
MEMORANDUM 
 

No 24/2002 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Maximum principle for stochastic control in continuous time with 
hard end constraints 

 
By 

Atle Seierstad 
 

ISSN: 0801-1117 

Department of Economics 
University of Oslo 



 
 
 
This series is published by the  
University of Oslo 
Department of Economics 
 

In co-operation with 
The Frisch Centre for Economic 
Research  

P. O.Box 1095 Blindern 
N-0317 OSLO Norway 
Telephone:  + 47 22855127 
Fax:             + 47 22855035 
Internet:      http://www.oekonomi.uio.no/ 
e-mail:         econdep@econ.uio.no 

Gaustadalleén 21 
N-0371 OSLO Norway 
Telephone: +47 22 95 88 20 
Fax:  +47 22 95 88 25 
Internet:  http://www.frisch.uio.no/ 
e-mail:  frisch@frisch.uio.no 

 
 
 

List of the last 10 Memoranda: 
No   23 Hilde C. Bjørnland and Håvard Hungnes 

Fundamental determinants of the long run real exchange rate: The case 
of Norway.  40 pp. 

No   22 Atle Seierstad 
Conditions implying the vanishing of the Hamiltonian at the infinite 
horizon in optimal control problems.  3 pp. 

No   21 Morten Søberg 
The Duhem-Quine thesis and experimental economics: A 
reinterpretation. 22 pp. 

No   20 Erling Barth, Bernt Bratsberg and Oddbjørn Raaum 
Local Unemployment and the Relative Wages of Immigrants: Evidence 
from the Current Population Surveys. 53 pp. 

No   19 Erling Barth, Bernt Bratsberg and Oddbjørn Raaum 
Local Unemployment and the Earnings Assimilation of Immigrants in 
Norway. 46 pp. 

No   18 Gunnar Bårdsen, Eilev S. Jansen and Ragnar Nymoen 
Testing the New Keynesian Phillips curve.  38 pp. 

No   17 Morten Søberg 
Voting rules and endogenous trading institutions: An experimental study. 
36 pp. 

No   16 Gabriela Mundaca 
A Drift of the "Drift Adjustment Method". 35 pp. 

No   15 Oddbjørn Raaum, Hege Torp and Tao Zhang 
Do individual programme effects exceed the costs? Norwegian evidence 
on long run effects of labour market training.  60 pp. 

No   14 Oddbjørn Raaum, Hege Torp and Tao Zhang 
Business cycles and the impact of labour market programmes.  52 pp. 

   
  A complete list of this memo-series is available in a PDF® format at: 

http://www.oekonomi.uio.no/memo/ 
 
 
 



Maximum principle for stochastic control in continuous time with
hard end constraints.

by

Atle Seierstad, University of Oslo

Abstract. A maximum principle is proved for certain problems of con-
tinuous time stochastic control with hard end constraints, (end constraints
satisfied a.s.) After establishing a general theorem, the results are applied to
problems where the state equation (differential equation) changes at certain
stochastic points in time, and to piecewise continuous stochastic problems
(including piecewise deterministic problems).

Introduction. Frequently, problems are encountered in which the state
at the terminal time has to satisfy a constraint almost surely. An example
may be the running of a firm under the constraint that the equity capital at
the end of the planning period shall exceed a given level almost surely. The
present paper proves necessary conditions, in the form of a maximum prin-
ciple, for certain types of such problems. First a general theorem is proved,
covering the case of a general type of stochastic disturbance in the right hand
side of the differential equation and where the state develops continuously
in time. From this theorem a result is derived for the case where the right
hand side changes at certain stochastic points in time. For the latter type
of stochastic disturbances, also results for hard end constrained piecewise
continuous stochastic problems are derived. In particular, certain types of
hard end constrained piecewise deterministic problems are covered.

In discrete time, maximization problems with hard end constraints are solved,
using the dynamic programming equation, by associating a value −∞ to
points from which it is not possible to reach the terminal constraint almost
surely. Also, maximum principles for such problems have been proved, for
example by Arkin and Evstigneev (1982), that involve even more general
hard constraints (required ”all the time”). In continuous time, for control
problems involving diffusions, soft end constraints (constraints satisfied in
expectation) have been considered, e.g. Kushner (1972), Haussmann (1986),
Peng (1990), Yong and Zhou (1999). For many types of diffusion problems
one cannot operate with hard constraints, unless controls are allowed that
depend on time as erratically as the diffusion. This conclusion, however, also
depends on the manner in which the diffusion enters the problem, (so there
are exceptions, see Seierstad (1991) ). Below, only smoother controls (con-
trols with smoother effects ) are considered, together with smoother systems
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(systems having pathwise solutions). The general theorem presented below
is closely related to a result in Seierstad (1991), in the present paper the
growth conditions are slightly weaker.
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The general system. Let T be a fixed positive number, let X and Y
be Banach spaces, let x0 be a given point in X, let π be a bounded linear
map from X into Y , and let U be a topological space. Furnish the interval
J = [0, T ] with the Lebesgue measure. Let (Ω,Φ,Φt, P ) be a filtered prob-
ability space, (i.e. for t ∈ [0, T ],Φt are sub-σ-algebras of the σ-algebra Φ of
subsets of Ω,Φs ⊂ Φt if s < t, P is a probability measure on Φ). The function
f(t, x, u, ω) : J ×X×U ×Ω → X has a Frechet derivative fx with respect to
x ∈ X, f has one-sided limits with respect to t, and f and fx are, separately,
continuous in x and in u, and for any given t, x, u, f is Φt-measurable with
respect to ω. These conditions are called the Basic Assumptions.

Let U ′ be the set of functions u(t, ω) taking values in U, such that u(., .),
for each t, when restricted to [0, t] × Ω, is Lebesgue×Φt−measurable. (I.e.
there exists a sequence of Lebesgue×Φt−measurable simple functions con-
verging a.e.× a.s. to u(., .) on [0, t]×Ω.) The measurability property is called
progressive measurability. Let u(., .) ∈ U ′. For each ω, the (”pathwise”) so-
lution - continuous in t - of the equation ∂x(t, ω)/∂t :=

ẋ(t, ω) = f(t, x(t, ω), u(t, ω), ω), x(0) = x0, (1)

is denoted xu(.,.)(t, ω) = xu(t, ω), and called a system solution.

The simplest set of assumptions that are used in what follows, called Simple
Global Assumptions, are as follows: In addition to the Basic Asssumptions,

fx is uniformly continuous in x, uniformly in t, u and ω. Furthermore, a
constant M+ exists such that |f(t, x, u, ω)| ≤ M+ and |fx(t, x, u, ω)| ≤ M+

for all (t, x, u, ω).

If wanted, the reader may skip all later modifications of these assumptions.
These assumptions imply that system solutions always exist on all [0, T ], i.e,
for any u(., .) ∈ U ′, the solution of (1) exists. This property also holds for the
so-called Standard Global Assumptions, which are as follows: In addition to
the Basic Assumptions,

fx is uniformly continuous in x, uniformly in t, u and ω. Furthermore, Lebesgue×Φ
-measurable functions M0(t, ω) and M ′(t, ω) are given, both integrable in
t, such that |f(t, 0, u, ω)| ≤ M0(t, ω) and |fx(t, x, u, ω)| ≤ M ′(t, ω) for all
(t, x, u, ω) ∈ J × B(0,Ξ(ω)) × U × Ω, where B(0,Ξ(ω)) is an open ball in
X around the origin of radius Ξ(ω) := 1 + (|x0| +

∫
J
M0(s, ω)ds)e

∫
J

M ′(s,ω)ds.
There exists a constant M ′

π such that |πfx(t, x, u, ω)| ≤ M ′
π for (t, x, u, ω) ∈
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J × B(0,Ξ(ω)) × U × Ω. The inequality M∗∗ := essupω

∫
J
M ′(t, ω)dt < ∞

holds, and M0(t, ω) is Lebesgue×P -integrable.

Let M̂(t, ω) := M0(t, ω)+Ξ(ω)M ′(t, ω), (M̂(t, ω) is Lebesgue×P -integrable).
Then, |f(t, x, u, ω)| ≤ M̂(t, ω) for (t, x, u, ω) ∈ J × B(0,Ξ(ω)) × U × Ω.
In this case, any solution xu(t, ω) of (1) belongs to B(0,Ξ(ω)), moreover
f(t, xu(t, ω), u(t, ω), ω) is Lebesgue×P -integrable.

Let a ∈ X∗, the topological dual of X, and consider the problem

maxu(.,.)∈U ′ E〈xu(.,.)(T, ω), a〉, (2)

subject to the differential equation (1), and

πxu(.,.)(T, ω) = ỹ a.s., ỹ fixed in Y. (3)

Let u∗(., .) ∈ U ′ be an optimal control in the problem and write xu∗(.,.)(., .) =
x∗(., .). Let, for each ω, C(t, s, ω) be the resolvent of the equation q̇ =
fx(t, x

∗(t, ω), u∗(t, ω), ω)q, (C(s, s, ω) = I, the identity map). In the subse-
quent necessary conditions, the following local linear controllability condition
is needed. Let Bα = {

∫ T

0
z(t, .)dt : z(t, ω) ∈ Y, z(., .) is progressively mea-

surable and |z(., .)|∞ < α} ⊂ L∞(Ω, Y ) := L∞(Ω,Φ, Y ), and let co denote
convex hull. There exist a number α > 0, and a progressively measurable
function ž(t, ω) : J × Ω → Y, with |ž(., .)|∞ < ∞, such that

∫ T

0
ž(t, .)dt+Bα ⊂co{π

∫ T

0
C(T, t, .)[f(t, x∗(t, .), û(t, .), .)−f(t, x∗(t, .), u∗(t, .), .)]dt :

û(., .) ∈ U ′}. (4)

Theorem 1. Assume that u∗(., .) is optimal, that the Simple Global As-
sumptions hold and that (4) is satisfied. Then there exist a number Λ0 ≥ 0
and a linear functional ν on L∞(Ω, Y ), bounded on Bα, such that, for all
u(., .) ∈ U ′,

〈
∫ T

0
πC(T, t, .)[f(t, x∗(t, .), u(t, .), .) − f(t, x∗(t, .), u∗(t, .), .)]dt, ν〉 +

Λ0E〈
∫ T

0
C(T, t, .)[f(t, x∗(t, .), u(t, .), .) − f(t, x∗(t, .), u∗(t, .), .)]dt, a〉 ≤ 0. (5)

Finally, (Λ0, ν|Bα
)6= 0, where ν|Bα

means ν restricted to Bα .
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Remark 1 In this remark, the Standard Global Assumptions are postulated.
Let 1M be the indicator function of the set M, and let M(t, ω) = 2M̂(t, ω).
Define UK := {u(., .) ∈ U ′ :essupω

∫
J
M(t, ω)1{(t,ω):u(t,ω)6=u∗(t,ω)}(t, ω)dt ≤

K, |πf(., x∗(., .), u(., .), .) − πf(., x∗(., .), u∗(., .), .)|∞ ≤ K}. Assume that for
some constant K∗ > 0, (4) holds for U ′ replaced by UK∗

. Then (5) holds
for U ′ replaced by UK , K any given positive number. (In case of the Simple
Global Assumptions, let M̂(., .) ≡ M+, K = max{2TM+, 2|π|M+}, in which
case UK = U ′.)

Remark 2 To obtain necessary condition only local well-behaviour con-
ditions on the system are needed. Such conditions are presented below, com-
bined with other modifications. Thus the Simple and Standard Assumptions
can be replaced by the following ones. Let U(t, ω) be a given multifunction,
with U(t, ω) ⊂ U for all (t, ω), such that u∗(t, ω) ∈ U(t, ω) for all (t, ω). De-
fine an error function e(d) to be a non-negative function on (0,∞) such that
limd→0e(d) = 0. In addition to the Basic Assumptions, assume the follow-
ing properties: For some ď > 0, and some Lebesgue×P -integrable functions
M ′(t, ω) and M(t, ω),

(i) |fx(t, x, u, ω)| ≤ M ′(t, ω) for all (t, x, u, ω) ∈ J ×B(x∗(t, ω), ď)×
U(t, ω) × Ω, and

|f(t, x∗(t, ω), u, ω)−f(t, x∗(t, ω), u∗(t, ω), ω)| ≤ M(t, ω) for all (t, u, ω) ∈
J × U(t, ω) × Ω.

The inequality M∗∗ := essupω

∫
J
M ′(t, ω)dt < ∞ holds. For some real-

valued function ě0(d, t), being an error function in d, for any t, ω, for any
y ∈ B(x∗(t, ω), d) ⊂ X, d ∈ (0, ď],

(ii) |fx(t, y, u
∗(t, ω), ω) − fx(t, x

∗(t, ω), u∗(t, ω), ω)| ≤ ě0(d, t), and
limd↘0

∫
J
ě0(d, t)dt = 0, ě0(d, t) assumed to be integrable in t.

The limit condition in (ii) holds if either M ′(t, ω) is independent of ω, or
if ě0(d, t) is independent of t.

Furthermore,

(iii) πfx(t, x, u
∗(t, ω), ω) is uniformly continuous in x ∈ B(x∗(t, ω), ď),

uniformly in t, ω, and, for some constant M ′
π, |πfx(t, x, u, ω)| ≤

M′
π for (t, x, u, ω) ∈ J ×B(x∗(t, ω), ď) × U(t, ω) × Ω.

Next,
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(iv) f(t, x∗(t, ω), u∗(t, ω), ω) is Lebesgue×Φ-integrable.

Finally, for U ′ redefined to equal {u(., .) ∈ U ′ : u(t, ω) ∈ U(t, ω) for all
(t, ω)}, the following condition hold:

(v) (4) holds in the sense of Remark 1 for some K∗, when this U ′ and the
function M(t, ω) are the entities appearing in the definition of UK .

(vi) u∗(., .) is optimal in the set of controls u(., .) ∈ U ′, for which a
solution xu(., .) exists on all J satisfying (1) and (3) and for which
f(t, xu(t, ω), u(t, ω), ω) is Lebesgue ×P -integrable.

Then (5) holds for U ′ replaced by UK as here defined, for any given K > 0.

Remark 3 Assume in Remark 2, that X = X ′ × X ′′, where X ′, X ′′ are
Banach spaces. Let π′ be the projection on X ′, π′′ be the projection on X ′′

and assume that π = πY π
′ for some continuous linear map πY : X ′ → Y,

and that, for x = (x′, x′′) ∈ X = X ′ × X ′′, π′f(t, x, u, ω) does not depend
on x′′. Assume that (iii), (iv) and (vi) in Remark 2 still hold, together with
the following modifications of (i) and (ii): M(t, ω) and M ′(t, ω) in (i) in Re-
mark 2 need only pertain to π′f, i.e. it suffices that |π′f(t, x∗(t, ω), u, ω) −
π′f(t, x∗(t, ω), u∗(t, ω), ω)| ≤ M(t, ω) for all (t, u, ω) ∈ J × U(t, ω) × Ω,
and that |π′fx(t, x, u, ω)| ≤ M ′(t, ω), for (t, x, u, ω) ∈ J × B(x∗(t, ω), ď) ×
U(t, ω)×Ω. Moreover, (ii) need only hold for f replaced by π′f . Finally, some
Lebesgue×P -integrable functionsM∗(t, ω) andM ′

∗(t, ω) are assumed to exist,
such that |π′′f(t, x∗(t, ω), u, ω) − π′′f(t, x∗(t, ω), u∗(t, ω), ω)| ≤ M∗(t) for all
(t, u, ω) ∈ J × U(t, ω) × Ω and such that |π′′fx(t, x

′, x′′, u, ω)| ≤ M ′
∗(t, ω) for

all (t, x′, x′′, u, ω) ∈ J × B(π′x∗(t, ω), ď) × B(π′′x∗(t, ω),M∗∗(ω)) × U(t, ω) ×
Ω, where M∗∗(t, ω) := 1 +

∫
J

max{M(t, ω),M∗(t, ω)}dte
∫

J
max{M ′(t,ω)M ′

∗
(t,ω)}dt,

with E[e2
∫

J
M ′

∗
(t,ω)dt(1+

∫
J
M ′

∗(t, ω)dt)]p < ∞ and |
∫

J
max{M ′

∗(t, ω),M∗(t, ω)}dt|2q

< ∞, 1/p+1/q = 1, p ∈ [1,∞). (If p = 1, the last condition can dropped, pro-
videdM(., .) in the definition of UK is replaced by max{M(., .),M ′

∗(., .),M∗(., .)}.)
Then, if (v) in Remark 2 holds for the present M(t, ω)-function, the conclu-
sion of Remark 2 still holds.

Remark 4 For simplicity, assume X = R
n, Y = R

n′

. The following re-
sults hold even for the assumptions in Remarks 2 and 3. Define ν∗ := φ →
〈πφ, ν〉+Λ0E〈φ, a〉, φ ∈ L∞(Ω, X), and p(s) := C(T, s, .)∗ν∗, where ∗ means
taking dual map, (so p(s, φ) := 〈φ, p(s)〉 = 〈C(T, s, .)φ, ν∗〉). For s < T, the
functions ν|Φs

:= ν|L∞(Ω,Φs,Y ) and p(s)|Φs
are continuous in φ in L∞-norm,

(recall that ν|Bα
is bounded, and that πC(T, s, .)φ =
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π(I +
∫ T

s
fx(ρ, x

∗(ρ, .), u∗(ρ, .), .)C(ρ, s, .)dρ)φ ∈ Bα, for φ ∈ L∞(Ω,Φs,R
n),

|φ|∞ small). By (5), for any u(., .) ∈ UK and s < T, if
limt↗s(s− t)−1

∫ s

t
(f(ρ, x∗(ρ, .), u(ρ, .), .) − f(ρ, x∗(ρ, .), u∗(ρ, .), .))dρ =

f(s, x∗(s, .), u(s, .), .) − f(s, x∗(s, .), u∗(s, .), .) in L∞(Ω, X)-norm, then

〈f(s, x∗(s, .), u(s, .), .) − f(s, x∗(s, .), u∗(s, .), .), p(s)〉 ≤0. (6)

The property:

limt↑T sup|φ|≤1,φ∈L∞(Ω,Φt,X) |p(t, φ) − 〈φ, ν∗〉| = 0 (7)

holds, if either ν is bounded in |.|∞-norm, or if M ′(t, ω) is independent of

ω and for some β > 0, [β/(T − t)]
∫ T

t
πfx(s, x

∗(s, .), u∗(s, .), .)φds belongs to
Bα, for all t ∈ [0, T ), all φ ∈ B(0, 1) ⊂ L∞(Ω,Φt,R

n). These conditions,
however, hold only in special cases.

Assume in the remaining part of this remark that, for any s < T, φ →
〈πC(T, s, .)φ, ν〉, φ ∈ L∞(Ω,Φs,R

n) is absolutely continuous with respect to
P, i.e., for any unit vector ej, H → 〈πC(T, s, .)ej1H , ν〉, H ∈ Φs, is absolutely
continuous. (By (5), this property holds in particular, if, in (4), ž(., .) = 0.)
Then, φ → p(s, φ), φ ∈ L∞(Ω,Φs,R

n), is also absolutely continuous, and has
a Radon-Nikodym derivative p+(s, ω), s < T, and p+(s, ω) satisfies a.s.×a.e.:

∂p+(s, ω)/∂s = −p+(s, ω)fx(s, x
∗(s, ω), u∗(s, ω), ω), (8)

provided we read p+(s, ω) as a row vector (and fx is the Jacobian matrix).

Furthermore, for all u(., .) ∈ UK , a.e.×a.s.,

〈f(s, x∗(s, ω), u(s, ω), ω) − f(s, x∗(s, ω), u∗(s, .), ω), p+(s, ω)〉≤ 0. (9)

Even the following inequality evidently holds a.e.×a.s.,

〈f(s, x∗(s, ω), u(s, ω), ω) − f(s, x∗(s, ω), u∗(s, ω), ω), E[p+(s, ω)|Φs]〉≤ 0. (10)

In special cases below, differential equations for multipliers related to E[p+(s, ω)|Φs]
are given.
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Remark 5. Assume (vi) in Remark 2, and that there exist given sets
Un(t, ω), n = 1, 2, ..., Un+1(t, ω) ⊃ Un(t, ω), u∗(t, ω) ∈ U1(t, ω), such that,
for each n, (i)–(iv) in Remark 2 holds for U(t, ω) replaced by Un(t, ω),
for functions M(t, ω) = Mn(t, ω),M ′(t, ω) = M ′

n(t, ω), (or that the cor-
responding conditions in Remark 3 hold in the same manner, and with
M∗(t, ω) = M∗n(t, ω),M ′

∗(t, ω) = M ′
∗n(t, ω)). Define

UK
n := {u(., .) ∈ U ′ : u(t, ω) ∈ Un(t, ω) for all (t, ω),

essupω

∫
J
Mn(t, ω)1{(t,ω):u(t,ω)6=u∗(t,ω)}(t, ω)dt ≤ K,

|πf(., x∗(., .), u(., .), .) − πf(., x∗(., .), u∗(., .), .)|∞ ≤ K}.

Assume that, for some given n = n∗, K = K∗, (4) holds for U ′ = UK∗

n∗ .
Then the necessary condition (5) holds for all u(., .) ∈ ∪nU

n
n .

Proof of Theorem 1: A proof is given based on the conditions (i)–(v) of
Remark 2, and modifications needed for a proof of the results in Remark 3 are
added. If wanted, the reader may assume that, in accordance with the Simple
Global Assumptions, the functions M̂(t, ω),M ′(t, ω), and M ′

∗(t, ω) equal the
constant M+, (with M(t) = 2M+), and that the constant M∗∗ equals M+T.
Without loss of generality, let x0 = 0, T = 1. In case of Remark 3, we can, and
shall, assume that M ′

∗(t, ω) ≥ M ′(t, ω), and that a number K ≥ max{1, K∗}
is chosen, so large that |

∫
J
M∗(t, ω)dt|q < K. In case of Remark 2, K is

any given number ≥ max{1, K∗}, and in this case, let M∗(t, ω) = M(t, ω)
and M ′

∗(t, ω) = M ′(t, ω). Define M∗(ω) :=
∫

J
M ′

∗(t, ω)dt, and, for u′, u ∈ UK

(as defined in Remark 2), define Hu,u′ := {(t, ω) : u(t, ω) 6= u′(t, ω)} and
σ̂(u′, u, ω) :=

∫
J

max{M(t, ω),M∗(t, ω)}1Hu,u′
(t, ω)dt. Let t → qu(.,.)(t, ω) :=

qu(t, ω) be the solution - continuous in t - of

q̇(t, ω) = fx(t, x
∗(t, ω), u∗(t, ω), ω)q(t, ω)+

f(t, x∗(t, ω), u(t, ω), ω) − f(t, x∗(t, ω), u∗(t, ω), ω), q(0) = 0, (11)

Define σ̌(u, u′) :=essupω

∫
J
M(t, ω)1Hu,u′

(t, ω)dt, letAd := {u ∈ UK : σ̌(u, u∗) <

d}, and from now on let u, u′ ∈ Ad̃, where d̃ is determined by d̃eM∗∗

= ď.
Note that by (i) in Remark 2 (and the existence of M ′

∗(t, ω) in Remark 3)
and Gronwall’s inequality (see Appendix), |xu(t, ω) − x∗(t, ω)| ≤

(
∫ 1

0
|f(t, x∗(t, ω), u(t, ω), ω) − f(t, x∗(t, ω), u∗(t, ω), ω)|dt)eM∗(ω) ≤

(
∫ 1

0
max{M(t, ω,M∗(t, ω)}1Hu,u∗

(t, ω)dt)eM∗(ω) ≤ σ̂(u, u∗, ω)eM∗(ω),

|qu(t, ω)| ≤ (
∫ 1

0
max{M(t, ω),M∗(t, ω)}1Hu,u∗

dt)eM∗(ω) ≤ σ̂(u, u∗, ω)eM∗(ω),
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|qu′

(t, ω) − qu(t, ω)| ≤ 2σ̂(u, u′, ω)eM∗(ω), (12)

to obtain the last inequality, note that |f(t, x∗(t, ω), u′(t, ω), ω) −
f(t, x∗(t, ω), u∗(t, ω), ω)−[f(t, x∗(t, ω), u(t, ω), ω)−f(t, x∗(t, ω), u∗(t, ω), ω)]| ≤
2 max{M(t, ω),M∗(t, ω)}1Hu′,u

, to obtain the first inequality we have actu-

ally used a continuation argument yielding |xu(t, ω)−x∗(t, ω)| < ď in case of
Remark 2, and |π′xu(t, ω)−π′x∗(t, ω)| < ď, |π′′xu(t, ω)−π′′x∗(t, ω)| < M∗∗(ω)
in case of Remark 3.

Some further properties will now be proved.

Proof of (13) below. Consider the expression

δ∗(t) := f(t, xu(t)+qu′

(t)−qu(t), u′(t))−f(t, x∗(t), u′(t))−f(t, xu(t), u(t))+
f(t, x∗(t), u(t)) − fx(t, x

∗(t), u∗(t))[qu′

(t) − qu(t)].

Here, and many places below, we have dropped writing ω. Now, on {(Hu,u∗ ∪
Hu′,u∗), |δ∗(t)| =

|f(t, xu(t) + qu′

(t) − qu(t), u∗(t)) − f(t, xu(t), u∗(t))−
fx(t, x

∗(t), u∗(t))[qu′

(t) − qu(t)]| ≤ e(t, xu(t), qu′

(t) − qu(t))|qu′

(t) − qu(t)|

where

e(t, x, y, ω) := supλ∈[0,1] |fx(t, x+λy, u
∗(t, ω), ω))−fx(t, x

∗(t, ω), u∗(t, ω), ω)|

Then, by (12), for ê(t, u′, u) := e(t, xu(t), qu′

(t) − qu(t)), on {(Hu,u∗ ∪Hu′,u∗),

|δ∗(t)| ≤ ê(t, u′, u)|qu′

(t) − qu(t)| ≤ 2ê(t, u′, u)σ̂(u′, u)eM∗

.

Moreover, by (12) and (i) in Remark 2, (and the existence of M ′
∗(t, ω) in

Remark 3), on (Hu,u∗ ∪Hu′,u∗) ∩ {Hu′,u,

|δ∗(t)| := |f(t, xu(t) + qu′

(t) − qu(t), u(t)) − f(t, xu(t), u(t))−
fx(t, x

∗(t), u∗(t))[qu′

(t)−qu(t)]| ≤ 2M ′
∗(t)|q

u′

(t)−qu(t)| ≤ 4M ′
∗(t)e

M∗

σ̂(u′, u).

Finally, using |xu(t)+qu′

(t)−qu(t)−x∗(t)| ≤ |xu(t)−x∗(t)|+|qu′

(t)|+|qu(t)| ≤
(2σ̂(u, u∗)+ σ̂(u′, u∗))eM∗

, see (12), by (i) in Remark 2, (and the existence of
M ′

∗(t, ω) in Remark 3), by (12), on (Hu,u∗ ∪Hu′,u∗) ∩Hu′,u,
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|δ∗(t)| ≤ M ′
∗(t)|x

u(t) + qu′

(t) − qu(t) − x∗(t)|+
M ′

∗(t)|x
u(t)−x∗(t)|+M ′

∗(t)|q
u′

(t)−qu(t)| ≤ M ′
∗(t)(4σ̂(u, u∗)+2σ̂(u′, u∗))eM∗

,

(here |qu′

(t) − qu(t)| ≤ |qu′

(t)| + |qu(t)| is also used). Hence, |δ∗(t)| ≤

2ê(t, u′, u)eM∗

σ̂(u′, u)1{(Hu,u∗∪Hu′,u∗ )+4M ′
∗(t)e

M∗

σ̂(u′, u)1(Hu,u∗∪Hu′,u∗ )∩{Hu′,u
+

M ′
∗(t)(4σ̂(u, u∗) + 2σ̂(u′, u∗))eM∗

1(Hu,u∗∪Hu′,u∗ )∩Hu′,u
.

Applying Gronwall’s inequality (see Appendix) to the equation ẋ = h(t, x) =
f(t, x, u′(t)), for ž(t) = xu′

(t) and y̌(t) = xu(t) + qu′

(t) − qu(t), (with∫ t

0
(−dy̌(s)/ds)ds+

∫ t

0
f(s, y̌(s), u′(s))ds =

∫ t

0
δ∗(s)ds), gives

|xu′

(t, ω)−(xu(t, ω)+qu′

(t, ω)−qu(t, ω))| ≤ e2M∗(ω){
∫

J
2ê(t, u′, u, ω)σ̂(u′, u, ω)dt+∫

J
4M ′

∗(t, ω)σ̂(u′, u, ω)1(Hu,u∗∪Hu′,u∗ )(t, ω)dt+∫
J
M ′

∗(t, ω)(4σ̂(u, u∗, ω) + 2σ̂(u′, u∗, ω))1Hu′,u
(t, ω)dt}. (13)

Until further notice only the case of Remark 2 is now treated. From now
on, let u, u′ ∈ Ad, d ≤ d̃. Then

|xu′

(t, ω) − (xu(t, ω) + qu′

(t, ω) − qu(t, ω))| ≤
e2M∗(ω)[

∫
J

2ê(t, u′, u, ω)dt+ 8d+ 6d]σ̌(u′, u).

By (ii) in Remark 2, and inequalities obtained above, ê(t, u′, u, ω)dt ≤
ě0(3de

M∗(ω), t) , so (by M∗(ω) ≤ M∗∗),
∫

J
2ê(t, u′, u, ω)dt ≤ ê1(d). Here and

below, ê(d) -functions, with various subscripts, are error functions, indepen-
dent of ω. Hence,

|xu′

(t, ω) − (xu(t, ω) + qu′

(t, ω) − qu(t, ω))| ≤ e2M∗∗

[ê1(d) + 14d]σ̌(u′, u)
=: σ̌(u′, u)ê2(d). (14)

Proof of (16),(17) below. Define δ∗∗(t) =

f(t, xu′

(t), u′(t)) − f(t, x∗(t), u′(t)) − f(t, xu(t), u(t))+
f(t, x∗(t), u(t)) − fx(t, x

∗(t), u∗(t))[qu′

(t) − qu(t)].

Then, |πδ∗∗(t)−πδ∗(t)| ≤ |πf(t, xu′

(t), u′(t))−πf(t, xu(t)+qu′

(t)−qu(t), u′(t))| ≤
M ′

π|xu′

(t) − (xu(t) + qu′

(t) − qu(t))| ≤ M ′
πê2(d)σ̌(u′, u). Define ê3(d, t, ω) =

supy∈B(x∗(t,ω),d) |πfx(t, y, u
∗(t, ω), ω) − πfx(t, x

∗(t, ω), u∗(t, ω), ω)|,
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(an error function in d, uniformly in (t, ω), due to (iii) in Remark 2). Similar
to what was obtained above, (see the last inequality for |δ∗(t)|),

|πδ∗(t)| ≤ ê3(d)e
M∗∗

σ̌(u′, u)1{(Hu,u∗∪Hu′,u∗ )+4M ′
πe

M∗∗

σ̌(u′, u)1(Hu,u∗∪Hu′,u∗ )∩{Hu′,u
+

M ′
π(4σ̌(u, u∗) + 2σ̌(u′, u∗))eM∗∗

1(Hu,u∗∪Hu′,u∗ )∩Hu′,u
,

where ê3(d) := 2essupω supt ê
3(3deM∗∗

, t, ω). Thus,

|πδ∗∗(t)| ≤ M ′
πê2(d)σ̌(u′, u) + ê3(d)e

M∗∗

σ̌(u′, u)+
4M ′

πe
M∗∗

σ̌(u′, u)1Hu,u∗∪Hu′,u∗
+ 6M ′

πe
M∗∗

d1Hu′,u
. (15)

Define Ii := (1−1/2i, 1−1/2i+1], i = 0, 1, ..., σ̃(u, u′) :=essupω

∫
J

1Hu′,u
(t, ω)dt,

σ∗(u′, u) := supi 2
i+1σ̃(u′1Ii

, u1Ii
), and σ(u′, u) = max{σ∗(u′, u), σ̌(u′, u)}.

Let Ad := {u ∈ UK : σ(u, u∗) < d} ⊂ Ad. Let x̃ := (x0, x1, ...), xi ∈ X,
π∞(x̃) := (πx0, πx1, ...). Let L̂∞ be the subspace of L∞(Ω,Φ1−1/21 , Y ) ×
L∞(Ω,Φ1−1/22 , Y )× ... consisting of elements z(ω) = (z0(ω), z1(ω), ...), zi(.) ∈
L∞(Ω,Φ1−1/2i+1 , Y ), for which the norm ∞|z(.)| := supi2

i|zi(.)|∞ is finite.
Moreover, let yu

i (ω) :=
∫

Ii
ẋu(t, ω)dt, yu(ω) := (yu

0 (ω), yu
1 (ω), ...),

qu
i (ω) :=

∫
Ii
q̇u(t, ω)dt, q̂u(ω) := (qu

0 (ω), qu
1 (ω), ...).

Assume that u, u′ ∈ Ad. Then, by (15) and 2n+1σ̃(u′1Ii
, u∗1Ii

) ≤ σ∗(u′, u∗) <
d,

∫
J

1Ii
|πδ∗∗(t)|dt ≤

M ′
πê2(d)σ̌(u′, u)/2i+1+ê3(d)e

M∗∗

σ̌(u′, u)/2i+1+4M ′
πe

M∗∗

σ̌(u′, u)[σ̃(u′1Ii
, u∗1Ii

)+
σ̃(u1Ii

, u∗1Ii
)] +M ′

π6eM∗∗

dσ̃(u′1Ii
, u1Ii

) ≤ ê4(d)σ(u′, u)/2i+1+
8M ′

πe
M∗∗

σ(u′, u)d/2i+1 +M ′
π6eM∗∗

dσ̃(u′1Ii
, u1Ii

).

Hence, 2i+1
∫

J
1Ii

|πδ∗∗(t)|dt ≤ê5(d)σ(u′, u) + 2i+1M ′
π6eM∗∗

dσ̃(u′1Ii
, u1Ii

) ≤

ê5(d)σ(u′, u) +M ′
π6eM∗∗

dσ∗(u′, u) ≤ ê6(d)σ(u′, u).

Thus, for any u, u′ ∈ Ad,

∞|π∞yu′

(.) − π∞yu(.) − [π∞q̂u′

(.)−π∞q̂u(.)]| ≤ ê6(d)σ(u′, u)/2 (16).

From (14), we obtain:

E|a · {xu′

(1, ω) − xu(1, ω) − [qu′

(1, ω) − qu(1, ω)]}| ≤ ê7(d)σ(u′, u). (17)

Moreover, (12) yields that u → (E[a · qu(1, ω)], π∞q̂u(.)) is continuous in
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σ− metric on UK , to see the continuity of u → π∞q̂u(.) (in σ− metric, ∞|.|-
norm), note that, in a shorthand notation, a.s., 2i|

∫
Ii
(πq̇u′

(t) − πq̇u(t))dt| ≤

2i|
∫

Ii
{πfx[q

u′

(t) − qu(t)] + πf(t, x∗(t), u′(t)) − πf(t, x∗(t), u(t))}dt| ≤

2i
∫

Ii
M ′

π|qu′

(t) − qu(t)|dt+ 2i
∫

Ii
K1Hu′,u

dt ≤ M ′
πe

M∗∗

σ̌(u′, u)+

2iKσ̃(u′1Ii
, u1Ii

) ≤ M ′
πe

M∗∗

σ(u′, u) +Kσ(u′, u)/2.

In case of Remark 3, define σ(u, u′) := max{σ∗(u, u
′), σ∗(u, u′), σ̌(u, u′)},

where σ∗(u, u
′) := |σ∗∗(u, u

′, .)|2q|, σ∗∗(u, u
′, .) =

∫
J

max{M ′
∗(t, ω)M∗(t, ω)1Hu,u′

(t, ω)dt,
(Ad now corresponds to this σ). In the present case, πf does not depend on
x′′, so the same arguments work to show (16) and continuity of u → π∞q̂u(.)
in σ-metric.

Furthermore, note that when u, u′ ∈ Ad run through sequences un, u
′
n such

that σ̂(un, u
∗, ω) → 0, σ̂(u′

n, u
∗, ω) → 0, then for each (t, ω), e(t, xu(t, ω), qu′

(t, ω)−
qu(t), ω) = ê(t, u′, u, ω) → 0. Now, ϑn(t, ω) := e2M∗(ω)e(t, xun(t, ω), qu′

n(t, ω)−
qun(t), ω) is bounded by 2e2M∗(ω)M ′

∗(t, ω), so by properties stated in Re-
mark 3, |ϑn(t, ω)|p → 0. Note that |αβγ|1 ≤ |α|p|βγ|q ≤ |α|p|β|2qγ|2q, and
σ̂ ≤ σ̌+σ∗. Using the last inequalities, as well as σ̃(u′, u) ≤

∑
σ̃(u′1Ii

, u1Ii
) ≤

σ∗(u′, u), by (13), for some ê8(d),

|xu′

(t, ω) − (xu(t, ω) + qu′

(t, ω) − qu(t, ω))|1 ≤ ê8(d)|σ̂(u′, u, .)|q+
4|e2M∗(.)|p|σ̂(u′, u, .)|2q|σ∗∗(u, u

∗, .)+σ∗∗(u
′, u∗, .)|2q+|e2M∗(.)|p|4σ̂(u, u∗, .)+

2σ̂(u′, u∗, .)|2q|σ∗∗(u
′, u, .)|2q ≤ [ê8(d) + 14d|e2M∗(.)|p]2σ(u′, u). (18)

Evidently, (18) implies (17).

Proof of (30),(31) below:

Two lemmas are needed.

Lemma 1. Let g ∈ L1(J×Ω, X) be progressively measurable. For any ε > 0,
there exists a function h(t, ω) :=

∑∞
k=0 g(t

k, ω)1[τk(ω),τ̂k(ω))(t), with tk ≤
τ k(ω) ≤ τ̂ k(ω) ≤ τ k+1(ω) for all ω, g(tk, .) ∈ L1(Ω,Φtk , X), 1[τk(ω),τ̂k(ω))(t)
progressively measurable, such that

∫
J
|g(t, ω) − h(t, ω)|dt < ε a.s., with

limk→∞ τ k(ω) = 1 a.s.

Proof: Let ε > 0. By Dunford and Schwartz, lemma III.11.16, g(t, .) ∈
L1(J, L1(Ω, X)) a.e. For each ε′ > 0, there exists a piecewise constant func-
tion a(t, ω) =

∑j∗

j=0 aj(ω)1[tj ,tj+1)(t), t0 = 0, tj∗+1 = 1, such that
∫

J
|g(t, .) −

a(t, .)|1dt < ε′2/2. Thus, there exists an open set A ⊂ J, such that meas(A) <
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ε′, and A⊃ A0 := {t : |g(t, .) − a(t, .)|1 > ε′/2}, (note that meas(A0) < ε′,
otherwise the inequality involving ε′2/2 is contradicted). Let B = {A, and
let sj := minB ∩ [tj, tj+1), if j ∈ Γ := {j : B ∩ [tj, tj+1) 6= 0}. For
j ∈ Γ, |aj(.) − g(sj, .)|1 ≤ ε′/2, so for j ∈ Γ, t ∈ B ∩ [tj, tj+1), we have
|g(t, .) − g(sj, .)|1 ≤ |g(t, .) − aj(.)|1 + |aj(.) − g(sj, .)|1 ≤ ε′. Define b(t, .) :=∑

j∈Γ g(sj, .)1[sj ,tj+1). Then, if t ∈ B, and t < 1, then for some j, t ∈ [tj, tj+1),
so for this j, j ∈ Γ, t ∈ [sj, tj) and |g(t, .) − b(t, .)|1 = |g(t, .) − g(sj, .)|1 < ε′.

Assume now that ε′ is so small that meas(C) < ε′ ⇒
∫

C
|g|1dt < ε2/4.

Then

∫
J
|g(t, .) − b(t, .)|1dt =

∫
B

|g(t, .) − b(t, .)|1dt+
∫

A
|g(t, .) − b(t, .)|1dt ≤

ε′ +
∫

A
|g(t, .) − a(t, .)|1dt+

∫
A

|a(t, .) − b(t, .)|1dt ≤ ε′ + ε′2/2+∫
A

∑
j∈Γ |aj(.) − g(sj, .)|11[sj ,tj+1)(t)dt+

∫
A

∑
j∈Γ |aj(.)|11[tj ,sj)(t)dt+∫

A

∑
j /∈Γ |aj(.)|11[tj ,tj+1)(t)dt ≤ ε′ + ε′2/2 + ε′/2 +

∫
A

|a(t, .)|1dt ≤

ε′+ε′2/2+ε′/2+
∫

A
|a(t, .)−g(t, .)|1dt+

∫
A

|g(t, .)|1dt ≤ ε′+2ε′2/2+ε′/2+ε2/4.

Hence, there exists a function h1(t, ω) =
∑

i g(t
1
i , ω)1[t1i ,r1

i )(t),(finite sum) ,

with t1i ≤ r1
i ≤ t1i+1, such that, in a shorthand notation,

∫
Ω

∫
J
|g− h1|dtdP <

ε2/2. Then Ω1 := {ω :
∫

J
|g(t, ω − h1(t, ω)|dt > ε/2} satisfies P (Ω1) <

ε, (otherwise the inequality involving ε2/2 is contradicted). Define S1 :=
{(t, ω) :

∫ t

0
|g(s, ω−h1(s, ω)|ds > ε/2}. For some function τ1(ω), S1 = {(t, ω) :

t ∈ (τ1(ω), 1]}. Evidently, S1 (i.e. 1S1
(t, ω) ) is progressively measurable, and

{ω : τ1(ω) < 1} = {ω : (t, ω) ∈ S1 for some t} = Ω1. Let τ0(ω) := 0.

In the above construction, (as a second step ), replace ε by ε/2 and g by
g1 := g1[τ1(ω),1](t). Then, for some function h2(t, ω) :=

∑
i g1(t

2
i , ω)1[t2i ,r2

i )(t),

t2i ≤ r2
i ≤ t2i+1,

∫
Ω

∫
J
|g1 − h2|dtdP < ε2/8. So, Ω2 := {ω :

∫
J
|g1(t, ω) −

h2(t, ω)|dt > ε/4} satisfies P (Ω2) < ε/2. Write S2 := {(t, ω) :
∫ t

0
|g1(s, ω) −

h2(s, ω)|ds > ε/4} =: {(t, ω) : t ∈ (τ2(ω), 1]}. Evidently, S2 is progressively
measurable, and {ω : τ2(ω) < 1} = {ω : (t, ω) ∈ S2 for some t} = Ω2. Finally,
S2 ⊂ S1, (g1 = h2 = 0 for t ∈ [0, τ1(ω)), i.e. τ2(ω) > τ1(ω)).

By induction, (replacing ε by ε/2j−1 and g by gj−1 := g1[τj−1(ω),1](t) at

step j), functions hj(t, ω) =
∑

i gj−1(t
j
i , ω)1[tji ,rj

i ), t
j
i ≤ rj

i ≤ tji+1, can be

constructed, such that
∫

Ω

∫
J
|gj−1 − hj|dtdP < (ε/2j−1)2/2, hence such that

Ωj := {ω :
∫

J
|gj−1(t, ω) − hj(t, ω)|dt > ε/2j} satisfies P (Ωj) < ε/2j−1, with

Sj := {(t, ω) :
∫ t

0
|gj−1(s, ω) − hj(s, ω)|ds > ε/2j} =: {(t, ω) : t ∈ (τj(ω), 1]},

(Sj progressively measurable), and {ω : τj(ω) < 1} = {ω : (t, ω) ∈ Sj

for some t} = Ωj. Finally, Sj ⊂ Sj−1, (gj−1 = hj = 0 on [0, τ1−1(ω)),
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i.e. τj(ω) > τj−1(ω)), so Ωj ⊂ Ωj−1. Evidently, for any j, for any ω,∫ τj(ω)

τj−1(ω)
|g(t, ω) − hj(t, ω)|dt =

∫ τj(ω)

τj−1(ω)
|gj−1(t, ω) − hj(t, ω)|dt ≤ ε/2j. Let

h =
∑∞

j=1 hj1[τj−1(ω),τj(ω)) and let ω /∈ ∩jΩj, (this intersection being a

null set). Then, for some j = j∗, ω ∈ {Ωj∗ , i.e. τj∗(ω) = 1. Hence,∫
J
|g(t, ω)−h(t, ω)|dt =

∑
j≤j∗

∫ τj(ω)

τj−1(ω)
|g(t, ω)−hj(t, ω)|dt ≤

∑
1≤j≤j∗ ε/2j ≤

ε, for such an ω.
Note that h =

∑
j(

∑
i g(t

j
i , ω)1[τj−1(ω),1]1[tji ,rj

i ))1[τj−1(ω),τj(ω)) =∑
j,i g(t

j
i , ω)1[τ i,j(ω),τ̂ i,j(ω)), where τ i,j(ω) = max{tji , τj−1(ω)}, τ̂ i,j(ω) = min{rj

i , τj(ω)},
so h is of the form described in the lemma.

Lemma 2 Let g ∈ L1(J × Ω, X) be progressively measurable and let k̃ ∈
(0, 1). Then, for each ε > 0, there exists a progressively measurable set
C ⊂ J × Ω, such that |k̃

∫ s

0
g(t, ω)dt−

∫ s

0
g(t, ω)1C(t, ω)dt| < ε for all s, a.s.

Proof. Apply Lemma 1 to obtain

essupω

∫
J
|g(t, ω) − h(t, ω)|dt < ε/4, for

h(t, ω) =
∑∞

k=0 ak(ω)1[τk(ω),τk+1(ω))(t), (19)

where ak(ω) ∈ L∞(Ω,Φtk , X), tk ≤ τk(ω) ≤ τk+1(ω), (tk independent of ω),
τ0(ω) = 0, limk τk(ω) = 1 a.s., 1[τk(ω),τk+1(ω))(t) progressively measurable. We
need a subdivision finer than {τk(ω)}. Now, a.s.

∫
J
|g(t, ω)|dt = Kω < ∞.

For each k, by induction on j, define sets Sk,j := {(t, ω) : t ∈ (τk(ω) +
ξk,j(ω), τk(ω)+ξk,j+1(ω)] such that Sk,j = {(t, ω) :

∫ t

τk+ξk,j |g(s, ω)|ds ≤ ε/4},

with ξk,0(ω) = 0. After a finite number of steps, say j(ω) (≤ 1+ (ε/4)−1Kω),
τk(ω) + ξk,j(ω) becomes ≥ τk+1(ω) ≤ 1 a.s., in which case τk(ω) + ξk,j(ω)
is replaced by τk+1(ω) and we stop. Evidently, by induction, Sk,j becomes
progressively measurable.

Having made this observation, it is evident that we may simply assume that
the points τk(ω) in (19) have the additional property that, a.s.,

∫ τk+1(ω)

τk(ω)
|g(t, ω)|dt ≤ ε/4. (20)

Define φ(t, ω) :=
∑

k 1[τk(ω),(1−k̃)τk(ω)+k̃τk+1(ω))(t). Now,

∫ τk+1(ω)

τk(ω)
h(t, ω)φ(t, ω)dt =

∫ τk+1(ω)

τk(ω)
ak(ω)1[τk(ω),(1−k̃)τk(ω)+k̃τk+1(ω))(t)dt =
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k̃ak(ω)(τk+1(ω) − τk(ω)) = k̃
∫ τk+1(ω)

τk(ω)
ak(ω)dt = k̃

∫ τk+1(ω)

τk(ω)
h(t, ω)dt. (21)

Hence, for any given k∗,

∫ τk∗ (ω)

0
h(t, ω)φ(t, ω)dt =

∑
k<k∗

∫ τk+1(ω)

τk(ω)
h(t, ω)φ(t, ω)dt =∑

k<k∗ k̃
∫ τk+1(ω)

τk(ω)
h(t, ω)dt = k̃

∫ τk∗ (ω)

0
h(t, ω)dt. (22)

Moreover, by (22) and (19), a.s.,

|
∫ τk∗ (ω)

0
g(t, ω)φ(t, ω)dt− k̃

∫ τk∗ (ω)

0
g(t, ω)dt| ≤

|
∫ τk∗ (ω)

0
h(t, ω)φ(t, ω)dt− k̃

∫ τk∗ (ω)

0
h(t, ω)dt|+

|
∫ τk∗ (ω)

0
(g(t, ω) − h(t, ω))φ(t, ω)dt|+ k̃|

∫ τk∗ (ω)

0
(h(t, ω) − g(t, ω))dt| <

2ε/4 = ε/2 (23)

Finally, for any given t, if k∗ = k∗(ω) is the largest k such that τk(ω) ≤ t,
then, by (20), a.s.,

|
∫ t

τk∗ (ω)
g(t, ω)φ(t, ω)dt| ≤ ε/4, |k̃

∫ t

τk∗ (ω)
g(t, ω)dt| ≤ ε/4. (24).

The conclusion of Lemma 2 then follows from (23) and (24).

For any ũ(., .), write f(t, ũ(., .), .) := f(t, x∗(t, .), ũ(., .), .). Let u′′, u ∈ UK , k ∈
(0, 1). Then, for any ρ > 0, for some û(t, ω) ∈ U ′, for all s, a.s., b(û, s, ω) :=

|
∫

[0,s]
{f(t, û(t, ω), ω) − kf(t, u′′(t, ω), ω) − (1 − k)f(t, u(t, ω), ω)}dt| < ρ (25)

To prove (25), apply Lemma 2 to obtain, for û = u′′1C +u(1−1C), that, a.s.,
b(û, s, ω) = |k

∫ s

0
(f(t, u′′(t, ω), ω) − f(t, u(t, ω), ω))dt −

∫ s

0
(f(t, u′′(t, ω), ω) −

f(t, u(t, ω), ω))1Cdt| < ρ, from which (25) follows.

Now, replacing [0, s] by Im ∩ [0, s] and ρ by ρ/2m+1 in (25), denoting the
corresponding subset C by Cm ⊂ Im, and dropping writing ω, we get, a.s.,
for all s,

|
∫ s

0
1Im

{f(t, û(t)) − [kf(t, u′′(t)) + (1 − k)f(t, u(t))]}dt|∞ < ρ/2m+1, (26)

where û on Im is defined by û := u′′1Cm + u(1 − 1Cm). Also, for this û(t, ω),
(25) holds.

Now, (25), combined with Gronwall’s inequality, give, a.s.,
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supt |q
û(t) − [kqu′′

(t) + (1 − k)qu′

(t)]| < eM∗

ρ. (27)

Both in case of Remarks 2 and 3, (27) holds, until further notice, let us
now restrict attention to Remark 2. From (27) it follows that, for all t,

essupω|πfx(t, x
∗(t), u∗(t)){qû(t) − [kqu′′

(t) + (1 − k)qu(t)]}| ≤ M ′
πe

M∗∗

ρ,
so

essupω

∫
J

1Im
|πfx(t, x

∗(t), u∗(t)){qû(t)−[kqu′′

(t)+(1−k)qu(t)]}|dt ≤ M ′
πe

M∗∗

ρ/2m+1.

Combining this with (26) gives, a.s., for all s,

|
∫ s

0
1Im

π{q̇û(t) − [kq̇u′′

(t) + (1 − k)q̇u(t)]}dt| ≤ ρ(|π| +M ′
πe

M∗∗

)/2m+1. (28)

By (27),

E|a · {qû(1) − [kqu′′

(1) + (1 − k)qu(1)]}dt| ≤ |a||eM∗

|1ρ. (29)

Now, if u′′ ∈ Ad′′ , u ∈ Ad, for d̂′′ := σ(u′′, u∗) < d′′, d̂ := σ(u, u∗) < d, then,
for each m there exist sets D′′

m and Dm in Im × Ω such that D′′
m ⊃ {(t, ω) :

t ∈ Im, u
′′(t, ω) 6= u∗(t, ω)}, Dm ⊃ {(t, ω) : t ∈ Im, u(t, ω) 6= u∗(t, ω)},

essup
∫

Im
1D′′

m
dt ≤ d̂′′/2m+1, essup

∫
Im

1Dm
dt ≤ d̂/2m+1, essup

∫
J
M(t)(

∑
1D′′

m
)dt ≤

d̂′′ < d′′, essup
∫

J
M(t)(

∑
1Dm

)dt ≤ d̂ < d. Let D = ∪mDm, D′′ = ∪mD
′′
m,

C = ∪Cm. Assume that we had carried out the construction in (26), for ρ
< k(d′′ − d̂′′) and the functions f(t, u′′(t)) and f(t, u(t)) replaced by ((1 +
M(t))1D′′ , (1 +M(t))(1D′′ + 1D), f(t, u′′(t))) and ((1 +M(t))1D, 0, f(t, u(t)),
respectively. Then, a.s.,
sups|

∫ s

0
(1+M(t))1Im

{1D′′1Cm+1D(1−1Cm)−[k1D′′+(1−k)1D]}dt| ≤ ρ/2m+1,

so, a.s., both |
∫

J
1Im

{1D′′1Cm + 1D(1 − 1Cm)}dt| ≤ ρ/2m+1 + [kd̂′′ + (1 −

k)d̂]/2m+1 < [kd′′ + (1 − k)d]/2m+1 and (summing over m), sups|
∫ s

0
(1 +

M(t)){1D′′1C + 1D(1 − 1C) − [k1D′′ + (1 − k)1D]}dt| ≤ ρ, and hence, a.s.,
|
∫

J
M(t){1D′′1C + 1D(1 − 1C)}dt| ≤ ρ+ [kd̂′′ + (1 − k)d̂] < [kd′′ + (1 − k)d].

Similarly, a.s.,
sups|

∫ s

0
1Im

{(1+M(t))(1D′′ +1D)1Cm −k(1+M(t))(1D′′ +1D)}dt| ≤ ρ/2m+1,

so, a.s.,|
∫

Im
(1D′′ + 1D)1Cmdt| ≤ ρ/2m+1 + k(d̂′′ + d̂)/2m+1 < k(d′′ + d)/2m+1.

Summing over m, the first inequality gives, a.s., |
∫

J
M(t)(1D′′ +1D)1Cmdt| <
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ρ+ k(d̂′′ + d̂) < k(d′′ + d).

Note that, for t ∈ Im, û(t, ω) 6= u∗(t, ω) ⇒ (t, ω) ∈ (D′′ ∩ Cm) ∪ (D ∩ {Cm),
so, for d′′, d ≤ K, û ∈ Akd′′+(1−k)d, moreover, û(t, ω) 6= u(t, ω) ⇒ (t, ω) ∈
(D′′ ∪D) ∩ Cm, so σ(û, u) ≤ k(d′′ + d).

Similar arguments work in case of Remark 3: Since π′f does not depend
on x′′, (27) holds for q,M∗ replaced by π′q,M∗∗, and this suffices for (28)
to hold in this case. Now, (27) also holds as written, which again implies
(29). The sets D′′

m and Dm are now chosen to satisfy also |
∫

J
M∗(t)1D′′dt|q ≤

d̂′′,—
∫

J
M∗(t)1Ddt|q≤ d̂. In this case the sets Cm are so chosen that even, a.s.,

sups |
∫ s

0
M∗(t)1Im

{1D′′1Cm + 1D(1 − 1Cm) − [k1D′′ + (1 − k)1D]}dt| ≤ ρ/2m+1

and sups |
∫ s

0
1Im

{M∗(t)(1D′′ + 1D)1Cm − kM∗(t)(1D′′ + 1D)}dt| ≤ ρ/2m+1.

These inequalities imply |
∫

J
M∗(t){1D′′1C +1D(1−1C)}dt|q ≤ ρ+[kd̂′′ +(1−

k)d̂] < [kd′′ + (1 − k)d] and |
∫

J
M∗(t)(1D′′ + 1D)1Cmdt|q ≤ ρ + k(d̂′′ + d̂) <

k(d′′ + d). So in both cases, (28), (29) can be obtained for a û ∈ Akd′′+(1−k)d

with σ(û, u) ≤ k(d′′ + d).

Thus, for any ε > 0, u′′ ∈ Ad′′ , u ∈ Ad, (d′′, d ≤ K) some û ∈ Akd′′+(1−k)d

exists such that σ(û, u) ≤ k(d′′ + d), and

∞|π∞q̂û(.) − [kπ∞q̂u′′

(.) + (1 − k)π∞q̂u(.)]| < ε, (30)

E|a · {qû(1, ω) − [kqu′′

(1, ω) + (1 − k)qu(1, ω)]}| < ε. (31)

Proof of (32) below. Let ď ∈ (0, 1]. In the above construction, let u′′ ∈ UK ,
u = u∗, let k be slightly less than ď, and let d and ε′ be positive numbers, so
close to zero that k(d′′ + d) < ďK, where d′′ = K + ε′, (u∗ ∈ Ad, u

′′ ∈ Ad′′ ,
so û ∈ AďK . Then, (30),(31) give that |(Ea · qû(1, ω), π∞q̂û(.)) − k(Ea ·
qu′′

(1, ω), π∞q̂u′′

(.))| is arbitrarily small, (the norm is |.| ×∞ | |-norm, |.| =
absolute value), hence k(Ea·qu′′

(1, ω), π∞q̂u′′

(.)) ∈ cl{(Ea·qû(1, ω), π∞q̂û(.)) :
û ∈ AďK}, (closure in |.| ×∞ |.|-norm) and so also, (for any u′′ ∈ UK , ď ∈
(0, 1]),

ď(Ea · qu′′

(1, ω), π∞q̂u′′

(.)) ∈ cl{(Ea · qû(1, ω), π∞q̂û(.)) : û ∈ AďK} (32).

Final proof steps. For z(.) ∈ L∞(Ω, Y ), define Π1(z(.)) := E[z(.)|Φ1−1/2]
and Πi(z(.)) := E[z(.)|Φ1−1/2i ] −E[z(.)|Φ1−1/2i−1 ], i > 1. Furthermore, define
the subset L∞ of L∞(Ω, Y ) to consist of all element z(.) ∈ L∞(Ω, Y ) such that

∞|z(.)| :=supi2
i|Πiz(.)|∞ < ∞, and such that z(.) = limk→∞

∑
1≤i≤k Πiz(.)

17



= limk→∞E[z(.)|Φ1−1/2k ], (limit in |.|∞-norm). It is easily seen that elements
of the type

∫
J
y(t, ω)dt, y(t, ω) progressively measurable, |y(., .)|∞ < ∞,

precisely make up the set L∞. To see this, note that |Π1

∫
J
y(t, ω)dt| ≤

|y(., .)|∞, and, for j > 1, |Πj

∫
J
y(t, ω)dt| = |Πj

∑
0≤i<∞

∫
Ii
y(t, ω)dt| =

|
∑

j−1≤i<∞ Πj

∫
Ii
y(t, ω)dt)| ≤

∑
j−1≤i<∞ 1/2i|y(., .)|∞ = 1/2j−2|y(., .)|∞.More-

over,

|
∫

J
y(t, ω)dt−

∑
1≤j≤k Πj

∫
J
y(t, ω)dt| = |

∫
J
y(t, ω)dt−E[

∫
J
y(t, ω)dt|Φ1−1/2k ]| =

|
∫

J
y(t, ω)dt−

∫ 1−1/2k

0
y(t, ω)dt−E[

∫ 1

1−1/2k y(t, ω)dt|Φ1−1/2k ]| ≤ (2/2k)|y(., .)|∞,

so
∫

J
y(t, ω)dt ∈ L∞. Finally, if z(ω) ∈ L∞, then z(ω) =

∫
J
γ(t, ω)dt, for

γ(t, ω) := 2
∑

m≥1 2mΠmz(ω)1[1−1/2m,1−1/2m+1)(t), where |γ(., .)|∞ ≤ 2∞|z(.)|,
γ(., .) progressively measurable.

Let Θ be the linear map from L̂∞ into L∞ defined by (z0(ω), z1(ω), ...) →∑
i zi(ω). Let us prove that Θ has norm ≤ 8 for the norms ∞|.| and ∞|.|: Now,

|Π1

∑∞
i=0 zi(.)|∞ ≤ |

∑∞
i=0 zi(.)|∞ ≤

∑∞
i=0(1/2

i)∞|z(.)| ≤ 2·∞|z(.)|, while for
j > 1, |Πj

∑∞
i=0 zi(.)|∞ = |Πj

∑∞
i=j−1 zi(.)| = |

∑∞
i=j−1{E[zi(.)|Φ1−1/2i ] −

E[zi(.)|Φ1−1/2i−1 ]}|∞ ≤
∑∞

i=j−1{|zi(.)|∞ + |zi(.)|∞} ≤
∑∞

i=j−1 2 ·∞ |z(.)|/2i =
∞|z(.)|/2j−3. Note that Θπ∞yu(.) = πxu(1, .) and Θπ∞q̂u(.) = πqu(1, .). Thus
(16) and (17) imply, for any u, u′ ∈ Ad,

∞|πxu′

(1, .) − πxu(1, .) − [πqu′

(1, .)−πqu(1, .)]| ≤ ê9(d)σ(u′, u) (33)

E|a · {xu′

(1, .) − xu(1, .) − [qu′

(1, .)−qu(1, .)]}| ≤ ê9(d)σ(u′, u) (34)

By (30),(31), for any k ∈ (0, 1), ε > 0, if u′′, u ∈ Ad, then, for some û ∈ Ad,

∞|πqû(1, .) − [kπqu′′

(1, .) + (1 − k)πqu(1, .)]| < ε, (35)

E|a · {qû(1, .) − [kqu′′

(1, .) + (1 − k)qu(1, .)]}| < ε, (36)

(d ≤ K). By (32), for any u′′ ∈ UK , ď ∈ (0, 1],

ď(Ea · qu′′

(1, ω), πqu′′

(1, .)) ∈cl{(Ea · qû(1, ω), πqû(1, .)) : û ∈ AďK} (37)

where cl means closure in |.| ×∞ |.|, (the first |.| -sign being absolute value).
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Let us now invoke Theorem B in Appendix, for Ã = UK ,M ′ = 1, ∂(., .) =
σ(., .)/K, (so Ãd = AdK), Ŷ = L1([0, 1] × Ω, X), and, for φ ∈ Ŷ , π̌φ =

Ea ·
∫ T

0
φdt ∈ R = Ž, π̂φ = π

∫ T

0
φ(t, ω)dt ∈ L∞ = Z, y(a) = ẋu(., .), (u =

a), y+(a) = q̇u(., .), ā = u∗, z′ the constant function ỹ, ž∗ = 1, d0 = 1.
Evidently, UK is complete in the metric σ, (see Theorem C in Appendix),
and (33)-(37) imply (A)-(C) to be satisfied in the manner required in The-
orem B. Moreover, (4) and (35) imply that clπ̂y+(A) is a convex body. Fi-
nally, continuity of u → (Ea · qu(1, .), πqu(1, .)), (see discussion subsequent
to (17)), and (33),(34) give that u → (Ea · xu(1, .), πxu(1, .)) is continuous.
Hence, Theorem B applies, and yields a continuous linear nonzero functional
(Λ0, z

∗), Λ0 ≥ 0, such that Λ0Ea ·
∫ T

0
q̇u(t, .)dt + 〈π

∫ T

0
q̇u(t, .)dt, z∗〉 ≤ 0 for

all u(., .) ∈ U∗. Hence the conclusion of Theorem 1, (or more precisely of
Remark 2), follows, for ν = z∗.

Remark 6 By Theorem B in Appendix, in Remarks 2 and 3, it evidently
suffices to assume that (4) holds for co replaced by clco, where cl means clo-
sure in ∞|.|. This weakened condition (4) is implied by the following condition:

For some δ > 0, some T ′ ∈ [0, 1], some bounded progressively measur-
able function y(t, ω) ∈ L∞([T ′, 1] × Ω, Y ), some complete separable metriz-
able subset Ũ of U, B(πẋ∗(t, ω) + y(t, ω), δ) ⊂ πf(t, x∗(t, ω), Ũ , ω) ⊂ Y,
for all ω and t ∈ [T ′, 1]. Moreover, M ′(t, ω) (see Remarks 2 and 3), is
a constant M ′ and, for some constant K, essupω

∫
J
M(t, ω)dt ≤ K and

|f(t, x∗(t, ω), u, ω)−f(t, x∗(t, ω), u∗(t, ω), ω)| ≤ K for all ω, t ∈ [T ′, 1], u ∈ Ũ .
(In case of Remark 3, the latter condition need only holds for f replaced by
π′f .) Finally, Ũ ⊂ U(t, ω), for all (t, ω).

(It may also be shown that the weakened condition (4) implies the ordi-
nary condition (4).)

Proof of Remark 6 Let T = 1. Let T ∗ ∈ [0, 1) be so large thatM ′
∫ ρ

T ∗
|C(ρ, s, ω)|ds

≤ δ/2K|π| for all ω, ρ ∈ [T ∗, 1]. Let T ′′ = max{T ′, T ∗}, and let Lprog
∞ ([T ′′, 1]×

Ω, Y ) be the closed subspace of L∞([T ′′, 1]×Ω, Y ), consisting of progressively
measurable functions. Note that for any z(t, ω) ∈ Lprog

∞ ([T ′′, 1] × Ω, Y ),
for which |z(., .)|dt < δ, by (an easy extension of) the selection theorem
of Kuratowskii, there exists a progressively measurable function v(t, ω), t ∈
[T ′′, 1], ω ∈ Ω, with values in Ũ , (the set of such ones is denoted Ũ ′), such that,
a.e.×a.s., πẋ∗(t, ω) + y(t, ω) + z(t, ω) = πf(t, x∗(t, ω), v(t, ω), ω), t ∈ [T ′′, 1].
(At this point, actually only a suitable approximate equality is needed, which
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allows for a weakening of the assumptions in the remark. In particular, it
suffices to assume B(πẋ∗(t, ω) + y(t, ω), δ) ⊂clcoπf(t, x∗(t, ω), Ũ , ω) ⊂ Y .)

Now, for any φ(s, ω) ∈ Lprog
∞ ([T ′′, 1] × Ω, X),

∫ 1

T ′′
C(1, s, .)φ(s, .)ds =∫ 1

T ′′
[I +

∫ 1

s
fx(ρ, x

∗(ρ, .), u∗(ρ, .), .)C(ρ, s, .)dρ]φ(s, .)ds =∫ 1

T ′′
[φ(ρ, .) +

∫ ρ

T ′′
fx(ρ, x

∗(ρ, .), u∗(ρ, .), .)C(ρ, s, .)φ(s, ω)ds]dρ. Let H be the
map φ(ρ, ω) → ψ(ρ, ω) :=

∫ ρ

T ′′
fx(ρ, x

∗(ρ, .), u∗(ρ, .), .)C(ρ, s, .)φ(s, ω)ds. Now,
ψ(., .) is also a progressively measurable function of (ρ, ω), with L∞-norm
≤ |φ|∞δ/2K|π|. We just showed that BT ′′

∞ (y(., .), δ) ∈ {πf(., x∗(.), v(.), .) −
πf(., x∗(., .), u∗(., .), .) : v(., .) ∈ Ũ ′}, BT ′′

∞ (y(., .), δ) a ball in Lprog
∞ ([T ′′, 1] ×

Ω, Y ). Moreover, |πH[f(., x∗(., .), v(., .), .) − f(., x∗(., .), u∗(., .), .)]|∞ ≤ δ/2,
so, (see Lemma 11.1, Seierstad (1975)), BT ′′

∞ (y(., .), δ/2) ∈clV , for V :=coV ′,
where

V ′ := {π(I +H)[f(., x∗(.), v(.), .) − f(., x∗(., .), u∗(., .), .)] : v(., .) ∈ Ũ ′} ⊂

Lprog
∞ ([T ′′, 1] × Ω, Y ), cl = closure in |.|∞. Let z(., .) ∈ BT ′′

∞ (y(., .), δ/2), and
let ε > 0 be arbirary. Then there exists a z′(., .) ∈ V such that |z′(., .) −
z(., .)|∞ < ε. It follows that |

∫
Ii
z′(t, ω)1[T ′′,1]dt−

∫
Ii
z(t, ω)1[T ′′,1]dt| ≤ ε/2i+1,

so ∞|
∫ 1

T ′′
(z′(t, .) − z(t, .))dt| < 4ε, (recall |Θ| ≤ 8) . Hence,

∫ 1

T ′′
y(t, .)dt +

B(0, δ(1 − T ′′)/4) ∈clco{
∫ 1

T ′′
z̃(t, .)dt : z̃(., .) ∈ V ′} ⊂ L∞, where B(., .)

and cl refer to the norm ∞|.|. To see this, note that any element z(.) in

B(0, δ(1 − T ′′)/4) can be written as z(.) =
∫ 1

0
γ(t, .)dt, γ(., .) ≤ 2∞|z(.)| <

δ(1 − T ′′)/2 and
∫ 1

0
γ(t, .)dt =

∫ 1

T ′′
(1/(1 − T ′′))γ′(s, .)ds, γ′(s, ω) = γ(s/(1 −

T ′′) − T ′′/(1 − T ′′), ω), (γ′(., .)/(1 − T ′′) ∈ BT ′′

∞ (0, δ/2) ⊂ L∞([T ′′, 1] × Ω, Y ),
progressively measurable since s ≥ s/(1 − T ′′) − T ′′/(1 − T ′′)).

Proof of (8). Let T = 1. Assume for the moment that ν is absolutely
continuous with respect to P. Then, by the inequality |C(1, s, .)| ≤ eM∗

,
also φ → p(s, φ) is absolutely continuous, hence, (considering for the mo-
ment Dp(s, ω) := Dωp(s, ω) and Dν(ω) to be linear functionals), evidently,
Dp(s, ω) = C(1, s, ω)∗Dν∗(ω) and (∂/∂s)Dp(s, ω) = (∂/∂s)C(1, s, ω)∗Dν∗(ω) =
−(fx(s, x

∗(s, ω), u∗(s, ω), ω))∗C(1, s, ω)∗Dν∗(ω) =
− (fx(s, x

∗(s, ω), u∗(s, ω), ω))∗Dp(s, ω).

If it is only known that φ → 〈C(1, s, .)φ, ν〉, φ ∈ L∞(Ω,Φs, X), s < 1, is ab-
solutely continuous, (this happens more often ), then for any s < 1, choose a
T ′ ∈ (s, 1), apply the above arguments to p(s, ω) = C(T ′, s, ω)∗νT ′(ω), νT ′ :=
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C(1, T ′, .)∗ν∗, to obtain (∂/∂s)Dp(s, ω) = (∂/∂s)C(T ′, s, ω)∗DνT ′(ω) = −
(fx(s, x

∗(s, ω), u∗(s, ω), ω)∗C(T ′, s, ω)∗DνT ′(ω) =
− (fx(s, x

∗(s, ω.), u∗(s, ω), ω)∗Dp(s, ω).

Proof of Remark 5 Let T = 1. By the proof of Theorem 1, for n∗∗ :=
max{1, K∗, n∗}, multipliers (Λn

0 , z
∗
n), n = n∗∗, n∗∗+1, ..., with Λn

0 ≥ 0,max{Λn
0 , |z

∗
n|}

= 1, exist for which Λn
0Ea·

∫ T

0
q̇u(t, .)dt+〈π

∫ T

0
q̇u(t, .)dt, z∗

n〉 ≤ 0, u(., .) ∈ Un
n .

This same inequality is satisfied by any given weak∗ cluster point (Λ0, z
∗) of

(Λn
0 , z

∗
n), for any u(., .) ∈ ∪nU

n
n . From this inequality, it also follows that

(Λ0, z
∗) 6= 0: For simplicity, assume limn Λn

0 = Λ0. If Λ0 = 0, then for n

large, both |z∗
n| = 1, and |Λn

0Ea ·
∫ T

0
q̇u(t, .)dt| ≤ α/4, for all u ∈ UK∗

n∗ , so

〈π
∫ T

0
q̇u(t, .)dt, z∗

n〉 ≤ α/4, which yields, in particular, 〈z+ y, z∗
n〉 ≤ α/4, z :=∫ 1

0
ž(t, .)dt, for y ∈ Bα, see (4). This means that 〈z, z∗

n〉 ≤ infy∈Bα
〈−y, z∗

n〉 +
α/4 ≤ infz′′∈B(0,α/2)〈z

′′, z∗
n〉 + α/4 = −α/2 + α/4 = −α/4, (B(0, α/2) a ball

in L∞), the last inequality because it was shown in the proof of Theorem 1,

that for any z′′ in L∞, z′′ =
∫ 1

0
γ(t, ω) for some γ(., .) ∈ Lprog

∞ (J × Ω, Y ) with
|γ(., .)|∞ ≤ 2∞|z′′|. I.e. even 〈z, z∗〉 ≤ −α/4, so z∗ 6= 0.

Proof of (7) With the conventions in the proof of Theorem 1 and a short-

hand notation, |C(T, s, ω) − I| = |
∫ T

s
fxCdt| ≤ eM∗(ω)

∫ T

s
M ′(t, ω)dt ≤

eM∗(ω)M∗(ω), |π(C(T, s, ω)−I)| = |
∫ T

s
πfxCdt| ≤ eM∗∗

∫ T

s
M ′

πdt ≤ eM∗∗

(T −
s)M ′

π, and p(t, φ)−p(T, φ) = 〈π(C(T, s, .)−I)φ, ν〉+Λ0E〈(C(T, s, .)−I)φ, a〉,
from which (7) follows.

Applications

A. Continuous systems Assume that X = R
n, Y = R

m,Ω = {ω =
(τ1, τ2, ...) : τi ∈ [0,∞)}, and that conditional probability densities µ̇(τj+1|τ1, ..., τj)
are given, (for j = 0, the density is simply µ̇(τ1), sometimes written µ̇(τ1|τ0), τ0 =
0). The conditional density µ̇(τj+1|τ1, ..., τj) is assumed to be measurable
with respect to τ1, ..., τj+1, and integrable with respect to τj+1, with inte-
gral 1. We assume µ̇(τj+1|τ1, ..., τj) = 0 if τj+1 < max1≤i≤j τi. This means
that we need only consider nondecreasing sequences ω = (τ1, τ2, ...), mak-
ing up the set Ω∗, or even the set Ω′ of strictly increasing sequences. For
ωj = (τ0, τ1, ..., τj), these conditional densities define simultaneous condi-
tional densities µ̇(τj+1, ..., τm|ωj), (µ̇(τ1, ..., τm|τ0) = µ̇(τ1, ..., τm)), assumed
to satisfy: For some k∗ ∈ (0, 1), some positive numbers Φ∗(t, j), υ(t, j),
υ(t, j) ∈ (0, κ∗),
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Pr[t ∈ (τm, τm+1]|ω
j] ≤ Φ∗(t, j)(υ(t, j))m−j , (38)

for any given t ∈ [0,∞). Property (38), used for j = 0, means that with
probability 1, the sequences (τ1, τ2, ...) has the property that τi → ∞, (the
subset of such sequences in Ω′ is denoted Ω′′).

Let the term ”nonanticipating function” mean a function y(t, ω) = y(t, τ1, τ2, ...)
that for each given t ∈ [0, T ], depends only on τi ≤ t. (Formally, y(t, τ ′

1, τ
′
2, ...) =

y(t, τ1, τ2, ...) if {i : τ ′
i ≤ t} = {i : τi ≤ t} and τ ′

i = τi for i ∈ {i : τi ≤ t}.).
This corresponds to letting Φt be the σ-algebra generated by sets of the
form A = AB,i := {ω := (τ0, τ1, ...) : τi ∈ B}, where B is a either a
Lebesgue measurable set in [0, t], or B = (t,∞), i ∈ {1, 2, ...}. Condition
(38) entails that a probability measure P , corresponding to the conditional
densities µ̇(τi+1|ω

i), is defined on (Ω,Φ), Φ = ΦT . If y(., .) takes values
in a topological space Ȳ , let Mnonant(J × Ω, Ȳ ) be the set of functions
being nonanticipating and simultaneous Lebesgue measurable on each set
[0, T ] × Ωi,Ωi := {ω : τi+1 > T}. (These properties are essentially equiva-
lent to progressive measurability.) As a function of (t, ω), f (in (1)) is now
assumed to be nonanticipating. Sometimes we write y(t, ω) = y(t, ωi) when
τi ≤ t, τi+1 > t, ω ∈ Ω′. Now, we define U ′ = Mnonant(J × Ω, U), Bα =
{
∫

J
z(t, .)dt : z(., .) ∈ Mnonant(J × Ω, Y ), |z(., .)|∞ < α}, and we let ž(., .) ∈

Lnonant
∞ (J × Ω, Y ) := {z(., .) ∈ Mnonant(J × Ω, Y ), |z(., .)|∞ < ∞}. For these

definitions, Theorem 1 holds.

The present type of systems might be termed continuous, piecewise deter-
ministic. In such systems, the right hand side of the differential equation in
(1) exhibits sudden changes at stochastic points in time τi. In concrete (eco-
nomic) situations, this may be earthquakes, inventions, sudden devaluations
etc.

In the remaining part of this section A, assume that, for any t < T , C(T, t, .)∗π∗ν|Φt

is absolutely continuous with respect to P . From now on all ω’s occurring will
belong to Ω′. Let H t

i be any Lebesgue measurable set in [0, t]i and define the
corresponding set H i

t := {(τ1, τ2, ...) ∈ Ω′ : (τ1, ..., τi) ∈ H t
i , τi+1 > t} ∈ Φt.

The absolute continuity assumption implies both that, (by (38)), for any
t < T,

lim
N→∞

sup
φ∈B(0,1)⊂L∞(Ω,Φt,X)

〈πC(T, t, .)φ1(τN≤t], ν〉 = 0, (39)

and that, for any unit vector ej, for each i and t < T ,H t
i → 〈ej1Hi

t
, C(T, t, .)∗π∗ν〉
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is absolutely continuous with respect to P and so also with respect to Lebesgue
measure. Defining p∗∗

j (s, 1Hs
i
) = p(s, ej1Hi

s
), we get that Hs

i → p∗∗
j (s, 1Hs

i
)

is absolutely continuous with respect to Lebesgue measure. Moreover, the
Radon - Nikodym derivative of Hs

i → (p∗∗
1 (s, 1Hs

i
), ..., p∗∗

n (s, 1Hs
i
)) with re-

spect to Lebesgue measure, denoted p∗(s, ωi) := (p∗
1(s, ω

i), ..., p∗
n(s, ωi)), is

absolutely continuous in s in any interval (τi, T ), with a right limit at the
left end of the interval, and satisfies, for a.e. s > τi,

ṗ∗(s, ωi) = −p∗(s, ωi)fx(s, x
∗(s, ω), u∗(s, ω), ω) − p∗(s+, ωi, s). (40)

if p∗(s, ωi) is considered to be a row vector. (For i = 0, this equation is
satisfied by p∗(s, ω0) := (p(s, e11(s,∞)(τ1), ..., p(s, en1(s,∞)(τ1).) If at most N
jumps can occur, then p(s+, ωN , s) = 0. We define the nonanticipating
function p∗(t, ω) by p∗(t, ω) = p∗(t, ωi) if t ∈ (τi, τi+1) ∩ J . Then, for any
u(., .) ∈ UK , for a.e. t,

〈f(t, x∗(t, ω), u(t, ω), ω) − f(t, x∗(t, ω), u∗(t, ω), ω), p∗(t, ω)〉 ≤ 0. (41)

Sometimes it is useful to work with the function q∗(t, ωi) = p∗(t, ωi)/θ(t, ωi),
θ(t, ωi) :=

∫ ∞

t
µ̇(ωi, τi+1)dτi+1. Let q∗(t, ω) be the corresponding nonantic-

ipating function. For simplicity, assume
∫ ∞

t
µ̇(ωi, τi+1)dτi+1 > 0 for all

t ∈ J, ωi. The following differential equation is satisfied by q∗(t, ω) : For
any i, for a.e. t ∈ (τi, τi+1) ∩ J,

q̇∗(t, ω) = −q∗(t, ω)fx(t, x
∗(t, ω), u∗(t, ω), ω)+

(q∗(t, ω) − q∗(t+, ωi, t))µ̇(ωi, t)/θ(t, ωi). (42)

(If at most N jumps can occur, let µ̇(τN+1, ω
N) = 0, θ(τN+1, ω

N) = 1.) The
function q∗(t, ω) (as well as p∗(t, ω)), is absolutely continuous in t in any in-
terval (τi,min{T, τi+1}), with left and right limits at the ends of the interval,
(a left limit only if τi+1 < T ). Of course, in this case, for all u(., .) ∈ UK ,
a.s., for a.e. t,

〈f(t, x∗(t, ω), u(t, ω), ω) − f(t, x∗(t, ω), u∗(t, ω), ω), q∗(t, ω)〉 ≤ 0. (43)

Finally, a relationship between p∗(t, ω) and ν that is frequently useful, is
obtained from the definitions of ν∗ and p∗(t, ω): For any τi+1 > T , a.s. in ωi,
τi < T , j = 1, ..., n, (provided the two limits exist):

limt↗T p
∗
j(t, ω

i) = Λ0ajθ(T, ω
i) + limt↗T ejD(τ1,...,τi){C(T, t, .)∗π∗ν}((0, τ1] ×

...× (0, τi] × {τi+1 : τi+1 > t}), (44)

23



(where for i = 0, the right hand side reduces to Λ0ajθ(T, ω
0)+limt↗T ejC(T, t, .)∗π∗

ν({τ1 : τ1 > t}). Here D(τ1,...,τi) is a derivative with respect to (τ1, ..., τi).
To obtain a corresponding condition for q∗(., .), replace p∗(t, ωi) in (44) by
q∗(t, ωi)θ(t, ωi).

When solving a concrete problem one may start by proving the above abso-
lute continuity of C(T, t, .)∗π∗ν with respect to P . Or, one may even start by
assuming this absolute continuity. If in the problem at hand this assumption
is false, the need to relax this assumption will soon express itself.

Proof of (40).

Write νt := (πC(T, t, .))∗ν. By the absolute continuity assumption, for some
P -integrable function ψt, for any ψ ∈ L∞(Ω,Φt,R

n), 〈ψ, νt〉 =
∫

Ω
〈ψ, ψt〉dP (ω).

Write νt = νt + E〈.,Λ0C(T, t, .)∗a〉 = C(T, t, .)∗ν∗, ψ
t = ψt + Λ0C(T, t, .)∗a.

Furthermore, write f
(∗)
x (s, ω) := fx(s, x

∗(s, ω), u∗(s, ω), ω) and ωi = (τi+1, τi+2, ...).

Recall the following facts about C(., ., .): C(t, s, ω) = I+
∫ t

s
f

(∗)
x (ρ, ω)C(ρ, s, ω)dρ,

so for a.e. s, t → ∂C(t, s, ω)/∂s is the solution of the equation: ∂C(t, s, ω)/∂s =

−f
(∗)
x (s, ω)+

∫ t

s
f

(∗)
x (ρ, ω)(∂C(t, s, ω)/∂s)dρ. Since C(., ., ) yields the solution

of such equations, then ∂C(t, s, ω)/∂s = C(t, s, ω)(−f
(∗)
x (s, ω)). This formula

in fact holds for all regular points s in (τi, τi+1) of f
(∗)
x (s, ωi).

Let 0 < s < t < T , (t fixed, s will be varied). Note that νs =
C(t, s, .)∗νt, ψ

s = C(t, s, ω)∗ψt. Let ψ = ψi1[τi≤s]1[τi+1>s], where ψi = ψi(ωi) ∈
L∞(Ωi,Rn),Ωi := {(τ1, ..., τi) : τk < τk+1, k = 1, ..., i − 1, τi ≤ T}. Now,
p(s, ψ) =

∫
Ω
〈ψ, ψs〉dP (ω) =

∫
Ωi

∫ ∞

s
〈ψi1[τi≤s], E[ψs|ωi, τi+1]〉µ̇(ωi, τi+1)dτi+1dω

i,
so, for τi ≤ s, a.s., the Radon-Nicodym derivative p∗(s, ωi) := (d/dωi)p(s, ψ)
equals

∫ ∞

s
E[ψs|ωi, τi+1]µ̇(ωi, τi+1)dτi+1 =

∫ ∞

s
E[C(t, s, ω)∗ψt|ωi, τi+1]µ̇(ωi, τi+1)dτi+1 =

C(0, s, ωi)∗
∫ ∞

s
E[C(t, 0, ω)∗ψt|ωi, τi+1]µ̇(ωi, τi+1)dτi+1.

The last expression shows that a.s., p∗(s, ωi) is absolutely continuous in s
in any interval (τi, t), with a right limit at the left end of the interval. In par-
ticular, a.s., p∗(τi+, ω

i) equals
∫ ∞

τi
E[C(t, τi, ω)∗ψt|ωi, τi+1]µ̇(ωi, τi+1)dτi+1 =

E[C(t, τi, ω)ψt|ωi]µ̇(ωi). Now, using this calculation, (for ωi replaced by
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(ωi, s)), and the last formula for p∗(s, ωi), it is seen that p∗(s, ωi) is differen-
tiable for a.e. s in (τi, t), and letting p∗(s, ωi) for the moment be a column
vector, then, a.s., ṗ∗(s, ωi) equals a.e.

[C(0, s, ωi)(−f
(∗)
x (s, ωi))]∗

∫ ∞

s
E[C(t, 0, ω)∗ψt|ωi, τi+1]µ̇(ωi, τi+1)dτi+1−

E[C(t, 0, ω)∗ψt|ωi, s]µ̇(ωi, s) =

[−f
(∗)
x (s, ωi)]∗

∫ ∞

s
E[C(t, s, ω)∗ψt|ωi, τi+1]µ̇(ωi, τi+1)dτi+1 −∫ ∞

s
E[C(t, s, ωi, s, ωi+1)

∗ψt|ωi, s, τi+2]µ̇(ωi, s, τi+2)dτi+2 =

[−f
(∗)
x (s, ωi)]∗p∗(s, ωi) − p∗(s+, ωi, s).

Hence, the present p∗(t, ω) is a.s. equal to the one defined in (40).

Remark 7 (The relationship between (41) and (5))
Let us take another look at the relationship between (41) and (5), (still the
absolute continuity assumption is postulated). Let b be any number < T ,
and let u(t, ω) ∈ UK . Write αt

i(ω) := 1[τi≤t]1[τi+1>t], t ≤ b. From (41), it
follows that,

∫
Ωi α

t
i(ω)〈[f(t, x∗(t, ω), u(t, ω), ω) − f(t, x∗(t, ω), u∗(t, ω), ω), p∗(t, ω)〉dωi =

〈αt
i(.)[f(t, x∗(t, .), u(t, .), .) − f(t, x∗(t, .), u∗(t, .), .)], C(T, t, .)∗ν∗)〉 ≤ 0.

Hence, using that (38) implies
∑
αt

i = 1 a.s. and P -integrability of [f(t, x∗(t, .), u(t, .), .)−
f(t, x∗(t, .), u∗(t, .), .)] for a.e. t, (so sums and integration with respect to
C(T, t, .)∗ν∗ can be interchanges), gives, for a.e. t,

0 ≥
∑

i〈α
t
i(.)[f(t, x∗(t, .), u(t, .), .) − f(t, x∗(t, .), u∗(t, .), .)], C(T, t, .)∗ν∗)〉 =

〈f(t, x∗(t, .), u(t, .), .) − f(t, x∗(t, .), u∗(t, .), .), C(T, t, .)∗ν∗)〉 =
〈C(b, t, .)[f(t, x∗(t, .), u(t, .), .) − f(t, x∗(t, .), u∗(t, .), .)], C(T, b, .)∗ν∗)〉.

Then, using that C(T, b, .)ν∗|Φb
is absolutely continuous, it follows that 0 ≥

∫ b

0
〈C(b, t, .)[f(t, x∗(t, .), u(t, .), .) − f(t, x∗(t, .), u∗(t, .), .)], C(T, b, .)∗ν∗)〉dt =

〈
∫ b

0
C(b, t, .)[f(t, x∗(t, .), u(t, .), .)−f(t, x∗(t, .), u∗(t, .), .)]dt, C(T, b, .)∗ν∗)〉dt =

〈
∫ b

0
C(T, t, .)[f(t, x∗(t, .), u(t, .), .) − f(t, x∗(t, .), u∗(t, .), .)]dt, ν∗)〉dt.

Let us introduce the condition: For all u(., .) ∈ UK ,

〈

∫ T

b

C(T, t, .)[f(t, x∗(t, .), u(t, .), .) − f(t, x∗(t, .), u∗(t, .), .)]dt, ν∗〉 ≤ 0. (45)

Evidently, (41) and (45) are equivalent to (5). In fact, (5) is equivalent to
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(41) and the following condition: For all u(., .) ∈ UK ,

lim sup
b↑T

〈

∫ T

b

C(T, t, .)[f(t, x∗(t, .), u(t, .), .) − f(t, x∗(t, .), u∗(t, .), .)]dt, ν∗〉 ≤ 0.

(46)

Example 1 Consider the problem

maxE
∫ 1

0
(−u2/2)[1[0,τ)(t)+(1−τ)1[τ,1](t)]dt, ẋ = u, u ∈ R, x(0) = 0, x(1) = 1

a.s.,

where τ is exponentially distributed in [0,∞) with intensity λ.

This problem is rewritten by introducing an auxiliary state variable x0 , gov-
erned by ẋ0 = (−u2/2)(1[0,τ) + (1 − τ)1[τ,1]), x

0(0) = 0, with π = (x0, x) → x.
Then the criterion is Ex0(1). Let us agree that we only look for candidates
u∗(., ), for which E

∫
J
u∗(t, .)2dt < ∞. We shall apply Remark 5, (com-

bined with Remark 3), and we let Un(t, ω) = [−n, n] + u∗(t, ω). We take
M ′

∗,n(t, ω) := 0,M∗n(t, ω) = n|u∗(t, ω)| + n2/2,M(t, ω) = n,M ′(t, ω) =
0, K∗ = 1. Evidently, C(1, t, ω) = I, so, obviously, (4) holds for U1

1 , α = 1,
ž(t, ω) = 0. The adjoint variable q∗

x0(., .) corresponding to x0 equals Λ0, (by
(44), limt↑1 q

∗
x0(t, τ) = Λ0, both for τ > 1, and τ ≤ 1, and the adjoint equation

for q∗
x0(., .) is evidently satisfied by q∗

x0(., .) ≡ Λ0.)The adjoint variable q∗
x cor-

responding to x is, for simplicity, written q∗. Let us show that Λ0 is nonzero.
In general, if in Theorem 1, ž(t, ω) = 0, Λ0 is always nonzero. To see this in
the present example, inserting u = u∗ ± v, v an arbitrary bounded nonantici-
pating measurable function, in (5) gives, when Λ0 = 0, that 〈

∫
J
±vdt, ν〉 ≤ 0,

i.e. 〈
∫

J
vdt, ν〉 = 0, contradicting ν|Bα

6= 0. So let Λ0 = 1. Next, let us show
that ν|Φs

, s < 1, is absolutely continuous. Let z(t, τ) be an arbitrary bounded
nonanticipating measurable function, let b < 1 be arbitrarily chosen and let I
be a Lebesgue measurable set in [0, b]. Inserting the nonanticipating function
u = 1[b,1](t)1I(τ)(±z(t, τ)) + u∗ in the maximum condition (5) gives
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〈1I

∫ 1

b
±z(t, .)dt, ν〉+E[1I

∫ 1

b
{((−(u∗(t, .)±z(t, .))2/2)+(−u∗2(t, .)/2)}(1[0,τ)+

(1-τ)1[τ,1]dt] ≤ 0.

Letting z(t, τ) ≡ ±1, gives ±(1 − b)〈1I , ν〉 ≤ E[1I

∫ 1

b
(|u∗(t, .)| + 1/2)dt],

which yields absolute continuity. Moreover, letting I = [0,∞), the next to

last inequality also gives limb↑1〈
∫ 1

b
±z(t, τ), ν〉 ≤ 0, as the second integrand

is bounded by |u∗||z| + |z|2/2. For t > τ, by (42), q̇∗(t, τ) = 0, so write
q∗(t, τ) := q∗(τ). By (43), −u∗(t, τ)(1 − τ) + q∗(τ) = 0, so u∗(t, τ) is inde-
pendent of t, and we write it u∗(τ). Then x∗(t, τ) = x∗(τ, τ) + u∗(τ)(t − τ).
Evidently, we must have (at least a.s.), x∗(τ, τ)+u∗(τ)(1−τ) = 1, in order to
reach the point (1,1) from (τ, x∗(τ, τ)). Hence, u∗(τ) = (1−(x∗(τ, τ))/(1−τ),
which gives q∗(τ) = u∗(t, τ)(1 − τ) = u∗(τ)(1 − τ) = 1 − x∗(τ, τ). Before the
jump, by (43), −u∗(t) + q∗(t) = 0, (the ”before jump” entities are written
without τ appearing), so ẋ∗(t) = q∗(t). Moreover, q̇∗ = [q∗(t) − q∗(t+, t)]λ =
[q∗(t)+x∗(t)−1]λ. In fact, we have to solve, simultaneously, the two equations,
ẋ = q∗ and q̇∗ = [q∗ + x − 1]λ, which yields the second order equation ẍ =
[ẋ+x− 1]λ. The latter equation has the solution x∗(t) := Cer+t +Der−t + 1,
r± = (1/2)[λ±(λ2+4λ)1/2], where C and D are determined by C+D+1 = 0
and Cer+ + Der− + 1 = 1. As x∗(1) = 1, and ẋ∗(t) is bounded, then,
|x∗(τ) − 1| = |x∗(τ, τ) − 1| ≤ K(1 − τ), for some K, so u∗(τ) is bounded.

The sufficient conditions of Remark 11 below give optimality of u∗(t) and
u∗(τ) in the set of controls taking values in Un(t, ω), n = 1, 2, .... (The condi-
tion (5) is satisfied, because (46) holds.)

B. Piecewise continuous systems Let us now consider piecewise contin-
uous systems, where the state jumps at the times τi introduced in A above.
Hence, to the set-up in A, add the feature that

x(τi+, ω) = ĝ(τi, x(τi−, ω), i). (47)

So now, t → x(t, ω) is only absolutely continuous (and governed by (1)) be-
tween the points τi, with left and right limits at each τi, i = 1, 2, ... satisfying
(47). We take t → x(t, ω) to be left continuous, (yet we often, ”unneces-
sarily”, write x(t−, ω)). The function f satisfies the conditions in Remark
2. It is assumed that ĝ(., ., i) and ĝx(., ., i) (exist and) are continuous and
that, for some ď > 0, ĝx(., ., i) is uniformly continuous in x ∈ B(x∗(t, ω), ď),
uniformly in t, i. Hence, in this case, for any ε > 0, for some δ, |x − x′| <
δ, x, x′ ∈ B(x∗(t, ω), ď) ⇒ |ĝx(t, x, i) − ĝx(t, x

′, i)| < ε for all t, i. This prop-
erty automatically holds, if at most N jumps can occur, N some positive
natural number, and the Simple Global Assumptions hold, (then x∗(t, ω)
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and so also B(x∗(t, ω), ď) are contained in a compact set, independent of ω).
It is assumed that for some positive numbers Mi, |ĝx(t, x, i) − I| ≤ Mi for all
(t, x) ∈ B(x∗(t, ω), ď), for all ω, and

∑
iMi < ∞. Finally, it is assumed that

E[
∫ T

0
|f(t, x∗(t, ω), u∗(t, ω), ω)|dt+

∑
τi<T |ĝ(τi, x

∗(τi−, ω), i)−x∗(τi−, ω)|] <
∞.

In this section, define C(t, s, ω) as follows: In each interval (τi, τi+1) ∩ J ,
t → C(t, s, ω) is absolutely continuous, with left and right limits at the ends
of the interval, and with t → C(t, s, ω) governed by

Ċ(t, s, ω) = fx(t, x
∗(t, ω), u∗(t, ω), ω)C(t, s, ω), C(s+, s, ω) = I, (48)

while t → C(t, s, ω) has jumps at each τi given by

C(τi+, s, ω) = ĝx(τi, x
∗(τi−, ω), i)C(τi−, s, ω). (49)

The function C(t, s, ω) is right, and piecewise, continuous as a function of
s, jumping only at the τi’s, and is (taken to be) left continuous in t. The
following theorem holds:

Theorem 2 Assume that (4) holds when the present definition of C(T, t, .) is
used in (4), (for Bα, see Part A). Then the necessary conditions of Theorem
1 also hold for the present piecewise continuous system, when the present
definition of C(T, t, .) is used also in (5).

Again, if, for t < T , C(T, t, .)∗π∗ν|Φt
is absolutely continuous with respect to

P , then an adjoint nonanticipating function p∗(t, ω) is defined, satisfying the
adjoint equation (50) below: For any i, for a.e. t ∈ (τi, τi+1) ∩ J,

ṗ∗(t, ω) =
−p∗(t, ω)fx(t, x

∗(t, ω), u∗(t, ω), ω) − p∗(t+, ωi, t)ĝx(t, x
∗(t, ω), i+ 1), (50)

p∗(t, ω) being absolutely continuous in t in any interval (τi,min{T, τi+1}) ⊂
[0, T ], with left and right limits at the end of the interval, (a left limit at
τi+1 only if τi+1 < T ). Moreover, the maximum condition (41) is satisfied.
The end condition (44) holds in the same way as before. Finally, (5) is still
equivalent to (41),(46).

Proof: Let T = 1, x0 = 0, and write g = ĝ − x. The above jumping
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system can be rewritten as a nonjumping system, as follow:

Let M =
∑∞

i=1Mi, M0 = 0, and write aj =
∑j

i=0Mi. For i = 1, 2, ...,
let τ i := τ i(τi) := τi + ai−1, if τi < 1, and τ i := τ i(τi) := M+ τi + ai−1 if
τi ≥ 1, τ0 = τ 0 = 0. There is an one-one correspondence between the τ i’s
and the τi’s. Define also τ̌ i+1 := min{τ i+1, τ i +Mi + 1 − τi}, and note that
τ i+1 < 1+M ⇔ τi+1 < 1. Hence, τ i+1 < 1+M ⇔ τ i+1 = τ̌ i+1. To see the lat-
ter equivalence, observe that τ i+Mi+1−τi = τi+ai−1+Mi+1−τi = 1+ai and
1+ai > τi+1+ai =: τ i+1 if and only if τi+1 < 1, so τ i+1 < 1+M ⇒ τ̌ i+1 = τ i+1

and τ i+1 ≥ 1 +M ⇒ τ̌ i+1 = 1 + ai. For t ∈ [0, 1 +M ], define

h(t, z(.), v, τ 1, τ 2, ...) =
∑∞

i=0 f(t− ai, z(t), v, τ1, τ2, ...)1(τ i+Mi,τ̌ i+1](t) +∑∞
i=0 g(τi+1, z(τ

i+1), i+ 1)1(τ i+1,τ i+1+Mi+1](t)/Mi+1.

Let ω′ = (τ 1, τ 2, .....) and let v(t, τ 1, τ 2, ...) take values in U, be nonantic-
ipating and simultaneously measurable on each set [0, 1 + M ] × Ω′

i,Ω
′
i :=

{(τ 1, τ 2, ...) : τ i+1 > 1 +M}. (The set of such controls is denoted U ′′.) The
probability measure of the ω′’s is denoted P ′, it is generated by P , (the den-
sity µ̇′(τ 1, ..., τ i) of (τ 1, ..., τ i) generated by µ̇(τ1, ..., τi)). Let, for any given
v(t, ω′), zv(t, ω′) := z(t, ω′), for t ∈ [0, 1 + M ], be the solution - continuous
in t - of

ż(t, ω′) = h(t, z(.), v(t, ω′), ω′) (51)

Define, for s ∈ [0, 1], x(s, ω) =
∑∞

i=0 z(s+ ai, ω
′)1(τ i+Mi,τ̌ i+1](s+ ai), and

u(s, ω) =
∑∞

i=0 v(s+ ai, ω
′)1(τ i+Mi,τ̌ i+1](s+ ai) (52),

Now, z(t, ω′) satisfies ż(t, ω′) = f(t − ai, z(t, ω
′), v(t, ω′), τ1, τ2, ...) for t ∈

(τ i +Mi, τ̌
i+1]. If τ i+1 < 1 +M , then x(τi+1−, ω) − x(τi+, ω) =

z(τ i+1, ω′) − z(τ i +Mi, ω
′) =

∫ τ i+1

τ i+Mi
f(t− ai, z(t, ω

′), v(t, ω′), ω)dt =∫ τi+1

τi
f(s, z(s+ ai, ω

′), v(s+ ai, ω
′), ω)ds =

∫ τi+1

τi
f(s, x(s, ω), u(s, ω), ω)ds.

Similarly, for t′ ∈ [τi, τi+1], τi+1 < 1,
∫ t′

τi
f(s, x(s, ω), u(s, ω), ω)ds = x(t′, ω) −

x(τi+, ω). Also, for τi+1 ≥ 1 > τi, for t ∈ (τi, 1) (⇒ t+ai ∈ (τ i +Mi, τ̌
i+1) =

(τ i+Mi, τ
i+Mi+1−τi)), x(t, ω)−x(τi+, ω) = z(t+ai, ω

′)−z(τ i+Mi, ω
′) =

∫ t+ai

τ i+Mi
f(ρ− ai, z(ρ, ω

′), v(ρ, ω′), ω)dρ =
∫ t

τi
f(s, x(s, ω), u(s, ω), ω)ds.
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Moreover, for τi+1 < 1,

x(τi+1+, ω) − x(τi+1−, ω) = z(τ i+1 +Mi+1, ω
′) − z(τ i+1, ω′) =∫ τ i+1+Mi+1

τ i+1 (1/Mi+1)g(τi+1, z(τ
i+1, ω′), i+ 1) =

g(τi+1, z(τ
i+1, ω′), i+ 1) = g(τi+1, x(τi+1−, ω), i+ 1).

Hence, (x(., ω), u(., ω)) satisfies (1) and (47). Symmetrically, if (x(., .), u(., .))
satisfies (1) and (47), there is a pair (z(., .), v(., .)) satisfying (51), (u(., ω)
and v(., ω′) again related as in (52)). For t ∈ [0, 1 + M ], define u∗

h(t, ω
′) by

u∗
h(t, τ

1, τ 2, ...) = u∗(t− ai, τ1, τ2, ...) for t in (τ i +Mi, τ̌
i+1], u∗

h(., .) arbitrary
elsewhere, and let x∗

h(., .) be the solution of (51), for v(., .) = u∗
h(., .).

Now, (51) is a retarded differential equation. So let us instead consider
the following ordinary differential equation system:

ẏ0 = h0(t, y0(t), v(t, ω
′), ω′) := h(t, y0(.), v(t, ω

′), ω′)1[0,τ̌1](t), y0(0) = 0,
ẏi = hi(t, y0(t), ..., yi(t), v(t, ω

′), ω′) :=
h(t,

∑
0≤j≤i−1 yj(.), v(t, ω

′), ω′)1(τ i,τ i+Mi](t)+
h(t,

∑
0≤j≤i yj(.), v(t, ω

′), ω′)1(τ i+Mi,τ̌ i+1](t),
yi(0) = 0, i > 0. (53)

(The system does become non-retarded, as yj is constant on (τ̌ j+1, 1 +M ].)
Write y = (y0, y1, ...), |y| =

∑
i |yi| and

ẏ = (ẏ0, ẏ1, ...) = F (t, y, v(t, ω′), ω′), where F (t, y, v, ω′) =
(h0(t, y0, v, ω

′), h1(t, y0, y1, v, ω
′), h2(t, y0, y1, y2, v, ω

′), ...). (54)

Let y∗(t, ω) be the solution of (54) corresponding to u∗
h(., .). and let Π(y) =∑

i yi. Then, if y(t, ω′) is a solution of (54), Πy(t, ω′) is a solution of (51). Ev-
idently, for the pair (y∗(., .), u∗

h(., .)), the system defined by F satisfies all con-
ditions in Remark 2, for π replaced by πΠ, a replaced by Π∗a, T = 1 replaced
by T = 1+M, M ′

π replaced by max{1,M ′
π}, and for M(t, ω) and M ′(t, ω) re-

placed by MF (t, ω) and M ′
F (t, ω), respectively, where MF (t, ω) and M ′

F (t, ω)
are defined as follows: Let MF (t, ω) :=

∑
iM(t − ai, ω)1(τ i+Mi,τ̌ i+1](t) and

M ′
F (t, ω) :=

∑∞
i=0{M

′(t − ai, ω)1(τ i+Mi,τ̌ i+1](t) + 1(τ i+1,τ i+1+Mi+1
](t)}. Then

E
∫ 1+M

0
MF (t, ω)dt = E

∫ 1

0
M(t, ω)dt and essup

∫ 1+M

0
M ′

F (t, ω)dt =

essup
∫ 1

0
M ′(s, ω)ds+

∑
Mi < ∞.

Hence, (33) - (37) are satisfied by the system defined by the F of (54),
for T = 1 replaced by 1 +M , π replaced by πΠ, a replaced by Π∗a, xu(., ω)
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replaced by yv(., ω′), and qu replaced by qv
F , the linear perturbation pertain-

ing to the system F , u, u′, u′′, û are then renamed v, v′, v′′, v̂, they belong to
the set U ′′

K corresponding to UK .

Now, Πqv
F (1 +M,ω′) = qv

z (1 +M,ω′), where qv
z (0, ω

′) = 0, and

q̇v
z (t, ω

′) =
∑∞

i=0{fx(t− ai, x
∗
h(t, ω

′), u∗
h(t, ω

′), ω)1(τ i+Mi,τ̌ i+1](t)q
z(t, ω′)+

(1/Mi+1)gx(τi+1, x
∗
h(τ

i+1, ω′), i+ 1)1(τ i+1,τ i+1+Mi+1](t)q
z(τ i+1, ω′)}

+h(t, x∗
h(., ω

′), v(t, ω′), ω′) − h(t, x∗
h(., ω

′), u∗
h(t, ω

′), ω′). (55)

Define the piecewise continuous function t → qu(t, ω) by q̇u(t, ω) =

fx(t, x
∗(t, ω), u∗(t, ω), ω)qu(t, ω)+f(t, x∗(t, ω), u(t, ω), ω)−f(t, x∗(t, ω), u∗(t, ω), ω),

qu(0, ω) = 0, qu(τi+, ω) = ĝ(τi, x
∗(τi−, ω), i)qu(τi−, ω).

As for the nonlinear system (51), so also for the linear system (55) there
is a one to one correspondence between solutions qv

z (., ω
′) and qu(., ω), where

again u(., ) and v(., .) are related as in (52). Hence, for u(., ) and v(., .) thus
related, xu(1, ω) = Πyv(1+M,ω′), qu(1, ω) = Πqv

F (1+M,ω′), where xu(t, ω)
satisfies (1) and (47). Thus even the jumping system (1),(47) satisfies (33)-
(37), and continuity of u(., .) → (Ea ·xu(1, .), πxu(1, .)) continues to hold. As
(4) holds, Theorem B in Appendix again applies. Thus, for some Λ0 ≥ 0, ν,
ν bounded on Bα, (Λ0, ν|Bα

) 6= 0, for all u(., .) ∈ UK , 〈qu(1, .), ν∗〉 ≤ 0, where
ν∗ = π∗ν + Λ0E〈., a〉. For C(t, s, .) as defined in Theorem 2, from the last
inequality, then (5) follows.

The inequality 〈qu(1, .), ν∗〉 ≤ 0 means that 〈qv
z (1 +M, .), ν∗〉 ≤ 0, or

〈
∫ 1+M

0
Cz(1+M, s, .)(h(s, x∗

h(s, .), u(s, , .), .)−h(s, x
∗
h(s, .), u

∗
h(s, .), .))ds, ν∗〉 ≤

0, where Cz(., ., .) is the resolvent of equation (55). Let pz(s, .) = Cz(1 +
M, s, .)∗ν∗. If, for t < 1, C(1, t, .)∗ν|Φt

is absolutely continuous with respect
to P , then the Radon-Nikodym derivative p∗

z(t, ω
′), (here for the moment a

row vector), satisfies, for a.e. s ∈ (τ k +Mk, τ̌
k+1) ∩ (1, 1 +M), ṗ∗

z(s, ω
′) =

−p∗
z(s, ω

′)fx(s− ai, x
∗
h(s, ω

′), u∗
h(s, ω

′), ω)1(τk+Mk,τ̌ i+1](s) − p∗
z(s+, ω

′k, s) =
− p∗

z(s, ω
′)fx(s− ai, x

∗
h(s, ω

′), u∗
h(s, ω

′), ω)1(τk+Mk,τ̌ i+1](s) −
p∗

z(s+Mk+1+, ω
′k, s)(I + gx(s, x

∗(s, ω′), i+ 1)),

the last equality having the following explanation: Evidently, Cz(τ
k+Mk, τ

k, ω′) =

I+
∫ τk+Mk

τk (1/Mk)gx(τk, x
∗
h(τ

k−, ω′), k)Cz(τ
k, τ k, ω′)dρ = I+gx(τk, x

∗(τk−, ω), k).
Let t′ ∈ (τ k+Mk, 1+M). Multiplying by Cz(t

′, τ k+Mk, .) gives Cz(t
′, τ k, .) =
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Cz(t
′, τ k+Mk, .)(I+gx(τk, x

∗
h(τ

k−, ω′), k). Now, recall from part A. that there
p∗(τi+, ω

i) equals E[C(t, τi, ω)∗ψt|ωi]µ̇(ωi) =
∫ ∞

τi
E[C(t, τi, ω)∗ψt|ωi, τi+1]µ̇(ωi, τi+1)dτi+1.

Applying the corresponding formula for pz(τ
k+, ω′k) on both sides of the next

to last equality yields p∗
z(τ

k+, ω′k) = (I+gx(τ
k, x∗

h(τ
k), k))∗p∗

z(τ
k+Mk+, ω

′k),
(µ̇′(τ k+1|ω′k) vanishes on (τ k, τ k +Mk)).

Define p∗(s′, ωk) = p∗
z(s

′ + ak, ω
′k) when s′ ∈ (τk,min{1, τk+1}). Then, for

s′ + ak = s, p∗(s′+, ωk, s′) = p∗
z(s

′ + ak+1+, ω
′k, s) = p∗

z(s + Mk+1+, ω
′k, s).

Hence, the equation for p∗
z(., .) yields (50).

Remark 8. The conclusion of Theorem 2 also holds for the following
modifications of the assumptions. Assume that π = π′πY as in Remark
3, that f satisfies the conditions in Remark 3 for M∗∗(., .) as defined below,
that ĝ and ĝx are continuous, that π′ĝ(t, (x′, x′′), i) does not depend on x′′,
and that for any ε > 0, for some δ, |x − x̂| < δ, x, x̂ ∈ B(x∗(t, ω), ď) ⇒
|π′ĝx(t, x, i) − π′ĝx(t, x̂, i)| < ε for all t, i, ω. Moreover, for some numbers Mi

and M ′′
i , |π′(ĝx′(t, x′, i) − I)| ≤ Mi for all (t, x′) ∈ J ×B(π′x∗(t, ω), ď) for all

ω,
∑
Mi < ∞, |π′′(ĝx(t, x, i)− I)| ≤ M ′′

i for all (t, x) ∈ J×B(π′x∗(t, ω), ď)×
B(π′′x∗(t, ω),M∗∗(t, ω)) for all ω, and E[φ(1, .)2{1+

∫
J
M ′

∗(t, ω)+
∑

τi≤T M
′′
i )}]p <

∞, (p as in Remark 3), where φ(t, ω) is the piecewise continuous solution of
φ̇ = max{M ′(t, ω),M ′

∗(t, ω)}φ(t), φ(0) = 1, φ(τi+) − φ(τi−) = max{Mi,M
′′
i }

and M∗∗(t, ω) = φ(T, ω)
∫

J
max{M(t, ω),M∗(t, ω)}dt. Finally,

E[
∫ T

0
|f(t, x∗(t, ω), u∗(t, ω), ω)|dt+

∑
τi<T |ĝ(τi, x

∗(τi−, ω), i)−x∗(τi−, ω)|] <
∞.

The proof is a simple modification of the above proof of Theorem 2. On
the rewritten system the same arguments as used in case of Remark 3 will
work.

Remark 9 Frequently, π is a projection, and let us consider this case. Often
for an admissible solution (and then even more for an optimal solution) to
exist, we must have πg = 0. When |f i| ≤ K for all (t, x, u, ω), we cannot
have true jumps in a component xi of x on which there is a terminal bound of
the form xi(T, .) = x̃i a.s. Jumps can occur arbitrarily close to T, and xi(t)
cannot then be steered a.s. to x̃i. The situation may be different if f i can
be chosen arbitrarily large or small by suitable choices of u. Note also that,
sometimes, the body condition may be more difficult to obtain if πg 6= 0.

Let us now turn back to the general system (1).
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Modification of the general set-up

Remark 10 Assume the conditions in Remark 3. Let r be a continu-
ously differentiable map from Y into a Banach space V. Assume that the
derivative of r is uniformly bounded and uniformly continuous. Replace (3)
by r(πx) = 0 a.s. and assume, instead of (4), that for some yV (t, ω) ∈
L∞(J×Ω, V ), yV (., .) progressively measurable, and for some K∗ > 0, α > 0,
with BV

α := {
∫

J
v(., .)dt : v(., .) ∈ L∞(J × Ω, V ) : v progressively measurable

, |v(., .)|∞ < α}, the inclusion
∫

J
yV (t, ω)dt+BV

α ⊂
co{rx(πx

∗(T, .))
∫

J
πC(T., t, .)(f(t, x∗(t, .), u(t., .), .)−f(t, x∗(t, .), u∗(t, .)))dt :

u(., .) ∈ UK∗

} holds. Then, for some Λ0 ≥ 0, some linear functional ν+ on
L∞(Ω,Φ, V ), bounded on BV

α , (Λ0, ν
+|BV

α
) 6= 0, the inequality (57) below

holds for ν∗∗ replaced by π∗(rx(πx
∗(T, .))∗ν+ + Λ0E〈., a〉.

Proof: Extend the control interval to [0, T + 1]. Let an auxiliary state y
be governed by ẏ = r(πx) on (T, T + 1], ẏ = 0 on [0,T]. With f = 0 on
(T, T + 1], x is governed by ẋ = f , x(0) = x0, moreover y(0) = 0, x(T + 1, .)
is free, y(T + 1, .) = 0 a.s.. Then r(πx(T, .)) = y(T + 1, .), so applying the
above results to this system yields the results in this remark.

Remark 11 Let Ỹ be a Banach space, let π∗ be a bounded linear map
from X ′ into Ỹ , and write π̃ = π∗π

′. To the terminal condition (3) (i.e.
πx(T, .) = ỹ a.s.), add the condition :

π̃x(T, .) ∈ W a.s., W a fixed closed convex body in Ỹ . (56)

Assume the conditions in Remark 3. Then, for some Λ0 ≥ 0, some ν as before,
some ν̂ ∈ L∞(Ω,Φ, Ỹ )∗, (Λ0, ν|Ba

, ν̂) 6= 0, for ν∗∗ := π∗ν + π̃∗ν̂ + Λ0E〈., a〉,
for all u(., .) ∈ UK , (K any given positive number),

〈
∫

J
C(T, t, .)(f(t, x∗(t, .), u(t, .), .) − f(t, x∗(t, .), u∗(t, .), .))dt, ν∗∗〉 ≤ 0. (57)

Moreover,

〈w(.) − π̃x∗(T, .), ν̂〉 ≥ 0, for all w(.) ∈ W̃ :=
{w(ω) ∈ L∞(Ω,Φ, Ỹ ) : w(ω) ∈ W a.s.} (58)

If, for t < T , C(T, t, .)∗(π∗ν + π̃∗ν̂)|Φt
is absolutely continuous with respect
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to P , then in the cases A and B in the Applications, the adjoint equations
(40) and (50), respectively, hold. Moreover, the maximum condition (41) is
satisfied. Finally, the end condition (44) on p∗(., ωi) holds as before, provided
ν∗ is replaced by ν∗∗.

Proof: Let T = 1, K ≥ max{1, K∗}, and W ′ = (W̃ − π̃x∗(1, .))∩clB(0, 1) ⊂
L∞(Ω,Φ, Ỹ ). Then W ′ is a closed bounded convex body. The condition
π̃x(1, .) − π̃x∗(1, .) − w(.) = 0 a.s. for some w(.) ∈ W ′ implies (56). We now
apply Theorem B, to the system y(a) = (ẋu(., .), π̃xu(1, .) − π̃x∗(1, .) −w(.)),
y+(a) = (q̇u(., .), π̃qu(1, .) − w(.)), a = (u(., .), w(.)) ∈ Ã := UK × W ′,
furnished with the product metric of σ/K and |.|∞. The functions y(a)
and y+(a) take values in Ŷ = L∞(J × Ω, X) × L∞(Ω,Φ, Ỹ ), moreover,
Z = L∞ × L∞(Ω,Φ, Ỹ ), Ž = L∞(Ω,Φ, X), for ψ = (φ, φ′) ∈ Ŷ , π̂(ψ) =
(π

∫
J
φdt, φ′), π̌(ψ) =

∫
J
φdt, ž∗ = E〈., a〉, z′ = (x̃, 0), a constant function in

L∞ ×L∞(Ω,Φ, Ỹ ). By (14) (applied to x′ → π′f , such that x, q are replaced
by π′x, π′q), (33), and (34), (B) is satisfied, by (27) (applied to π′q instead
of q), (35), and (36), and convexity of W ′, (A) and (C) are satisfied. Finally,
clπ̂y+(Ã) is a convex body, by Lemma 11.2 in Seierstad (1975), (4) and the
fact that W ′ is a convex body in L∞(Ω,Φ, Ỹ ). Hence, Theorem B applies
and (57) and (58) follow from the conclusion in Theorem B.

Remark 12 Suppose, for simplicity, that X is a Euclidean space, that
π and π̃ are projections, that W = {y ∈ Ỹ : yi ≥ ỹi for all i} for given
numbers ỹi, and that the Simple Global Assumptions are satisfied. Assume
that (x∗(., .), u∗(., .)) satisfies the necessary conditions (57) and (58) of Re-
mark 11, with U ′ = UK , for some ν, ν̂ and Λ0 = 1. Assume, finally, that the
function

Ĥ(x(., .)) := sup
u(.,.)∈U ′

〈

∫
J

C(T, t, .)f(x(., .), u(t, .), .), ν∗∗〉

is concave in x(., .) ∈ ∆ :=
{x(., .) : x(t, ω) = x0 +

∫ t

0
y(t, ω)dt for some y(., .) ∈ Lprog

∞ (J × Ω, X)}, and
is bounded from above by a fixed constant on a |.|∞ × |.|∞-neighborhood of
x∗(., .) in ∆. Then u∗(., .) is optimal in UK .

A proof is presented in Seierstad (1991). (Provided also ĝ satisfies the as-
sumptions subsequent to (47), and the conditions |ĝ(t, x, i) − I| ≤ Mi for all
(t, x), and x(.) → 〈h(x(., .), ω), ν∗∗〉 is concave for x(., .) ∈ ∆, and is bounded
from above by a fixed constant on a |.|∞ × |.|∞-neighborhood of x∗(., .) in
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∆, where h(x(., .), ω) =
∑

i∈{i:τi<T} C(T, τi, ω)ĝ(τi, x(τi−, ω), i), then the suf-
ficiency result above also holds in the case of piecewise continuous systems,
C(., ., .) now defined by (48),(49).)

Let us now consider the following example of a (jumping) piecewise deter-
ministic system.

Example 2. maxE{
∫ 3

0
(3 − s)(1 − u)ds}, subject to dx/dt = u ∈ [0, 1],

x(0) = 0, x(3) ≥ 1 with probability 1. There is a probability with in-
tensity λ > 0 that a single downwards jump occurs with size τ/3, i.e.,
x(τ+) − x(τ−) = −τ/3, (thus τ is exponentially distributed with inten-
sity λ > 0) .

Solution. An auxiliary state variable y is used to rewrite the system. Let
y(0) = 0, ẏ = (3 − s)(1 − u), and let us maximize Ey(3). The adjoint vari-
able corresponding to x is denoted q∗ and the one corresponding to y equals
Λ0 = 1, (Λ0 = 0 is considered later on). The pointwise maximum condition
(43) gives, in a shorthand notation,

[q∗ + t− 3](u− u∗) ≤ 0 (59)

After a jump at time τ , the solution is u∗(t; τ) = 0 if x∗(τ+, τ) ≥ 1, and
if x∗(τ+, τ) < 1, u∗(t; τ) = 0 for t < x∗(τ+, τ) + 2, while u∗(t; τ) = 1 for
t > x∗(τ+, τ) + 2. To show the latter assertion, note first that q∗(t; τ) is
independent of t, so we write it q∗(τ). Evidently u = 0 to begin with, here
3 − t > q∗(τ), (if at all), and u = 1 at the end. Let σ := σ(τ) be the point
at which we switch from 0 to 1, σ ∈ [τ, 3]. Then x∗(t; τ) = x∗(τ+, τ) for
t ∈ (τ, σ), x∗(t; τ) = x∗(τ+, τ) + t − σ, for t > σ, with σ determined by
x∗(3; τ) = 1, i.e. x∗(τ+, τ) + 3 − σ = 1, or σ = x∗(τ+, τ) + 2. At s = σ,
if σ ∈ (τ, 3), by the pointwise maximum condition (59), 3 − σ = q∗, so
q∗(t) = 1 − x∗(τ+, τ). Thus, x∗(t, τ) = max{x∗(τ+, τ), t− 2} (also if σ = 3,
i.e. x∗(τ+, τ) ≥ 1, or σ = τ , i.e. x∗(τ+, τ) = τ − 2).

Let us find the control function before a jump τ, written simply u∗(t), (simi-
larly we also write x∗(t), q∗(t)). We must have x∗(3) ≥ 2, a jump downwards
can occur arbitrarily close to 3, its size being roughly 1. We guess that
x∗(3) = 2, (or perhaps a glance at the original problem tells us that this
must be so). From (59) it is obtained that u = 0 when 3 − t > q∗(t), while
u = 1 when 3 − t < q∗(t).
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Now, the lowest path possible is x∗(t) = max{0, t − 1}, (which below will
be shown to be the optimal one). Even for this path (and so for any path),
if a jump down of size τ/3 occurs, to some value x∗(τ+, τ), τ < 3, then
x∗(τ+, τ) ≥ max{0, τ − 1} − τ/3 > τ − 2, so σ must be > τ . Thus,
dq∗/dt = λq∗(t) − λq∗(t+, t) = λq∗ − λ + λ(x∗(t) − t/3), (q∗(t+, t) = 1 −
x∗(t+, t) = 1 − (x∗(t) − t/3), t < 3). Let us prove that q∗(1) = 2: Consider
first the possibility q∗(1) ≥ 2. Then, q̇∗(t) = λ(q∗(t) + x∗(t) − 1 − t/3) ≥
λ(q∗(t) + (t − 1) − 1 − t/3) = λ(q∗ − 2 + 2t/3), which is > 0 for t > 0,
if q∗(t) ≥ 2. So if q∗(1) ≥ 2, q∗(t) increases when t increases, all the way
to t = 3. Now, q∗(1) > 2 means that u = 1 on an interval greater than
[1, 3], which gives u = 1 here and x∗(3) > 2, a contradiction. On the other
hand, on (0, 1), the above inequality for q̇∗(t) gives that if q∗(1) < 2, then
q∗(t) stays below 2 when t decreases, (if q∗(t) moves close to 2, then it gets
a positive derivative, and moves away from 2). Moreover, if q∗(1) = 2, then
q∗(t) < 2, for t < 2, close to 2, and stays below 2 when t decreases. Now,
q∗(1) < 2 means that u = 0 in an interval somewhat larger than [0,1], making
it impossible to obtain x∗(3) = 2. Hence, q∗(1) = 2.

Let us sum up what we have obtained: Before a jump, u = 0 before
t = 1, and u = 1 afterwards. The state x∗(t) equals max{0, t − 1} before
a jump, so just after a jump x∗(τ+, τ) = max{0, τ − 1} − τ/3. After a
jump at τ , u = 0 until t = σ = 2 + max{0, τ − 1} − τ/3 > τ is reached,
from then on u = 1 is used. Moreover, x∗(3, τ) = 1, and q∗(3, τ) > 0 for
τ < 3. If a jump does not occur, x∗(3) = 2 > 1. Now, as (59), i.e (41)
holds, then (5) follows, once (46) is proved to hold for ν∗ replaced by ν∗∗:
Let û∗(t, τ) be any bounded nonanticipating function. Then (45) reduces

to
∫ ∞

0

∫ 3

b
(3 − s)(u∗(s, τ) − û∗(s, τ))dsλe−λτdτ + 〈

∫ 3

b
û∗(s, .) − u∗(s, .)ds, ν̂〉.

When b ↑ 3, both terms become equal to zero, the second term, since ν̂ is
continuous in |.|∞ - norm. Sufficient conditions, Remark 11, give optimality.
Note that the solution in the problem is the same for all λ > 0.

Though we don’t need the complete specification of ν̂, let us nevertheless
write it down: By (58), ν̂ is nonnegative, and ν̂((3,∞)) (= ν̂(1(3,∞))(τ)) = 0,
because, using (58), for τ ∈ (3,∞), x∗(3) = x∗(3, τ) = 2 > 1, so choosing w(.)
equal to 1(3,∞)(τ)+x

∗(3, τ) and to x∗(3, τ)−1(3,∞)(τ), gives ν̂(1(3,∞))(τ)) ≤ 0,
ν̂(−1(3,∞))(τ)) ≤ 0. Now, by (44), used for i = 1, in (0, 3), ν̂ is given by a
density, namely

lim
t↑3

q∗(t, τ) = q∗(3, τ) = q∗(τ) = 1 − max{0, τ − 1} − τ/3.
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Next, in (1, 3), before any jump, q̇∗(t) = λq∗−λ+λ(t−1−t/3), with q∗(1) = 2,
this implies q∗(t) = 2 + (2/3 + 2/3λ)eλ(t−1) − 2t/3 − 2/3λ > 0. Then, using
(44) for i = 0, gives 0 < q∗(3)e−λ3 = limt↑3 q

∗(t)e−λt = limt↑3 ν̂((t,∞)) =
limt↑3 ν̂((t, 3]). As a bounded linear functional on L∞-space, ν̂ vanishes on
P−null sets (here then also on Lebesgue null sets). Still, informally speaking,
(or considering a representation of ν̂ restricted to the space of functions con-
tinuous near 3), we may say that ν̂ has an atom at τ = 3. This corresponds
to the fact that limτ↗3x

∗(3, τ) = 1.

When using sufficient conditions, it is not necessary to prove Λ0 6= 0, and
the absolute continuity of ν̂ on [0, s], s a given point < 3. Both properties,
however follow easily from (5), i.e.

〈

∫ 3

0

(u(s, .) − u∗(s, .))ds, ν̂〉 ≤ Λ0E[

∫ 3

0

(3 − s)(u(s, .) − u∗(s, .))ds]. (60)

as we shall see. First, let us show that Λ0 6= 0. For the moment, we
know nothing about u∗(., .), x∗(., .), except of course that x∗(., .) has to sat-
isfy the conditions x∗(3, τ) ≥ 1. Assume that Λ0 = 0, and let A := {τ :∫ 3

0
u∗(t, τ)dt ≥ 2.5}. Then, a.s., x∗(3, τ) ≥ 1.5, so, by (58), ν̂(A) = 0

and ν̂({A) 6= 0. Inserting u = 1 in (60), we get 〈1{A(τ)(3 − 2.5), ν̂〉 ≤

〈1{A(τ)
∫ 3

0
(1−u∗(t, τ))dt, ν̂〉 = 〈

∫ 3

0
(1−u∗(t, τ))dt, ν̂〉 ≤ 0, which gives ν̂({A) =

0, a contradiction.
So Λ0 = 1. Next, let s ∈ [0, 3). Choose b ∈ (0, 1), b so small that

(3 − 3b − s) =: 3k > 0. Let D : {τ : x∗(3, τ) ≥ 1 + b}. By (58),
ν̂(D) = 0. Moreover, for any r ∈ [0, 3), for τ ∈ (r, 3), τ close to 3,

x∗(r, τ) + 3 − r = x∗(r, τ) +
∫ 3

r
dt ≥ x∗(r, τ) +

∫ 3

r
u∗(t, τ)dt ≥ 2, (otherwise

1 cannot be reached at t = 3, as a jump down of size roughly 1 can occur).
By non-anticipation, from these inequalities it follows that for all τ ∈ (r, 3),
r−1 ≤ x∗(r, τ) =

∫ r

0
u∗(t, τ)dt. Let r ↑ τ . Then the last inequality also holds

for r = τ−. If τ /∈ D, τ ∈ (0, 3), then x∗(3, τ) ≤ 1+b, so 2+b−τ = 1+b−(τ−

1) ≥ x∗(3, τ)−x∗(τ−, τ) =
∫ 3

τ
u∗(t, τ)dt−τ/3, and

∫ 3

τ
u∗(t, τ)dt ≤ 2+b−2τ/3.

Thus, for τ /∈ D, τ ≤ s,
∫ 3

τ
(1 − u∗(t, τ))dt ≥ 3 − τ − [2 + b − 2τ/3] =

1 − b − τ/3 ≥ k > 0. Now, let H be a measurable set in [0, s]. Then,

k〈1H(τ), ν̂〉 = k〈1H(τ)1{D(τ), ν̂〉 ≤ 〈1H(τ)1{D(τ)
∫ 3

τ
(1 − u∗(t, τ))dt, ν̂〉 ≤

〈1H(τ)
∫ 3

τ
(1 − u∗(t, τ))dt, ν̂〉 ≤ E[1H(τ)

∫ 3

τ
(3 − t)(1 − u∗(t, τ))dt]. Note that

1H(τ)1(τ,3](t) is nonanticipating, so the last inequality follows from (60). This
sequence of inequalities gives the absolute continuity property of ν̂.

Let us consider for a moment a problem where the state is a scalar, and
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where there is an inequality restriction of the form x(T, ω) ≥ x̌ a.s., and
where a maximum number N of jumps can occur, all with nonzero proba-
bilities in all intervals, and where the jumps have equal and constant size
c. Moreover, assume |f | ≤ K for all (t, x, ω). Then if c is positive, for any
given number j < N of jumps having occurred at a certain time t, so long
as no further jumps occurs, it suffices to steer the state in such a manner
that x(T, ωj) ≥ x̌: If x(T, ωj) ≥ x̌ then if one or more jumps occur in
(T − c/2K,T ], we automatically have x(T, τ1, ..., τk) ≥ x̌. (For one jump,
for τj+1 ∈ (T − c/2K] : x(τj+1−, ω

j) ≥ x̌ − c/2, x(τj+1+, ω
j) ≥ x̌ + c/2 and

x(T, ωj) ≥ x̌ + c/2 − c/2 ≥ x̌.) If c is negative, we have to steer the state
in such a manner that the even the most demanding terminal restriction in
this case is satisfied, namely x(T, ωj) ≥ x̌ − (N − j)c, (as many as N − j
downwards jumps can occur arbitrarily close to T ).

For a general jump function g, in case j jumps have occurred before T ,
one has to steer the state in such a manner that x(T, τ1, ..., τj) ≥ x̌,
g(T, x(T, τ1, ..., τj)) ≥ x̌, g(T, g(T, x(T, τ1, ..., τj))) ≥ x̌,...
(g(N−j)(T, x(T, τ1, ..., τj)) ≥ x̌ are all satisfied, g(N−j)(T, .) meaning the com-
position of x → g(T, x), N − j times).

Remark 13 Consider the problem of Remark 11. Let Ȳ be a Euclidean
space, and let π̄ be a bounded linear map from L1(Ω,Φ, X) into Ȳ . To
the terminal conditions in Remark 11, add yet another terminal condition,
namely π̄x(T, .) = ȳ, where ȳ is a fixed point in Ȳ . Then (58) and (57) hold,
(57) for ν replaced by π∗ν + π̃∗ν̃ + π̄∗ν̄ + Λ0E〈., a〉, where ν̄ ∈ Ȳ ∗ = Ȳ ,
Λ0 ≥ 0, (Λ0, ν|Bα

, ν̃, ν̄) 6= 0.

The proof of this condition (for T = 1) in the case where C̄ :=
clco{̄(πqu(1, .), π̃qu(1, .) − w(.), π̄qu(1, .)) : u ∈ U∗, w(.) ∈ W ′} is a convex
body in L∞ ×L∞(Ω,Φ, Ỹ ) × Ȳ is closely parallel to the proof of Remark 11:
Just add the components π̄xu(1, .)) and π̄qu(1, .)) to the components of y(a)
and y+(a) as defined in Remark 11. Now, it is easily seen that C̄ is either a
convex body or contained in a closed hyperplane, (if necessary, see Seierstad
(1975), Remark 11.1), and in the latter case the existence of (Λ0, ν, ν̃, ν̄),
(Λ0, ν|Bα

, ν̃, ν̄) 6= 0 is trivial.

Of course, the terminal conditions introduced here encompasse, when X is
Euclidean, terminal conditions of the ”soft” type: Exi(T, .) = x̄i.

38



Appendix.

Gronwall’s lemma Assume that h(t, x) is measurable in t, and Lipschitz
continuous in x ∈ X with constant M(t). Let y̌(t) and ž(t) be two contin-
uous functions such that |y̌(0) − ž(0)| = ε, |y̌(t) − y̌(0) −

∫ t

0
h(s, y̌(s))ds| ≤

α(t), |ž(t)−ž(0)−
∫ t

0
h(s, ž(s))ds| ≤ β(t). Then |ž(t)−y̌(t)| ≤ [ε+sups≤t(α(s)+

β(s))]e
∫ t

0
M(s)ds.

For example, if |fx(t, x)| ≤ M(t), and |f(0)| ≤ a(t), then for ž(.) = 0, y̌(.)
the solution x(.) of ẋ = f(t, x), x(0) = x0, it follows that |x(t)| ≤ (|x0| +∫ t

s
a(s)ds)e

∫ t

0
M(s)ds.

Theorem A. (Seierstad (1970). Let Y be a normed space, and let Ã be
a complete pseudometric space with metric ∂(., .). There are given num-
bers M ′ > 0, ē > 0, d0 ∈ (0, 1] and elements ā ∈ Ã and p̄ ∈ Y. Let
Ãd = {a ∈ Ã : ∂(a, ā) < M ′d}. Let y(.) : Ã → Y and y+(.) : Ã → Y be given
functions with y+(ā) = 0, and y(.) continuous. Assume M ′ ≥ supa∈Ã ∂(a, ā).

Assume furthermore, for all d ∈ (0, 1], ε > 0, a′′, a ∈ Ãd, k ∈ [0, 1], that there
exists an element a′ ∈ Ãd such that

|ky+(a′′) + (1 − k)y+(a) − y+(a′)| ≤ ε, ∂(a, a′) ≤ 2M ′kd. (A)

Moreover, let ě(d) ≥ 0 be a given error function, (i.e. here an extended
real-valued function on (0,∞) such that limd↘0ě(d) = 0), and assume that
for all d ∈ (0, d0],

|y(a′) − y+(a′) − (y(a) − y+(a))| ≤ ě(d)∂(a′, a) for all a, a′ ∈ Ãd, (B)

dy+(Ã) ⊂ cly+(Ãd). (C)

Finally, assume that

B(p̄, 2ē) ⊂ cly+(Ã). (D)

Then, for some d′ ∈ (0, d0], B(dp̄, dē) + y(ā) ⊂ y(Ã) for all d ∈ (0, d′].

Theorem B. Let Ŷ be a normed space, and let Ã be a complete pseu-
dometric space with metric ∂(., .). There are given numbers M ′ > 0, d0 ∈
(0, 1] and an element ā ∈ Ã. Define Ãd = {a ∈ Ã : ∂(a, ā) < M ′d}. Let
y(.) : Ã → Ŷ and y+(.) : Ã → Ŷ be given functions with y+(ā) = 0. Assume
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M ′ ≥ supa∈Ã ∂(a, ā). Let Z and Ž be Banach spaces, π̂ a linear map from Ŷ

into Z, π̌ a linear map from Ŷ into Ž. Assume that clπ̂y+(Ã) is a convex body.
Assume also that ā is optimal in the problem maxa∈Ã〈π̌y(a), ž∗〉 , subject to
π̂y(a) = z′, where z′ ∈ Z, ž∗ ∈ Ž∗ are fixed. Assume that (A)-(C) in Theorem
A are satisfied by y, y+ replaced by (π̂y(a), 〈π̌y(a), ž∗〉),(π̂y+(a), 〈π̌y+(a), ž∗〉)
with a → (π̂y(a), 〈π̌y(a), ž∗)〉 continuous. Then, for some Λ0 ≥ 0, z∗ ∈
Z∗, (Λ0, z

∗) 6= 0, Λ0〈π̌y
+(a), ž∗〉 + 〈π̂y+(a), z∗〉 ≤ 0 for all a ∈ Ã.

Proof Note that in Theorem A, by continuity of y(.), (B), and (C), in fact
y+(Ã) is bounded. It is easily seen that C :=cl{(π̂y+(a), 〈π̌y+(a), ž∗〉 + γ) :
a ∈ Ã, γ ∈ [−4M ′′, 0]} is a convex body, M ′′ = maxa∈A |〈π̌y+(a), ž∗〉|, (if nec-
essary use Lemma 11.2 in Seierstad (1975)). Let (a, γ), (ā, 0), Ã× [−4M ′′, 0],
(π̂y(a), 〈π̌y(a), ž∗〉+γ), (π̂y+(a), 〈π̌y+(a), ž∗〉+γ),max{∂(a′, a′′),M ′/4M ′′|γ′−
γ′′|}, play the roles of a, ā, Ã, y(a), y+(a), ∂(a′, a′′) in Theorem A. Then, for
no α > 0 can (0, α) be interior in C, for if so, d′(0, α)+ (π̂y(ā), 〈π̌y(ā), ž∗〉) ∈
(π̂y(a), 〈π̌y(a), ž∗〉 + γ : a ∈ Ã, γ ∈ [−4M ′′, 0]}, contradicting optimality. As
intC and {0} × (0,∞) are disjoint, they are separated by a nonzero contin-
uous linear functional represented by (Λ0, z

∗), which yields the conclusion in
the Theorem.

Theorem C. UK is complete in σ.

Proof: First σ̃-completeness is shown: Let un(., .) be a Cauchy-sequence
in σ̃. Choose a subsequence unj

such that essup
∫

J
1Hunj

,unj+1
dt ≤ 1/2j .

Let Bi = ∪j≥iHunj
,unj+1

. Then, for any i, for k ≥ i, a.s., uni
6= unk

only for (t, ω) ∈ Bi. Define u = uni
, for (t, ω) ∈ Ci ∩ Bi−1, i = 1, 2, ...,,

Ci = {Bi, C0 = ∅. Evidently, essup
∫

J
1Bi

dt ≤
∑

j≥i

∫
1Hunj

,unj+1
dt ≤ 1/2i−1.

Then σ̃(u, uni
) ≤ 1/2i−1, which suffices to conclude that σ̃(u, un) → 0 when

n → ∞. Next, let un be a Cauchy-sequence in σ∗. Let u(.) be the σ̃-limit
of un. For each ε, for k, n ≥ some N , ε ≥ σ∗(uk, un) ≥ 2i+1σ̃(uk1Ii

, un1Ii
).

Letting n → ∞ gives ε ≥ 2i+1σ̃(uk1Ii
, u1Ii

), for all i, hence σ∗(uk, u) → 0,
when k → ∞. Furthermore, given any ε > 0, for some N , for k, n ≥ N ,
ε ≥ σ̌(uk, un) = essup

∫
J
M(t, ω)1Huk,un

dt. Now, a.s., by dominated con-

vergence, limn

∫
J
M(t, ω)1Huk,un

dt =
∫

J
M(t, ω)1Huk,u

dt, so also, a.s., ε ≥∫
J
M(t, ω)1Huk,u

dt, k ≥ N . (Finally, in case of Remark 3, σ∗(u, un) → 0,
because, by Lebesgue’s dominated convergence theorem, both∫

J
max{M(t, ω),M∗(t, ω)}1Hu,un

dt → 0 a.s. and
|
∫

J
max{M(t, ω),M∗(t, ω)}1Hu,un

dt|2q → 0.)
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