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Abstract. We show that our general result (Withagen and Asheim

[8]) on the converse of Hartwick’s rule also applies for the special case

of Solow’s model with one capital good and one exhaustible resource.

Hence, the criticism by Cairns and Yang [1] of our paper is unfounded.
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1. Introduction

What characterizes a maximin path in a capital-resource model with one
consumption good? The converse of Hartwick’s rule answers this question
in the following manner: A necessary condition for an efficient constant
consumption path is that the revenues from resource depletion are used for
the accumulation of man-made capital. In a more general setting it amounts
to the result that a necessary condition for an efficient constant utility path is
that the value of net investments is equal to zero at all times. The necessity
of Hartwicks rule has been addressed earlier by Dixit et al. [4] and Withagen
and Asheim [8], in a rather general setting. Cairns and Yang [1] concentrate
on Solow’s model (cf. [6]), which describes a two-sector economy with one
sector exploiting a natural non-renewable resource and the other one using
the raw material from that resource, together with capital, to produce a
commodity that can be consumed and invested.
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In reference to our paper Cairns and Yang argue that we “explicitly posit
positive utility-discount functions. Discounting utility in this context is
contrived and inconsistent with the motivation of sustainability analysis”.
They thus suggest that Solow’s model—which is the basic model in which
Hartwick’s rule for sustainability was originally derived—falls outside the
realm for the main result in Withagen and Asheim [8]. This view, however,
is based on a misunderstanding that stems from confounding discounted
utilitarianism as a primary ethical objective with having supporting utility
or consumption discount rates in a model where intergenerational equity is
the objective.1

The main result in Withagen and Asheim [8] states that under certain
conditions Hartwick’s rule is necessary for sustainability. In the present note
we establish in detail how the main result in Withagen and Asheim [8] (here
reproduced as Prop. 1 in the current one-consumption good setting) can be
used to obtain the converse of Hartwick’s rule in Solow’s model. Thereby
we show that the criticism of Cairns and Yang is unfounded.

Proposition 1 states that if a constant consumption path maximizes the
sum of discounted consumption for some path of supporting consumption
discount factors, then the value of net investments is equal to zero at all
times. We here supplement Prop. 1 by showing that any maximin path
in Solow’s model has constant consumption and maximizes the sum of dis-
counted consumption for some path of supporting discount factors. This
means that the premise of our general result on the converse of Hartwick’s
rule is satisfied in the case of Solow’s model.

We start in Sect. 2 by giving a formal presentation of Solow’s model,
defining the concept of a maximin path, and reproducing Withagen and
Asheim’s [8] result as Prop. 1 in the context of Solow’s model. We then in
Sect. 3 show that (a) the premise of Prop. 1 is satisfied for any maximin
program that is interior and regular, and (b) that any maximin program in
Solow’s model indeed is interior and regular provided that the infimum of
consumption along the maximin program is positive. We conclude in Sect. 4
by proving our main results and commenting on Cairns and Yang’s analysis.

1Cairns and Yang also refer to our paper elsewhere. They argue that we “do not show

that following Hartwick’s rule leads to a unique outcome, much less a maximal level of

consumption”. Since we were dealing with the necessity of Hartwick’s rule, we did not

investigate uniqueness, while it was our premise that the program is maximin.
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2. The model

The Solow model describes a two sector economy. One sector exploits a
nonrenewable resource, the size of which at time t is denoted by s(t). The
initial stock is given and denoted by s0. The raw material (r) from the
resource is used as an input in the other sector, together with capital (k).
The production function in this sector is denoted by f . Output is used
for consumption (c) and net investments (i). The initial capital stock is k0.
There is no depreciation. We follow Cairns and Yang [1] in their assumptions
concerning the production function:

Assumption 1. The production function f is concave, nondecreasing and
continuous for non-negative inputs, and it is increasing and twice differen-
tiable for inputs in the interior of the positive orthant. Both inputs are
necessary. Finally, denoting partial derivatives by subscripts, fk(∞, r) = 0
for r ≥ 0 and fr(k, 0) = ∞ for k > 0.

A quintuple (c, i, r, k, s) is said to attainable if

c ≥ 0

i ≤ f(k, r)− c

r ≥ 0

k ≥ 0

s ≥ 0 .

A program {c(t), i(t), r(t), k(t), s(t)}∞t=0 is said to feasible if, for all t, (c(t),
i(t), r(t), k(t), s(t)) is attainable and

k̇(t) = i(t)

ṡ(t) = −r(t)

k(0) = k0 > 0

s(0) = s0 > 0 .

A feasible program is said to be interior if, for all t, the quintuple is in the
interior of the positive orthant. A feasible program is said to be efficient if
there is no feasible program with at least as much consumption everywhere
and larger consumption on a subset of the time interval with positive mea-
sure. A feasible program {c(t), i(t), r(t), k(t), s(t)}∞t=0 is said to be maximin
if inft c(t) ≥ inft c̄(t) for all feasible programs {c̄(t), ī(t), r̄(t), k̄(t), s̄(t)}∞t=0.
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In Solow’s model, it may not be possible to maintain consumption above
a positive lower bound forever, even if the initial stocks are positive. Here
we simply assume the existence of a maximin program that sustains positive
consumption, and refer to Cass and Mitra [2] for a discussion of sufficient
and necessary conditions in terms of the underlying technology.

Assumption 2. There is a maximin program {c(t), i(t), r(t), k(t), s(t)}∞t=0

with inft c(t) = c∗ > 0.

It follows that any maximin program satisfies inft c(t) = c∗ > 0.
We end this section by stating our general result on the converse of

Hartwick’s rule in the setting of Solow’s model.

Proposition 1 (Prop. 2, Withagen & Asheim [8]). Assume that there are
positive consumption discount factors {π(t)}∞t=0 such that maintaining con-
sumption constant and equal to c∗ forever maximizes

∫∞
0 π(t)c(t)dt over all

feasible paths, that the maximum principle holds for the corresponding infi-
nite horizon optimal control problem, and that the path of corresponding co-
state variables {λ(t), µ(t)}∞t=0 is unique. Then, for all t, λ(t)i(t) = µ(t)r(t).

This re-formulation of the main result in Withagen and Asheim [8] shows
that an important step in the following analysis will be to find consump-
tion discount rates for which a maximin program can be implemented as a
discounted utilitarian optimum. We will now show how this can be done.

3. Main Results

In the current section we use the concept of a ‘regular maximin program’
to show that our general result in Withagen and Asheim [8] (restated as
Prop. 1 above) on the converse of Hartwick’s rule can be applied to demon-
strate that along any maximin path in Solow’s model the revenues from
resource depletion are used for accumulation of man-made capital. Since
the concept of a ‘regular maximin program’ requires the concept of a ‘com-
petitive program’, we start by introducing the latter.

A feasible program {c∗(t), i∗(t), r∗(t), k∗(t), s∗(t)}∞t=0 is said to be compet-
itive at positive consumption discount factors {π(t)}∞t=0 and non-negative
competitive prices {λ(t), µ(t)}∞t=0 if, for all t,

π(t)c∗(t) + λ(t)i∗(t)− µ(t)r∗(t) + λ̇(t)k∗(t) + µ̇(t)s∗(t)

≥ π(t)c + λ(t)i− µ(t)r + λ̇(t)k + µ̇(t)s
(1)
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for all attainable quintuples (c, i, r, k, s). A program {c∗(t), i∗(t), r∗(t), k∗(t),
s∗(t)}∞t=0 that is competitive at {π(t)}∞t=0 and {λ(t), µ(t)}∞t=0 is said to be a
regular maximin path (cf. Dixit et al. [4]) if

c∗(t) = c∗ (constant)(2)
∫ ∞

0
π(t)dt < ∞(3)

λ(t)k∗(t) + µ(t)s∗(t) → 0 as t →∞ .(4)

It is essential to observe that the path of positive consumption discount
factors {π(t)}∞t=0 solely reflects the rate at which consumption at one point
time can be transformed into consumption at some other point in time. In
particular, it has no ethical significance since it is derived from the regular
maximin program as a price support of the constant consumption path.

We first show as Prop. 2 that the premise of Prop. 1 is satisfied for any
maximin program that is interior and regular.

Proposition 2. If {c∗(t), i∗(t), r∗(t), k∗(t), s∗(t)}∞t=0 is an interior and reg-
ular maximin program at consumption discount factors {π(t)}∞t=0 and com-
petitive prices {λ(t), µ(t)}∞t=0, then the premise of Prop. 1 is satisfied.

Secondly, we establish as Prop. 3 that, under Assumptions 1 and 2, any
maximin program in Solow’s model indeed is interior and regular.

Proposition 3. Any maximin program in Solow’s model is interior and
regular at some appropriately chosen consumption discount factors {π(t)}∞t=0

and competitive prices {λ(t), µ(t)}∞t=0, provided that Assumptions 1 and 2 are
satisfied.

Together these two main results—which are proven in the following section—
demonstrate that Prop. 1 can be applied to show that the converse of
Hartwick’s rule holds for Solow’s model. We have thus established the use-
fulness of our previous result on the converse of Hartwick’s rule, also in the
context of Solow’s model.

Note that Prop. 3 strengthens similar results that Dasgupta and Mitra
[3] show in discrete time, by not requiring that raw material is, in a cer-
tain sense, “important”. In a setting that does not explicitly include labor
input, raw material could be called important if there is α > 0 such that
fr(k, r)r/f(k, r) ≥ α for all k ≥ k0 and r sufficiently small (see also Mitra
[5]). Such an assumption, which facilitates showing (3), is not made here.
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4. Proofs

Proposition 2 is proven through the following two lemmas. First, we ob-
serve that if {c∗(t), i∗(t), r∗(t), k∗(t), s∗(t)}∞t=0 is a regular maximin program,
then {c∗(t)}∞t=0 maximizes the sum of consumption discounted by {π(t)}∞t=0.

Lemma 1 (Dixit et al. [4]). If a program {c∗(t), i∗(t), r∗(t), k∗(t), s∗(t)}∞t=0

is a regular maximin program at {π(t)}∞t=0 and {λ(t), µ(t)}∞t=0, then it max-
imizes

∫∞
0 π(t)c(t)dt over all feasible paths.

Proof. Note that (2) and (3) imply that
∫∞
0 π(t)c∗(t)dt < ∞. It is sufficient

to show that

lim infT→∞
∫ T

0
π(t)

(
c(t)− c∗(t)

)
dt ≤ 0

for all feasible programs {c(t), i(t), r(t), k(t), s(t)}∞t=0.∫ T

0
π(t)

(
c(t)− c∗(t)

)
dt

≤
∫ T

0

[
λ(t)

(
i∗(t)− i(t)

)− µ(t)
(
r∗(t)− r(t)

)

+ λ̇(t)
(
k∗(t)− k(t)

)
+ µ̇(t)

(
s∗(t)− s(t)

)]
dt by (1)

=
∫ T

0

[
d
(
λ(t)(k∗(t)− k(t)) + µ(t)(s∗(t)− s(t))

)
/dt

]
dt

since k̇(t) = i(t) and ṡ(t) = −r(t)

=
(
λ(T )(k∗(T )− k(T )) + µ(T )(s∗(T )− s(T ))

)

− (
λ(0)(k∗(0)− k(0)) + µ(0)(s∗(0)− s(0))

)

≤ λ(t)k∗(T ) + µ(t)s∗(T ) since k∗(0) = k(0) = k0, s∗(0) = s(0) = s0,

λ(T ) ≥ 0, µ(T ) ≥ 0, k(T ) ≥ 0, and s(T ) ≥ 0 .

By (4), the result follows. ¤

Note that, since the consumption discount factors {π(t)}∞t=0 are positive,
Lemma 1 implies that a regular maximin path is efficient.

Secondly, we show that for any interior and competitive program, the
maximum principle holds and the path of co-state variables is unique.

Lemma 2. If an interior program {c∗(t), i∗(t), r∗(t), k∗(t), s∗(t)}∞t=0 is a reg-
ular maximin program at {π(t)}∞t=0 and {λ(t), µ(t)}∞t=0, then the maximum
principle holds for the problem of maximizing

∫∞
0 π(t)c(t)dt and the path of

corresponding co-state variables is unique and equals {λ(t), µ(t)}∞t=0.
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Proof. Since {c∗(t), i∗(t), r∗(t), k∗(t), s∗(t)}∞t=0 is interior and competitive it
follows from (1) that, for all t,

(c∗(t), r∗(t)) maximizes π(t)c + λ(t)
(
f(k∗(t), r)− c

)− µ(t)r

over all non-negative (c, r)
(5)

λ(t)fk(k∗(t), r∗(t)) + λ̇(t) = 0(6)

µ̇(t) = 0 .(7)

Since {c∗(t), i∗(t), r∗(t), k∗(t), s∗(t)}∞t=0 is a regular maximin program and
thus, by Lemma 1, maximizes

∫∞
0 π(t)c(t)dt over all feasible paths, it follows

that (5)–(7) are necessary condition for optimality, where

H(k, s, c, r, λ, µ) = π(t)c + λ
(
f(k, r)− c

)− µr

is the corresponding Hamilitonian function. It follows from (5) that, for all
t, (λ(t), µ(t)) is uniquely determined from π(t) by

π(t)− λ(t) = 0

λ(t)fr(k∗(t), r∗(t))− µ(t) = 0

since the program is interior and f is smooth. ¤

Proof of Prop. 2. This is a direct consequence of Lemmas 1 and 2. ¤

By Assumption 2, any maximin program has the property that inft c(t) =
c∗. Our proof of Prop. 3 is based on three lemmas that derive results from
the problem of minimizing resource use subject to, for all t, c(t) ≥ c∗:

min
∫ ∞

0
r(t)dt subject to k̇(t) = f(k(t), r(t))− c(t) and c(t) ≥ c∗ .

It follows from Assumption 2 that this problem has a solution, which we
will denote {c∗(t), i∗(t), r∗(t), k∗(t), s∗(t)}∞t=0, and which satisfies

∫ ∞

0
r∗(t)dt ≤ s0 .

Since, clearly, c∗(t) = c∗ for all t, the Hamiltonian function corresponding
to the minimum resource use problem can be written

H(k, r, λ; c∗) = −r + λ
(
f(k, r)− c∗

)
,
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from which we can derive the following necessary conditions: For all t,

r∗(t) maximizes − r + λ(t)f(k∗(t), r) over all non-negative r(8)

−λ̇(t) = λ(t)fk(k∗, r∗) .(9)

Let V denote the value function corresponding to minimum resource use. It
follows from Assumption 2 that minimum resource use subject to c(t) ≥ c

and initial stock k is given as V (k, c) for all k ≥ k0 and c ≤ c∗.

Lemma 3. If a program {c∗(t), i∗(t), r∗(t), k∗(t), s∗(t)}∞t=0 solves the min-
imum resource use problem subject to c(t) ≥ c∗, then it has constant con-
sumption, and is interior and competitive.

Proof. Clearly, c∗(t) = c∗ > 0 for all t. Furthermore, since λ(τ) ≤ 0 would
imply λ(t) ≤ 0, r∗(t) = 0, and f(k∗(t), r∗(t)) = 0 for all t ≥ τ , contradicting
that c∗(t) = c∗ and k∗(t) ≥ 0 for all t, it follows from (8) and (9) that, for
all t, λ(t) > 0 and r∗(t) > 0. We have that, for all t,

V (k0, c
∗) =

∫ t

0
r∗(τ)dτ + V (k∗(t), c∗)

and ∂V (k∗(t), c∗)/∂k = −λ(t). This means that, for all t, λ(t)k̇∗(t) =
−dV (k∗(t), c∗)/dt = r∗(t) > 0, implying that i∗(t) = k̇∗(t) > 0 and k∗(t) ≥
k0 > 0. Finally, for all t, ṡ∗(t) = −r∗(t) < 0 and s∗(t) ≥ 0, implying
that s∗(t) > 0. Hence, any program that solves the minimum resource use
problem subject to c(t) ≥ c∗ has constant consumption and is interior.

It remains to be shown that any program solving the minimum resource
use problem is competitive. To show this, set π(t) = λ(t) and µ(t) = 1, for
all t. It is straightforward to check that the concavity of f implies that (1)
is then satisfied for all t. ¤

Lemma 4. If a program {c∗(t), i∗(t), r∗(t), k∗(t), s∗(t)}∞t=0 solves the mini-
mum resource use problem subject to c(t) ≥ c∗, then it exhausts the resource
and the path of the co-state variable {λ(t)}∞t=0 satisfies

∫∞
0 λ(t)dt < ∞.

Proof. Suppose that {c∗(t), i∗(t), r∗(t), k∗(t), s∗(t)}∞t=0 solves the minimum
resource use problem subject to c(t) ≥ c∗, but does not exhaust the resource,
i.e. we have that

∫∞
0 r∗(t)dt < s0. We will show that it is then possible to

construct a feasible program with inft c(t) > c∗, contradicting the definition
of c∗. Inspired by an argument by Cairns and Yang (see comment at the
end of this section), we first show how a uniform reduction in consumption
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can be achieved by reducing the finite resource input. By the smoothness of
the production function this in turn means that a finite increase in resource
input can bring about a uniform increase in consumption.

A reduction of the constant rate of consumption by ε can be achieved by
keeping the time path of the stock of capital unaltered and by reducing the
resource input at time t by η(t; ε), where 0 < ε < c∗, and where, for all t,

ε = f(k∗(t), r∗(t))− f(k∗(t), r∗(t)− η(t; ε)) .

Note that, for all t, 0 < η(t; ε) < r∗(t) since by Lemma 3,

f(k∗(t), r∗(t)) = c∗ + i∗(t) > c∗ > ε

and f(k∗(t), 0) = 0. Furthermore,
∫∞
0 η(t; ε)dt <

∫∞
0 r∗(t)dt ≤ s0 < ∞.

Differentiability of f implies

ε = f(k∗(t), r∗(t))− f(k∗(t), r∗(t)− η(t; ε))

= fr(k∗(t), r∗(t))η(t; ε)) + O1(η(t; ε))

where O1(η(t; ε))/η(t; ε) → 0 as η(t; ε) → 0. Now instead, consider increas-
ing the resource input at time t by η(t; ε). Differentiability of f implies

f(k∗(t), r∗(t) + η(t; ε))− f(k∗(t), r∗(t)))

= fr(k∗(t), r∗(t))η(t; ε))−O2(η(t; ε))

where O2(η(t; ε))/η(t; ε) → 0 as η(t; ε) → 0. Therefore,

f(k∗(t), r∗(t) + η(t; ε))− f(k∗(t), r∗(t))) = ε−O(η(t; ε)) ,

where O(η(t; ε)) = O1(η(t; ε))+O2(η(t; ε)) satisfies O(η(t; ε))/η(t; ε) → 0 as
η(t; ε) → 0.

For given ε, η(t; ε) → 0 as t → ∞. Hence, O(η(t; ε)) → 0 as t → ∞,
implying that there exists T such that

f(k∗(t), r∗(t) + η(t; ε))− f(k∗(t), r∗(t))) > 1
2ε

for almost all t > T . But then it is possible to increase the constant rate
of consumption by 1

2ε almost everywhere by adding a finite amount of the
resource. In other words, a marginal increase of c∗ requires a finite increase
of the resource stock. This argument establishes that ∂V (k0, c

∗)/∂c < ∞
and means that it would have been possible to construct a feasible program
with inft c(t) > c∗ if

∫∞
0 r∗(t)dt < s0. Since the existence of such a program
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contradicts the definition of c∗, we have that
∫∞
0 r∗(t)dt = s0 and s∗(t) → 0

as t →∞. It also follows from Seierstad and Sydsæter [7, p. 217] that

∂V (k0, c
∗)

∂c
=

∫ ∞

0

∂H(k∗(t), r∗(t), λ(t); c∗)
∂c

dt =
∫ ∞

0
λ(t)dt .

Hence,
∫∞
0 λ(t)dt is finite. ¤

Lemma 5. If a program {c∗(t), i∗(t), r∗(t), k∗(t), s∗(t)}∞t=0 solves the min-
imum resource use problem subject to c(t) ≥ c∗, then λ(t)k∗(t) → 0 as
t →∞, where {λ(t)}∞t=0 is the path of the co-state variable.

Proof. In view of the concavity of the production function f , the value
function V is convex in k, implying that, for all t,

(10) V (k(t), c∗)− V (k∗(t), c∗) ≥ ∂V (k∗(t), c∗)
∂k

· (k(t)− k∗(t))

for all k(t) ≥ k0. Moreover, ∂V (k∗(t), c∗)/∂k = −λ(t) < 0 and

lim
t→∞V (k∗(t), c∗) = lim

t→∞

∫ ∞

t
r∗(τ)dτ = 0 .

Since V (k, c∗) > 0 for all k ≥ k0, it follows that V (k, c∗) → 0 as k →∞ and
k∗(t) →∞ as t → 0. Take k(t) = 1

2k∗(t). Then (10) implies

V (1
2k∗(t), c∗)− V (k∗(t), c∗) ≥ 1

2λ(t)k∗(t) .

The left hand side goes to zero as t →∞. The right hand side is non-negative
and therefore goes to zero as well. ¤

Proof of Prop. 3. If a program {c∗(t), i∗(t), r∗(t), k∗(t), s∗(t)}∞t=0 solves the
minimum resource use problem subject to c(t) ≥ c∗, then, by Lemma 4,
it exhausts the resource. Therefore, since there thus does not exist any
maximin program not solving the minimum resource use problem, it follows
that a program is maximin if and only if it solves the minimum resource use
problem subject to c(t) ≥ c∗.

By Lemma 3, any program solving the minimum resource use problem is
interior. Furthermore, it is a regular maximin program since it is competitive
with, for all t, π(t) = λ(t) and µ(t) = 1 (by Lemma 3) and satisfies (2) (by
Lemma 3), (3) (by Lemma 4), and (4) (by Lemmas 5 and 4). ¤

One of the steps taken in this paper is to show that, along a program
solving the minimum resource use problem, the minimum resource use coin-
cides with the resource stock initially available (s0) in the original problem.
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Cairns and Yang also provide an argument to show this. Their argument
largely runs parallel to ours, in Lemma 4, where we derive

f(k∗(t), r∗(t) + η(t; ε))− f(k∗(t), r∗(t)) = ε−O(η(t; ε)) .

Cairns and Yang are less careful in mentioning the time variable and the
dependence of η on ε. Then they apply a limit argument on η to show that
for η small enough the left hand side of the expression is larger than ε/2.
This is correct for fixed t, because as ε goes to zero, also η goes to zero. But
the inequality might not hold for all t.

A second problem with the analysis by Cairns and Yang is their proof that
Hotelling’s rule, ḟr/fr = fk, holds along a program with maximal constant
consumption. The proof relies on a set of first order approximations. This
method is an excellent tool, in particular in the case at hand, to illustrate
what Hotelling’s rule is actually saying—namely that there are no subin-
tervals of time where the constant rate of consumption can be maintained,
and at the same time the program ends up with larger capital and resource
stocks than in the original program. However, such an argument cannot
serve as a formal proof.
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