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The semantics of

preference-based belief operators∗

Geir B. Asheim† and Ylva Søvik‡

February 21, 2003

Abstract

We show how different kinds of belief operators derived from preferences
can be defined in terms an accessibility relation of epistemic priority, and char-
acterized by means of a vector of nested accessibility relations. The semantic
structure is used to reconcile and compare certain non-standard notions of be-
lief that have recently been used in epistemic analyses of games.

JEL Classification no: D81.
Keywords: Belief operators, decision theory, belief revision.

1 Introduction

In epistemic analyses of games, it is common to use subjective belief operators.

There are numerous examples where KD45 operators like ‘belief with probability

1’ (e.g., Tan & Werlang [25]), ‘belief with primary probability 1’ (Brandenburger

[10]) and ‘conditional belief with probability 1’ (Ben-Porath [7]) are applied. More

recently, Brandenburger & Keisler [13] and Battigalli & Siniscalchi [6] have proposed

non-monotonic subjective belief operators called ‘assumption’ and ‘strong belief’,

respectively. These operators all have in common that they are based on subjective

probabilities — arising from a probability distribution, a lexicographic probability
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system, or a conditional probability system — that represent the preferences of the

player as a decision maker. Thus, in game theory there is a prevalence of preference-

based belief operators.

While all the above contributions use subjective probabilities to define the epis-

temic operators, Morris [19] observes that it is unnecessary to go via subjective

probabilities to derive subjective belief operators from the preferences of a deci-

sion maker. This suggestion has been followed by Asheim & Dufwenberg [4] and

Asheim [3], who consider epistemic conditions for forward induction and backward

inductions without the use of subjective probabilities. In the case of Asheim &

Dufwenberg’s [4] it is necessary for the characterization of forward induction to use

incomplete preferences that cannot be represented by subjective probabilities, while

Asheim [3] points to the possibility of characterizing backward induction without

the use of subjective probabilities since one can convincingly argue that subjective

probabilities play no role in the backward induction argument.

When deriving belief operators from preferences, it is essential that the prefer-

ences determine ‘subjective possibility’ as well as ‘epistemic priority’. As we shall see,

preferences need not satisfy completeness to determine ‘subjective possibility’ and

‘epistemic priority’. We intend to show how belief operators corresponding to those

used in the literature can be derived from preferences that need not be complete.1

After presenting the decision-theoretic framework in Sect. 2, we show in Sect. 3

how a binary accessibility relation of epistemic priority Q can be derived from pref-

erences that satisfy conditions that are weaker than those usually applied in the

Anscombe–Aumann [2] framework. The properties of this priority relation are sim-

ilar to but more general than those found, e.g., in Lamarre & Shoham [18] and

Stalnaker [23, 24] in that reflexivity is not required. Furthermore, we show how

preferences give rise to a vector of nested binary accessibility relations (R1, . . . , RL),

where, for each k, Rk fulfills the usual properties of Kripke representations of be-

liefs; i.e., they are serial, transitive and euclidean. Finally, we establish that the two

kinds of accessibility relations yield two equivalent representations of ‘subjective

possibility’ and ‘epistemic priority’.

1The term ‘epistemic priority’ will here be used to refer to what elsewhere is sometimes referred

to as ‘plausibility’ or ‘prejudice’; see, e.g., Friedman & Halpern [14] and Lamerre & Shoham [18].

This is similar to ‘preference’ among states (or worlds) in nonmonotonic logic (cf. Shoham [22] and

Kraus et al. [17]), leading agents towards some states and away from others. In contrast, we use the

term ‘preferences’ in the decision-theoretic sense of a binary relation on the set of functions (‘acts’)

from states to outcomes; see Sect. 2.
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From Sect. 4 on we take the accessibility relation of epistemic priority Q as the

point of departure. We first define the following belief operators:

• Certain belief corresponds to what Morris [19] calls ‘Savage-belief’ and means

that the complement of the event is subjectively impossible.

• Conditional belief is a generalization of ‘conditional belief with probability 1’.

• Full belief corresponds to what Stalnaker [24] calls ‘absolutely robust belief’.

We then in Sect. 5 show how these operators can be characterized by means of

the vector of nested binary accessibility relations (R1, . . . , RL), while we in Sect. 6

establish properties of these belief operators. In particular, we show that the full

belief operator (while poorly behaved) is bounded by certain and conditional belief,

which are KD45 operators.

In Sect. 7 we interpret our one-agent decision-theoretic framework in terms of

the n-agent decision-theoretic framework encountered in games, and note how the

characterization of full belief corresponds to the primitive definition of this operator

in Asheim & Dufwenberg [4] as well as Brandenburger & Keisler’s [13] concept of

‘assumption’. In Sect. 8 we amend the decision-theoretic framework to be able to

handle systems of conditional preferences used in analyses of extensive form games

and show how Battigalli & Siniscalchi’s [6] concept of ‘strong belief’ is related to full

belief. We thereby reconcile and compare these non-standard notions of belief which

have recently been used in epistemic analyses of games. We conclude in Sect. 9.

2 Decision-theoretic Framework

Consider a decision maker under uncertainty. Let W be a finite set of states (or

possible worlds), where the decision maker is uncertain about what the true state

is. Let Z be a finite set of outcomes. In the tradition of Anscombe & Aumann [2],

the decision maker has preferences over the set of functions that assign an objective

randomization over outcomes to any state. Any such function x : W → ∆(Z) is

called an act on W . If the true state is a, then the preferences of the decision maker

is a binary relation ºa on the set of acts, with Âa and ∼a denoting the asymmetric

and symmetric parts, respectively. For any a ∈ W , ºa is assumed to be

• reflexive and transitive, but not necessarily complete.

• nontrivial in the sense that there exist x and y such that x Âa y.
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• objectively independent in the sense that x′ Âa (respectively ∼a) x′′ iff γx′ +
(1 − γ)y Âa (respectively ∼a) γx′′ + (1 − γ)y, whenever 0 < γ < 1 and y is

arbitrary.

If (∅ 6=) φ ⊆ W , let xφ denote the restriction of x to φ. Define the conditional

binary relation ºa
φ by x′ ºa

φ x′′ if, for some y, (x′φ,y¬φ) ºa (x′′φ,y¬φ), where ¬φ

denotes W\φ. By objective independence this definition does not depend on y. Say

that the state b ∈ W is Savage-null at a if x ∼a
{b} y for all acts x and y on W . Say

that b is deemed infinitely more likely than c at a (b Àa c; cf. Blume et al. [8, Def.

5.1]) if b 6= c, b is not Savage-null at a, and x Âa
{b} y implies x Âa

{b,c} y. According

to this definition, c may, but need not, be Savage-null at a if b Àa c. For any a ∈ W ,

ºa is assumed to satisfy

• conditional completeness; i.e., ∀b ∈ W , ºa
{b} is complete.

• conditional continuity; i.e., ∀b ∈ W , there exist 0 < γ < δ < 1 such that

δx′ + (1− δ)x′′ Âa
{b} y Âa

{b} γx′ + (1− γ)x′′ whenever x′ Âa
{b} y Âa

{b} x′′.

• partitional priority ; i.e., if b Àa c, then, ∀b′ ∈ W , b Àa b′ or b′ Àa c.

• non-null state independence; i.e., x Âa
{b} y iff x Âa

{c} y whenever b and c are

not Savage-null at a and x and y satisfy x(b) = x(c) and y(b) = y(c).

Let W be partitioned into equivalence classes, where a ≈ b denotes that a and b are

in the same equivalence class, with ≈ being a reflexive, transitive and symmetric

binary relation. Write τa := {b ∈ W | a ≈ b}. Let κa denote the set of states that

are not Savage-null at a. Since ºa is nontrivial, κa 6= ∅. Assume that, for any

a ∈ W , κa ⊆ τa, and ∀a′ ∈ τa, x ºa′ y iff x ºa y. This assumption will ensure

that the preference-based operators satisfy positive and negative introspection; it

corresponds to “being aware of one’s own type”.

Definition 1 A preference system {ºa | a ∈ W} consists of

(1) a finite set of states W that is partitioned into equivalence classes by ≈, and

(2) for each a ∈ W , a reflexive and transitive binary relation ºa on the set of

acts (where each act is a function x : W → ∆(Z) and Z is a finite set of out-

comes), depending only on to which equivalence class a belongs, and satisfying

non-triviality, objective independence, conditional completeness, conditional

continuity, partitional priority, non-null state independence, and that a ≈ b if

b is not Savage-null at a.
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Since, as shown by the following result, partitional priority is implied if condi-

tional completeness is strengthened to completeness, Def. 1 generalizes the decision-

theoretic framework considered by Blume et al. [8].

Proposition 1 If ºa is complete, then the assumption of partitional priority is

redundant.

Proof. We must show that, under completeness, if b Àa c, then, ∀b′ ∈ W ,

b Àa b′ or b′ Àa c. Clearly, b Àa c entails b ∈ κa, implying that b Àa b′ or b′ Àa c

if b′ /∈ κa or c /∈ κa. The case where b′ = b or b′ = c is trivial. The case where b′ 6= b,

b′ 6= c, b′ ∈ κa and c ∈ κa remains. Assume that b Àa b′ does not hold, which by

completeness entails the existence of x′ and y′ such that x′ ¹a
{b,b′} y′ and x′ Âa

{b} y′.
It suffices to show that b′ Àa c is obtained; i.e., x Âa

{b′} y implies x Âa
{b′,c} y.

Let x Âa
{b′} y. Assume w.l.o.g. that x(a′) = y(a′) for a′ 6= b′, c, and x′(a′) =

y′(a′) for a′ 6= b, b′. By transitivity, x′ ¹a
{b,b′} y′ and x′ Âa

{b} y′ imply x′ ≺a
{b′} y′.

However, since ºa satisfies objective independence and conditional continuity, ∃γ ∈
(0, 1) such that γx + (1 − γ)x′ Âa

{b′} γy + (1 − γ)y′. Moreover, x(b) = y(b) and

x′ Âa
{b} y′ entail that γx + (1− γ)x′ Âa

{b} γy + (1− γ)y′ by objective independence,

which implies that γx + (1 − γ)x′ Âa
{b,c} γy + (1 − γ)y′ since b Àa c. Hence, by

transitivity, γx+(1−γ)x′ Âa
{b,b′,c} γy+(1−γ)y′ — or equivalently, γx+(1−γ)x′ Âa

γy + (1 − γ)y. Now, y′ ºa
{b,b′} x′ means that γx + (1 − γ)y′ ºa γx + (1 − γ)x′ by

objective independence, implying that γx+(1−γ)y′ Âa γy+(1−γ)y′ by transitivity,

and x Âa y — or equivalently, x Âa
{b′,c} y — by objective independence. Thus,

x Âa
{b′} y implies x Âa

{b′,c} y, meaning that b′ Àa c.

Say that ºa is conditionally represented by a vNM utility function ua : Z → R
(writing ua(x) =

∑
z∈Z x(z)ua(z) whenever x ∈ ∆(Z) is an objective randomization)

if (1) ºa is nontrivial and (2) x ºa
{b} y iff ua(x(b)) ≥ ua(y(b)) whenever b is not

Savage-null at a. By the properties of the bullet points it follows directly from the

vNM theorem on expected utility representation that there, for any a ∈ W , exists a

vNM utility function ua such that ºa is conditionally represented by ua. If A ⊆ W ,

say that xA weakly dominates yA at a if, ∀b ∈ A, ua(xA(b)) ≥ ua(yA(b)), with strict

inequality for some c ∈ A. Say that ºa is admissible on A if A is non-empty and

x Âa y whenever xA weakly dominates yA at a.

The following connection between admissibility on subsets and the infinitely-

more-likely relation is important for relating the accessibility relations derived from

preferences in the next section (cf. Sect. 3.3).

5



Proposition 2 Let A 6= ∅ and ¬A 6= ∅. ºa is admissible on A iff b ∈ A and c ∈ ¬A

imply b Àa c.

Proof. Only if. Assume that ºa is admissible on A. Let b ∈ A and c ∈ ¬A.

It now follows directly that b is not Savage-null at a and that x Âa
{b} y implies

x Âa
{b,c} y. If. Assume that b ∈ A and c ∈ ¬A imply b Àa c. Let x and y

satisfy that xA weakly dominates yA at a. Then there exists b0 ∈ A such that

ua(x(b0)) > ua(y(b0)). Write ¬A = {c1, . . . , cn}. Let, for m ∈ {0, . . . , n},

xm(a′) =





n+1−m
n+1 x(a′) + m

n+1y(a′) if a′ = b0

x(a′) if a′ ∈ A\b0

y(a′) if a′ = cm′ and m′ ∈ {1, . . . , m}
x(a′) if a′ = cm′ and m′ ∈ {m + 1, . . . , n}.

Then x = x0, xm−1 Âa xm for all m = {1, . . . , n} (since b ∈ A and c ∈ ¬A imply

that b Àa c), and xn Âa y (since xn weakly dominates y at a with ua(xn(b0)) >

ua(y(b0))). By transitivity of ºa, it follows that x Âa y.

3 From Preferences to Accessibility Relations

The purpose of this section is to show how two different kinds of accessibility relations

(see, e.g., Lamarre & Shoham [18] and Stalnaker [23, 24]) can be derived from

preferences. The one kind is based on the infinitely-more-likely relation, while the

other is based on admissibility on subsets.

3.1 Accessibility relation of epistemic priority.

Consider the following definition of the accessibility relation Q.

Definition 2 aQb (“a does not have higher epistemic priority than b”) if
(1) a ≈ b,
(2) b is not Savage-null at a, and
(3) a is not deemed infinitely more likely than b at a.

Proposition 3 The relation Q is serial,2 transitive, and satisfies forward linearity3

and quasi-backward linearity.4

2∀a, ∃b such that aQb.

3aQb and aQc imply bQc or cQb.

4If ∃a′ ∈ W such that a′Qb, then aQc and bQc imply aQb or bQa.
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Proof. (Q serial.) If a is Savage-null at a, then there exists b ∈ τa such that b

is not Savage-null at a since ºa is nontrivial. Clearly, a is not infinitely more likely

than b at a, and aQb. If a is not Savage-null at a, then aQa since a is not infinitely

more likely than itself at a.

(Q transitive.) We must show that aQb and bQc imply aQc. Clearly, aQb and

bQc imply a ≈ b ≈ c, and that c is not Savage-null at a. It remains to be shown

that a Àa c does not hold if aQb and bQc. Suppose to the contrary that a Àa c.

It suffices to show that aQb contradicts bQc. Since c is not Savage-null at a ≈ b,

b Àa c is needed to contradict bQc. This follows from partitional priority because

aQb entails that a Àa b does not hold.

(Q satisfies forward linearity.) We must show that aQb and aQc imply bQc or

cQb. From aQb and aQc it follows that a ≈ b ≈ c and that both b and c are not

Savage-null at b ≈ c. Since b Àb c and c Àc b cannot both hold, we have that bQc

or cQb.

(Q satisfies quasi-backward linearity.) We must show that aQc and bQc imply

aQb or bQa if ∃a′ ∈ W such that a′Qb. From aQc and bQc it follows that a ≈ b ≈ c,

while a′Qb implies that b is not Savage-null at a′ ≈ a ≈ b. If a is Savage-null at a,

then a Àa b cannot hold, implying that aQb. If a is not Savage-null at a ≈ b, then

a Àa b and b Àb a cannot both hold, implying that aQb or bQa.

3.2 A vector of nested accessibility relations.

Consider the collection of all sets A satisfying that ºa is admissible on A. Since

ºa is admissible on κa, it follows that the collection is non-empty as it is contains

κa. Furthermore, since any b ∈ A is not Savage-null at a if ºa is admissible on

A, it follows that any set in this collection is a subset of κa. Finally, since b Àa c

implies that c Àa b does not hold, it follows from Prop. 2 that A′ ⊆ A′′ or A′′ ⊆ A′

if ºa is admissible on both A′ and A′′, implying that the sets in the collection are

nested. Hence, there exists a vector of nested sets, (ρa
1, . . . , ρ

a
La), on which ºa is

admissible, satisfying: ∅ 6= ρa
1 ⊂ · · · ⊂ ρa

k ⊂ · · · ⊂ ρa
La = κa ⊆ τa (where ⊂ denotes

⊆ and 6=). Let L := maxa∈W La. If, for some a ∈ W , La < L, let ρa
La = ρa

k = κa

for k ∈ {La + 1, . . . , L}. The collection of sets, {ρa
k| a ∈ W}, defines an accessibility

relation, Rk.

Definition 3 aRkb (“at a, b is deemed possible at the epistemic level k”) if b ∈ ρa
k.
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Proposition 4 The vector of relations, (R1, . . . , RL), has the following properties:

For each k ∈ {1, . . . , L}, Rk is serial, transitive, and euclidian.5 For each k ∈
{1, . . . , L− 1}, (i) aRkb implies aRk+1b and (ii) (∃c such that aRk+1c and bRk+1c)

implies (∃c′ such that aRkc
′ and bRkc

′).

Proof. (Rk serial.) For all a ∈ W , ρa
k 6= ∅.

(Rk transitive.) We must show that aRkb and bRkc imply aRkc. Since aRkb

implies that a ≈ b, we have that ρa
k = ρb

k. Now, bRkc (i.e., c ∈ ρb
k) implies aRkc (i.e.,

c ∈ ρa
k).

(Rk euclidian.) We must show that aRkb and aRkc imply bRkc. Since aRkb

implies that a ≈ b, we have that ρa
k = ρb

k. Now, aRkc (i.e., c ∈ ρa
k) implies bRkc (i.e.,

c ∈ ρb
k).

(aRkb implies aRk+1b.) This follows from the property that ρa
k ⊆ ρa

k+1.

(∃c such that aRk+1c and bRk+1c) implies (∃c′ such that aRkc
′ and bRkc

′). Since

aRk+1c implies that a ≈ c and bRk+1c implies that b ≈ c, we have that a ≈ b and

ρa
k = ρb

k. Hence, by the non-emptiness of this set, ∃c′ such that aRkc
′ and bRkc

′.

3.3 The correspondence between Q and (R1, . . . , RL)

Below we prove a correspondence between the relations Q and (R1, . . . , RL).

Proposition 5 (i) aQa iff aRLa. (ii) (aQb and not bQa) iff (∃k ∈ {1, . . . , L} such

that aRkb and not bRka).

Proof. (i) (aQa is equivalent to a being not Savage-null at a.) If aQa, then it

follows directly from Def. 2 that a is not Savage-null at a. If a is not Savage-null

at a, then by Def. 2 it follows that aQa since a ≈ a and not a Àa a. (aRLa is

equivalent to a being not Savage-null at a.) By Def. 3, aRLa iff a ∈ ρa
L = κa, which

directly establishes the result.

(ii) Only if. Assume that aQb and not bQa. From aQb it follows that a ≈ b

and b is not Savage-null at a, i.e. b ∈ κa(⊆ τa). Consider A := {b′ ∈ W | bQb′}.
Clearly, b ∈ A ⊆ κa(⊆ τa) and a ∈ τa\A 6= ∅. If b′ ∈ A and c ∈ τa\A, then not

b′Qc, since otherwise it would follow from bQb′ and the transitivity of Q that bQc,

thereby contradicting c /∈ A. If, on the one hand, c ∈ κa\A, then b′ Àa c since c

is not Savage-null at a ≈ b′ and b′Qc does not hold. If, on the other hand, c /∈ κa,

5aRkb and aRkc imply bRkc.
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then b′ Àa c since c is Savage-null at a and b′ is not. Hence, b′ ∈ A and c ∈ ¬A

imply b′ Àa c. By Prop. 2, ºa is admissible on A, entailing that ∃k ∈ {1, . . . , L}
such that ρa

k = A. By Def. 3, aRkb and not bRka since b ∈ A and a ∈ τa\A.

If. Assume that ∃k ∈ {1, . . . , L} such that aRkb and not bRka. From aRkb it

follows that a ≈ b and b ∈ ρa
k(⊆ κa); in particular, b is not Savage-null at a. Since

bRka does not hold, however, a /∈ ρb
k = ρa

k. By construction, ºa is admissible on

ρa
k, and it now follows from Prop 2 that b Àa a. Furthermore, b Àa a implies that

a Àa b does not hold. Hence, aQb since a ≈ b, b is not Savage-null at a and a Àa b

does not hold, while not bQa since b Àa a.

That a is not Savage-null at a can be interpreted as a being deemed subjectively

possible (at some epistemic level) at any state in the same equivalence class. By

Prop. 5(i), a being not Savage-null at a has two equivalent representations in terms

of accessibility relations: aQa and aRLa. Likewise, b Àa a can be interpreted as

b having a higher epistemic priority than a. By Prop. 5(ii), b Àa a have two

equivalent representations: (aQb and not bQa) and (∃k ∈ {1, . . . , L} such that aRkb

and not bRka). Thus, both Q and (R1, . . . , RL) capture ‘subjective possibility’ and

‘epistemic priority’ as implied by the preferences of the preference system.

If conditional continuity is strengthened to continuity — i.e., ∀b ∈ W , there

exist 0 < γ < δ < 1 such that δx′ + (1 − δ)x′′ Âa y Âa γx′ + (1 − γ)x′′ whenever

x′ Âa y Âa x′′ — then b being deemed infinitely more likely than c at a implies that

c is Savage-null. Hence, L = 1, and by Defs. 2 and 3, Q = R1. Hence, we are left

with a unique serial, transitive, and euclidian accessibility relation if preferences are

continuous.

4 Defining Belief Operators

In the following Sects. 4–6 our point of departure will be an accessibility relation

of epistemic priority having the properties that are specified in Prop. 3. We shall

first show how equivalence classes can be derived, and then demonstrate how various

belief operators can be defined and characterized, on the basis of this accessibility

relation. Since – as shown through Def. 2 and Prop. 3 – such an accessibility relation

can be derived from preferences of a preference system that satisfy the minimum

requirements of Def. 1, these belief operators can be considered to be preference-

based.

We first restate the properties of Prop. 3 as a primitive definition before deriving
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equivalence classes and defining belief operators.

Definition 4 The relation Q is serial, transitive, and satisfies forward linearity and

quasi-backward linearity.

We will interpret aQa as a being deemed subjectively possible at any state in the

same equivalence class, and (aQb and not bQa) as b having a higher epistemic priority

than a. Hence, when interpreted in terms of preferences, aQa corresponds to a not

being Savage-null at a, and (aQb and not bQa) corresponds to b being infinitely

more likely than a at a.

4.1 Deriving equivalence classes

Define the relation ≈ as follows.

Definition 5 a ≈ b if ∃c ∈ W such that aQc and bQc.

We must show that ≈ is an equivalence relation.

Proposition 6 The relation ≈ is reflexive, transitive, and symmetric.

Proof. (≈ reflexive.) Since Q is serial, ∀a, ∃c such that aQc. Hence, a ≈ a.

(≈ transitive.) We must show that a ≈ b and b ≈ c imply a ≈ c. From a ≈ b it

follows that ∃b′ such that aQb′ and bQb′. From b ≈ c it follows that ∃c′ such that

bQc′ and cQc′. It now follows from forward linearity that either (i) b′Qc′, which

by transitivity of Q implies aQc′ and cQc′, or (ii) c′Qb′, which by transitivity of Q

implies aQb′ and cQb′. In either case we have established that a ≈ c.

(≈ symmetric.) Obvious.

Write τa := {b ∈ W | a ≈ b}. The following observation is useful.

Lemma 1 If aQb, then a ≈ b and bQb.

Proof. Let aQb. By seriality, ∃c such that bQc and, by transitivity, aQc. Hence,

∃c such that bQc and aQc, which by Def. 5 yields a ≈ b. Furthermore, by forward

linearity, aQb implies that bQb.
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4.2 Certain, conditional, and full belief

Let

κa := {b ∈ τa|∃c such that cQb} = {b ∈ τa|bQb} ,

denote the set of states that are deemed subjectively possible at a, where κa 6= ∅
since Q is serial, and where the last equality follows from Lemma 1. Define ‘certain

belief’ as follows.

Definition 6 At a the decision maker certainly believes A if a ∈ KA, where KA :=

{a ∈ W |κa ⊆ A}.

Hence, at a an event A is certainly believed if the complement is deemed subjectively

impossible at a. This corresponds to what Morris [19] calls ‘Savage-belief’.

‘Conditional belief’ is defined conditionally on sets that are subjectively possible

at any state; i.e., sets in the following collection:

Φ := {φ ∈ 2W \{∅}| ∀a ∈ W, κa ∩ φ 6= ∅} .

In particular, W ∈ Φ and, ∀φ ∈ Φ, ∅ 6= φ ⊆ W .

Since every φ ∈ Φ is subjectively possible at any state, it follows that, ∀φ ∈ Φ,

βa(φ) := {b ∈ τa ∩ φ|∀c ∈ τa ∩ φ, cQb}

is nonempty, as demonstrated by the following lemma.

Lemma 2 If κa ∩ φ 6= ∅, then ∃b ∈ τa ∩ φ such that ∀c ∈ τa ∩ φ, cQb.

Proof. It follows from the definition of κa that ∃b1 ∈ τa ∩ φ such that b1Qb1 if

κa ∩ φ 6= ∅. Either, ∀c ∈ τa ∩ φ, cQb1 – in which case we are through – or not.

In the latter case, ∃b2 ∈ τa ∩ φ such that b2Qb1 does not hold. Since b1, b2 ∈ τa,

∃b′2 ∈ τa such that b1Qb′2 and b2Qb′2. Since b1Qb1 and not b2Qb1 it now follows from

quasi-backward linearity that b1Qb2. Moreover, not b2Qb1 implies b2 6= b1. Either

∀c ∈ τa ∩ φ, cQb2 – in which case we are through – or not. In the latter case we

can, by repeating the above argument and invoking transitivity, show the existence

of some b3 ∈ τa ∩ φ such that b1Qb3, b2Qb3, and b3 6= b1, b2. Since τa ∩ φ is finite,

this algorithm converges to some b satisfying, ∀c ∈ τa ∩ φ, cQb.

Define ‘conditional belief’ as follows.

Definition 7 At a the decision maker believes A conditional on φ if a ∈ B(φ)A,

where B(φ)A := {a ∈ W |βa(φ) ⊆ A}.

11



Hence, at a an event A is believed conditional on φ if A contains any state in

τa ∩ φ with at least as high epistemic priority as any other state in τa ∩ φ. This

way of defining conditional belief is in the tradition of, e.g., Grove [15], Katsuno &

Mendelzon [16], Boutilier [9], and Lamerre & Shoham [18].

Let ΦA be the collection of subjectively possible events φ having the property

that A is subjectively possible conditional on φ whenever A is subjectively possible:

ΦA := {φ ∈ 2W \{∅}| ∀a ∈ W, κa ∩ φ 6= ∅, and A ∩ κa ∩ φ 6= ∅ if A ∩ κa 6= ∅} .

Note that ΦA is a subset of Φ that satisfies W ∈ ΦA; hence, ∅ 6= ΦA ⊆ Φ.

Define ‘full belief’ as follows.

Definition 8 At a the decision maker fully believes A if a ∈ B0A, where B0A :=

∩φ∈ΦAB(φ)A.

Hence, at a an event A is fully believed if A is believed conditional on any φ that

does not make A subjectively impossible. This corresponds to what Stalnaker [24]

calls ‘absolutely robust belief’. The relation between this belief operator and the

operators ‘assumption’ and ‘strong belief’, introduced by Brandenburger & Keisler

[13] and Battigalli & Siniscalchi [6] respectively, will be discussed in Sects. 7 and 8.

5 Characterizing Belief Operators

As in the previous section, our point of departure is the accessibility relation of

epistemic priority, Q, having the properties that are specified in Def. 4. We now show

how the certain, conditional, and full belief operators – which were defined in Defs. 6–

8 directly from Q – can be characterized by means a vector of nested accessibility

relations (R1, . . . , RL) derived from Q. Hence, we first derive (R1, . . . , RL) from Q

and then show how (R1, . . . , RL) characterizes the belief operators.

5.1 Deriving the vector of relations (R1, . . . , RL)

Define a vector of nested sets (ρa
1, . . . , ρ

a
La) as follows.

Definition 9 ρa
1 := {b ∈ τa|∀c ∈ τa, cQb}

ρa
2 := ρa

1 ∪ {b ∈ τa|∀c ∈ τa\ρa
1, cQb}

. . .

ρa
k := ρa

k−1 ∪ {b ∈ τa|∀c ∈ τa\ρa
k−1, cQb}
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. . .

ρa
La := ρa

La−1 ∪ {b ∈ τa|∀c ∈ τa\ρa
La−1, cQb},

where La is determined such that ρa
La−1 6= ρa

La , while ρa
La = ρa

La+1 if ρa
La+1 were

defined by ρa
La+1 := ρa

La ∪ {b ∈ τa|∀c ∈ τa\ρa
La , cQb}.

When interpreted in terms of preference, {ρa
1, . . . , ρ

a
La} corresponds to the collection

of sets on which the preferences at a are admissible.

Lemma 3 ∅ 6= ρa
1 ⊂ · · · ⊂ ρa

k ⊂ · · · ⊂ ρa
La ⊆ τa.

Proof. It is sufficient to show that, ∀a, ρa
1 6= ∅; i.e., ∀a, ∃b such that, ∀c ∈ τa,

cQb. This follows directly from Lemma 2 by setting φ = W since κa 6= ∅.
Let L := maxa∈W La. If, for some a ∈ W , La < L, let ρa

La = ρa
k for k ∈

{La + 1, . . . , L}. The collection of sets, {ρa
k|a ∈ W}, defines a relation, Rk.

Definition 10 aRkb if b ∈ ρa
k.

The following observation holds for any k ∈ {1, . . . , L}, implying that τa := {b ∈
W |a ≈ b} equals {b ∈ W |∃c such that aRkc and bRkc}.

Lemma 4 a ≈ b iff ∃c such that aRkc and bRkc.

Proof. The lemma follows directly from Lemma 3 and Def. 10.

Proposition 7 The vector of relations, (R1, . . . , RL), has the following properties:

For each k ∈ {1, . . . , L}, Rk is serial, transitive, and euclidian. For each k ∈
{1, . . . , L− 1}, (i) aRkb implies aRk+1b and (ii) (∃c such that aRk+1c and bRk+1c)

implies (∃c′ such that aRkc
′ and bRkc

′).

Proof. This proof is identical to the proof of Prop. 4.

To show that the correspondence between the relations Q and (R1, . . . , RL)

as derived in the present section is the same as the correspondence between the

preference-based relations Q and (R1, . . . , RL) of Sect. 3 (cf. Prop. 5), we need the

following result. In particular, by comparing Prop. 5(ii) and Prop. 8(ii), it follows

that (R1, . . . , RL) as derived from preferences by means of Def. 3 coincides with

(R1, . . . , RL) as derived from preferences through Defs. 2, 9, and 10.

Proposition 8 (i) aQa iff aRLa. (ii) (aQb and not bQa) iff (∃k ∈ {1, . . . , L} such

that aRkb and not bRka).
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The following characterization result is helpful for establishing Prop. 8.

Lemma 5 (∃c ∈ τa such that A = {b ∈ W |cQb}) iff (∃k ∈ {1, . . . , L} such that

A = ρa
k).

Proof. Only if. Assume ∃c ∈ τa such that A = {b ∈ W |cQb}. Either c ∈
ρa

k\ρa
k−1 for some k ∈ {1, . . . , La} (writing ρa

0 = ∅) or c ∈ τa\ρa
La . Consider first

the case where c ∈ ρa
k\ρa

k−1 for some k. It follows directly from Def. 9 that A ⊇ ρa
k

since, ∀b ∈ ρa
k, cQb. The converse, A ⊆ ρa

k, follows also from Def. 9 since cQb

and transitivity combined with, ∀c′ ∈ τa\ρa
k−1, c′Qc imply b ∈ ρa

k. Consider then

the case where c ∈ τa\ρa
La . It follows directly from Def. 9 that A ⊇ ρa

La since,

∀b ∈ ρa
La , cQb. To establish the converse, suppose A\ρa

La 6= ∅; i.e. ∃b0 ∈ τa\ρa
La

such that cQb0. Then by quasi-backward linearity, ∀c′ ∈ τa\ρa
La , c′Qb0 or b0Qc′.

Either, ∀c′ ∈ τa\ρa
La , c′Qb0, thus establishing a contradiction to {b ∈ τa|∀c′ ∈

τa\ρa
La , c′Qb}\ρa

La = ∅ (cf. Def. 9), or not. In the latter case, ∃b1 ∈ τa\ρa
La such

that b0Qb1 and not b1Qb0. Clearly, b0Qb1 and b1 6= b0. Either, ∀c′ ∈ τa\ρa
La ,

c′Qb1, thus establishing a contradiction to {b ∈ τa|∀c′ ∈ τa\ρa
La , c′Qb}\ρa

La = ∅, or

not. In the latter case, we can show the existence of some b2 ∈ τa\ρa
La such that

b0Qb2, b1Qb2, and b2 6= b0, b1. Since τa\ρa
La is finite, this algorithm will converge

to some b ∈ τa\ρa
La satisfying, ∀c′ ∈ τa\ρa

La , c′Qb, thus contradicting {b ∈ τa|∀c′ ∈
τa\ρa

La , c′Qb}\ρa
La = ∅. Hence, A\ρa

La = ∅, or equivalently, A ⊆ ρa
La .

If. Assume ∃k ∈ {1, . . . , La} such that A = ρa
k. Since by Lemma 3, ρa

k\ρa
k−1 6= ∅

(writing ρa
0 = ∅), it is sufficient to show that, ∀c ∈ ρa

k\ρa
k−1, A = {b ∈ W |cQb}. Let

c ∈ ρa
k\ρa

k−1. It follow directly from Def. 9 that A ⊆ {b ∈ W |cQb} since, ∀b ∈ A,

cQb. The converse, A ⊇ {b ∈ W |cQb}, follows also from Def. 9 since cQb and

transitivity combined with, ∀c′ ∈ τa\ρa
k−1, c′Qc imply b ∈ A.

Proof of Prop. 8. (i) Only if. Assume that aQa. Consider A := {b ∈
W | aQb}. Clearly, a ∈ A. Lemma 5 implies that ∃k ∈ {1, . . . , L} such that ρa

k = A.

This in turn implies that a ∈ ρa
k ⊆ ρa

L and aRLa by Def. 10.

If. Assume that aRLa. By Def. 10, a ∈ ρa
L, and by Def. 9, aQa.

(ii) Only if. Assume that aQb and not bQa. By Lemma 1 it follows from aQb

that b ∈ τa and bQb. Consider A := {b′ ∈ W | bQb′}. We have that b ∈ A since bQb,

while a ∈ τa\A since not bQa. It follows from Lemma 5 that ∃k ∈ {1, . . . , L} such

that ρa
k = A. By Def. 10, aRkb and not bRka since b ∈ A and a ∈ τa\A.

If. Assume that ∃k ∈ {1, . . . , L} such that aRkb and not bRka. W.l.o.g. we

may assume that k ∈ {1, . . . , La}, implying that ρa
k−1 6= ρa

k. From aRkb it follows
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that a ≈ b and b ∈ ρa
k. Since bRka does not hold, however, a /∈ ρb

k = ρa
k. It follows

directly from Def. 9 that aQb. Suppose bQa. Then, since by Def. 9, ∀c ∈ τa\ρa
k−1,

cQb, it follows by the transitivity of Q that ∀c ∈ τa\ρa
k−1, cQa. This leads to the

contradiction that a ∈ ρa
k.

5.2 Certain, conditional, and full belief

The purpose of this subsection is to show that the certain, conditional, and full belief

operators can be characterized by means of the vector of relations (R1, . . . , RL).

Proposition 9 KA = {a ∈ W |ρa
L ⊆ A}.

Proof. It suffices to show that ρa
L = κa. By the definition of κa and Lemma 1,

this follows directly from Prop. 8(i).

Proposition 10 ∀φ ∈ Φ, B(φ)A = {a ∈ W |∃k ∈ {1, . . . , L} such that ∅ 6= ρa
k ∩ φ ⊆

A}.

To prove Prop. 10 it suffices to show the following lemma.

Lemma 6 If φ ∈ Φ, then ρa
`∩φ = βa(φ), where ` := min{k ∈ {1, . . . , L}| ρa

k∩φ 6= ∅}.

Proof. (βa(φ) ⊆ ρa
` ∩ φ) Assume that (τa ∩ φ)\ρa

` 6= ∅. Let b ∈ (τa ∩ φ)\ρa
` .

Since ρa
` ∩ φ 6= ∅, ∃c ∈ ρa

` ∩ φ. Then, by Def. 10 bR`c and not cR`b, which by

Prop. 8(ii) implies bQc and not cQb. Hence, b ∈ (τa ∩ φ)\βa(φ), and ρa
` ∩ φ =

(τa ∩φ)∩ ρa
` ⊇ (τa ∩φ)∩ βa(φ) = βa(φ). Assume then that (τa ∩φ)\ρa

` = ∅. In this

case, ρa
` ∩ φ = (τa ∩ φ) ∩ ρa

` = τa ∩ φ ⊇ βa(φ).

(ρa
` ∩φ ⊆ βa(φ)) Let b ∈ ρa

` ∩φ. If c ∈ ρa
` ∩φ, then cRLc since ρa

` ⊆ ρa
L by Lemma

3, and cQc by Prop. 8(i). Since b, c ∈ τa and cQc, it follows by quasi-backward

linearity of Q that cQb or bQc. However, since by construction, ∀k ∈ {1, . . . `− 1},
ρa

k ∩ φ = ∅, there is no k ∈ {1, . . . `− 1} such that cRkb and not bRkc or vice versa,

and Prop. 8(ii) implies that both cQb and bQc must hold. In particular, cQb. If, on

the other hand, c ∈ (τa ∩ φ)\ρa
` , then by Def. 10 cR`b and not bR`c, implying by

Prop. 8(ii) that cQb. Since thus, ∀c ∈ τa ∩ φ, cQb, it follows that b ∈ βa(φ).

Proposition 11 B0A = {a ∈ W |∃k ∈ {1, ...., L} such that ρa
k = A ∩ κa}.

Proof. Recall that B0A := ∩φ∈ΦAB(φ)A, where ΦA := {φ ∈ 2W \{∅}|∀a ∈
W,κa ∩ φ 6= ∅ and A ∩ κa ∩ φ 6= ∅ if A ∩ κa 6= ∅} is a non-empty collection.
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(If ∃k ∈ {1, ...., L} such that ρa
k = A ∩ κa, then a ∈ B0A.) Let ρa

k = A ∩ κa

and consider any φ ∈ ΦA. We must show that a ∈ B(φ)A. By the definition of ΦA,

A ∩ κa ∩ φ 6= ∅ since φ ∈ ΦA and A ∩ κa = ρa
k 6= ∅. Since ρa

k ∩ φ = A ∩ κa ∩ φ, it

follows that ∅ 6= ρa
k ∩ φ ⊆ A, so by Prop. 10, a ∈ B(φ)A.

(If a ∈ B0A, then ∃k ∈ {1, ...., L} such that ρa
k = A ∩ κa.) Let a ∈ B0A;

i.e., ∀φ ∈ ΦA, a ∈ B(φ)A. We first show that ρa
1 ⊆ A. Consider some φ′ ∈ ΦA

satisfying τa ∩ φ′ = (A ∩ τa) ∪ ρa
1. Since a ∈ B(φ′)A, ∃k ∈ {1, ..., L} such that

∅ 6= ρa
k ∩ φ′ = ρa

k ∩ (A ∪ ρa
1) ⊆ A. By Lemma 3, ρa

1 ⊆ A. Let ` = max{k|ρa
k ⊆ A}. If

` = L, then ρa
` = κa, and ρa

` ⊆ A implies ρa
` = A ∩ κa. If ` < L, then, by Lemma 3,

ρa
` = ρa

`∩κa ⊆ A∩κa. To show that ρa
` = A∩κa also in this case, suppose instead that

(A∩κa)\ρa
` 6= ∅, and consider some φ′′ ∈ ΦA satisfying τa∩φ′′ = ((A∩κa)∪ρa

`+1)\ρa
` .

It follows from ρa
` ∩ φ′′ = ∅ and Lemma 3 that, ∀k ∈ {1, .., `}, ρa

k ∩ φ′′ = ∅. Since

by construction, ρa
` ⊆ A, while ρa

`+1 ⊆ A does not hold, ρa
`+1 ∩ φ′′ = ρa

`+1\ρa
` is not

included in A. By Lemma 3 there is no k ∈ {0, . . . , L} such that ∅ 6= ρa
k ∩ φ′′ ⊆ A,

contradicting by Prop. 10 that a ∈ B(φ′′)A. Hence, ρa
` = A ∩ κa.

In combination with Prop. 8(ii) Prop. 11 means that A is fully believed iff any

subjectively possible state in A has higher epistemic priority than any state in the

same equivalence class outside A.

6 Properties of Belief Operators

In the present section we establish some properties of certain, conditional, and full

belief operators. We do not seek to establish sound and complete axiomatic systems

for these operators; this should, however, be standard for the certain and conditional

belief operators, while harder to establish for the full belief operator. Rather, our

main goal is to show how the poorly behaved full belief operator is bounded by the

two KD45 operators certain and conditional belief. While the results of Sects. 6.1

and 6.2 are included for comprehensiveness and as a background for the results of

Sect. 6.3, the latter findings shed light on non-standard notions of belief recently

used in epistemic analyses of games.

6.1 Properties of certain and conditional belief

We start by showing that certain belief implies conditional belief.

Proposition 12 For any φ ∈ Φ, KA ⊆ B(φ)A.
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Proof. The result follows from Defs. 6 and 7 since βa(φ) ⊆ κa ∩ φ.

Secondly, we show a result that combined with Prop. 12 implies that both

operators K and B(φ) correspond to KD45 systems.

Proposition 13 For any φ ∈ Φ, the following properties hold:

KA ∩KA′ = K(A ∩A′) B(φ)A ∩ B(φ)A′ = B(φ)(A ∩A′)

KW = W B(φ)∅ = ∅
KA ⊆ KKA B(φ)A ⊆ KB(φ)A

¬KA ⊆ K(¬KA) ¬B(φ)A ⊆ K(¬B(φ)A).

Proof. (KA∩KA′ = K(A∩A′)) To prove KA∩KA′ ⊆ K(A∩A′), let a ∈ KA and

a ∈ KA′. Then, by Def. 6, κa ⊆ A and κa ⊆ A′ and hence, κa ⊆ A ∩ A′, implying

that a ∈ K(A ∩ A′). To prove KA ∩ KA′ ⊇ K(A ∩ A′), let a ∈ K(A ∩ A′). Then

κa ⊆ A ∩A′ and hence, κa ⊆ A and κa ⊆ A′, implying that a ∈ KA and a ∈ KA′.
(B(φ)A∩B(φ)A′ = B(φ)(A∩A′)) Using Def. 7 the proof of conjunction for B(φ)

is identical to the one for K except that βa(φ) is substituted for κa.

(KW = W ) KW ⊆ W is obvious. That KW ⊇ W follows from Def. 6 since,

∀a ∈ W , κa ⊆ τa ⊆ W .

(B(φ)∅ = ∅) This follows from Def. 7 since, ∀a ∈ W , βa(φ) 6= ∅, implying that

there exists no a ∈ W such that βa(φ) ⊆ ∅.
(KA ⊆ KKA) Let a ∈ KA. By Def. 6, a ∈ KA is equivalent to κa ⊆ A. Since

∀b ∈ τa, κb = κa, it follows that τa ⊆ KA. Hence, κa ⊆ τa ⊆ KA, implying by Def.

6 that a ∈ KKA.

(B(φ)A ⊆ KB(φ)A) Let a ∈ B(φ)A. By Def. 7, a ∈ B(φ)A is equivalent to

βa(φ) ⊆ A. Since ∀b ∈ τa, βb(φ) = βa(φ), it follows that τa ⊆ B(φ)A. Hence,

κa ⊆ τa ⊆ B(φ)A, implying by Def. 6 that a ∈ KB(φ)A.

(¬KA ⊆ K(¬KA)) Let a ∈ ¬KA. By Def. 6, a ∈ ¬KA is equivalent to κa ⊆ A

not holding. Since ∀b ∈ τa, κb = κa, it follows that τa ⊆ ¬KA. Hence, κa ⊆ τa ⊆
¬KA, implying by Def. 6 that a ∈ K(¬KA).

(¬B(φ)A ⊆ K(¬B(φ)A)) Let a ∈ ¬B(φ)A. By Def. 7, a ∈ ¬B(φ)A is equivalent

to βa(φ) ⊆ A not holding. Since ∀b ∈ τa, βb(φ) = βa(φ), it follows that τa ⊆
¬B(φ)A. Hence, κa ⊆ τa ⊆ ¬B(φ)A, implying by Def. 6 that a ∈ K(¬B(φ)A).

Note that K∅ = ∅, B(φ)W = W , B(φ)A ⊆ B(φ)B(φ)A and¬B(φ)A ⊆ B(φ)(¬B(φ)A)

follow from Prop. 13 since KA ⊆ B(φ)A.
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Since an event can be certainly believed even though the true state is an element

of the complement of the event, it follow that neither operator satisfies the truth

axiom (i.e. KA ⊆ A and B(φ)A ⊆ A need not hold).

6.2 Belief revision

We show in this section that B(φ) satisfies the usual properties for belief revision as

given by Stalnaker [24] (see also Alchourrón et al. [1]). To show this we must define

the set, βa, that determines the decision maker’s unconditional belief at the state a:

βa := {b ∈ τa|∀c ∈ τa, cQb} ,

i.e. βa = βa(W ). Then the following result can be established.

Proposition 14 1. βa(φ) ⊆ φ.

2. If βa ∩ φ 6= ∅, then βa(φ) = βa ∩ φ.

3. If φ ∈ Φ, then βa(φ) 6= ∅.

4. If βa(φ) ∩ φ′ 6= ∅, then βa(φ ∩ φ′) = βa(φ) ∩ φ′.

Proof. (1.) βa(φ) ⊆ φ follows by definition since, ∀b ∈ βa(φ), b ∈ φ.

(2.) By Def. 9, βa = ρa
1. Hence, βa∩φ 6= ∅ implies ρa

1∩φ 6= ∅ and min{k|ρa
k∩φ 6=

∅} = 1. By Lemma 6, βa(φ) = ρa
1 ∩ φ = βa ∩ φ.

(3.) This follows directly from Lemma 2, since φ ∈ Φ implies that, ∀a ∈ W ,

κa ∩ φ 6= ∅.
(4.) Let βa(φ)∩φ′ 6= ∅. By Lemma 6, βa(φ) = ρa

` ∩φ 6= ∅ where ` := min{k|ρa
k∩

φ 6= ∅}. Likewise, βa(φ ∩ φ′) = ρa
`′ ∩ φ ∩ φ′, where `′ := min{k|ρa

k ∩ φ ∩ φ′ 6= ∅}.
It suffices to show that ` = `′. Obviously, ` ≤ `′. However, ∅ 6= βa(φ) ∩ φ′ =

(ρa
` ∩ φ) ∩ φ′ = ρa

` ∩ φ ∩ φ′ implies that `′ ≤ `.

6.3 Properties of full belief

It is straightforward to show that certain belief implies full belief, which in turn

implies (unconditional) belief.

Proposition 15 KA ⊆ B0A ⊆ B(W )A.

Proof. That KA ⊆ B0A follows from Def. 6 and Props. 8 and 11 since κa ⊆ A

implies that ρa
L = κa = κa ∩ A. That B0A ⊆ B(W )A follows from Def. 8 since

W ∈ ΦA.
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Even though full belief is thus bounded by two KD45 operators, full belief is not

itself a KD45 operator.

Proposition 16 The following properties hold:

B0A ∩ B0A′ ⊆ B0(A ∩A′)

B0A ⊆ KB0A

¬B0A ⊆ K(¬B0A).

Proof. (B0A∩B0A′ ⊆ B0(A∩A′)) Let a ∈ B0A and a ∈ B0A′. Then, by Prop. 11,

there exist k such that ρa
k = A ∩ κa and k′ such that ρa

k′ = A′ ∩ κa. By Lemma 3,

either ρa
k ⊆ ρa

k′ or ρa
k ⊇ ρa

k′ , or equivalently, A ∩ κa ⊆ A′ ∩ κa or A ∩ κa ⊇ A′ ∩ κa.

Hence, either ρa
k = A ∩ κa = A ∩ A′ ∩ κa or ρa

k′ = A′ ∩ κa = A ∩ A′ ∩ κa, implying

by Prop. 11 that a ∈ B0(A ∩A′).
(B0A ⊆ KB0A) Let a ∈ B0A. By Prop. 11, a ∈ B0A is equivalent to ∃k ∈

{1, ...., L} such that ρa
k = A ∩ κa. Since ∀b ∈ τa, ρb

k = ρa
k and κb = κa, it follows

that τa ⊆ B0A. Hence, κa ⊆ τa ⊆ B0A, implying by Def. 6 that a ∈ KB0A.

(¬B0A ⊆ K(¬B0A)) Let a ∈ ¬B0A. By Prop. 11, a ∈ ¬B0A is equivalent to

there not existing k ∈ {1, ...., L} such that ρa
k = A ∩ κa. Since ∀b ∈ τa, ρb

k = ρa
k and

κb = κa, it follows that τa ⊆ ¬B0A. Hence, κa ⊆ τa ⊆ ¬B0A, implying by Def. 6

that a ∈ K(¬B0A).

Note that B0∅ = ∅, B0W = W , B0A ⊆ B0B0A and ¬B0A ⊆ B0(¬B0A) follow from

Props. 13 and 16 since KA ⊆ B0A ⊆ B(W )A. However, even though the operator

B0 satisfies B0A ⊆ ¬B0¬A as well as positive and negative introspection, it does

not satisfy monotonicity since A ⊆ A′ does not imply B0A ⊆ B0A′. To see this let

ρa
1 = {a} and ρa

2 = κa = {a, b, c} for some a ∈ W . Now let A = {a} and A′ = {a, b}.
Clearly, A ⊆ A′, and since ρa

1 = A ∩ κa we have a ∈ B0A. However, since neither

ρa
1 = A′ ∩ κa nor ρa

2 = A′ ∩ κa, a /∈ B0A′.

7 Epistemic analysis of strategic form games

The purpose of this section is two-fold: Firstly, to describe how our analysis – having

been derived from a one-person decision-theoretic framework – can be interpreted in

terms of the n-person decision-theoretic framework encountered in games. Secondly,

to show how the full belief operator corresponds to Brandenburger & Keisler’s [13]

concept of ‘assumption’. For notational simplicity, and following Brandenburger &

Keisler [13], we limit the discussion to two-person games.
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7.1 Preferences in games

Let Si denote player i’s finite set of pure strategies, and let z : S → Z map strategy

vectors into outcomes, where S = S1×S2 is the set of strategy vectors and Z is the

finite set of outcomes. Then (S1, S2, z) is a finite strategic two-person game form.

For each player i, any of i’s strategies is an act from strategy choices of his

opponent j to outcomes. The uncertainty faced by a player i in a strategic game

form concerns j’s strategy choice, j’s preferences over acts from i’s strategy choices

to outcomes, and so on (see Tan & Werlang [25]). A type of a player i corresponds

to preferences over acts from j’s strategy choices, preferences over acts from j’s

preferences over acts from i’s strategy choices, and so on.

For each type of any player i, the type’s decision problem is to choose one of

i’s strategies. As the type is not uncertain of his own choice, the type’s preferences

over acts from i’s strategy choices is not relevant and can be ignored.

By adding subscript i to the framework introduced in Sect. 2, the finite set of

states (or possible worlds) for player i, Wi, can be interpreted as

Wi = Ti × Sj × Tj ,

where, for each a ∈ Wi, the set of states in the same equivalence class as a equals

τa
i = {tai } × Sj × Tj ,

with tai denoting the type of i determined by the state a. The property that all

three belief operators satisfy positive and negative introspection, corresponds to the

property that at any state a ∈ Wi (and any conditioning event), player i certainly

believes/conditionally believes/fully believes that he is of type tai .

Definition 11 An interactive preference structure for the strategic game form (S1,

S2, z) is a structure

(S1, S2, {ºa
1 | a ∈ T1 × S2 × T2}, {ºa

2 | a ∈ T2 × S1 × T1}) ,

where, for each i, {ºa
i | a ∈ Ti×Sj×Tj} satisfies Def. 1 with, for all a ∈ Ti×Sj×Tj ,

τa
i = {tai } × Sj × Tj .

It is a property of an interactive preference structure that any ti ∈ Ti corresponds

to preferences over acts from j’s strategy choices, preferences over acts from j’s

preferences over acts from i’s strategy choices, and so on.
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7.2 The ‘assumption’ operator

Asheim & Dufwenberg [4] employ an interactive preference structure like the one

described in Def. 11. They say that an event A is fully believed at a if the preferences

at a are admissible on the set of states in A that are deemed subjective possible at

a. By interpreting the characterization result, Prop. 11, in terms of preferences

(cf. Sect. 3.2), this corresponds to full belief as defined in Def. 8.

Brandenburger & Keisler [13] consider an interactive preference structure that is

– more general than the one that we consider in Def. 11, since T1 and T2 – and

thus, W1 = T1 × S2 × T2 and W2 = T2 × S1 × T1 – need not be finite, and

– more special than ours, since, for each i and all a ∈ Wi, conditional complete-

ness, conditional continuity and partitional priority of ºa
i are strengthened to

completeness and partitional continuity.

The latter property means that, for any a ∈ W , ºa is assumed to satisfy

• partitional continuity ; i.e., there is a partition {πa
1 , . . . , πa

La} of κa such that

(a) for each k ∈ {1, . . . , La}, there exist 0 < γ < δ < 1 such that δx′ + (1 −
δ)x′′ Âa

πa
k
y Âa

πa
k

γx′ + (1− γ)x′′ whenever x′ Âa
πa

k
y Âa

πa
k
x′′, and

(b) for each k ∈ {1, . . . , La − 1}, x Âa
πa

k
y implies x Âa

πa
k∪πa

k+1
y,

where we again refer to the decision maker without using the subscript i.

Within our setting with a finite set of states, W , it now follows from Blume et al.

[8, Thm. 5.3] that ºa is represented by ua and a lexicographic conditional probability

system (LCPS) – i.e., a hierarchy of subjective probability distributions with non-

overlapping supports where the support of the k-level probability distribution pa
k

equals πa
k (cf. [8, Def. 5.2]). Brandenburger & Keisler [13, Appendix B] employ an

LCPS to define the preferences in their setting with an infinite set of states.

Provided that completeness and partitional continuity are satisfied, Branden-

burger & Keisler [13, Def. B1] introduce the following belief operator.

Definition 12 (Brandenburger & Keisler [13]) At a the decision maker as-

sumes A if ºa
A is nontrivial and x Âa

A y implies x Âa y.

Proposition 17 Assume that ºa is complete and satisfies partitional continuity.

Then A is assumed at a iff a ∈ B0A.
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Lemma 7 Assume that ºa is complete and satisfies partitional continuity, and let

k, k′ ∈ {1, . . . , La} satisfy k < k′. Then x Âa
πa

k
y implies x Âa

πa
k∪πa

k′
y.

Proof. This follows from the representation result of Blume et al. [8, Thm. 5.3].

Proof of Prop. 17. (If A is assumed at a, then a ∈ B0A.) Let A be assumed

at a. Then it follows that ºa
A is nontrivial; hence, A ∩ κa 6= ∅. Assume that xA∩κa

weakly dominates yA∩κa at a. Since A ∩ κa 6= ∅, we have that x Âa
A y. Hence, it

follows from the premise (viz., that A is assumed at a) that x Âa y. This shows

that ºa is admissible on A ∩ κa, and, by Prop. 11, a ∈ B0A.

(If a ∈ B0A, then A is assumed at a.) Let a ∈ B0A, or by Prop. 11, ºa is

admissible on A∩κa (6= ∅). Hence, by Prop. 2, b ∈ A∩κa and c ∈ ¬(A∩κa) implies

b Àa c. By the partitional continuity of ºa this in turn implies that ∃` such that

A ∩ κa =
⋃`

k=1
πa

k ,

since property (a) – the continuity of ºa within each partitional element – rules out

that b and c are in the same element of the partition {πa
1 , . . . , πa

La} if b Àa c.

Assume that x Âa
A y. Then x Âa

A∩κa y, and, by the above argument,

x ÂaS`
k=1 πa

k

y .

By completeness and partitional continuity, Lemma 7 entails that ∃`′ ∈ {1, . . . , `}
such that x Âa

πa
`′

y and, ∀k ∈ {1, . . . , `′ − 1}, x ∼a
πa

k
y. By Lemma 7, x Âa y since

⋃La

k=1 πa
k = κa. Hence, x Âa

A y implies x Âa y. Moreover, ºa
A is nontrivial since

A ∩ κa 6= ∅, and it follows from Def. 12 that A is assumed at a.

Proposition 17 shows that the ‘assumption’ operator coincides with full belief

(and thus with Stalnaker’s [24] ‘absolutely robust belief’) under completeness and

partitional continuity. However, if partitional continuity is weakened to conditional

continuity, then this equivalence is not obtained. To see this, let κa = {a, b, c}, and

let the preferences ºa, in addition to the properties listed in Def. 1, also satisfy

completeness. It then follows from Blume et al. [8, Thm. 3.1] that ºa is represented

by ua and a lexicographic probability system (LPS) – i.e., a hierarchy of subjective

probability distributions with possibly overlapping supports. Consider the example

of Blume et al. [8, Sect. 5] of a two-level LPS, where the primary probability distri-

bution, pa
1, is given by pa

1(a) = 1/2 and pa
1(b) = 1/2, and the secondary probability

distribution, pa
2, used to resolve ties, is given by pa

2(a) = 1/2 and pa
2(c) = 1/2. Con-

sider the acts x and y, where ua(x(a)) = 2, ua(x(b)) = 0, and ua(x(c)) = 0, and
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where ua(y(a)) = 1, ua(y(b)) = 1, and ua(y(c)) = 2. Even though ºa is admissible

on {a, b}, and thus {a, b} is fully believed at a, it follows that {a, b} is not ‘assumed’

at a since x Âa
{a,b} y, while x ≺a y. Brandenburger & Keisler [13] do not indicate

that their definition – as stated in Def. 12 – should be used outside the realm of

partionally continuous preferences. Hence, our definition of full belief – combined

with the characterization result of Prop. 11 and its interpretation in term of admis-

sibility – yields a preference-based generalization of Brandenburger & Keisler’s [13]

operator (in our setting with a finite set of states) to preferences that need only

satisfy the properties of Def. 1.

8 Epistemic analysis of extensive form games

In the setting of extensive form games, Battigalli & Siniscalchi [6] have recently

suggested a non-monotonic ‘strong belief’ operator. In this section we show how

their ‘strong belief’ operator is related to full belief (and thereby, to Stalnaker’s [24]

‘absolutely robust belief’ and Brandenburger & Keisler’s [13] ‘assumption’). This,

however, requires that we amend the decision-theoretic framework to be able to

handle systems of conditional preferences used in analyses of extensive form games.

8.1 The multi-stage game form

Inspired by Osborne & Rubinstein [21, Ch. 6], a finite extensive two-person game

form of almost perfect information with M − 1 stages can be described as follows.

The sets of histories is determined inductively: The set of histories at the beginning

of the first stage 1 is H1 = {∅}. Let Hm denote the set of histories at the beginning

of stage m. At h ∈ Hm, let, for each player i, i’s action set be denoted Ai(h),

where i is inactive at h if Ai(h) is a singleton. Write A(h) := A1(h) × A2(h).

Define the set of histories at the beginning of stage m + 1 as follows: Hm+1 :=

{(h, a) |h ∈ Hm and a ∈ A(h)}. This concludes the induction. Let H :=
⋃M−1

m=1 Hm

denote the set of subgames and let Z := HM denote the set of outcomes.

A pure strategy for player i is a function si that assigns an action in Ai(h) to any

h ∈ H. Let Si denote player i’s finite set of pure strategies, and write S := S1× S2.

Let z : S → Z map strategy vectors into outcomes. Then (S1, S2, z) is a finite strate-

gic two-person game form. For any h ∈ H, let S(h) = S1(h)× S2(h) denote the set

of strategy vectors that are consistent with h being reached. Note that S(∅) = S.

Thus, also in a multi-stage game, the set of states (or possible worlds) for each
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player i, Wi, can be interpreted as Wi = Ti × Sj × Tj with, for all a ∈ Wi, τa
i =

{tai }×Sj×Tj . Let ΦH
i denote the collection of subsets that correspond to subgames:

ΦH
i := {φ ∈ 2Wi\{∅}| ∃h ∈ H s.t. φ = Ti × Sj(h)× Tj} .

Assume that any subgame is subjectively possible at any state: For all a ∈ Wi and

h ∈ H, κa
i ∩ (Ti × Sj(h)× Tj) 6= ∅, implying that ΦH

i ⊆ Φi.

A system of conditional preferences in an extensive form game need not consist of

conditional binary relations derived from a single binary relation over acts on Wi, as

implied by Def. 11. Indeed, a concept like sequential equilibrium requires a system

of conditional preferences that cannot be made up of conditional binary relations

derived from a single binary relation over acts on Wi (cf., e.g., Asheim & Perea

[5, Sect. 2]). To show how belief operators derived from a system of conditional

preferences relate to the belief operators defined in Sect. 4, we must indicate how

a system of conditional preferences is isomorphic to preferences that are consistent

with Def. 1. This is the purpose of the following subsection.

8.2 A system of conditional preferences

We again refer to a decision maker without using the subscript i. As before, for any

a ∈ A, let τa denote the equivalence class to which a belongs, let κa denote the set

of subjectively possible states at a, and let Φ denote the collection of sets that are

subjectively possible at any state. For each a ∈ W , consider a system of conditional

preferences, {ºa
φ |φ ∈ Φ}, in the following sense: For any φ ∈ Φ, the preferences of

the decision maker conditional on φ is a binary relation ºa
φ on the set of acts on φ;

i.e., on the set of functions xφ : φ → ∆(Z).

When one considers the above setting, Battigalli & Siniscalchi [6] and Ben-Porath

[7] in effect invoke the following assumptions:

• For each a ∈ W and φ ∈ Φ, ºa
φ is complete and transitive and satisfies non-

triviality, objective independence, and continuity.

• For each a ∈ W , {ºa
φ |φ ∈ Φ} satisfies non-null state independence in the sense

that if xφ Âa
φ yφ iff xφ′ Âa

φ′ yφ′ whenever κa ∩ φ = {b} and κa ∩ φ′ = {b′}, and

x and y satisfy x(b) = x(b′) and y(b) = y(b′).

• For each a ∈ W and any φ, φ′ ∈ Φ, if it holds that φ′ ⊆ φ and the conditional

binary relation ºa
φ|φ′ is nontrivial, then xφ′ ºa

φ′ xφ′ iff xφ ºa
φ|φ′ xφ.
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Under these assumptions a system of conditional preferences, {ºa
φ |φ ∈ Φ}, is iso-

morphic to a vNM utility function ua and an LCPS, (pa
1, . . . , p

a
La) — where, for

each k ∈ {1, . . . , La}, supppa
k = πa

k and {πa
1 , . . . , πa

La} is a partition of κa — in the

following sense (cf. Blume et al. [8, Sect. 5]): For any φ ∈ Φ, ºa
φ is represented by

ua and the probability distribution pa
φ, where is pa

φ is the conditional of pa
` on φ,

with ` := min{k ∈ {1, . . . , La}|πa
k ∩ φ 6= ∅}.

The system of probability distributions, {pa
φ|φ ∈ Φ}, is called a conditional

probability system (cf. Myerson [20]). Battigalli & Siniscalchi [6] and Ben-Porath [7]

employ a CPS to define the system of conditional preferences.

8.3 The ‘strong belief’ operator

Battigalli & Siniscalchi [6] and Ben-Porath [7] define conditional belief with proba-

bility 1: At a the decision maker believes A conditional on φ if supppa
φ ⊆ A.

If the preferences ºa are represented by ua and an LCPS, then it follows by

the definition of an LCPS and Lemma 7 that, ∀` ∈ {1, . . . , La}, ρa
` =

⋃`
k=1 πa

k . If

we consider the LCPS that is isomorphic to a system of conditional preferences, as

considered by Battigalli & Siniscalchi [6] and Ben-Porath [7], it is now a consequence

of Lemma 6 that βa(φ) = supppa
φ. Hence, conditional belief with probability 1, as

defined by Battigalli & Siniscalchi [6] and Ben-Porath [7], can be captured through

our conditional belief operator by considering the LCPS that is isomorphic to the

system of conditional preferences that they consider.

Given that the conditional belief operator of Battigalli & Siniscalchi [6] coincides

with the B(φ) operator of the present paper, we can define their ‘strong belief’ oper-

ator as follows, where ΦH ∩ΦA is the collection of subgames φ having the property

that A is subjectively possible conditional on φ whenever A is subjectively possible.

Definition 13 (Battigalli & Siniscalchi [6]) At a the decision maker strongly

believes A if a ∈ ⋂
ΦH∩ΦA B(φ).

Since ΦA ⊇ ΦH ∩ ΦA ⊇ {W}, it follows that the ‘strong belief’ operator is

bounded by the full belief and (unconditional) belief operators.

Proposition 18 If a ∈ B0(A), then A is strongly believed at a. If A is strongly

believed at a, then a ∈ B(W )A.

It can be shown that the ‘strong belief’ operator shares the properties of full belief:

Also ‘strong belief’ satisfies the properties of Prop. 16, but is not monotonic.
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9 Concluding Remarks

We have presented a model with (i) a serial, transitive, forwardly linear and quasi-

backwardly linear epistemic priority relation Q, and, equivalently, (ii) a vector of

nested, serial, transitive and euclidean accessibility relations (R1, . . . , RL). The two

kinds of relations give two equivalent representations of the notions of ‘subjective

possibility’ and ‘epistemic priority’. We have shown how both Q and (R1, . . . , RL)

can be derived from preferences that need not be complete and thus representable

by subjective probabilities. The model thus provides semantics for preference-based

belief operators.

On the basis of the epistemic priority relation Q we have defined the concepts

of certain, conditional, and full belief. Certain belief and conditional belief (for a

given conditioning event) are both KD45 operators, whereas full belief is not, as it

does not satisfy monotonicity. We have shown how full belief not only corresponds to

‘absolutely robust belief’ in the sense of Stalnaker [24], but also coincides with Bran-

denburger & Keisler’s [13] ‘assumption’, and is related to Battigalli & Siniscalchi’s

[6] ‘strong belief’.

If preferences were required to be continuous, then certain belief, (unconditional)

belief, and full belief would coincide. This in turn would mean that there would be

no scope for an interesting theory of belief revision. Hence, it is essential to allow

for discontinuous preferences when modelling the belief revision of a decision maker,

for instance in the context of extensive form games.

A feature of this model is that it does not require that the epistemic priority

relation is reflexive. The decision maker may be subjectively unable to distinguish

between two objectively possible states, while deeming (at the lowest epistemic level)

that one is subjectively possible and the other not. Because Q lacks reflexivity, not

even the certain belief operator obeys the truth axiom; thus, we allow that the

decision maker holds the true state as subjectively impossible (even at the lowest

epistemic level).

The distinction between subjectively possible and subjectively impossible events

can be illustrated within an interactive preference structure for the strategic game

form of a multi-stage game (cf. Def. 11 and Sect. 8.1). If each player considers

any opponent strategy to be subjectively possible, then any φ ∈ ΦH (the collection

of subsets of states that correspond to subgames) will be subjectively possible, as

well as potentially observable (cf. Brandenburger [11]). The player can still deem
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it subjectively impossible that the opponent holds particular preferences, as the

preferences of the opponent are not directly observable. Brandenburger & Keisler

[12] show that there need not exist a preference-complete interactive preference

structure when preferences are not representable by subjective probabilities. This

result makes models that do not require a decision maker to hold all objectively

possible opponent preferences as subjectively possible particularly relevant in game-

theoretic applications.
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