the data. Model predictions closely track the data. The NRC wage bill

27Vom Lehn (2020) also estimates elasticities of substitution between different task bundles that are not
directly comparable to ours. In his production function, abstract and manual labor inputs are substitutes
or complement to a bundle composed of routine labor input and capital equipment. In contrast, in our
framework, NRC, NRM and RC all have a constant elasticity of substitution with capital equipment di-
rectly. In the case of homogeneous workers, he calibrates the elasticity of substitution between routine
labor input and capital equipment to 1.3, between manual and a bundle of routine labor input and equip-
ment to 1.49, and between abstract labor input and a bundle of routine labor input and equipment to
0.31.
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Table 1: Parameter Estimates

Parameter Description Value
o EOS RM 5.564
01 EOS NRC 0.497
02 EOS NRM 2.055
03 EOS RC 5.029
o3} Share NRC 0.378
¢ Share NRM 0.086
¢3 Share RM 0.279
@1 Share composite NRC 0.160
) Share composite NRM 0.045
@3 Share composite RC 0.023
o1 Intercept NRC 0.859
Yoo Intercept NRM 1.936
Po,3 Intercept RC 3.582
P11 Slope NRC 0.002
P12 Slope NRM -0.006
P13 Slope RC -0.001
P14 Slope RM -0.010
Kep Starting equipment capital 582

Note: The table shows the parameter estimates for the production function and the labor
efficiency indices. “EOS” stands for elasticity of substitution. The ¢ are the shares of each
occupation inside each labor-equipment composite. The ¢ are the shares of each labor-
equipment composite. The ¢y indicate the intercept of the linear labor efficiency indices,
and ¢, the slope. K, is the starting level of equipment capital in millions of dollar.

shot up from near par with routine manual labor in 1968 to 3.5 in 2015. In contrast, NRM
and RC wage bills grow slowly upwards relative to that of routine manual occupations,
which is explained by both their lower level of complementarity with equipment capital
as well as their declining level of latent efficiency.

Figure 2c shows the model fit to the wage premia of each occupation relative to RM.
As in the previous figure, the dashed lines indicate the data and the solid lines are the
model predictions. In all cases, the model tracks the data closely. This is important given
that our goal is to use the estimated parameters to calibrate the theoretical model. The
key force driving earnings dispersion is the change in wage premia across groups.

Finally, Figure 2d displays our estimate of total factor productivity in the U.S. for this
period. From 1968 to 2008, TFP increased by almost 30% and then fell to around 20%
in the following years. For comparison, the estimate of total factor productivity by the
Penn World Table increases by 30% from 1968 to 2015 (FRED).

In conclusion, we provide new estimates for the elasticities of substitution between
equipment capital and the occupation categories defined in Autor et al. (2003), which
have been extensively used in the literature to discuss the impact of technological change
and the future of labor markets. We find that our model is broadly compatible with the
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Note: The estimates presented cover the period from 1968 to 2015 as we lose both the first and the
last period of the sample to estimate the model. In Figure 2d, total factor productivity is normalized
to 1 in 1968. Construction of the measures is described in Online Appendix B.

Figure 2: Empirical Model Fit to Targeted and Non-Targeted Moments.

data, especially with respect to the occupation wage premia, which is crucial for ensuring
that the predictions of the theoretical model are consistent with the data. We now turn
to the calibration of the theoretical model, which uses the estimates obtained from this
section to parameterize the production side of the economy.

5 Calibration

This section describes the calibration of the baseline model to resemble the U.S. economy
in 1980. Many parameters can be set externally (i.e., we estimate them directly from the
data or take them from the previous literature and insert them in the model). This

includes the production function that we estimated in Section 4 but also, for example,
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the tax function and the age profile of earnings. Table 2 lists the externally calibrated
parameter values and data sources. The seven parameters in Table 4 are estimated by
the simulated method of moments (SMM) approach, where we change the parameters

to minimize the distance between the model and data moments.

5.1 Externally Calibrated Parameters
Below we discuss the external calibration of parameters that were not estimated in 4.

Preferences We set the inverse of the Frisch elasticity of labor supply, #, to 3, which is a

standard value in the literature.

Labor productivity The wage profile through the life cycle (see equation 7) is calibrated
directly from the data. We run the following regression using Panel of Study of Income
Dynamics (PSID) data:*®

In(wy) = a; + 11j + 727> + 135> + €ir- (28)

where j is the age of household i’s reference person and 4; is a household-specific effect.
We then use the residuals of the equation to estimate the parameters governing the id-
iosyncratic shock, p and o.. The scale parameters of the cost of choosing an occupation
(MNRC, UNRM, HRC, HRM) are set such that they match the employment shares observed in
1980. The procedure is explained in Section 3. The location parameter, yry, is normal-
ized to o.

Technology Equipment and structure depreciation rates are set to match those used in
the estimation of the empirical model for 1980, and described in Online Appendix B.
The production function is calibrated using the parameters estimated from the empirical
model. The efficiency indices of each occupation are set to match those of the empirical
model in 1980. The level of total factor productivity is set to the estimate from the
empirical model for 1980.

Government We set 0y and 0, to the estimates obtained by Wu (2021) for 1980. For the
social security rates, we assume no progressivity. Both social security tax rates, employer
and employee, are set to 0.06, the average rate in 1980. Finally, we set 7. and 7} to match
the values obtained in Mendoza et al. (1994) for 1980, i.e, 7. = 0.05, 7, = 0.47.

28PSID data is described in section A of the Online Appendix.
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Table 2: Externally Calibrated Parameters

Description Parameter Value Source
Preferences

Inverse Frisch elasticity n 3.000 Assumption
Labor productivity

Parameter 1 age profile of wages 7 0.265 PSID
Parameter 2 age profile of wages 72 -0.005 PSID
Parameter 3 age profile of wages 73 0.000 PSID
Variance of idiosyncratic risk Oe 0.307 PSID
Persistence idiosyncratic risk Ou 0.335 PSID
Location of the cost of choosing NRC HNRC -5.712 CPS
Location of the cost of choosing NRM UNRM 4441 CPS
Location of the cost of choosing RC URC 0.379 CPS
Location of the cost of choosing RM HURM 0.000 Assumption
Technology

Equipment depreciation rate Je 0.106 Section 4
Structures depreciation rate s 0.026 Section 4
Share structures n 0.040 Section 4
Share NRC P 0.378 Section 4
Share NRM [0 0.086 Section 4
Share RC ¢3 0.279 Section 4
Share composite NRC 1 0.160 Section 4
Share composite NRM P2 0.045 Section 4
Share composite RC @3 0.023 Section 4

EOS NRC 01 0.497 Section 4

EOS NRM 02 2.055 Section 4

EOS RC 03 5.029 Section 4

EOS RM o 5.564 Section 4
Latent efficiency NRC 01 2.734 Section 4
Latent efficiency NRM 02 4-955 Section 4
Latent efficiency RC 03 34.662 Section 4
Latent efficiency RM 04 0.378 Section 4

Total factor productivity A 16.728 Section 4
Relative price of investment goods ¢ 1.000 Assumption
Government and SS

Consumption tax rate T 0.054 Mendoza et al. (1994)
Capital income tax rate T 0.469 Mendoza et al. (1994)
Tax scale parameter 0o 0.850 Wu (2020)

Tax progressivity parameter th 0.187 Wu (2020)

SS tax employees Tes 0.061  Social Security Bulletin, July 1981
SS tax employers Tss 0.061  Social Security Bulletin, July 1981
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5.2 Endogenously Calibrated Parameters

To calibrate the parameters for which we do not have direct empirical counterparts, {5, x,
@, ONRC, ONRM, ORC, ORM}, We use a simulated method of moments approach, for which

we construct the following loss function:
L(0) = || My — Myll, (29)

where 0 is the vector of parameters to be estimated and M,;, and M, the moments in the
model and in 1980, respectively. Our estimate, 6*, is obtained by minimizing (29).

Table 3: Fit of Model to Data (SMM)

Data moment Description Source Model Data
65-on/all Average wealth of households 65 and over US Census Bureau 1.310  1.311
K/Y Capital to output BEA and CPS 1.412 1.412
n Fraction of hours worked BEA 1/3 1/3

VarIn(engc)  Variance of log earnings (NRC) CPS 0.408  0.409
Varln(engm)  Variance of log earnings (NRM) CPS 0.410  0.406
Var In(egc) Variance of log earnings (RC) CPS 0.409  0.410
Var In(egm) Variance of log earnings (RM) CPS 0.305  0.304

Table 4: Parameters Calibrated Internally

Parameter Value Description

Q 9.993  Bequest utility

B 0.961  Discount factor

X 66.981 Disutility of work

04 NRC 0.519  Variance of ability NRC
02 NRM 0.515  Variance of ability NRM
04 RC 0.517  Variance of ability RC
0a,RM 0.385  Variance of ability RM

We use the ratio between the average wealth of 65 and older to the average wealth
in the economy as the target for the utility of bequests parameter. The discount factor
is set by targeting the capital-to-output ratio®®. The capital stock is obtained from the
estimation of the empirical model of section 4. Disutility from work targets average
hours worked, and we calibrate the occupation-specific variances of ability to target the

variance of log earnings observed in the data for each occupation. Table 4 presents the

29This quantity is not directly comparable to the usual K/Y in the macro literature because we include
non-residential capital in the form of non-residential structures and equipment capital only, as proposed
by Krusell et al. (2000).
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parameters calibrated internally through SMM estimation, and Table 3 displays the fit of

the model moments to the data moments.

6 Quantitative Results

In this section, we use our model, calibrated to resemble the U.S. economy in 1980, to an-
swer the two main questions raised in the introduction: To what extent does technologi-
cal change explain the observed increase in earnings inequality? How does technological

change affect the optimal progressivity of the tax system?

6.1 The Sources of Growing Earnings Inequality

The main experiment conducted in this section is to change the externally estimated
levels of technology and parameters governing the tax system from their values in 1980
to their 2015 values3°. In addition, we recalibrate the distribution of occupation-specific
uti