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A Monte Carlo study on non-parametric estimation of 

duration models with unobserved heterogeneity* 
 

By Tao Zhang 

The Ragnar Frisch Centre for Economic Research 

 

Abstract  

 

We conduct extensive Monte Carlo experiments on non-parametric estimations of 

duration models with unknown duration dependence and unknown mixing distribution 

for unobserved heterogeneity. We propose a full non-parametric maximum likelihood 

approach, based on time-varying lagged explanatory covariates from observational data. 

By utilising this data-based identification source, we find that both duration dependence 

and unobserved heterogeneity can be reliably estimated. Our Monte Carlo evidences 

show that variation in time-varying lagged explanatory variables contributes to the 

identification of both duration dependence and unobserved heterogeneity, especially 

when sample sizes are limited. For limited sample sizes, maximum penalised likelihood 

with information criteria seems to produce more accurate estimators than pure 

maximum likelihood. Our approach can be easily extended to multivariate competing 

risks model with dependent unobserved heterogeneities.  
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1. Introduction 

 

The hazard rate model has seen many applications in applied econometric analysis, 

especially in unemployment duration studies.  The aim of unemployment duration 

analysis is typically to study how the variables of economic interests, such as economic 

incentives, affect the transition probabilities to employment. Often, the uncontrolled 

population heterogeneity casts bias on estimation of causal parameters of interest, e.g. 

Lancaster (1979) showed that uncontrolled unobserved heterogeneity biases estimators 

of structure parameters towards zero. Heckman and Singer (1985, p.53) also prove that 

uncontrolled heterogeneity biases estimated hazard rates towards negative duration 

dependence. One of the most important challenges in unemployment duration analysis 

is hence whether the distribution of unobserved heterogeneity can be identified and 

estimated consistently from observational data, so that the bias arising from 

uncontrolled heterogeneity on parameters of economic interests can be eliminated. 

Conventional mainstream analysis adopts parametric specifications for both duration 

dependence and unobserved heterogeneity. However if economic theories do not 

provide explicit guidance, there is a risk of misspecification with parametric modelling. 

Several authors have suggested that flexible specifications on duration dependence 

and/or unobserved heterogeneity are superior compared to parametric specifications. 

See van den Berg (2001) for a recent survey. Some semi-parametric approaches have 

also been suggested, e.g. Horowitz (1999).  

 

In this paper, we are exploring the identification and estimation feasibility of non-

parametric maximum likelihood estimation (NPMLE) of duration models, particularly 

when data exhibits some discreteness. Two distinguishing features are represented in 

our analysis: by utilising newly available high performance computing techniques, we 

are able to overcome the computational barrier encountered in the earlier studies and 

estimate the non-parametrically specified hazard models in large scale and variety. This 

provides unique opportunity to assess the properties of non-parametric maximum 

likelihood estimators. We also utilise a unique feature of observational data that has 

become available with the access to administrative registers for research purpose, 

namely the time-varying explanatory variables embedded in the exogenous calendar 

time variation. We will show that time-varying explanatory variables have great value 
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in facilitating identification and estimation of both duration dependence and unobserved 

heterogeneity.  

 

There are two important sources of misspecification bias arising in duration models: 

misspecification of duration dependence and misspecification of the distribution of 

unobserved heterogeneity. In applied research, one often observes negative duration 

dependence. It seems in this case plausible to specify the duration dependence with a 

popular functional form that displays a monotonous relationship between the elapsed 

spell length and the transition probability.  However, an observed declining hazard rate 

is not necessarily a causal consequence of spell length, but rather spurious duration 

dependence due to uncontrolled population heterogeneity, see e.g. Heckman and Singer 

(1985). To control the unobserved heterogeneity, many empirical studies have adopted a 

mixture distribution approach by assuming a parametric specification for the 

unobserved heterogeneity. Heckman and Singer (1984) have demonstrated that 

assuming parametric distribution for unobserved heterogeneity without sufficient 

economic evidence may lead to an “overparameterising” of the duration models. Such 

misspecification has some time posed great difficulty in estimation and inference of 

structure parameters of interest, as pointed out by Kiefer (1988). Due to the complexity 

of duration models, causal inference is often clouded by the uncontrolled unobserved 

heterogeneity and misspecification of the distributions for such unobserved 

heterogeneity.  

 

Flexible specifications of duration dependence and unobserved heterogeneity seem to be 

a natural remedy to misspecification. With the evolvement of non-parametric 

approaches, many researchers turn to more flexible ways of modelling the duration 

models. Due to the complexity of non-parametric modelling, compromises are often 

made though to make estimation and inference feasible. The semi-parametric approach 

has been popular for many years; often the duration dependence is modelled non-

parametrically, by a step function or spline approximation, so that no particular 

functional form is assumed. But in most of the semi-parametric studies a Gamma 

mixture model is used to account for unobserved heterogeneity and inference about 

structure parameters is conditioned on this distribution. Lancaster (1979) was the first to 

adopt a Gamma distribution for control of unobserved heterogeneity. Heckman and 

Singer (1984) argued that estimation on structure parameters is sensitive to the 

specification of the mixing distribution. They were the first to introduce the non-
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parametric specification for unobserved heterogeneity distribution, together with 

parametric duration dependence. Though in theory it is applicable to specify both the 

duration dependence and distribution of unobserved heterogeneity totally non-

parametrically, the computational complexity involved seems to be a major obstacle. 

Very few previous successful implementations on non-parametric specification of both 

duration dependence and unobserved heterogeneity have been seen; among those is 

Røed and Zhang (2003).  

 

We explore in this paper the identification results based on time-varying covariates from 

McCall (1994) and Brinch (2000). We estimate the mixed proportional hazard model 

with a set of unique time-varying covariates, namely calendar time variables that 

represents pure time changes in the hazard rates, e.g. business and seasonal cycles. With 

extensive Monte Carlo experiments, we provide empirical evidence that these 

explanatory variables are important additional identification sources. Our results show 

that the time-varying explanatory variables contribute to non-parametric identification 

and estimation of hazard models with mixing distribution of unobserved heterogeneity, 

and that sufficient variation in time-varying explanatory variables is a key to robust 

identification.  

 

The rest of this paper is organized as follows: section 2 gives a brief discussion of the 

econometric approach and presents the non-parametric modelling of both duration 

dependence and unobserved heterogeneity. Identification of such models is discussed. 

Section 3 presents the main structure of experimental settings, the data generating 

process, and the computational strategies. Section 4 presents the main results for the 

single risk models. Special focus is given to how much the introduction of time-varying 

explanatory variables can contribute to estimation of unobserved heterogeneity non-

parametrically, and how well the non-parametric approach can recover the structural 

parameters as well as the underlying duration dependence. Discussion of model 

selections with information criteria is included. Section 5 offers a summarising 

discussion of the estimation results for model components. Some implications of our 

findings are elaborated. We also provide some measures for the overall fit. Section 6 

extends the method to dependent competing risks models where the unobserved 

heterogeneities from two competing states are assumed to be bivariate normal 

distributed. Section 7 gives concluding remarks.  
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2. Econometric model 

 

In applied unemployment research the actual duration data that researchers are facing 

result from a combination of joint effects of several factors, such as spell duration, 

business cycle, seasonal and regional variations of labour market conditions etc. In 

many empirical studies of unemployment duration, the available data possess a 

discreteness feature. It could be due to the observational practice, such as in official 

unemployment registers, where updating of unemployment status happens at certain 

interval points of time, e.g. days, weeks or months (Røed and Zhang (2003)). It is also 

the case for interview based data sampling, in that retrospective data sampling repeats at 

certain time intervals. Another reason might be that the true transition does occur at 

discrete time, e.g. if completing an unemployment programme is mandatory for 

participants, transition will only occur after the programme has been finished. The 

estimation must take the discreteness into account. Røed and Zhang (2002) have 

showed that time-aggregation bias could result from disregarding the discrete data 

pattern. All these factors require that an econometric model should be carefully tailored 

to cope with these elements. 

 

Let the duration of an unemployment spell be a stochastic variable T and its realization 

be τ . The formal definition of hazard rate (in a single risk case) is the probability of 

leaving original state within the small interval ( , )τ τ τ+ ∆ , given that transition has not 

occurred prior to τ , conditional on other observed factors X  and unobserved 

heterogeneity v that might have influence on transition probability.  

(1) ( ) , ,| , .lim
0

P( T + |T v)v =
τ

τ τ τ τθ τ
τ∆ →

≤ ≤ ∆ ≥
∆

XX   

The most popular formulation of hazard rate is due to Cox (1972). The hazard rate is 

proportional such that,  

(2) ( ) ( ) exp( ' ) vθ τ λ τ β= ⋅ ⋅X  

where ( )λ τ  is called the baseline hazard rate, exp( ' )βX  is the effect of covariates that 

influence the hazard rate proportionally, and v is meant to capture unobserved 

heterogeneity across individuals. Such hazard rate model is well known with the name 

Mixed Proportional Hazard rate model (MPH), where v usually has an unknown 

distribution.  
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It is often for the computational simplicity assumed that the spell duration is measured 

in continuous time. In that case one often assumes a continuous function form for 

hazard rate, e.g. a Weibull specification.  When data possesses discreteness and when 

the discreteness is of importance, one needs a specification of hazard rate that takes 

account for that. Kiefer (1989), Prentice and Gloeckler (1978) have proposed a grouped 

hazard model when data is observed with some interval τ∆ . For the sake of simplicity, 

we can normalise the interval be 1τ∆ =  without loss of generality. The conditional 

survival function within interval [ -1, ] d d (the subject survives until d  given that no 

transition has occurred prior d-1, d=1,2,…) can be derived as 
1

exp( ( ) )
d

d
dθ τ τ

−
−∫ . Thus 

the probability that transition taken place within interval [ -1, ] d d , given that no 

transition occurred before d-1, is then 

(3) 
1

( ) 1 exp( ( ) )
d

d
h d dθ τ τ

−
= − −∫  

Here we use d as indicator of grouped hazard within interval [ -1, ] d d and τ  as 

underlying continuous time. In empirical applications, one often specifies the covariates 

and unobserved heterogeneity in exponential forms as well as the integral part of 

equation (3). Using equation (2), we can rewrite (3) to  

(4)  ( )1
( , , ) 1 exp exp log( ( ) ) ' log( )

d

d
h d x v d vλ τ τ β

−

 = − − + +  ∫ X  

where we assume for the time being that X and v do not vary over time. Equation (4) 

specifies the grouped hazard rate for interval [ -1, ] d d  in single risk case to be of a 

complementary log-log form.  

 

The unobserved heterogeneity v has an unknown distribution. A popular approach is to 

adopt a Gamma distribution due to its computational advantage (Lancaster (1985)), but 

no particular justification has been advanced until recently in Abbring and van den 

Berg(2001). They have showed that a large class of distribution families converges to 

the Gamma distribution asymptotically, and in some cases the convergence is rather 

rapid. Heckman and Singer (1984) have introduced a non-parametric approach and 

showed that the support of unobserved heterogeneity can be specified by a set of mass 

points. They prove that the non-parametric maximum likelihood estimators are 

consistent.  
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The complementary log-log form of hazard rate in equation (4) has its great advantage 

of flexibility. Both the duration dependence and unobserved heterogeneity can be 

specified non-parametrically. By applying a step function to the duration it is possible to 

approximate a large class of parametric hazard rate family. Also, Heckman and Singer 

(1984) have showed that non-parametric specification of unobserved heterogeneity can 

approximate parametric distribution reasonably well.  We believe it is also the most 

empirically applicable model that fits the true observational data. To specify non-

parametrically the baseline, we can use e.g. a set of dummies dλ to characterize the 

continuous baseline 
1

log( ( ) )
d

d
dλ τ τ

−∫ . Define log( )vµ = . Equation (4) can be further 

elaborated to  

(5) ( )( , , ) 1 exp exp 'dh d x v λ β µ= − − + +  X  

 

Let iL  denote the likelihood for the individual i1. If the spell is censored, we only 

observed that the spell lasts until di. The likelihood is then represented by the overall 

survival function up to di:  

( )
1

1 ( , , ) , where 1,2,3,...
id

i
s

h s x v s
=

− =∏ ,  

If a spell with duration di is not censored, the contribution of this spell to the likelihood 

consists of two parts: the overall survival function up to di-1; and for the last time 

interval, ( )ih d . Let iy be the censoring indicator, of which, 1iy =  if the spell is not 

censored and 0iy =  if it is censored. The overall likelihood for individual i with spell 

duration di is then given by: 

(6) ( ) ( )1
1

( , , ) 1 ( , , )
i i

i i
d y

y y
i i i i i i

s

L h d x v h s x v
−

−

=

= ⋅ −∏  

With discrete distributed unobserved heterogeneity, assume the unobserved 

heterogeneity v has a support of N mass points, with probabilities , 1,...,  jP j N= and 

satisfies that 1j
j

P =∑ .  the likelihood of an individual i with observed duration di is 

thus 

 
1 Here we in effect ignore the repeated spells from individuals, so each individual only contributes one 
spell. See paragraph 2 on page 183 for the motivation for this.  
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(7)  ( ) ( )1
1

( , , ) 1 ( , , ) ,  1
i i

i i
d yy y

i j i i i j i i j j
j js

L P h d x v h s x v P
−

−

=

 
= ⋅ − = 

 
∑ ∑∏  

The overall likelihood function for population of all individuals is then 

(8)  ( ) ( )1
1

( , , ) 1 ( , , ) ,  1
i i

i i
d yy y

j i i i j i i j j
j ji s

L p h d x v h s x v P
−

−

=

 
= ⋅ − = 

 
∑ ∑∏ ∏  

and the log likelihood l is easily acquired by 

(9)  ( ) ( )1
1

log ( , , ) 1 ( , , ) ,   1
i i

i i
d yy y

j i i i j i i j j
i j js

l p h d x v h s x v P
−

−

=

  
= ⋅ − =  

  
∑ ∑ ∑∏  

Note that with the non-parametric specification of unobserved heterogeneity, the overall 

log likelihood is not additive, which imposes great computational challenge. 

 

This likelihood specification has the advantage that it not only can cope with the 

censoring problem, but also easily allow time-varying covariates in an unrestricted 

form. Further more, it does not actually require a proportionality assumption. By e.g. 

interacting duration with covariates of interest, one can investigate how these affect the 

hazard rates at different phases of the unemployment spells.   

 

A few serious attempts have showed that within the context of reduced form duration 

analysis, the mixed proportional hazard rate model is non-parametrically identified in 

the sense that given observations of ( , , )i i id x y , it is possible to derive the unique 

mapping from the data to the parameters of hazard rate model, within the general setting 

such as in equation (2), see e.g. van den Berg(2001) for a recent exposure. One of the 

earliest contributions to identification of duration dependence and unobserved 

heterogeneity is due to Elbers and Ridder (1982). They show that at least within the 

family of proportional hazard model, the duration dependence and unobserved 

heterogeneity are identified. Their result is generally based on parametric identification. 

Heckman and Singer (1984) utilise Kiefer and Wolfowiz (1956) and Lindsey (1983) 

results on identification of mixture distribution and propose a non-parametric 

specification of unobserved heterogeneity (as formulated above) and prove the 

identifiability in a non-censored Weibull model. Their work could be considered a 

milestone in non-parametric estimation of unobserved heterogeneity within the duration 

models. They find that structure parameters of hazard rate model can be well estimated 

by non-parametric specification of the unknown distribution of unobserved 

heterogeneity. But due to its complexity, empirical implementation of non-parametric 
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estimation has rarely been successful. Baker and Melino (2000) conduct an extensive 

Monte Carlo study on the Heckman and Singer approach and show that non-parametric 

specification of both duration dependence and unobserved heterogeneity tends to 

produce biased estimators on structure parameters. This bias is somewhat due to over 

compensation or correction for the dispersion of unobserved heterogeneity and the 

estimators are bias away from zero. They suggest hence that the use of some penalised 

likelihood method will produce more accurate estimators.  

 

Another identification source is by utilising repeated spells. Honoré (1983) provides 

identification results based on multiple spell cases, also see van den Berg(2001) for a 

survey. Roughly speaking, the idea is to adopt a fixed-effect approach similar to the 

ordinary panel data analysis and estimate the joint densities of multiple spells. This, 

however, imposes some difficulties in empirical application. First, the assumption that 

unobserved heterogeneity v is constant for repeated spells is rather strong. It is more 

likely that v can vary from spell to spell. Suppose we think that v represents individual’s 

motivation in job search. It is conceivable that earlier unemployment experience would 

have demoralising effect, and hence the motivation for job search in late spells would be 

lower. Another problem might be that the number of available repeated spells can be 

strongly influenced by the observational window. The probability of having a second 

spell within a given time period is inversely related to the length of the first spell. The 

shorter the analysing period, the fewer repeat spells are available. Also, the uncensored 

part of the second spell is proportionally inverse to the length of the first spell, i.e. the 

longer the first spell is the shorter the uncensored part of the second one could be, given 

the fixed observational window.  

 

McCall (1994) explores another identification source and proves that by including time-

varying covariates, mixed proportional hazard model can be non-parametrically 

identified. Brinch (2000) extends the results of McCall and proves that it applies even 

without proportionality assumption. As long as there is sufficient variation in the 

covariates over time, combined with variation across observations, the mixed hazard 

model can be non-parametrically identified.  

 

We utilise the ideas of McCall (1994) and Brinch (2000) and explore some unique 

feature of observational data that is often accessible in today’s microeconometric 

research. The idea is to improve the identifiability by including an extra set of time-
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varying covariates that are exogenous to individuals as control for population 

heterogeneity. In applied studies, it is typical that local or macro economic 

environments will have effects on transitions from unemployment to work. Consider 

two individuals that are identical in every observed aspect and have experienced the 

same length of unemployment. The only observed difference between them is the 

calendar time at which they enter the unemployment. Given the assumption of 

proportional hazard, these two should experience the same hazard rate if they have the 

same value of unobserved heterogeneities. But if one experiences unemployment during 

a slump period when “everyone” is hit by the unemployment risk, while the other starts 

unemployment in a boom time when job opportunity is good and the overall outflow 

rate is high, it is intuitively plausible that the individual being unemployed in the boom 

time should have a better job opportunity and shorter duration than that of the “identical 

twin” in the slump time.  The fact that they have the same spell length can then only be 

accredited to the unobserved differences between them, in addition to pure chance 

element. It is likely that the one unemployed in the boom time have more unfavourable 

personal characteristics than the one in the slump time with same spell length. This is to 

say that, the calendar time at which unemployment spells take places and undergo is a 

source of hazard rate variation, ceteris paribus, that contains information about the 

expected value of unobserved heterogeneity. Therefore by including such exogenous 

variation within the hazard rate formulation, the identifiability of unobserved 

heterogeneity should be improved. In time-series literature, this type of covariates is 

often named as lagged explanatory variables. We use this term to denote these calendar 

time covariates. Brinch (2000) provides a proof of identification of mixed hazard model 

based on time-varying covariates. He shows that even without proportionality 

assumption, variation of covariates over time is sufficient in identifying duration 

dependence, controlled for unobserved heterogeneity. We adopt his identification 

results and argue that the lagged explanatory variables in form of calendar time 

variation are unique time-varying covariates that contribute to the identification of 

unobserved heterogeneity. 

 

One key assumption to facilitate the argument above is that the causal impact of any 

factors on the transition probability only occurs in current period of time, while their 

influences in earlier periods only have affected the selection of persons who have 

reached the current period. As Elster (1976 p.373) elegantly put: “the past itself cannot 

have influence upon the present over and above the influence that is mediated by the 



 11

traces left by the past in the present“. Loosely expressed, this implies that conditional 

on all current values of the explanatory variables, any dependence between the current 

hazard rate and past (lagged) values of explanatory variable must reflect the influence 

of unobserved heterogeneity. We could think that there is a sorting mechanism in labour 

market that “selects” unemployed out of unemployment within every period of time. 

Those who have favourable labour market characteristics would be selected first and 

those remaining are the sorted-out groups that have “unfavourable“ employment 

characteristics. Thus the past unemployment history only reflects this selection 

mechanism, while the causal impact of any variables of interests will only affect the 

transition probability of the current period. By including control for this sorting 

mechanism, we have then an additional source of identification of unobserved 

heterogeneity.  

 

The empirical evidence of this sorting mechanism is demonstrated in Røed and Zhang 

(2000). A critical prerequisite for utilising calendar time for identification purposes is of 

course that it is not perfectly correlated with spell durations. This utilisation also implies 

that multiple cohorts that start at different calendar time are required.  With a single 

cohort that starts at one point of time, there is no variation in calendar time conditional 

on the duration, therefore it is impossible to identify unobserved heterogeneity without 

resting on the proportionality assumption.  We have seen many studies using single 

cohort or limited number of cohorts due to limited access of data. With the increasing 

availability and variety of large administrative register data, particularly in the Nordic 

countries, researchers begin to be aware of the potentials that these data can provide.  

 

In line with the argument above, we can further decompose the covariates into two 

groups: usual covariates such as individual observed heterogeneity, demographic 

characteristics, etc; and calendar time effects tσ . By using a set of dummies, we can 

also estimate the calendar time effects non-parametrically. The formal hazard rate 

model used in our Monte Carlo investigations is thus (suppressing the subscript i for 

individual): 

(5*) ( )( , , , ) 1 exp exp 'd th d t x v λ σ β µ= − − + + +  X  

where t represents the calendar time.  
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3. Design of study 

Data Generating Process (DGP) 

The main hazard rate model in simulation and estimation is that of equation (5*), 

namely a grouped hazard complementary log-log model. We choose time unit to be of 

integer length. To facilitate the comparison with real empirical work, we denote the 

time unit to be month, and scale the hazard rates such that they resemble monthly exit 

rates from unemployment. In the following, all time units are in terms of months.  

 

We have experimented with different sizes of simulated samples and found that to 

maintain reasonably precise estimation yet manageable computational cost, sample size 

of at least 5,000 individuals is preferred. We also simulate samples of 10,000 and 

50,000 individuals to explore the large sample property.  

 

We only consider the case of one time-invariant covariate in X  and define it to be 

dummy that has probability of 0.6 for 1x = . To simplify the interpretation, the 

coefficient β  is set to 1.  In empirical researches, X usually is the structural covariate 

that has the interpretation as a causal variable, e.g. it can represent economic incentives 

or treatment. Thus correct estimation of β is important for any causal inferences derived 

from the model. 

 

For unobserved heterogeneity, we have considered a variety of distributions, both 

parametric and non-parametric. It is important at this point to make it clear which model 

term our simulation is made. In the MPH formulation, the unobserved heterogeneity is 

captured by a multiplicative term v (equation (2)), while in our complementary log-log 

formulation on grouped hazard, the estimation is actually conducted on log( )vµ =  (see 

e.g. equation (5*) above). In our experiments, we simulate the distribution of v directly, 

and transform to model term log( )vµ = . For each individual, we make a draw of v 

from a pre-decided distribution and use the logarithm of the simulated value additively 

into the complementary log-log hazard model. In order to make comparison across 

parametric and non-parametric distributions of unobserved heterogeneity, we simulate v 

such that they all have the unit mean. In the following, we simulate the unobserved 

heterogeneity from a discrete mass point distribution of 3 points with mean 1 and 

variance 0.6475, and a Gamma distribution with the same mean and variance as discrete 
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mass points distribution.2  Table 1 gives a brief overview of simulated distributions of 

unobserved heterogeneity.  

 

We then simulate artificial datasets for each combination of sample sizes and 

distribution types of unobserved heterogeneity. There are 6 samples (3 sample sizes, 2 

distributional types for unobserved heterogeneity), with fixed distribution of observed 

heterogeneity X.  

 

The observational window is set to be 24 months long and we simulate 24 monthly 

calendar time covariates to indicate the calendar time effects. An important feature we 

wish to study is how the size of the variation of these calendar time covariates affect the 

identification and estimation of the model, so we simulate a set of 4 different cases of 

calendar parameters drawn from a 2(0, )N σ  distribution (see Table 1 for details).  

 

Yet another important model term needs to be simulated, namely the baseline hazard 

rate. To be focused on the point and maintain manageable computational cost, we in the 

following will concentrate on constant hazard and negative hazard models. We use the 

widely applied Weibull distribution to represent the negative dependence baseline with 

shape parameter 0.9 and scale parameter 0.1,  
1( ) ,    0.10,  0.90.weibull

α αθ τ λ ατ λ α−= ⋅ = =  

Since the Weibull hazard is continuous in time, and our model is based on discrete 

grouped hazard with time unit 1 month, some discretising is needed. We simply 

calculate the definite integral 

 1
11 1

( ) ,  0.10, 0.90.
d d d

weibull dd d
d dα α α αθ τ τ λ ατ τ λ τ λ α−

−− −
= ⋅ = ⋅ = =∫ ∫   

The first month grouped hazard rate is thus 0.1259. For the sake of comparison, 

constant duration dependence is given by an exponential distribution baseline with 

parameter log(0.1259)=-2.0723 such that the hazard rate is approximately equal to that 

of the first month of Weibull.  

 

 
2 We have experimented with other parametric distributions of v such as lognormal, as well as discrete 
mass point distributions with 2 points, 4 points, 7 points of support. They all have unit means, but 
variances differ from each other. Based on our experiments and consideration on computational cost, we 
choose 3 mass points distribution and Gamma distribution in our formal Monte Carlo studies. 
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We are then able to simulate unemployment spells following equation (5*). Taking one 

of those simulated 6 individual samples and one set from 4 simulated calendar time 

samples, we first randomly choose a start month from 1-24, and calculate up to 12 

monthly hazard rates with inputted covariates, unobserved heterogeneity terms, baseline 

and calendar time effects, from the start month and onwards. Then for each month, we 

simulate actual transition from a uniform distribution. If the drawing from this 

distribution does not exceeded the calculated hazard rate, a termination of the spell has 

established, and we set the transition indicator y equal to 1. If at the end of observation 

window, i.e. month 24, there is still no transition, the spell is then censored and y takes 

the value 0. If on the other hand the spell length has reached 12 months and still no 

transition, the spell is censored as well. We conduct this routine of spells simulation for 

all combinations of duration dependences and distributions of unobserved 

heterogeneity, as well as different calendar parameters variations and sample sizes. 

There are totally 48 model combinations (3 sample sizes, 2 duration dependences, 2 

types of distributions for unobserved heterogeneity and 4 cases of calendar time 

variations). We then repeat the sampling process 100 times to get 4,800 samples.  

 

Since in the model the calendar time terms function as time-varying covariates, in 

estimation, it is necessary to split each spell into many subspells, each has duration of 

one month and total number of subspells should be equal to the total length of original 

spell.  Each splitted one-month spell has been defined as censored except the last one, 

which retains its original censoring status. This is a known technique in dealing with 

time-varying covariates. This episode splitting operation results in data sets with 

monthly observations ranging from 25,000 up to over 300,000.  
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Table 1: Data Generating Process (DGP) 

 

Computational strategies 

Heckman and Singer (1984) propose a three-step algorithm in determining the number 

of mass points for unobserved heterogeneity: they start with one point of support, 

maximise the loglikelihood to achieve start value for search; in step 2, they scan a grid 

of admissible intervals of potential support for mass points conditional on estimated 

parameters in step 1 and acquire the interval which gives the largest Gateaux 

derivatives. If the Gateaux derivative is non-positive everywhere within the interval, 

stop. Otherwise, estimate the model with 2 points. Proceed to step 3 by evaluating the 

Gateaux derivative conditional on estimated parameters in step 2 and repeat the 

procedure until Gateaux derivative is negative or zero. They find that the EM algorithm 

usually provides a satisfactory convergence. Baker and Melino (2000) use a similar 

approach but instead of Gateaux derivatives in step 2 and step 3, they use the more 

familiar Kuhn-Tucker multiplier and maximise loglikelihood function under constraint 

1j
j

P =∑ .  

 

The choice of algorithm used by Heckman and Singer (1984) as well as Baker and 

Melino (2000) is most likely due to computational tangibility, in that at each iteration, 

the gradient searching direction is (hopefully) optimised. However, it might be the case, 

Duration dependence Distribution  Scale factor First month 
hazard rate 

No duration dependence Exponential, 
2.0723λ = −  

-2.0723 0.1259 

Negative duration 
dependence 

Weibull 
0.10,   0.90λ α= =

-2.0723 0.1259 

Observed Heterogeneity, X Pr(x=1)=0.6,   Pr(x=0)=0.4  

Calendar time variation 2(0, )N σ , 2 0,  0.001,  0.1, 1σ =  

Unobserved heterogeneity 
  

Mean Variance 

Gamma   1 0.6475 

Discrete 
Support 
Points Probability Mean Variance 

3 points 1.80 0.50 1 0.6475 
 0.30 0.30   
 0.05 0.20   
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as we experienced, that the search interval might lead to a local maximum. By 

restricting search direction by such interval, it is difficult to switch to the “correct” path 

once the search direction is already leading to an inferior maximum. Also Baker and 

Melino (2000) find it is often the case that the optimal solution to Kuhn-Tucker is found 

at the corner of the search interval with negligible probability. This is unfavourable with 

respect to computational cost. In addition, Heckman and Singer as well as Baker and 

Melino algorithms are only for single risk case. We originate our programming with the 

consideration to apply on competing risks models as well, and it has proven to be quite 

cumbersome to evaluate Gateaux derivatives in multiple dimensions.  Therefore we 

choose a more direct approach: we start with 1 point of support and add one additional 

point at each iteration until likelihood cannot be improved numerically. At each 

iteration, we first carry out a few line searches with BFGS method to acquire search 

direction that makes increment of likelihood largest with added point. The initial value 

for search is taken from the previous iteration, except that the distribution of mass 

points is randomly chosen (scrambled). After an optimal search direction is found, we 

switch to Newton-Raphson method for functional maximisation. It proves that in most 

of cases our approach seems to perform well.  

 

In the construction of simulated hazard, the duration baseline is normalised to the first 

month by the scale factor; the calendar months are normalised to month 13. Hence the 

model is estimated with a constant term c. 

(5**) ( )' ' '( , ) 1 exp exp 'd th d v c λ σ β µ = − − + + + + X  

where ' ' '( , , )d tλ σ X  are all normalised to their respective references. In the case of no 

unobserved heterogeneity, the exponential of constant term c is thus the true duration 

baseline hazard rate of the first duration month, i.e. exp( )c  with the mean calendar 

variation for a person with 0x = . With the presence of unobserved heterogeneity, the 

constant is actually the sum of c and µ , i.e. we do not obtain directly estimates for µ . 

Thus in estimation and post estimation inferences, we evaluate the estimated sum 

( )c µ+  in (5**).  

 

The probability jP  is formulated with a logistic formulation 

exp( ) 1for 2,3,...,   and  for j 1
1 exp( ) 1 exp( )

k
j j

k k
k k

P k N Pγ
γ γ

= = = =
+ +∑ ∑
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to ensure the probabilities lie within [0,1]. However, this also means that the probability 

of an additional point can never be exactly zero, which implies that additional points 

may be included even though the probability for this point is extremely small, and 

increment of likelihood is numerically insignificant. Therefore we choose from time to 

time an ad hoc criterion to stop the search for further points when distribution of current 

estimated mass points involves some very small probabilities. The threshold for small 

probability in most cases is set to 410− . 

 

In maximising the finite mixing distribution characterized by (5*), the maximised log 

likelihood might raise the problem of selection of optimal number of points for the 

mixing distribution. In our case, it might be that the number of points found are more 

than necessary for a good fit of the observational data. Leroux (1992) suggests that a 

procedure that penalises overfitting might be preferable to pure maximum likelihood, 

and proposes a solution that he labels the maximum-penalised-likelihood. Huh and 

Sickles (1994) have showed that the maximum penalised likelihood estimators are 

consistent in duration models with unobserved heterogeneity, provided the mixing 

distribution can be characterised by a finite number of points of support. The general 

form for a maximum-penalised-likelihood is (Leroux (1992)) 

ˆ( )n m mnl aµ −  

where ˆ( )n ml µ is maximised loglikelihood with estimator ˆmµ  and mna is the penalty term, 

m is the number of components in finite mixing distribution, while n is number of 

observations. Baker and Melino (2000) propose to use either Bayesian Information 

Criterion (BIC, Schwarz (1978)) or Hannan-Quinn Information Criterion (HQIC, 

Hannan and Quinn (1979)) to penalise the additional spurious point that introduces 

“overparameterisation” bias. The BIC is defined with ˆ(1/ 2) log( )dim( )mn ma n µ= , while 

HQIC is defined with ˆlog(log( ))dim( )mn ma n µ= , where ˆdim( )mµ is the dimension of 

mixing distribution, which is equal to number of independent parameters. We consider 

these two information criteria in our analysis. In addition, we also include Akaike 

(1973) information criterion (AIC) based on Kullback’s symmetric divergence (1968), 

as alternative definitions for penalty term. A variant of AIC can be defined as 

ˆ ˆ( ) dim( )n m mAIC l µ µ= − . Thus in evaluation of convergence and optimal dimension of 

mass points, we apply both pure maximum likelihood criterion and maximum penalised 

likelihood with 3 information criteria to determine the optimal model choice with 

respect to number of support points found.  
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It is known that maximisation of non-parametrically specified likelihood is extremely 

cumbersome (Baker and Melino (2000), footnote 12).  In this paper we solve this 

problem by using an approach which we call “implicit dummy” technique. This 

technique efficiently reduce computational cost on redundant multiplications of zero 

value dummies that are due to non-parametric specification, and hence remarkably 

improves the speed of the maximisation. The maximisation routine is hard-coded in 

Fortran 90 with MPI implementation for parallel processing3. All estimations are carried 

out on a HP Superdome (44 PA8600 CPUs prior to July 2003) running HP-UX with 

HP’s Fortran 90 compiler. Compiler-native Lapack and BLAS have been used. A 

typical run for a sample size of 50,000 individuals, up to 50 parameters, with 4 CPUs 

utilised, takes approximately 40-50 minutes in real time.  

 

We emphasize at this stage that maximisation is extremely difficult in the region around 

potential maximum, as already pointed out by Heckman and Singer (1984). The 

likelihood function is not globally concave, and our experience suggests that the 

likelihood is quite flat around the potential maximum and has a “wash-board” like 

texture with plenty of local maxima. We need to distinguish two types of local maxima: 

sets of equivalent maxima and qualitatively different maxima. By equivalent maxima 

we mean that given the random search direction, our iteration can end up in a set of 

numerically equivalent maxima, characterised by approximately the same estimators on 

the coefficients and moments of the distribution of unobserved heterogeneity, as well as 

likelihood function value. Thus convergence to any of these maxima can be regarded as 

convergence to the global maximum. The qualitatively different maxima refer to the 

fact that by altering search direction, convergence might be reached at another 

maximum that is significantly different both in terms of likelihood function value and 

estimators of the parameters than we otherwise might find. This is a more serious 

problem. 

 

To ensure that the global maximum is located, for each model, we find it necessary to 

repeat each estimation multiple times with randomly chosen starting values and 

 
3 We are fortunate to have Senior Analyst Simen Gaure at the University Information Technology Centre 
at University of Oslo to help us programme the estimation routine. All estimations are done on HP 
Superdome at High Performance Computing Centre, University of Oslo. 
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randomly chosen search direction in each linear search. It turns out that our method in 

most cases is robust regarding the starting values and ends up approximately the same 

maximised likelihood. However, since currently no explicit guidance is available on 

determination of global maximum when likelihood function is non-concave globally, 

we interpret our results with caution. Nevertheless in most cases we are reasonably 

confident that the global maximum is found.  

 

4. Results 

 

We conduct extensively non-parametric maximum likelihood estimation on all 

simulated data. To be concise about our results, we focus on two representative models: 

the constant duration dependence (non duration dependence) hazard rate model with 3 

mass points discrete distribution for the unobserved heterogeneity, and the negative 

duration dependence (Weibull hazard rate model) with a parametric mixture distribution 

for the unobserved heterogeneity characterised by the Gamma distribution4. To 

investigate our proposition that time-varying covariates in the form of calendar 

dummies improves the identifiability, we look into the cases that calendar time 

variations are generated with variances being set as 0, 0.001, 0.1 and 1. The main results 

are organised as following: We first report maximisation of log likelihood and iteration 

process for the selected models. Special attention is given on the choice of models in 

terms of estimated number of mass points. We also look into the estimation on the 

structure parameter β  and how the estimator changes over iterations. Second, we report 

the distribution of estimators on β  and distributional properties of estimators for 

different model settings using kernel densities of estimated β  through 100 repetitions. 

Third, we report the estimated duration dependence with respect to support points found  

by plotting estimated baseline hazard rates. Also we report the measure of average 

weighted squared errors for estimators on duration dependence parameters. Fourth, we 

will comment the estimation of time-varying calendar time parameters by reporting 

average weighted squared errors for estimators as well. We also look into the 

consequences of ignoring such time-varying calendar variations in estimation. Last, we 

 
4 We have also looked into models of constant hazard with Gamma mixture and Weibull hazard with 3 
points discrete mixture distributions. The findings from these models are virtually the same as those we 
present in this section. The full sets of all results are available upon request.  
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will compare estimated moments of mass point distributions of unobserved 

heterogeneity to see how well the estimates can approximate the true distribution 

moments. We follow the results of model components estimation by some discussions 

of the implications of our findings and a measure for overall fit in next section. For all 

results we will consider a variety of specifications for both maximum likelihood and 

maximum penalised likelihood, as well as sampling properties and effects of variation 

of calendar times.  

 

1. Convergence and choice of optimal model dimension 

We first report the maximum number of support points found by maximum likelihood 

method and maximum penalised likelihood in the form of information criteria, in the 

100 trials. Table 2 reports the maximum points found for samples with 5,000 

individuals, for constant duration dependence and negative duration dependence 

models. An immediate observation is that, when the true mixing distribution for 

unobserved heterogeneity is generated with discrete distribution, the pure maximum 

likelihood method tends to find more points than used to generate the data. For 

example, in the first panel of Table 2, when the unobserved heterogeneity in DGP is 

discretely distributed with 3 mass points, the maximum likelihood method tends to find 

number of points ranging 3 to 6, while AIC, BIC and HQIC in most cases are able to 

find correct number of points. Similar pattern can be found for loglikelihood method 

when the true unobserved heterogeneity distribution is Gamma. The optimal number of 

points found by loglikelihood is ranging 3-6, while AIC and HQIC find optimal number 

of support points to be 2 and 3. BIC is quite conservative with respect to added points 

when the unobserved heterogeneity is Gamma distributed, and in most cases fails to 

find more than 1 point of support. 

 

A second observation is that when the variation of calendar time parameters increases, 

the number of trials that found excessive points is somewhat reduced. This can be seen 

from the first panel for the discrete distribution case. When the variance of calendar 

variation is zero, there are 24 estimations in which the loglikelihood criterion results in 

6 or more points of support for the unobserved heterogeneity distribution, while when 

variance is 1, only 9 out of 100 estimations return 6 or more points. The pattern is not 

clear for Gamma distributed unobserved heterogeneity.  
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Table 2: Maximum number of support points found. 
Constant hazard 3 points generated unobserved heterogeneity, 5,000 obs. 

 Var(month) 1 point 2 points 3points 4 points 5 points 6 points 7 or more points
loglikelihood 0 23 0 13 22 18 14 10 

 0.001 5 0 18 20 29 15 13 
 0.1 8 0 26 30 26 9 1 
 1 18 0 14 32 27 7 2 

AIC 0 23 0 63 13 1   
 0.001 5 0 69 18 8   
 0.1 8 0 84 7 1   
 1 18 0 73 9 0   

BIC 0 23 0 77 0 0   
 0.001 6 1 93 0 0   
 0.1 9 24 67 0 0   
 1 18 17 65 0 0   

HQIC 0 23 0 77 0 0   
 0.001 5 0 94 1 0   
 0.1 8 3 89 0 0   
 1 18 1 80 1 0   
         

Weibull hazard, Gamma distributed unobserved heterogeneity, 5,000 obs. 
 Var(month) 1 point 2 points 3points 4 points 5 points 6 points 7 or more points

loglikelihood 0 18 1 13 34 21 9 4 
 0.001 4 0 29 28 25 12 2 
 0.1 13 2 18 31 26 8 2 
 1 12 0 22 37 22 5 2 

AIC 0 18 14 62 5 1   
 0.001 9 15 67 7 2   
 0.1 18 40 39 2 1   
 1 12 50 32 6 0   

BIC 0 95 4 1 0 0   
 0.001 96 2 2 0 0   
 0.1 93 7 0 0 0   
 1 63 37 0 0 0   

HQIC 0 28 41 31 0 0   
 0.001 35 39 26 0 0   
 0.1 62 31 7 0 0   
 1 17 70 13 0 0   

 

Table 3 reports maximum number of support points found for different sample sizes. 

Again, the loglikelihood methods have the tendency to find excessive points regardless 

of sample sizes. For discrete distributed unobserved heterogeneity most information 

criteria methods returns 3 or 4 points of support regardless the sample size. However, 

when the mixing distribution is generated by Gamma, BIC and HQIC does not seem to 

be able to find more than 3 points of support, but increasing sample sizes do enable the 

BIC and HQIC to find more than 1 point of support. 
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Table 3: Maximum number of support points found across sample sizes.  

Constant hazard 3 points generated unobserved heterogeneity, var(month)=0.1 
 Obs 1 point 2 points 3points 4 points 5 points 6 points 7 or more points

Log likelihood 5000 8 0 26 30 26 9 1 
 10000 20 0 7 29 27 13 4 
 50000 1 0 15 35 26 19 4 

AIC 5000 8 0 84 7 1   
 10000 20 0 72 5 3   
 50000 1 0 85 11 3   

BIC 5000 9 24 67 0 0   
 10000 20 25 55 0 0   
 50000 1 0 99 0 0   

HQIC 5000 8 3 89 0 0   
 10000 20 1 78 1 0   
 50000 1 0 97 2 0   
         

Weibull hazard, Gamma distributed unobserved heterogeneity, var(month)=0.1 
 Obs 1 point 2 points 3points 4 points 5 points 6 points 7 or more points

Log likelihood 5000 13 2 18 31 26 8 2 
 10000 13 1 12 39 28 7 0 
 50000 2 0 3 44 36 12 3 

AIC 5000 13 2 18 31 26   
 10000 14 42 39 5 0   
 50000 2 7 74 15 2   

BIC 5000 93 7 0 0 0   
 10000 69 30 1 0 0   
 50000 2 94 4 0 0   

HQIC 5000 93 7 0 0 0   
 10000 19 72 9 0 0   
 50000 2 49 49 0 0   

 
 

By looking into some of the typical iteration processes from estimations, we will show 

more clear pictures of convergence and impact of number of support points found on 

estimation of structure parameters.  In Table 4-1 to 4-2, we report some typical iteration 

processes and convergences of loglikelihood for small sample (5,000 observations) 

models with and without duration dependence, together with non-parametrically and 

parametrically generated unobserved heterogeneity distributions. To produce these 

tables, for each selected combination of duration dependence, unobserved heterogeneity 

and calendar variation, we arbitrarily choose one result from 100 trials that returns 

more than one point of support. The loglikelihood for each iteration is reported, as well 

as the penalised loglikelihood by various information criteria. The bold faced values 

indicate the optimal choice of points according to each criterion. The estimated structure 

parameter β̂  serves in this case as a benchmark to evaluate how well each criterion 
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Table 4-1 Constant hazard, 3 points distributed unobserved  heterogeneity, 5,000 individuals. 

model obs points # parameter loglikelihood AIC BIC HQIC β̂  std 
Constant Hazard 31094 1 1 -10225.7765 -10226.7765 -10230.9489 -10228.1130 0.5545 0.0359
Var(σ )=0 31094 2 3 -10214.3447 -10217.3447 -10229.8619 -10221.3541 0.7456 0.0790
(2) 31094 3 5 -10191.6759 -10196.6759 -10217.5378 -10203.3583 0.9606 0.0631

model obs points # parameter loglikelihood AIC BIC HQIC β̂  std 
Constant Hazard 25851 1 1 -8829.0631 -8830.0631 -8834.1432 -8831.3816 0.6137 0.0386
Var(σ )=0.001 25851 2 3 -8809.3181 -8812.3181 -8824.5583 -8816.2735 0.8965 0.0783
 25851 3 5 -8781.8830 -8786.8830 -8807.2833 -8793.4754 1.0921 0.0654
(1) 25851 4 7 -8780.5567 -8787.5567 -8816.1171 -8796.7860 1.0947 0.0760

model obs points # parameter loglikelihood AIC BIC HQIC β̂  std 
Constant Hazard 28555 1 1 -8339.5278 -8340.5278 -8344.6592 -8341.8563 0.7155 0.0419
Var(σ )=0.1 28555 2 3 -8339.2958 -8342.2958 -8354.6899 -8346.2813 0.7152 0.0505
 28555 3 5 -8318.4729 -8323.4729 -8344.1298 -8330.1155 1.0920 0.0885
 28555 4 7 -8316.1579 -8323.1579 -8352.0775 -8332.4575 1.0946 0.1164

 28555 5 9 -8315.6447 -8324.6447 -8361.8270 -8336.6014 1.2439 0.1416
 28555 6 11 -8316.1672 -8327.1672 -8372.6122 -8341.7809 1.1120 0.1359

model obs points # parameter loglikelihood AIC BIC HQIC β̂  std 
Constant Hazard 17469 1 1 -7180.5639 -7181.5639 -7185.4480 -7182.8430 0.5355 0.0344
Var(σ )=1 17469 2 3 -7100.5928 -7103.5928 -7115.2451 -7107.4302 0.7529 0.0499
 17469 3 5 -7057.5060 -7062.5060 -7081.9264 -7068.9016 0.9568 0.0575
 17469 4 7 -7048.0878 -7055.0878 -7082.2764 -7064.0417 1.0392 0.0656
(2) 17469 5 9 -7035.1158 -7044.1158 -7079.0727 -7055.6280 1.1845 0.0728
Note: 1. Number of observation listed in table is number of monthly observation is estimation data. 2. Var(σ ) is variance of calendar month  in simulation. 
3. Number of parameters is free parameters associated with unobserved heterogeneity. (1) indicates iteration terminates when approximate zero probability on added  
point is encountered.  (2) indicates numerical difficulty prevents further search of mass points.  
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Table 4-2 Weibull hazard, Gamma distributed unobserved heterogeneity, 5,000 individuals. 

model obs points # parameter loglikelihood AIC BIC HQIC β̂  std 
Weibull Hazard 29757 1 1 -10622.5733 -10623.5733 -10627.7237 -10624.9055 0.7361 0.0357
Var(σ )=0 29757 2 3 -10616.8160 -10619.8160 -10632.2672 -10623.8126 0.9027 0.0822
 29757 3 5 -10614.0579 -10619.0579 -10639.8100 -10625.7191 0.8952 0.0687
(2) 29757 4 7 -10613.5947 -10620.5947 -10649.6476 -10629.9203 1.0212 0.1559

model obs points # parameter loglikelihood AIC BIC HQIC β̂  std 
Weibull Hazard 24278 1 1 -9128.2983 -9129.2983 -9133.3470 -9130.6106 0.7420 0.0382
Var(σ )=0.001 24278 2 3 -9125.9219 -9128.9219 -9141.0679 -9132.8588 0.7432 0.0466
 24278 3 5 -9106.6811 -9111.6811 -9131.9245 -9118.2425 1.0675 0.0691
 24278 4 7 -9105.1306 -9112.1306 -9140.4712 -9121.3165 1.4290 0.1201
 24278 5 9 -9099.1835 -9108.1835 -9144.6214 -9119.9939 1.6184 0.1438

 24278 6 11 -9099.2332 -9110.2332 -9154.7685 -9124.6682 1.5805 0.4039

model obs points # parameter loglikelihood AIC BIC HQIC β̂  std 
Weibull Hazard 27702 1 1 -8580.3997 -8581.3997 -8585.5143 -8582.7249 0.7870 0.0420
Var(σ )=0.1 27702 2 3 -8580.0429 -8583.0429 -8595.3868 -8587.0187 0.7876 0.0508
(2) 27702 3 5 -8571.3220 -8576.3220 -8596.8951 -8582.9482 0.9668 0.0833

model obs points # parameter loglikelihood AIC BIC HQIC β̂  std 
Weibull Hazard 28163 1 1 -8164.4505 -8165.4505 -8169.5734 -8166.7774 0.7892 0.0407
Var(σ )=1 28163 2 3 -8154.3023 -8157.3023 -8169.6710 -8161.2829 0.9797 0.0695
 28163 3 5 -8151.9303 -8156.9303 -8177.5447 -8163.5647 0.9852 0.0653
 28163 4 7 -8150.1599 -8157.1599 -8186.0201 -8166.4480 0.9959 0.0689
(1) 28163 5 9 -8148.7837 -8157.7837 -8194.8896 -8169.7255 1.0325 0.0705
Note: 1. Number of observation listed in table is number of monthly observation is estimation data. 2. Var(σ ) is variance of calendar month  in simulation. 
3. Number of parameters is free parameters associated with unobserved heterogeneity. (1) indicates iteration terminates when approximate zero probability on added  
point is encountered.  (2) indicates numerical difficulty prevents further search of mass points.  
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performs. Also in each table, we consider results from which the calendar dummies 

have variances ranging from 0 to 1. 

 

At first iteration, the number of mass points is simply 1, which means there is no control 

for unobserved heterogeneity. We observe immediately that the estimated β̂  is 

significantly biased towards zero. For example in Table 3-1, when no variation of 

calendar dummies (or the single cohort that starts at the same calendar time), without 

control of unobserved heterogeneity, the estimated β̂  is 0.5545, which has a bias as 

large as 45%. This confirms the well-known fact that uncontrolled unobserved 

heterogeneity produces non-negligible biased estimates towards zero. At iteration two, 

we add 1 point of support to the distribution of unobserved heterogeneity. This also 

means the free parameters associated with the distribution of unobserved heterogeneity 

is 3 (2 for mass points and 1 for probability). At this stage, by examining estimates from 

all models, we see no significant improvement on estimation of structure parameter. 

When we have 3 mass points, in almost all models the estimate on β̂  is very close to 1. 

But it seems to be the case that the likelihood can be improved further by adding 

additional points. It is observed immediately that when there are 4 points (Table 4-1, 

constant hazard, var( ) 0.1σ = ), the estimate of β̂  is quite larger than the true value 1, 

and with additional points being added, the β̂  displays stronger positive bias. We 

continue the iteration until the likelihood deteriorates5. For example in constant hazard 

with calendar dummies’ variance set to 0.1, the maximum likelihood criterion would 

conclude that maximum is reached when there are 5 points of support found. However, 

if we adopt some form of information criterion, we would find that the optimal choice 

of number of points is reached at 3 points (BIC and HQIC). And the β̂  is very close to 

the true value 1 at 3 points.  

 

Another important finding is that, when sample size is relative small (e.g. 5,000 

individuals), we find evidence that applying some kind of information criterion to 

penalize excessive points is more favourable than pure likelihood criterion, especially 

when the true distribution of unobserved heterogeneity is characterized by 3 points of 
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support. We find that AIC seems more in line with likelihood, and BIC and HQIC are 

more conservative with adding extra points. On the other hand, BIC and HQIC seem to 

have the tendency to underestimate β̂ . A possible explanation can be attributed to the 

definition of information criteria: since BIC and HQIC depend not only on the number 

of free parameters, but also on the sample size. Given the number of free parameters, 

the size of penalty is solely decided by number of observations. In small sample cases, it 

seems that the increment of loglikelihood value from iteration to iteration is small 

relative to the penalty term, and the BIC and HQIC often “overcorrect” the 

excessiveness of loglikelihood and return estimates below the true value. Since AIC 

does not involve sample size, it seems to be the most balanced choice among all. 

Although in most cases the information criteria give roughly the same (or statistically 

equivalent) estimates, we find evidence in favour of using AIC as a suitable measure for 

model choice. 

 

Increasing sample sizes does show improvement of estimator for β̂ , even though the 

number of points found exceed the true mixing distribution when it is generated with 3 

points. Appendix Table A1-1 to A1-2 report evidence of estimation on samples 

generated with 10,000 individuals. Appendix Table A2-1 to A2-2 report some results of 

reestimated the same models on even larger sample of 50,000 individuals. For models 

with no duration dependence and discretely generated unobserved heterogeneity, our 

findings on small sample become more obvious. We find again that maximum 

likelihood estimator tends to find excessive points for distribution of unobserved 

heterogeneity and overestimate the structure parameter. This also holds for Weibull 

baseline model with Gamma distributed unobserved heterogeneity (Table A1-2). We 

find that differences between information criteria become smaller when sample size is 

larger. When sample size is sufficiently large (Table A2-1, A2-2), we find that all 

criteria on model choice give almost equivalent results. The estimates on β̂  are almost 

the same whichever criterion is chosen. And the estimates are very close to the true 

value with very good precision. This can be seen for both models. Also, variation of 

calendar dummies seems to be less important, though including calendar dummies as an 

 
5 This could purely be due to the numerical precision phenomenon since we can always set values of 
additional parameters equal to 0. On the other hand, this could also imply that the search has switched to 
another (inferior) local maximum.  
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additional source of identification contributes to the precision of estimation, which can 

be recognized by examining standard errors of β̂  for Table A2-1 to A2-2.  

 

The above crude examinations of some typical iterations and maximising processes 

across sample sizes and variations of time-varying covariates for calendar time provide 

some intuitions on how the maximisation process recovers the true structure parameter. 

It suggests that the likelihood criterion seems to find excessive number of points and 

“overparameterise” the dispersion of unobserved heterogeneity. Consequently, to 

compensate this “overestimation”, the structure parameters are upwards biased. There 

are evidences that information criteria produce better estimators when sample sizes are 

small, while variations of time-varying calendar covariates help the estimation on the 

structure parameters.  

 

2. Estimation on β  

To further illustrate the relationship between excessive number of points returned by 

loglikelihood and biases produced by such excessive points on structural estimator, we 

calculate mean deviation between estimators for β  acquired by loglikelihood in 100 

trials, and the true value 1 in DGP. We also look into different cases of calendar time 

variations and how they affect the mean deviations. Figure 1 and 2 are plots of mean 

deviations for models of constant hazard with 3 points distributed unobserved 

heterogeneity and Weibull hazard with Gamma distributed mixture in DGP. 

 

It is clear that in both figures, when estimation fails to find more than 1 point of support 

for unobserved heterogeneity (which means no control for unobserved heterogeneity), 

the estimates on β are biased towards zero (mean deviations from true value 1 in DGP 

are all negative). With more points found by loglikelihood criterion, the mean 

deviations turn to be positive and increase with the number of mass points. When the 

unobserved heterogeneity is generated from 3 points distribution, and when the 

loglikelihood finds the correct number of points, the mean deviation is the smallest 

(Figure 1). For Weibull model with Gamma distributed unobserved heterogeneity in 

DGP, 4 points seem to give the smallest bias, although 3 and 5 mass points perform 

relative well too. 
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Figure 1: Mean deviations of estimated β̂  from true value 1 by maximum number 
of mass points found by maximum loglikelihood. Constant hazard, 3 points 
mixture in DGP. var represents calendar variation in DGP. Obs=5,000. 
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Figure 2: Mean deviations of estimated β̂  from true value 1 by maximum number 
of mass points found by maximum loglikelihood. Weibull hazard, Gamma mixture 
in DGP. var represents calendar variation in DGP. Obs=5,000. 
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It is also notable that the mean deviations seem to be smaller when calendar variation is 

larger. From both Figure 1 and Figure 2, we observe that when the calendar variation is 

sufficiently large (variance is 1), the biases measured by mean deviations are smaller 

and roughly below 0.1, compared to small or none calendar time variations. In constant 

hazard case with large calendar time variation, even when the loglikelihood finds 7 or 

more points, the biases are moderate compared with that in small calendar variation 

cases. This suggests also that the calendar time variations seem to contribute to the 

reduction of estimation biases on structure parameters, at least in the case when 

loglikelihood criterion returns excessive number of points for unobserved heterogeneity 

distribution.  

 

We will turn to the details of the distributional properties of non-parametric maximum 

likelihood estimators and maximum penalised likelihood estimators for structure 

parameter β . Table 5 reports estimated structure parameter β̂ , for constant hazard with 

3 points support and Weibull hazard with Gamma distributed unobserved heterogeneity. 

Means and standard deviations are calculated across trials that find more than 1 point of 

support for the unobserved heterogeneity. An encouraging observation is that for most 

of the estimations, the structure parameter β̂  is very well estimated, the means are very 

close to the true value 1 in DGP6.  

 

Several observations can be made: First, the log likelihood criterion has the tendency to 

overestimate the structure parameter β̂  when sample sizes are small, particularly when 

there is no or little calendar time variation in hazard rates. It seems that the data is less 

informative for a successful recovery of structure parameter when there is no or little 

calendar variation. In this case, it helps for the estimation when some form of 

information criterion is used to penalise the excessive mass points found by log 

likelihood. We find that for constant hazard with 3 points discrete unobserved 

heterogeneity (Table 5 upper panel), both BIC and HQIC perform well. AIC is more in 

 
6 Table A3 in Appendix reports number of trials among each 100 repetitions that the 95% confidence 
intervals of estimators cover the true value 1. For almost all estimations, over 70 per cent trials produce 
the confidence intervals that cover the true value. Among model selection criteria, there does not seem to 
be much difference, except BIC in Weibull hazard with Gamma distributed unobserved heterogeneity. 
For small samples, BIC is extremely poor comparing to other criteria. As sample sizes increase and with 
large calendar variations, BIC performs much better. While in Constant hazard 3 points unobserved 
heterogeneity models, all criteria seem to be equally successful.  
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line with loglikelihood. While in the case of Weibull hazard with Gamma unobserved 

heterogeneity (Table 5 lower panel)7, all model selection criteria give roughly the same 

means for estimated β̂ .  

Table 5: Estimated means and standard errors of β̂ .  

Constant hazard, 3 points unobserved heterogeneity      
  Loglikelihood AIC BIC HQIC 

# obs var(month) mean std. mean std. mean std. mean std. 
5000 0 1.1803 0.2491 1.0691 0.1237 1.0275 0.0558 1.0275 0.0558 

 0.001 1.2387 0.3022 1.1238 0.1853 1.0446 0.0665 1.0474 0.0733 
 0.1 1.0967 0.1106 1.0621 0.0914 1.0315 0.0688 1.0458 0.0620 
 1 1.0645 0.0746 1.0456 0.0739 1.0275 0.0768 1.0406 0.0688 

10000 0 1.0654 0.0886 1.0260 0.0513 1.0159 0.0418 1.0191 0.0427 
 0.001 1.0914 0.2091 1.0248 0.0567 1.0156 0.0548 1.0192 0.0476 
 0.1 1.0601 0.0851 1.0300 0.0726 0.9997 0.0680 1.0185 0.0637 
 1 1.0336 0.0608 1.0226 0.0547 1.0092 0.0623 1.0186 0.0542 

50000 0 1.0310 0.0455 1.0141 0.0380 0.9931 0.0178 0.9976 0.0269 
 0.001 1.0334 0.0742 1.0055 0.0323 0.9930 0.0192 0.9941 0.0211 
 0.1 1.0188 0.0342 1.0078 0.0266 1.0031 0.0213 1.0045 0.0247 
 1 1.0136 0.0191 1.0052 0.0188 1.0013 0.0171 1.0013 0.0171 
          

Weibull hazard, Gamma distributed unobserved heterogeneity     
  Loglikelihood AIC BIC HQIC 

# obs var(month) mean std. mean std. mean std. mean std. 
5000 0 1.0919 0.2147 0.9825 0.0779 1.0301 0.0657 0.9669 0.0576 

 0.001 1.1300 0.3224 1.0205 0.1530 1.0853 0.0279 0.9923 0.0673 
 0.1 1.0869 0.1510 1.0297 0.0836 1.1552 0.0579 1.0655 0.0694 
 1 1.0475 0.0877 1.0231 0.0722 1.0508 0.0514 1.0206 0.0603 

10000 0 1.0917 0.2431 0.9967 0.1012 0.9361 0.0473 0.9455 0.0541 
 0.001 1.0909 0.2436 0.9845 0.0944 0.9492 0.0381 0.9579 0.0611 
 0.1 1.0081 0.0786 0.9824 0.0581 1.0160 0.0396 0.9834 0.0472 
 1 0.9970 0.0579 0.9849 0.0531 0.9766 0.0440 0.9765 0.0447 

50000 0 1.0165 0.0550 0.9892 0.0374 0.9704 0.0210 0.9724 0.0269 
 0.001 1.0377 0.1784 0.9956 0.0635 0.9694 0.0231 0.9735 0.0290 
 0.1 1.0105 0.0391 0.9981 0.0402 0.9934 0.0249 0.9905 0.0276 
 1 1.0107 0.0246 1.0051 0.0254 0.9922 0.0213 0.9981 0.0236 

Note: 1. means are calculated among estimations that successfully found more than 1 points of support for 
unobserved heterogeneity. 2. var(month) is the variance of calendar month variation in DGP.  
 

Second, there is strong evidence that given the sample size, increase of calendar 

variation would considerably increase the quality of estimation on the structure 

parameter. This is particularly the case for small samples. For instance, in the constant 

hazard model with 5,000 individual observations, the standard deviation for β̂  from 

 
 
7 Since means for BIC are calculated from a handful estimations that return more than 1 point (referring 
to Table 3), we should not put too much weight on these results. 
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loglikelihood estimation reduces from 0.2491 when no calendar variation to 0.0746 

when variance of calendar variation is 1.  Similar observations can be found for other 

maximum penalised estimators.  

 

Third, sample size matters. Large sample size improves the identifiability of the model. 

This can be seen from increased accuracy of means and reduced standard deviations 

when sample size increases. For given calendar variation, the standard errors for 

loglikelihood estimators reduce in line with factor of N . 

 

To facilitate the presentation of our findings, we plot the kernel densities for estimated 

β̂  for samples with 5,000 individual observations8. Figure 3 and 4 depict the kernel 

densities for β̂ , by calendar variations for maximum likelihood and maximum 

penalised likelihood estimators.  

 

It is clear from the figures that when there are no or little calendar variations, the 

distribution of loglikelihood estimator (as well as AIC) has a wide dispersion and heavy 

tail, while BIC and HQIC are more concentrated around the true value 1. This confirms 

the finding above that maximum likelihood criterion can impose positive bias on 

estimation of structure parameter. But as calendar variation increases, it is more likely 

that estimators from both maximum likelihood and maximum penalised likelihood have 

the similar distributions. 

 

 
8 Plots are estimates of Epanevhnikov Kernel densities on β̂ across successful estimations that return 
more that one point of support. The densities are estimated with STATA. Bandwidth is estimated by 
h=0.9m/(n1/5), where m=min(sqrt(variance( β̂ ), interquartilerange( β̂ )). n is the number of values of β̂  
that we estimate kernel densities on. We use the default value n=50 for all kernel density estimations. See 
“Reference Manual, [R] kdensity” (2001), Stata Statistical Software, Release 7.0, StataCorp. 
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Figure 3: Kernel densities of estimated β . Constant hazard, 3 points mixture, 5,000 individuals. 
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Figure 4: Kernel densities of estimated β . Weibull hazard, Gamma mixture, 5,000 individuals. 
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Figure 5: Kernel densities of estimated β  by calendar variations. Constant hazard, 3 points mixture, 5,000 individuals. 
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Figure 6: Kernel densities of estimated β  by calendar variations. Weibull hazard, Gamma mixture, 5,000 individuals. 
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Figure 7: Kernel densities of estimated β  by sample sizes. Constant hazard, 3 points mixture, var(month)=0.1. 
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Figure 8: Kernel densities of estimated β  by sample sizes. Weibull hazard, Gamma mixture, var(month)=0.1. 
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Figures 5 and 6 look into the effect of calendar variation on the estimated β̂ . One could 

come to the conclusion from figures that BIC and HQIC are less sensitive towards 

calendar variations than loglikelihood. At least for constant hazard model with 3 points 

distributed unobserved heterogeneity, kernel densities for BIC and HQIC do not vary 

much across calendar variations. On the other hand, maximum likelihood method seems 

to be much sensitive towards calendar variations. With large variance of calendar time, 

kernel density for loglikelihood estimator is more concentrated on the true value. 

 

Figure 7 and 8 display kernel densities of β̂  across different sample sizes, with fixed 

calendar variation being 0.1. Not surprisingly, the larger the sample is, the more 

concentrated the β̂  around the true value. For large samples with 50,000 individuals, 

the distributions for estimated β̂  have a familiar bell-shape. There is evidence that 

maximum loglikelihood and maximum penalised likelihood converge to each other. 

 

3. Duration Dependence 

In our non-parametric estimation settings, the duration baselines are represented by a set 

of 12 dummies. As the iteration processes indicate in Table 4-1 and 4-2, the estimators 

on β̂  are sensitive with respect to how many points of support found for the unobserved 

heterogeneity distribution. As more points added to the support of mixing distribution, 

the estimators move away from zero. It turns out that the duration baseline hazard has 

the same response with respect to the points found for the mixing distribution. Since 

uncontrolled unobserved heterogeneity would produce negative duration dependence, it 

is intuitive that excessive control would produce positive duration dependence. This can 

be seen from Figure 9.  
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Figure 9: Duration baseline for constant hazard with 3 points mixing distribution 
in DGP, estimated by maximum likelihood, 5,000 individuals, var(month)=0.1.  
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Note: duration baselines are estimated from the same estimation in Table 4-1. Each line represents 
estimated baseline hazard with respective number of support points found for the unobserved 
heterogeneity distribution. All baselines are normalised to the first month.  

 
 

In Figure 9, when only 1 point of support for the unobserved heterogeneity (no control 

for unobserved heterogeneity), the baseline displays a negative duration dependence. By 

referring to Table 4-1, we can see that the best estimator for β̂  is found at 3 points (BIC 

and HQIC) or 4 points (AIC). The baseline associated with the best β̂  estimator is 

almost flat, as seen in Figure 9. But the optimal number of points for support found by 

likelihood criterion is 5, which not only causes a positive bias on β̂  (Table 4-1), but 

also a somewhat positive duration dependence for baseline hazard (Figure 9).  

 
Figure 9 is just an illustration of the possible consequences of number of support points 

found by maximisation on the estimation of duration dependences. However, to assess 

overall performance of non-parametric estimation on duration dependence, we would 

need a single measure for overall biases on the estimators. We report in Table 6 average 

weighted squared errors for duration baseline estimators for the constant hazard model 

with 3 points unobserved heterogeneity, and the Weibull model with Gamma 

unobserved heterogeneity. Though this might be somewhat ad hoc, these average 
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weighted squared errors do provide an intuitive overall measure of goodness of fit for 

the duration baseline estimates. The squared errors are calculated as squared differences  

Table 6: Average Weighted Squared Errors for duration baseline estimators.  

Constant hazard, 3 points unobserved heterogeneity      
  Loglikelihood AIC BIC HQIC 

# obs var(month) mean std. mean std. mean std. mean std. 
5000 0 0.3715 0.8991 0.0817 0.2176 0.0216 0.0208 0.0216 0.0208 

 0.001 0.5465 1.2508 0.1852 0.5174 0.0276 0.0392 0.0324 0.0606 
 0.1 0.0685 0.2298 0.0403 0.1030 0.0288 0.0236 0.0218 0.0178 
 1 0.0234 0.0365 0.0223 0.0356 0.0252 0.0223 0.0190 0.0160 

10000 0 0.0623 0.1168 0.0161 0.0303 0.0098 0.0152 0.0107 0.0194 
 0.001 0.2410 1.2267 0.0213 0.0602 0.0172 0.0214 0.0140 0.0137 
 0.1 0.0615 0.1352 0.0352 0.1046 0.0201 0.0159 0.0170 0.0203 
 1 0.0181 0.0219 0.0135 0.0175 0.0156 0.0144 0.0121 0.0114 

50000 0 0.0149 0.0431 0.0094 0.0207 0.0041 0.0037 0.0059 0.0088 
 0.001 0.0368 0.1483 0.0079 0.0211 0.0049 0.0044 0.0051 0.0047 
 0.1 0.0070 0.0147 0.0039 0.0073 0.0027 0.0024 0.0035 0.0064 
 1 0.0023 0.0020 0.0020 0.0016 0.0019 0.0013 0.0019 0.0013 
          
Weibull hazard, Gamma distributed unobserved heterogeneity     

  Loglikelihood AIC BIC HQIC 
# obs var(month) mean std. mean std. mean std. mean std. 

5000 0 0.2563 0.8084 0.0383 0.0643 0.0118 0.0061 0.0251 0.0160 
 0.001 0.4398 1.5500 0.1177 0.5884 0.0186 0.0046 0.0287 0.0185 
 0.1 0.1245 0.2989 0.0320 0.0829 0.0421 0.0245 0.0206 0.0182 
 1 0.0297 0.0306 0.0197 0.0174 0.0136 0.0092 0.0144 0.0100 

10000 0 0.3033 1.1682 0.0586 0.1130 0.0197 0.0104 0.0244 0.0204 
 0.001 0.3056 0.8927 0.0468 0.0990 0.0193 0.0106 0.0272 0.0403 
 0.1 0.0315 0.0382 0.0168 0.0178 0.0092 0.0070 0.0105 0.0089 
 1 0.0126 0.0140 0.0108 0.0096 0.0079 0.0058 0.0086 0.0062 

50000 0 0.0167 0.0613 0.0093 0.0093 0.0096 0.0070 0.0102 0.0077 
 0.001 0.1203 0.9850 0.0216 0.0904 0.0099 0.0077 0.0105 0.0097 
 0.1 0.0074 0.0283 0.0079 0.0274 0.0028 0.0032 0.0039 0.0047 
 1 0.0024 0.0036 0.0027 0.0036 0.0028 0.0019 0.0026 0.0022 
 
Note: 1. means are calculated among estimations that successfully found more than 1 point of support for 
unobserved heterogeneity. 2. var(month) is the variance of calendar time variation in DGP. 3. Weighted 

squared errors are calculated by 2

( )
1 ˆ
w

λ λ− , where w is the weight that is inversely proportional to the 

estimated standard error for λ̂ . 
 

between estimators and the true value in DGP. Each squared difference is weighted by 

the standard error of the estimator, such that larger standard error gives a smaller 

weight. The average is taken over trials that successfully return more than 1 point of 

support. Several observations can be made: Firstly, the average weighted squared errors 

are relatively small, for most models they are below 10%. We interpret this as a sign of 

relatively good fit. Secondly, there is also evidence that given the sample size, with 
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increased calendar variations the averaged weighted errors for baseline estimators 

decrease considerably. This is particularly visible for log likelihood estimators. For 

example, for the small sample of 5,000, constant hazard model with discrete mixture, 

when no calendar variations present, the average weighted squared error for baseline is 

0.3715. As the calendar variation being 1, the average weighted squared error is reduced 

to 0.0234. Similar pattern can be observed for Weibull model with Gamma mixture as 

well. Thirdly, large sample sizes increase the estimation precision by reducing the 

average weighted squared errors, as expected.  

 

In Appendix Figures A3-A5, we provide some plots of confidence intervals associated 

with the estimated baselines. They are just some illustrative figures from the same 

results that produce Table 4-1, 4-2, A2-1 A2-2. They give some informative views on 

how the estimation of duration dependences are affected by sample sizes and calendar 

variations embedded in the data.  

 

4. Unobserved heterogeneity 

Recall that the model is estimated with a constant term, therefore when there is no 

control for the unobserved heterogeneity, the constant represents first month hazard rate 

for an individual with x=0 in the reference calendar month. The unobserved model term 

µ  is an additive term to the constant such that in estimation, the estimated constant is 

the sum of µ and parameter for a representative individual’s hazard rate. In our 

simulation, we predetermined the constant to be log(0.1259)=-2.07233 (see above) and 

rescale the unobserved heterogeneity term accordingly. But in reality, this constant is 

never known. Therefore all estimated discrete points in models are sum of both genuine 

constants and the chosen (log) points of support.  

 

In non-parametric specification of the mixing distribution of unobserved heterogeneity, 

we evidently approximate an unknown distribution with a set of discrete mass points. 

We find it natural in our case to compare estimated moments to those in the true DGP to 

assess the quality of identification of the mixing distribution. For the convenience of 

interpretation, from estimators for points and their associated probabilities, we 
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calculated (in exponential form) first and second moments9. These facilitate the 

comparison with the true moments used in DGP. 

 

Table 7: Estimated means and standard errors of the first moment (expectation) of 
the unobserved heterogeneity distribution, exponential form. 

Constant hazard, 3 points unobserved heterogeneity      
  Loglikelihood AIC BIC HQIC 

# obs var(month) mean std. mean std. mean std. mean std. 
5000 0 0.1283 0.0170 0.1239 0.0084 0.1241 0.0075 0.1241 0.0075 

 0.001 0.1326 0.0248 0.1272 0.0182 0.1257 0.0141 0.1258 0.0140 
 0.1 0.1251 0.0151 0.1235 0.0130 0.1237 0.0133 0.1231 0.0126 
 1 0.1230 0.0145 0.1201 0.0125 0.1216 0.0126 0.1205 0.0120 

10000 0 0.1260 0.0105 0.1235 0.0062 0.1245 0.0055 0.1243 0.0053 
 0.001 0.1365 0.0919 0.1242 0.0137 0.1240 0.0111 0.1237 0.0110 
 0.1 0.1270 0.0128 0.1246 0.0096 0.1251 0.0091 0.1246 0.0091 
 1 0.1337 0.0517 0.1254 0.0145 0.1251 0.0092 0.1244 0.0090 

50000 0 0.1259 0.0065 0.1251 0.0034 0.1253 0.0028 0.1252 0.0029 
 0.001 0.1270 0.0060 0.1261 0.0043 0.1261 0.0039 0.1260 0.0040 
 0.1 0.1258 0.0049 0.1257 0.0046 0.1256 0.0042 0.1256 0.0042 
 1 0.1261 0.0052 0.1257 0.0043 0.1257 0.0041 0.1257 0.0041 
          
          
Weibull hazard, Gamma distributed unobserved heterogeneity     

  Loglikelihood AIC BIC HQIC 
# obs var(month) mean std. mean std. mean std. mean std. 

5000 0 0.1292 0.0198 0.1266 0.0144 0.1125 0.0092 0.1258 0.0073 
 0.001 0.1334 0.0298 0.1273 0.0154 0.1242 0.0245 0.1262 0.0127 
 0.1 0.1377 0.0508 0.1271 0.0151 0.1157 0.0044 0.1217 0.0097 
 1 0.1305 0.0268 0.1244 0.0122 0.1231 0.0115 0.1249 0.0119 

10000 0 0.1441 0.0796 0.1294 0.0086 0.1299 0.0057 0.1293 0.0069 
 0.001 0.1343 0.0196 0.1287 0.0115 0.1294 0.0088 0.1282 0.0096 
 0.1 0.1339 0.0251 0.1288 0.0101 0.1238 0.0080 0.1281 0.0089 
 1 0.1312 0.0103 0.1287 0.0078 0.1301 0.0079 0.1293 0.0075 

50000 0 0.1262 0.0054 0.1252 0.0033 0.1250 0.0027 0.1251 0.0027 
 0.001 0.1262 0.0084 0.1247 0.0053 0.1241 0.0047 0.1239 0.0046 
 0.1 0.1263 0.0067 0.1263 0.0097 0.1251 0.0043 0.1249 0.0043 
 1 0.1265 0.0052 0.1256 0.0045 0.1257 0.0040 0.1250 0.0041 
Note: 1. means are calculated among estimations that successfully found more than 1 point of support for 
unobserved heterogeneity. 2. var(month) is the variance of calendar month variation in DGP. 3. the true 
expectation in DGP is 0.125893. 
 

 
9 Recall that in MPH model (equation 2), v is the term for unobserved heterogeneity, and E(v)=1, 
var(v)=0.6475 (Table 1). Define y=log(v)+c, where c is the genuine constant term (-2.07233). y is then 
the point of support we acquire from estimation. In DGP, the first moment for y is (in exponential form) 
simply (exp( )) (exp(log( ) )) ( ) exp( ) 0.1259E y E v c E v c= + = = ; the second moment of y is then 

2 2 2(exp( ) ) var(exp( )) ( (exp( ))) (exp( )) var( ) 1 0.0261E y y E y c v 
 = + = + =  
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Table 7 provides the summarised results for the first moment of distribution of the 

unobserved heterogeneity for selected models. We find the high agreement between the 

estimated means and the true value in the DGP. In quite a few cases, the differences for 

expectations are less than 0.01. For the simulated parametric Gamma distributions of 

unobserved heterogeneity, the estimators acquired using by pure loglikelihood approach 

seem to be a little upwards biased. This is again probably due to the fact that 

loglikelihood finds more points for the support of the unobserved heterogeneity. There 

is not much difference with respect to which information criterion is used. The second 

moments are also well estimated as showed in Table 8. Except a few cases with 

loglikelihood, all estimations return the estimated second moments that are very close to 

the true one in DGP, with very good precision in terms of standard errors.  

 

Variation of calendar dummies does not seem to have strong impact on estimations of 

the unobserved heterogeneity. There is no firm relationship between the variation of 

calendar covariates and estimation quality from Table 7 and 8. But for the second 

moment, when sample sizes are limited, large dispersions for this estimator have been 

seen from loglikelihood estimators. When sample sizes are sufficiently large (50,000), 

all model selection criteria return reasonably good first and second moments estimators 

for the unobserved heterogeneity. 

 

To further assess the properties of non-parametric estimators on unobserved 

heterogeneity, we also provide plots for the kernel densities of estimated means (first 

moment) of unobserved heterogeneity distribution in appendix. Figures A6 and A7 

display the kernel densities of estimated means from various model selection criteria for 

sample size of 5,000. It is clear from the figures that we find again loglikelihood 

estimators have a large dispersion of distribution and long tail in the distribution. This is 

in accordance with the finding in earlier section. Figure A8 and A9 in appendix depict 

the effects of calendar variations on the estimated first moment of unobserved 

heterogeneity. Contrary to kernel densities for structure parameter estimators, it seems 

that the less calendar variation, the more concentrated the density on estimated means of 

unobserved heterogeneity is. As we plot kernel densities of estimated means for 

unobserved heterogeneities across sample sizes in Figures A10 and A11, we find large 

sample sizes do increase the precision of estimators.  The distribution of estimated 

means is more concentrated on the true value in DGP when sample size is 50,000, at 

least for discrete generated unobserved heterogeneity.  
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Table 8: Estimated means and standard errors of the second moment of the 
unobserved heterogeneity distribution.  

Constant hazard, 3 points unobserved heterogeneity      
  Loglikelihood AIC BIC HQIC 

# obs var(month) mean std. mean std. mean std. mean std. 
5000 0 0.0427 0.0364 0.0270 0.0098 0.0243 0.0032 0.0243 0.0032 

 0.001 0.0534 0.0564 0.0337 0.0235 0.0259 0.0064 0.0261 0.0064 
 0.1 0.0326 0.0228 0.0261 0.0085 0.0257 0.0061 0.0245 0.0050 
 1 0.0319 0.0251 0.0236 0.0067 0.0247 0.0061 0.0234 0.0047 

10000 0 0.0339 0.0235 0.0257 0.0027 0.0260 0.0026 0.0259 0.0026 
 0.001 0.1577 1.1199 0.0277 0.0160 0.0261 0.0054 0.0259 0.0053 
 0.1 0.0363 0.0238 0.0279 0.0088 0.0271 0.0043 0.0264 0.0053 
 1 0.1986 1.1431 0.0313 0.0445 0.0268 0.0045 0.0260 0.0040 

50000 0 0.0302 0.0173 0.0266 0.0033 0.0251 0.0012 0.0254 0.0017 
 0.001 0.0308 0.0150 0.0264 0.0037 0.0254 0.0016 0.0254 0.0016 
 0.1 0.0275 0.0050 0.0261 0.0036 0.0255 0.0018 0.0256 0.0018 
 1 0.0276 0.0066 0.0260 0.0023 0.0256 0.0018 0.0256 0.0018 
          
          
Weibull hazard, Gamma distributed unobserved heterogeneity     

  Loglikelihood AIC BIC HQIC 
# obs var(month) mean std. mean std. mean std. mean std. 

5000 0 0.0410 0.0558 0.0257 0.0335 0.0198 0.0044 0.0225 0.0034 
 0.001 0.0504 0.0903 0.0266 0.0224 0.0247 0.0091 0.0236 0.0056 
 0.1 0.1381 0.7704 0.0292 0.0301 0.0245 0.0018 0.0246 0.0042 
 1 0.0636 0.2013 0.0249 0.0078 0.0257 0.0049 0.0249 0.0052 

10000 0 0.5237 4.3580 0.0275 0.0143 0.0254 0.0027 0.0233 0.0034 
 0.001 0.0465 0.0593 0.0258 0.0137 0.0253 0.0040 0.0232 0.0048 
 0.1 0.0601 0.1904 0.0260 0.0101 0.0256 0.0038 0.0256 0.0037 
 1 0.0307 0.0129 0.0259 0.0065 0.0270 0.0033 0.0261 0.0035 

50000 0 0.0278 0.0122 0.0235 0.0047 0.0214 0.0013 0.0216 0.0021 
 0.001 0.0302 0.0217 0.0243 0.0095 0.0211 0.0020 0.0213 0.0028 
 0.1 0.0290 0.0212 0.0310 0.0543 0.0248 0.0017 0.0234 0.0021 
 1 0.0273 0.0053 0.0250 0.0035 0.0247 0.0022 0.0236 0.0024 
Note: 1. means are calculated among estimations that successfully found more than 1 point of support for 
unobserved heterogeneity. 2. var(month) is the variance of calendar month variation in DGP. 3. the true 
second moment in DGP is (rescaled) 0.026111. 
 
 

5. Calendar variations  

The calendar variations enter the hazard rate models as the time-varying covariates, and 

in our estimations, they are modelled by a set of dummies with reference to month 13. 

We also present average weighted squared errors as those for duration baseline 

estimates as a measure for estimation quality. Table 9 displays the results from trials 

that find more than 1 point of support for the mixing distribution, for constant hazard 

with 3 points mixture and Weibull hazard with Gamma mixture. The average weighted 
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errors are small and in most cases below 0.05. We interpret this as evidence for a good 

fit. Also note that the errors using information criteria estimators are considerably 

smaller than that from using pure maximum loglikelihood. This is especially the case 

for small samples. Variations of calendar time covariates certainly contribute the 

accuracy of estimators. When sample sizes increase, all estimators have little or 

negligible average weighted squared errors.  

Table 9: Average Weighted Squared Errors for calendar variation estimators.  

Constant hazard, 3 points unobserved heterogeneity      
  Loglikelihood AIC BIC HQIC 

# obs var(month) mean std. mean std. mean std. mean std. 
5000 0 - - - - - - - - 

 0.001 0.5465 1.2508 0.0168 0.0102 0.0159 0.0100 0.0161 0.0101 
 0.1 0.0685 0.2298 0.0174 0.0098 0.0173 0.0089 0.0171 0.0087 
 1 0.0234 0.0365 0.0225 0.0121 0.0226 0.0121 0.0223 0.0120 

10000 0 - - - - - - - - 
 0.001 0.2410 1.2267 0.0101 0.0081 0.0100 0.0080 0.0100 0.0080 
 0.1 0.0615 0.1352 0.0085 0.0060 0.0086 0.0062 0.0085 0.0061 
 1 0.0181 0.0219 0.0099 0.0048 0.0099 0.0047 0.0098 0.0047 

50000 0 - - - - - - - - 
 0.001 0.0368 0.1483 0.0016 0.0012 0.0015 0.0012 0.0015 0.0012 
 0.1 0.0070 0.0147 0.0017 0.0009 0.0017 0.0009 0.0017 0.0009 
 1 0.0023 0.0020 0.0021 0.0009 0.0021 0.0009 0.0021 0.0009 
          
Weibull hazard, Gamma distributed unobserved heterogeneity     

  Loglikelihood AIC BIC HQIC 
# obs var(month) mean std. mean std. mean std. mean std. 

5000 0 - - - - - - - - 
 0.001 0.4398 1.5500 0.0151 0.0116 0.0231 0.0078 0.0156 0.0117 
 0.1 0.1245 0.2989 0.0144 0.0063 0.0129 0.0039 0.0135 0.0049 
 1 0.0297 0.0306 0.0193 0.0092 0.0191 0.0090 0.0191 0.0092 

10000 0 - - - - - - - - 
 0.001 0.3056 0.8927 0.0071 0.0043 0.0066 0.0040 0.0070 0.0043 
 0.1 0.0315 0.0382 0.0074 0.0034 0.0080 0.0044 0.0075 0.0035 
 1 0.0126 0.0140 0.0102 0.0045 0.0102 0.0046 0.0103 0.0045 

50000 0 - - - - - - - - 
 0.001 0.1203 0.9850 0.0016 0.0012 0.0015 0.0012 0.0015 0.0012 
 0.1 0.0074 0.0283 0.0016 0.0009 0.0016 0.0009 0.0016 0.0008 
 1 0.0024 0.0036 0.0019 0.0008 0.0019 0.0008 0.0019 0.0008 
Note: 1. means are calculated among estimations that successfully found more than 1 point of support for 
unobserved heterogeneity. 2. var(month) is the variance of calendar time variation in DGP. 3. Weighted 

squared errors are calculated by 2

( )
1 ˆ
w

λ λ− , where w is the weight that is inversely proportional to the 

estimated standard error for λ̂ . 
 

The estimated hazard rates for each calendar time dummy conditional on observed 

covariates and unobserved heterogeneity have also particular empirical interpretations. 
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These estimated monthly hazard rates characterise the business and seasonal cycle 

conditions, as Gaure and Røed (2003) point out. As suggested earlier, the information 

on labour market conditions during the elapsed time of active spells would contribute to 

the identification of unobserved personal characteristics. Consequently, ignoring such 

information would probably result in ineffective control for bias on the structural 

parameters due to unobserved heterogeneity.  

 

Figure 10-1: Kernel densities of estimated β with and without calendar variations. 
Constant hazard, 3 points mixture, 5,000 individuals, var(month)=0.1 in DGP. 

 

Constant hazard, 3 points mixture
x

 with calendar variation  without calendar variation

.5 1 1.5 2 2.5

0

 
To see the consequences of ignoring calendar time variations, we plot the kernel 

densities of estimated β  from maximum loglikelihood estimations with and without 

covariates of calendar variations in Figures 10-1 and 10-2. As clearly seen from the 

figures, distributions of estimated β  when the calendar variations are ignored have a 

wider dispersion and heavier tails. With calendar variations, estimators are more 

concentrated on the true value 1. This pattern is seen for both constant hazard and 

Weibull hazard models, which we regard as additional evidence for our proposition on 

the roll of calendar time variations in control of unobserved heterogeneity.  
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Figure 10-2: Kernel densities of estimated β with and without calendar variations. 
Weibull hazard, Gamma mixture, 5,000 individuals, var(month)=0.1 in DGP. 
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5. Discussions 

Our findings from the Monte Carlo studies on the non-parametric estimation of single 

risk duration models with unobserved heterogeneity can be summarised as following: 

Firstly, the mixed proportional hazard rate model can be reasonably well estimated with 

non-parametric specifications on both duration dependence and distribution of 

unobserved heterogeneity. In most of the model estimations, the recovery of the true 

model parameters is rather satisfactory. This can be viewed from e.g. Table 510. 

Secondly, there is evidence that inclusion of time-varying covariates, e.g. in the form of 

calendar time variations can considerably increase the identifiability of the model 

components. We have seen that inclusion of large calendar variations has contributed to 

the estimations on both duration dependence and the structural parameter. Thirdly, 

 
10 In Appendix tables A4-A8, we provide results for constant hazard model with Gamma distributed 
unobserved heterogeneity, as well as Weibull hazard model with 3 points discrete mixing distribution. We 
report statistics for estimated structural parameter, as well as estimated first and second moments for the 
unobserved heterogeneity mixing distributions. They show the same patterns as we have seen in Table 5, 
7 and 8. Our conclusions are thus robust with respect to mixed proportional hazard rate models with 
different combinations of duration dependences and unobserved heterogeneity distributions.  
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when sample sizes are small, it is observed that pure maximum likelihood estimators 

tend to overestimate the absolute sizes of the structure parameters as well as the 

dispersions of the distribution of unobserved heterogeneity. It is sensible in this case to 

adopt some form of information criteria to penalise excessive points found by 

likelihood. We find some evidence in favour of Akaike’s Information Criterion, but in 

some cases the Bayesian Information Criterion and the Hannan-Quinn Information 

Criterion seem to perform better. When sample sizes are sufficiently large, maximum 

likelihood and maximum penalised likelihood tends to converge to each other.  

 

Our results show that in non-parametric estimation of the hazard rate model, the number 

of support points included in the unobserved heterogeneity distribution seems to have a 

substantial impact on the estimators of other model components. Less points means 

failing to sufficiently control for the unobserved heterogeneity; on the other hand more 

points than “necessary” means an excessive control, which we have showed could 

produce disturbance on the estimation of the structural model parameters as well. Thus 

the key task in such non-parametric estimation is to find the optimal number of support 

points for the unknown mixing distribution so that the impact of uncontrolled 

unobserved heterogeneity on other model components can be eliminated as much as 

possible. 

 

The fact that pure maximum likelihood tends to find excessive points of support of the 

mixing unobserved heterogeneity distribution might be an indication of the flatness of 

the loglikelihood function around the potential maximum. In some cases, it seems that 

even though the change for likelihood function value from iteration to iteration is 

minimal, there is still room for an extra point with extremely small probability to barely 

increase the likelihood function value. These points presumably lie at the tails of 

distribution and do not provide significant information in identification of the 

distribution. Nevertheless, such excessive points have showed to produce distortions on 

estimation of other model components. Since uncontrolled unobserved heterogeneity 

bias the duration dependence downwards and structure parameters towards zero, it is 

not surprising that excessive control would bias the estimators away from zero. Our 

results above show that at least for small samples, it seems to be the case that maximum 

likelihood has the tendency to produce such positive bias on the structure parameters. 

This is in accordance with the findings of Baker and Melino (2000). They find that 

Heckman and Singer’s non-parametric maximum likelihood approach produces quite 
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large bias on estimators of structure term, which not only diminishes very gradually 

with sample sizes, but also has the direction away from zero. This positive bias seems 

less dramatic in our case.  

 

Maximum penalised likelihood operates as a safeguard against excessive control on 

unobserved heterogeneity. Given the maximum fit of the data, the choice of pure 

maximum likelihood versus maximum penalised likelihood is essentially to find a 

balance point between maximal overall fit and reliable recovery of duration dependence 

and structure parameters. Our results have showed that for small samples, it is of 

particular importance to control the estimations with information criteria such as AIC, 

BIC and HQIC. Baker and Melino (2000) find that HQIC performs well, and BIC is 

virtually not different from HQIC. We find that BIC and HQIC seem to put too much 

weight on the sample sizes and have the restrictive tendency for allowing an additional 

point. In our cases, AIC seems to be a balanced choice between pure maximum 

likelihood and BIC and HQIC. Our finding confirms the suggestion of Huh and Sickles 

(1994) that the maximum likelihood estimators and maximum penalised estimators 

converge to each other when sample size is large.  

 

The utilisation of time-varying calendar variation shows to be a novel approach in 

facilitating the identification of unobserved heterogeneity. Although the mixed 

proportional hazard rate model is identified even without the time-varying calendar 

variation, the inclusion of such calendar variations has showed to increase the 

identifiability of structural model parameters. The unobserved heterogeneity represents 

in the traditional econometric sense the omitted regressors. Without taking account of 

the calendar time when the spell starts and undergoes, the calendar variations are 

implicitly included in the unobserved heterogeneity terms as omitted regressors.  This 

implies further that by modelling explicitly the calendar time variations, we in effect 

have controlled a substantial part of the unobserved heterogeneity, and the larger the 

calendar variations are, the less the uncontrolled population heterogeneity is. Our Monte 

Carlo results have showed the improvement of the estimations through calendar time 

variations.  

  

We characterise the calendar time variation as a data-based identification source. The 

potential of such data based identification has not yet seen many applications. This is of 

particular empirical relevance, because in applied research, the calendar variation is 
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easily acquirable. Our results indicate that when data quantity is small, it is less 

informative for a precise estimation of model components solely based on the 

proportional assumption. Therefore inclusion of calendar variation as an additional 

source for identification of unobserved heterogeneity can be helpful for empirical 

inference based on duration data.  

  

Another implication of our results on approximation of unknown distribution of 

unobserved heterogeneity can be thought of as following: since the unobserved 

heterogeneity is a nuisance parameter, it is of less importance that the exact number and 

location of mass points can be retrieved. Rather, the emphasis should lie on the correct 

control for this nuisance parameter’s distribution so that bias on other parameters of 

interests can be minimised. Heckman and Singer (1984, pp. 309) have argued that “… 

Imposing a false, but very flexible, mixing distribution may not cause much bias in the 

estimates of the structural coefficients.” In our models, e.g. when loglikelihood gives a 

5 mass points finite distribution which involves 9 independent parameters to 

characterise the mixture, it should provide a more accurate approximation than the usual 

2 parameters parametric distributions such as Gamma. Our results show that at least the 

first and second moments of unknown mixing distribution can be well estimated by 

non-parametric maximum likelihood. This we believe has more relevance than 

estimators of mass point location and probabilities themselves. Some previous empirical 

attempts in estimation of hazard rate model with non-parametric specification of 

unobserved heterogeneity (e.g. Richardson and van den Berg(2002), Lalive et al (2002)) 

typically assume a two-points mass points distribution with associated probabilities and 

estimate the model taking these two points as parameters. They also interpret estimators 

of these two points as values of two types of individuals that differ in e.g. productivity. 

Our finding suggests that it is generally not sensible to interpret any estimates as such, 

not to mention that the two points “parametric assumption” may not produce sufficient 

approximation for the true mixture. Instead, we suggest that the most important 

objective of minimising the spurious duration dependence and biases on structure 

parameters of real interests can be achieved by using a non-parametric approach. 

  

We have showed that our main model components of mixed proportional hazard model: 

the duration dependence, the structure parameter and the mixing distribution of 

unobserved heterogeneity, as well as the time-varying calendar variations, can, in most 

of the cases, be estimated with negligible bias. Since asymptotic properties of the non-
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parametric maximum likelihood estimators are unclear, it is difficult to apply known 

statistic tests for overall performances of our models. Therefore we choose a somewhat 

direct approach to assess the overall performance of non-parametric estimation. This is 

simply done by in-sample and out-of-sample prediction of distributions for spell 

duration. To be concise of presentation, we only report results for Weibull hazard with 

Gamma distributed unobserved heterogeneity, and the calendar variation is fixed to be 

0.1. Sample size is fixed at 5,000 individuals. 

 

The in-sample prediction is done in the following way: For each sample used in 

estimation, we only keep the distribution of X and calendar time when each spell starts. 

We then for each individual calculate the predicted spell duration according to equation 

(5*), but using estimated parameters (from the estimation on this sample) instead of true 

parameters used in DGP. Both maximum likelihood estimators and maximum penalised 

likelihood estimators for baseline hazard rates, structure parameter β , and estimators 

on calendar variations are used (for each estimation, we have acquired 4 sets of 

estimators). The unobserved heterogeneities are simulated from the estimated 

distribution. For 100 samples of estimation data, we thus acquire 400 new predicted 

samples.  The out-of-sample prediction is done similarly: we first simulate a fresh set of 

100 samples using the same DGP as before. Then by only keeping the distribution of 

X and start calendar time of each spell, using the same estimators as we acquired from 

previous estimations and used in in-sample predictions, we have made predictions of 

spell durations the same way as in in-sample prediction.  We have then 100 fresh 

samples and 400 samples from the out-of-sample prediction. 

 

Table 10 reports the cumulative distributions of durations from the estimation data, and 

from the in-sample and the out-of-sample predictions. We observe that the cumulative 

distributions of spell duration from resimulated data using maximum likelihood 

estimators fits the original data very well. The same is also true for the predictions made 

from maximum penalised likelihood estimators. The cumulative frequencies are 

virtually the same for both maximum likelihood and maximum penalised likelihood. 

Even for fresh sample prediction, the agreement is very high. We regard this as a strong 

evidence of overall goodness of fit.  
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Table 10: Cumulative frequencies of spell lengths for fitted Weibull hazard model 
with Gamma distributed unobserved heterogeneity. Obs=5,000, var(month)=0.1. 

Duration Estimation data Loglikelihood AIC BIC HQIC 
1 19.43 20.57 19.35 19.53 19.37 
2 32.47 33.72 32.36 32.53 32.38 
3 42.25 43.43 42.24 42.42 42.23 
4 50.13 51.17 50.09 50.23 50.13 
5 56.66 57.58 56.69 56.74 56.67 
6 62.22 63.04 62.25 62.32 62.21 
7 67.05 67.76 67.15 67.20 67.07 
8 71.18 71.80 71.31 71.37 71.22 
9 74.61 75.12 74.71 74.73 74.58 

10 77.74 78.13 77.80 77.83 77.64 
11 80.53 80.88 80.57 80.65 80.44 
12 100 100 100 100 100 

      
Duration Fresh data loglikelihood AIC BIC HQIC 

1 19.39 20.58 19.35 19.40 19.44 
2 32.40 33.76 32.41 32.46 32.47 
3 42.22 43.50 42.27 42.29 42.26 
4 50.03 51.23 50.21 50.13 50.14 
5 56.58 57.64 56.72 56.61 56.64 
6 62.19 63.07 62.31 62.26 62.25 
7 67.10 67.80 67.24 67.17 67.17 
8 71.19 71.81 71.33 71.31 71.31 
9 74.64 75.14 74.70 74.68 74.65 

10 77.76 78.17 77.78 77.79 77.75 
11 80.54 80.87 80.59 80.58 80.57 
12 100 100 100 100 100 

      
Note: 1. duration  is measured in month. 2. numbers are cumulative percentage of frequencies. 3. numbers 
in first panel are calculated based on estimators acquired from diverse model selection criteria, for all  
estimation samples. 4. numbers in second panel are calculated based on fresh-generated samples. 
 

6. Competing risks model 

 

We now briefly turn our attention to the more complex competing risks model. 

Identification of duration baselines and unobserved heterogeneity has proven to be more 

challenging in competing risks models. In this section, we extend our model 

specification for single risk model of mixed proportional hazard rate for grouped hazard 

to a two-state competing risks model and apply the non-parametric specification for 

both duration dependence and unobserved heterogeneity.  

 

Identification of the competing risks model has also been a focal point in hazard rate 

model literature, for example Heckman and Honoré (1989), McCall (1997) and Abbring 
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and van den Berg (2003), to name a few. If the unobserved heterogeneity terms 

involved in the e.g. two competing transitions are independent, it is straightforward to 

estimate the competing risks model as two independent single risk models, provided 

that the issue of discrete durations is disregarded. However in general, there is no 

justification that these two competing risks are independent. Therefore we will have a 

dependent competing risks case in that the underlying unobserved variables for each 

competing state are correlated. Abbring and van den Berg(2003) have proved that under 

proportionality and some regularitory assumptions, the dependent competing risks 

model is non-parametrically identified. Here we also invoke our earlier results that the 

inclusion of time-varying explanatory variables may contribute to the identification. The 

argument for this is similar to that of single risk case: given the assumption that the 

unobserved heterogeneity does not change over the spell length, the lagged explanatory 

variables represent the variations of unobserved heterogeneity in the earlier stage of the 

spell, so that the effect of the unobserved heterogeneity on current stage hazard rate can 

be captured by these. Other variables only have causal impacts on the transition rates in 

current stage.  

 

We consider two possible transitions from origin state 0, and denote these two states be 

1 and 2. In practice, we can regard the spell to be unemployment, and transitions can be 

thought of as e.g. either to job or to labour market programmes. Let 1θ  and 2θ  denote 

underlying hazard rates associated with transitions 1 and 2, which satisfy 

proportionality assumptions. Let 1X  and 2X denote the respective observed 

heterogeneities. It is possible that 1X  and 2X  have different components.  Further, let 

1v  and 2v be the unobserved heterogeneities associated to transitions 1 and 2 

respectively. The overall survival function for spell within interval [ 1, ]d d−  

(probability that no transition has occurred during [ 1, ]d d− ) is that  

1

exp ( ) ,  for 1,2.
d

k
k d

d kθ τ τ
−

 
− = 
 
∑ ∫  

By using the same non-parametric specification for both duration baseline and 

unobserved heterogeneity, the state-specific transition probability can be written as: 

(10) 
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k dk kt k k kk

dk kt k k k

dk kt k k kk

h d t x µ λ σ β µ

λ σ β µ
λ σ β µ

= − − + + +

+ + +
×

+ + +

∑

∑

X

X
X

 



 54

for 1,2k = . The overall likelihood function can be then specified similarly as in 

equations (8) and (9).  For individual i, the individual likelihood for transition k (k=1,2) 

is given by, 

(11) ( ) ( )1
1

( , , , ) 1 ( , , , )
ik ikt

ikt ikt
d y

y y
ik ik ik i ik k ik i ik k

s

L h d t x h s t xµ µ
−

−

=

= ⋅ −∏  

where yikt is the censoring indicator which equals to 1 if a transition to k is realised, and 

zero otherwise. The overall likelihood is then given by, 

(12) 
1 11 1

| ,    1
N kW W

l ij l l
l li j

L q L qµ
= == =

= =∑ ∑∏ ∏  

1 2( , )l l lµ µ µ=  is the vector of unobserved heterogeneities associated with transitions 1 

and 2. Here we assume that unobserved variables have a discrete distribution with W 

different mass points, ql is the probability of a particular combination of unobserved 

variables.  

 

The Data Generating Process (DGP) is done similarly as in single risk case in section 3. 

We simulate a two-state mixed proportional hazard model, only consider the case of no 

duration dependence. The baseline hazard rates for transition 1 and 2 are simply 0.1259 

and 0.0629. There is only one time-invarying dummy covariate in each hazard rate with 

0.6 probability for x=1, and coefficients 1 and 0.5 respectively for transitions 1 and 2. 

 

The calendar time variations are simulated from 2(0, )N σ . We consider the 

combination of three calendar time variations: no calendar time; a small variation case 

that the variances of the calendar time for transition 1 and 2 are 0.1 and 0.05; a large 

variation case with variances 1 and 0.5.   

 

To simulate the dependence between unobserved heterogeneity terms associated with 

two competing hazard rates, we choose without lost of generality to simulate jµ directly 

instead of simulating vj and taking logarithm afterwards. For the sake of simplicity, we 

simulate a bivariate normal distributed 1µ and 2µ . To do that, we first simulate 

independently two variables 1µ  and u  from standard normal distribution N(0,1).  2µ  is 

then defined by  
2

2 1 2 2,   ( ) 0,   ( ) 1,  for a suitable constant a u E Var a aµ µ µ µ= + = = + . 
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The covariance and correlations coefficient between 1µ and 2µ can then be derived in 

terms of a:  

1 2 2
( , ) ,   

1
aCov a

a
µ µ ρ= =

+
.  

by choosing 1a = , we have then a bivariate normal distributed 1µ and 2µ with 

1 2( , ) (0,0,1,2,0.70)Nµ µ ∼ . 

 

We consider two sample sizes with 10,000 and 50,000 individuals. All in all we have 6 

models (2 sample sizes, 3 calendar variations), and with 100 repetitions, we have 600 

samples for estimation.  

 

Most of our previous findings still hold for competing risks case. For expository 

reasons, we only report estimated means and standard errors for structure parameters 1β  

and 2β . We also put our focus on how calendar variation affects identification of 1β  

and 2β . Table 11 reports means and standard errors of estimated 1β  and 2β  for sample 

sizes 10,000 and 50,000, across 100 trials. It is encouraging to see that even for small 

samples with no time-varying calendar variation, the maximum likelihood still give 

reliable estimator for transition 1. When the calendar variation increases, the precisions 

of estimators are largely improved. However, maximum penalised likelihood estimators 

seem to be overly cautious in competing risks case, especially BIC estimators display a 

strong negative bias. For transition 2, we find that the quality of estimations is not as 

good as transition 1. It is not surprising since in DGP we deliberately fix the calendar 

time variation for transition 2 to be half of that of in transition 1. Lack of or low 

calendar time variation seems to be the reason for less accurate identification of 

structure parameters for transition 2. When the calendar time variation is at its largest, 

2β  for transition 2 can nevertheless be reasonably well estimated by loglikelihood, AIC, 

HQIC, but not BIC. It seems to be advisable to avoid using BIC in competing risks 

cases. 

 

Increased sample sizes certainly improve the precisions of estimators. The second panel 

in Table 11 reports results for estimations on samples of 50,000 individuals. The results 

again confirm our proposition that inclusion of time-varying covariates in the form of 

calendar time variation increases identifiability of structure terms of the model. When 

the variation is large, even BIC can reproduce the structure parameters reasonably well. 
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Also with large calendar variation, dispersion of estimators is reduced accordingly, 

given sample sizes. In Appendix Figures A13-1 and A13-2, we plot the kernel densities 

of estimated 1β  and 2β , across degree of calendar time variations for samples of 10,000 

individuals. 

Table 11:  Estimated means and standard errors of 1̂β  and 2β̂ .  

 loglikelihood AIC BIC HQIC 
Transition 1, 1 1β =  mean std. mean std. mean std. mean std. 
obs=10000 var=0 1.0057 0.1528 0.9130 0.0800 0.9624 0.0566 0.9013 0.0519 
 var=0.1 1.0499 0.1374 0.9503 0.1085 0.9189 0.0810 0.8984 0.0540 
 var=1 1.0343 0.0624 1.0077 0.0599 0.8586 0.0564 0.9528 0.0673 
Transition 2, 2 0.5β =          
obs=10000 var=0 0.4104 0.1896 0.3497 0.0926 0.1260 0.0479 0.2785 0.1016 
 var=0.05 0.4934 0.1831 0.3993 0.1177 0.2905 0.1131 0.3142 0.0849 
 var=0.5 0.5080 0.0779 0.4824 0.0738 0.3559 0.0565 0.4300 0.0840 
          
          
 loglikelihood AIC BIC HQIC 
Transition 1, 1 1β =  mean std. mean std. mean std. mean std. 
obs=50000 var=0 0.9431 0.0966 0.8930 0.0651 0.8522 0.0243 0.8581 0.0303 
 var=0.1 0.9845 0.0585 0.9476 0.0572 0.8624 0.0219 0.8889 0.0421 
 var=1 0.9889 0.0281 0.9826 0.0280 0.9399 0.0359 0.9672 0.0269 
          
Transition 2, 2 0.5β =          
obs=50000 var=0 0.4148 0.0924 0.3736 0.0711 0.3179 0.0457 0.3332 0.0345 
 var=0.05 0.4690 0.0786 0.4315 0.0705 0.3223 0.0410 0.3697 0.0549 
 var=0.5 0.4799 0.0295 0.4715 0.0295 0.4308 0.0415 0.4575 0.0270 

Note: var=0 means the calendar time variation is 0 (none). var=0.1 means the variance for calendar time 
variation is 0.1, etc. 
 
 

We see from the plots that the larger the calendar time variation is, the more 

concentrated the kernel densities are on the true parameter values. This holds for both 

estimators of 1β  and 2β . Note also that although BIC estimates 2β  with negative bias, 

the larger the calendar time variation is, the smaller the bias is. In any case, there is 

some evidence that time-varying calendar time variation improves identification of 

structure parameters in competing risks cases.  

 

The distribution of bivariate normally distributed unobserved heterogeneity is however 

not very well estimated comparing to those in the single risk cases. Table 12 lists 

estimated means and standard errors for 1µ  and 2µ , comparing with those in DGP. The 

point estimators are somewhat less accurate. We also plot the distribution of estimated 

first moments for transitions 1 and 2 in Appendix. A surprising finding is that larger 
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calendar time variation does not seem to help in estimation of unobserved 

heterogeneity. From Appendix Figures A14-1 and A14-2, we find that the best results 

are found with moderate calendar variations,(var=0.1 for transition 1 and var=0.05 for 

transition2). This phenomenon is also observed with large sample experiments (not 

showed here). We do not have an explanation for this at the moment, but it would 

certainly remain for future research. 

Table 12:  Estimated means and standard errors of 1ˆ( )E µ  and 2ˆ( )E µ .  

 loglikelihood AIC BIC HQIC 
 mean std. mean std. mean std. mean std. 

Transition 1, 1 0.2093µ =       
obs=10000 var=0 0.1822 0.0320 0.1746 0.0116 0.1596 0.0049 0.1721 0.0086 
 var=0.1 0.2472 0.0806 0.2217 0.0503 0.2026 0.0157 0.2110 0.0162 
 var=1 0.1814 0.0708 0.1576 0.0286 0.1492 0.0144 0.1481 0.0216 
        

Transition 2, 2 0.1659µ =       
obs=10000 var=0 0.1469 0.0392 0.1309 0.0119 0.1348 0.0060 0.1300 0.0063 
 var=0.05 0.2179 0.0952 0.1777 0.0329 0.1619 0.0259 0.1681 0.0176 
 var=0.5 0.1245 0.0974 0.1016 0.0281 0.0844 0.0127 0.0923 0.0185 
          
          
 loglikelihood AIC BIC HQIC 

 mean std. mean std. mean std. mean std. 
Transition 1, 1 0.2093µ =       

obs=50000 var=0 0.1954 0.0219 0.1860 0.0093 0.1817 0.0040 0.1817 0.0045 
 var=0.1 0.2696 0.0824 0.2449 0.0341 0.2215 0.0081 0.2268 0.0143 
 var=1 0.2148 0.1156 0.1622 0.0200 0.1541 0.0082 0.1582 0.0173 
          

Transition 2, 2 0.1659µ =       
obs=50000 var=0 0.1452 0.0246 0.1339 0.0088 0.1294 0.0032 0.1292 0.0035 
 var=0.05 0.2288 0.0788 0.1970 0.0344 0.1695 0.0090 0.1776 0.0169 
 var=0.5 0.1292 0.0995 0.1022 0.0175 0.0946 0.0074 0.0973 0.0135 

Note: var=0 means the calendar time variation is 0 (none). var=0.1 means the variance for calendar time 
variation is 0.1, etc. 
 

7. Conclusions 

 

We have conducted extensive Monte Carlo experiments on non-parametric estimation 

of mixed proportional hazard rate models. The hazard rate is modelled with a 

complementary log-log formulation such that it has the flexibility to cope with arbitrary 

functional form of underlying hazard rate. We also simulate both parametrically and 

non-parametrically the duration dependence and unobserved heterogeneity. By utilising 

newly available computational power, we are able to estimate the mixed proportional 

hazard model with totally non-parametric fashion. 
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In addition to established identification results, we utilise the calendar time variation in 

hazard rates that is not perfectly correlated to spell durations, as an additional source in 

identification of unobserved heterogeneity. The intuition behind this is the idea that the 

history of the elapsed spells (in terms of previous hazard rates) could provide valuable 

information about population heterogeneity. By comparing estimation results from 

models with and without calendar time variation, we find that inclusion of calendar time 

variation as lagged explanatory variables improves identifiability of model parameters.  

 

In most of our experiments, models with non-parametric specifications of both duration 

dependence and unobserved heterogeneity can be well estimated. This includes all 

model terms: duration dependence, distribution of unobserved heterogeneity (in terms 

of first and second moments), and covariates. We’ve also conducted some limited 

experiments on bivariate competing risks model. Our Monte Carlo results show that the 

conclusions on single risk models can be extended to competing risks models. Again, 

we find positive evidence that calendar time variation contributes to control the 

population heterogeneity, hence minimise the potential bias on structure parameters and 

duration dependence.  

 

The non-parametric control of unobserved heterogeneity shows to be successful in most 

of our simulated analysis. The unknown mixing distribution, being finite discrete 

distributions or parametric family distributions, can be approximated by discrete masse 

points distribution. We find at least the first and the second moments of unknown 

distribution can be estimated with negligible biases, especially for single risk model 

cases. Our results advocate the application of Heckman and Singer’s non-parametric 

approach in estimation of mixed proportional hazard model. However, we find that even 

though the data is generated with discrete distribution, our estimation in general does 

not return the same number of points. Rather, our estimation returns the correct 

moments of such discrete distribution. Therefore, we do not find the support for 

interpretation of such estimated supports, which we have seen in several empirical 

applications.  

 

We find the sample size matters for the optimal choice of model. When sample size is 

small, or the variation of calendar time covariates is small or none, the maximum 

likelihood tends to overparameterise the mixing distribution by finding excessive mass 
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points. This in turn produces bias away from zero on structure parameters and positive 

duration dependence bias. Our finding is in concord with that of Baker and Melino 

(2000), but much less dramatic. When sample size is increased and/or variation of 

calendar time is sufficiently large, the bias diminishes rapidly.  

 

In the case of small samples, our findings suggest the use of maximum penalised 

likelihood. We have evaluated several popular information criteria in penalising the 

excessive points and find that Schwarz’s Bayesian Information Criterion seems to be 

conservative to additional points and tend to underestimate the structural parameters, 

while Akaike’s Information Criterion seems to be most balanced one between 

maximum likelihood and maximum penalised likelihood with other information criteria 

such as Hannan-Quinn Information criterion. We find in most cases that AIC is the 

recommended choice for maximum penalised likelihood. Nevertheless, when sample 

size is sufficiently large, maximum likelihood and maximum penalised likelihood 

converge to each other and choice of information criteria is of less importance. 

 

Our findings have particular empirical relevance, because our simulation setting is 

based on the properties of observational data and sampling practice. With more 

accessible register-base data and advances of computational capacity, utilisation of data 

in non-parametric estimation of mixed hazard rate model can become a common 

practice in applied labour research.  

 

It is important to emphasize that totally non-parametric specification of mixed 

proportional hazard model inevitably introduces significantly large amount of 

parameters in estimation, hence the computational burden sometimes seems 

insurmountable and the use of such flexible modelling might seem unattractive from a 

cost-benefit point of view. Since the likelihood function is not globally concave, ad hoc 

methods are needed to judge the maximum. To date, it still remains a challenge to find 

an effective way of determining global maximum in non-concave likelihood 

optimisation. Also, the asymptotic properties of non-parametric maximum likelihood 

estimators remain to be explored in further research.  The non-parametric estimation 

and properties of such estimators for dependent competing risks model are also 

challenging subjects for future investigations. 
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Appendix 

Table A1-1 Constant hazard, 3 mass points distributed unobserved heterogeneity, 10,000 individuals. 

model obs points # parameter loglikelihood AIC BIC HQIC β̂  std 
Constant Hazard 62177 1 1 -20962.0016 -20963.0016 -20967.5204 -20964.4029 0.5765 0.0253
Var(σ )=0 62177 2 3 -20925.3318 -20928.3318 -20941.8884 -20932.5357 0.8630 0.0468
 62177 3 5 -20896.3318 -20901.3318 -20923.9261 -20908.3384 1.0470 0.0469
 62177 4 7 -20896.0052 -20903.0052 -20934.6373 -20912.8144 1.0451 0.0557
 62177 5 9 -20896.0100 -20905.0100 -20945.6798 -20917.6218 1.0449 0.0845

model obs points # parameter loglikelihood AIC BIC HQIC β̂  std 
Constant Hazard 51493 1 1 -17933.8436 -17934.8436 -17939.2682 -17936.2277 0.6192 0.0273
Var(σ )=0.001 51493 2 3 -17904.9660 -17907.9660 -17921.2398 -17912.1183 0.9027 0.0516
 51493 3 5 -17887.7413 -17892.7413 -17914.8643 -17899.6617 1.0458 0.0551
(1) 51493 4 7 -17887.3836 -17894.3836 -17925.3558 -17904.0723 1.0304 0.0598

model obs points # parameter loglikelihood AIC BIC HQIC β̂  std 
Constant Hazard 54873 1 1 -18005.4370 -18006.4370 -18010.8933 -18007.8269 0.6408 0.0279
Var(σ )=0.1 54873 2 3 -17980.0437 -17983.0437 -17996.4128 -17987.2135 0.9104 0.0560
 54873 3 5 -17966.5309 -17971.5309 -17993.8129 -17978.4806 1.0120 0.0576
(2) 54873 4 7 -17965.7898 -17972.7898 -18003.9845 -17982.5193 1.0092 0.0614

model obs points # parameter loglikelihood AIC BIC HQIC β̂  std 
Constant Hazard 31875 1 1 -14188.2544 -14189.2544 -14193.4392 -14190.5933 0.6899 0.0245
Var(σ )=1 31875 2 3 -14052.9035 -14055.9035 -14068.4579 -14059.9201 0.9046 0.0343
 31875 3 5 -14031.3681 -14036.3681 -14057.2920 -14043.0624 1.0013 0.0387
 31875 4 7 -14032.7800 -14039.7800 -14069.0736 -14049.1522 1.0364 0.0457
 
Note: 1. Number of observation listed in table is number of monthly observation is estimation data. 2. Var(σ ) is variance of calendar month in simulation.  
3. Number of parameters is free parameters associated with unobserved heterogeneity. (1) indicates iteration terminates when near zero probability on added  
point is encountered.  (2) indicates numerical difficulty prevents further search of mass points.  
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Table A1-2 Weibull hazard, Gamma distributed unobserved heterogeneity, 10,000 individuals. 

model obs points # parameter loglikelihood AIC BIC HQIC β̂  std 
Weibull Hazard 60763 1 1 -21145.3042 -21146.3042 -21150.8116 -21147.7034 0.7482 0.0254
Var(σ )=0 60763 2 3 -21128.8475 -21131.8475 -21145.3696 -21136.0452 0.9633 0.0553
 60763 3 5 -21122.2988 -21127.2988 -21149.8356 -21134.2950 1.0448 0.0588
 60763 4 7 -21121.5678 -21128.5678 -21160.1194 -21138.3625 1.0539 0.0847
(1) 60763 5 9 -21120.6688 -21129.6688 -21170.2351 -21142.2619 1.0561 0.0741

model obs points # parameter loglikelihood AIC BIC HQIC β̂  std 
Weibull Hazard 49577 1 1 -18399.4842 -18400.4842 -18404.8898 -18401.8648 0.7663 0.0270
Var(σ )=0.001 49577 2 3 -18398.5146 -18401.5146 -18414.7315 -18405.6564 0.7659 0.0329
 49577 3 5 -18378.6182 -18383.6182 -18405.6464 -18390.5211 0.9704 0.0513
 49577 4 7 -18377.4539 -18384.4539 -18415.2934 -18394.1181 0.9890 0.0727

 49577 5 9 -18377.6288 -18386.6288 -18426.2796 -18399.0541 0.9878 0.0993

model obs points # parameter loglikelihood AIC BIC HQIC β̂  std 
Weibull Hazard 57146 1 1 -17161.4105 -17162.4105 -17166.8871 -17163.8041 0.7713 0.0299
Var(σ )=0.1 57146 2 3 -17154.7222 -17157.7222 -17171.1523 -17161.9032 0.9483 0.0605
 57146 3 5 -17154.1197 -17159.1197 -17181.5031 -17166.0879 0.9432 0.0626

 57146 4 7 -17153.7483 -17160.7483 -17192.0850 -17170.5038 0.9500 0.0742
(2) 57146 5 9 -17153.6975 -17162.6975 -17202.9876 -17175.2403 0.9502 0.0765

model obs points # parameter loglikelihood AIC BIC HQIC β̂  std 
Weibull Hazard 57081 1 1 -16196.1120 -16197.1120 -16201.5881 -16198.5055 0.8301 0.0292
Var(σ )=1 57081 2 3 -16178.1004 -16181.1004 -16194.5288 -16185.2811 1.0208 0.0510
 57081 3 5 -16174.0864 -16179.0864 -16201.4669 -16186.0541 1.0424 0.0518
 57081 4 7 -16173.7278 -16180.7278 -16212.0606 -16190.4826 1.0474 0.0553
 57081 5 9 -16173.4978 -16182.4978 -16222.7828 -16195.0397 1.0514 0.0558
 57081 6 11 -16173.4186 -16184.4186 -16233.6558 -16199.7475 1.0697 0.0575
(2) 57081 7 13 -16173.2179 -16186.2179 -16244.4074 -16204.3339 1.0804 0.0587
 
Note: 1. Number of observation listed in table is number of monthly observation is estimation data. 2. Var(σ ) is variance of calendar month in simulation. 3. Number of parameters 
is free parameters associated with unobserved heterogeneity. (1) indicates iteration terminates when near zero probability on added point is encountered.  (2) indicates numerical 
difficulty prevents further search of mass points.  
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Table A2-1 Constant hazard, 3 mass points distributed unobserved heterogeneity, 50,000 individuals. 

model obs points # parameter loglikelihood AIC BIC HQIC β̂  std 
Constant Hazard 315443 1 1 -102425.1077 -102426.1077 -102431.4386 -102427.6463 0.5433 0.0114
Var(σ )=0 315443 2 3 -102244.7582 -102247.7582 -102263.7508 -102252.3739 0.8130 0.0224
 315443 3 5 -102043.6526 -102048.6526 -102075.3070 -102056.3455 1.0075 0.0206

 315443 4 7 -102040.5558 -102047.5558 -102084.8718 -102058.3259 1.0357 0.0278
 315443 5 9 -102040.8163 -102049.8163 -102097.7941 -102063.6636 1.0376 0.0358

model obs points # parameter loglikelihood AIC BIC HQIC β̂  std 
Constant Hazard 261663 1 1 -88542.7267 -88543.7267 -88548.9641 -88545.2504 0.5820 0.0123
Var(σ )=0.001 261663 2 3 -88387.7595 -88390.7595 -88406.4717 -88395.3306 0.8449 0.0247
 261663 3 5 -88222.4987 -88227.4987 -88253.6858 -88235.1173 0.9872 0.0212
 261663 4 7 -88221.5047 -88228.5047 -88265.1666 -88239.1707 1.0062 0.0318

 261663 5 9 -88220.4275 -88229.4275 -88276.5642 -88243.1409 1.0115 0.0276
 261663 6 11 -88220.4458 -88231.4458 -88289.0573 -88248.2066 1.0130 0.0411

model obs points # parameter loglikelihood AIC BIC HQIC β̂  std 
Constant Hazard 242683 1 1 -87156.5071 -87157.5071 -87162.7069 -87159.0248 0.5566 0.0119
Var(σ )=0.1 242683 2 3 -86960.4634 -86963.4634 -86979.0627 -86968.0164 0.8087 0.0212
 242683 3 5 -86770.4751 -86775.4751 -86801.4738 -86783.0633 0.9927 0.0202
 242683 4 7 -86769.1550 -86776.1550 -86812.5533 -86786.7786 1.0218 0.0286

 242683 5 9 -86767.2713 -86776.2713 -86823.0691 -86789.9302 1.0046 0.0239
 242683 6 11 -86768.4883 -86779.4883 -86836.6856 -86796.1825 1.0645 0.0454

model obs points # parameter loglikelihood AIC BIC HQIC β̂  std 
Constant Hazard 176483 1 1 -72982.9780 -72983.9780 -72989.0185 -72985.4697 0.5229 0.0109
Var(σ )=1 176483 2 3 -72312.9198 -72315.9198 -72331.0413 -72320.3947 0.7142 0.0154
 176483 3 5 -71977.8526 -71982.8526 -72008.0550 -71990.3108 0.8910 0.0179
 176483 4 7 -71909.3361 -71916.3361 -71951.6195 -71926.7775 0.9691 0.0207
 176483 5 9 -71876.6380 -71885.6380 -71931.0024 -71899.0627 1.0175 0.0218
 176483 6 11 -71876.6416 -71887.6416 -71943.0870 -71904.0495 1.0175 0.0239
 
Note: 1. Number of observation listed in table is number of monthly observation is estimation data. 2. Var(σ ) is variance of calendar month  in simulation. 
3. Number of parameters is free parameters associated with unobserved heterogeneity. (1) indicates iteration terminates when approximate zero probability on added  
point is encountered.  (2) indicates numerical difficulty prevents further search of mass points.  
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Table A2-2 Weibull hazard, Gamma distributed unobserved heterogeneity, 50,000 individuals. 

model obs points # parameter loglikelihood AIC BIC HQIC β̂  std 
Weibull Hazard 307303 1 1 -106369.3795 -106370.3795 -106375.6973 -106371.9160 0.7307 0.0113
Var(σ )=0 307303 2 3 -106312.1446 -106315.1446 -106331.0980 -106319.7541 0.9082 0.0259
 307303 3 5 -106293.7916 -106298.7916 -106325.3806 -106306.4742 0.9293 0.0238
 307303 4 7 -106290.8566 -106297.8566 -106335.0812 -106308.6123 0.9863 0.0411

 307303 5 9 -106291.1861 -106300.1861 -106348.0463 -106314.0148 0.9730 0.0557

model obs points # parameter loglikelihood AIC BIC HQIC β̂  std 
Weibull Hazard 248757 1 1 -91153.4145 -91154.4145 -91159.6266 -91155.9341 0.7584 0.0121
Var(σ )=0.001 248757 2 3 -91099.3846 -91102.3846 -91118.0209 -91106.9435 0.9437 0.0262
 248757 3 5 -91085.7817 -91090.7817 -91116.8423 -91098.3800 0.9721 0.0270
 248757 4 7 -91084.8411 -91091.8411 -91128.3259 -91102.4786 0.9976 0.0400
 248757 5 9 -91084.5795 -91093.5795 -91140.4886 -91107.2564 0.9938 0.0484
(2) 248757 6 11 -91083.7393 -91094.7393 -91152.0725 -91111.4554 1.0016 0.0460

model obs points # parameter loglikelihood AIC BIC HQIC β̂  std 
Weibull Hazard 287995 1 1 -85369.6122 -85370.6122 -85375.8976 -85372.1436 0.7900 0.0134
Var(σ )=0.1 287995 2 3 -85333.3239 -85336.3239 -85352.1799 -85340.9180 0.9543 0.0270
 287995 3 5 -85327.0783 -85332.0783 -85358.5050 -85339.7351 0.9384 0.0258

 287995 4 7 -85326.9290 -85333.9290 -85370.9264 -85344.6486 0.9399 0.0327
 287995 5 9 -85326.7030 -85335.7030 -85383.2712 -85349.4853 0.9491 0.0336

(1) 287995 6 11 -85329.2171 -85340.2171 -85398.3559 -85357.0622 0.9022 0.0215

model obs points # parameter loglikelihood AIC BIC HQIC β̂  std 
Weibull Hazard 288414 1 1 -81110.7014 -81111.7014 -81116.9874 -81113.2329 0.8044 0.0130
Var(σ )=1 288414 2 3 -81021.5975 -81024.5975 -81040.4557 -81029.1920 0.9957 0.0227
 288414 3 5 -81015.3996 -81020.3996 -81046.8300 -81028.0570 1.0029 0.0229
(2) 288414 4 7 -81015.0915 -81022.0915 -81059.0940 -81032.8119 1.0093 0.0245
 
Note: 1. Number of observation listed in table is number of monthly observation is estimation data. 2. Var(σ ) is variance of calendar month  in simulation. 
3. Number of parameters is free parameters associated with unobserved heterogeneity. (1) indicates iteration terminates when approximate zero probability on added  
point is encountered.  (2) indicates numerical difficulty prevents further search of mass points. , 
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Table A3: Number of trials that confidence intervals for estimated β̂  cover the true 
parameter value 1 used in DGP.  

Constant hazard, 3 points unobserved heterogeneity 
# obs var(month) Loglikelihood AIC BIC HQIC 
5000 0 66 67 75 75 

 0.001 74 71 84 85 
 0.1 84 85 88 88 
 1 73 74 73 74 

10000 0 80 77 79 79 
 0.001 79 77 76 78 
 0.1 71 70 72 72 
 1 74 75 71 75 

50000 0 90 86 94 91 
 0.001 95 94 93 93 
 0.1 90 92 94 92 
 1 97 97 98 98 
      

Weibull hazard, Gamma distributed unobserved heterogeneity 
# obs var(month) Loglikelihood AIC BIC HQIC 
5000 0 76 79 5 72 

 0.001 83 84 4 62 
 0.1 79 77 5 35 
 1 78 84 37 81 

10000 0 78 70 54 71 
 0.001 69 68 48 70 
 0.1 81 79 30 77 
 1 76 76 73 77 

50000 0 96 84 76 75 
 0.001 94 82 78 80 
 0.1 92 85 95 90 
 1 91 91 96 94 

 
Note: the number of trials that the estimated confidence intervals cover the true value 1 in DGP is calculated based on 
the estimations that return more than 1 point of support for the unobserved heterogeneity distribution.  
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Table A4: Maximum number of support points found. 
Constant hazard Gamma distributed unobserved heterogeneity, 5,000 obs. 

 Var(month) 1 point 2 points 3points 4 points 5 points 6 points 7 or more points
loglikelihood 0 14 0 16 24 21 19 6 

 0.001 0 0 23 22 32 17 6 
 0.1 3 0 7 36 28 20 6 
 1 19 1 11 32 26 7 4 

AIC 0 14 5 71 9 1   
 0.001 1 11 70 13 5   
 0.1 5 26 55 13 1   
 1 19 27 45 8 1   

BIC 0 92 2 6 0 0   
 0.001 95 2 3 0 0   
 0.1 89 11 0 0 0   
 1 64 36 0 0 0   

HQIC 0 22 20 58 0 0   
 0.001 25 22 53 0 0   
 0.1 32 46 22 0 0   
 1 22 58 20 0 0   
         

Weibull hazard, 3 points distributed unobserved heterogeneity, 5,000 obs. 
 Var(month) 1 point 2 points 3points 4 points 5 points 6 points 7 or more points

loglikelihood 0 18 0 13 18 32 11 8 
 0.001 5 0 15 23 42 11 4 
 0.1 12 0 18 23 31 10 6 
 1 16 0 17 33 28 6 0 

AIC 0 18 0 77 4 1   
 0.001 5 0 84 10 1   
 0.1 12 7 77 3 1   
 1 16 2 75 7 0   

BIC 0 18 4 78 0 0   
 0.001 7 9 84 0 0   
 0.1 21 57 22 0 0   
 1 16 49 35 0 0   

HQIC 0 18 0 82 0 0   
 0.001 5 1 93 1 0   
 0.1 12 21 67 0 0   
 1 16 10 72 2 0   
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Table A5: Maximum number of points found across sample sizes.  

Constant hazard Gamma distributed unobserved heterogeneity, var(month)=0.1 
 Obs 1 point 2 points 3points 4 points 5 points 6 points 7 or more points
Log likelihood 5000 3 0 7 36 28 20 6 
 10000 19 0 9 34 24 11 3 
 50000 1 0 2 37 42 15 3 
AIC 5000 5 26 55 13 1   
 10000 19 17 52 10 2   
 50000 1 0 72 25 2   
BIC 5000 89 11 0 0 0   
 10000 48 51 1 0 0   
 50000 1 36 63 0 0   
HQIC 5000 32 46 22 0 0   
 10000 21 49 29 0 1   
 50000 1 0 92 7 0   
         
Weibull hazard, 3 points distributed unobserved heterogeneity, var(month)=0.1 
 Obs 1 point 2 points 3points 4 points 5 points 6 points 7 or more points
Log likelihood 5000 12 0 18 23 31 10 6 
 10000 19 0 14 35 25 7 0 
 50000 3 0 21 41 22 10 3 
AIC 5000 12 7 77 3 1   
 10000 19 2 72 6 1   
 50000 3 0 86 10 1   
BIC 5000 21 57 22 0 0   
 10000 19 54 27 0 0   
 50000 3 0 97 0 0   
HQIC 5000 12 21 67 0 0   
 10000 19 13 68 0 0   
 50000 3 0 97 0 0   
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Table A6: Estimated means and standard errors of β̂ .  

Constant hazard, Gamma distributed unobserved heterogeneity     
  Loglikelihood AIC BIC HQIC 

# obs var(month) mean std. mean std. mean std. mean std. 
5000 0 1.0969 0.2250 0.9879 0.1117 1.0082 0.0683 0.9529 0.0631 

 0.001 1.1328 0.2994 1.0108 0.1807 1.0439 0.0685 0.9681 0.0722 
 0.1 1.1128 0.1671 1.0261 0.1010 1.0606 0.0411 1.0192 0.0643 
 1 1.0324 0.0794 1.0022 0.0740 0.9972 0.0468 0.9837 0.0619 

10000 0 1.0314 0.1040 0.9890 0.0851 0.9295 0.0545 0.9514 0.0472 
 0.001 1.0716 0.2036 1.0057 0.1770 0.9409 0.0519 0.9534 0.0594 
 0.1 1.0306 0.0865 0.9888 0.0769 0.9717 0.0377 0.9698 0.0604 
 1 1.0036 0.0512 0.9840 0.0456 0.9533 0.0344 0.9684 0.0429 

50000 0 1.0128 0.0514 0.9909 0.0465 0.9545 0.0216 0.9633 0.0352 
 0.001 1.0441 0.1824 0.9936 0.0665 0.9562 0.0204 0.9685 0.0395 
 0.1 1.0134 0.0315 0.9991 0.0320 0.9780 0.0209 0.9890 0.0258 
 1 1.0056 0.0249 1.0001 0.0264 0.9856 0.0217 0.9911 0.0238 
          

Weibull hazard, 3 points distributed unobserved heterogeneity     
  Loglikelihood AIC BIC HQIC 

# obs var(month) mean std. mean std. mean std. mean std. 
5000 0 1.1871 0.3021 1.0574 0.0904 1.0413 0.0660 1.0462 0.0589 

 0.001 1.1722 0.2589 1.0593 0.0926 1.0401 0.0684 1.0453 0.0664 
 0.1 1.0958 0.1117 1.0418 0.0776 1.0350 0.0631 1.0348 0.0726 
 1 1.0893 0.0732 1.0731 0.0666 1.0468 0.0656 1.0650 0.0648 

10000 0 1.0896 0.1499 1.0418 0.0860 1.0246 0.0508 1.0299 0.0636 
 0.001 1.1064 0.1961 1.0360 0.0833 1.0050 0.0622 1.0176 0.0500 
 0.1 1.0388 0.0954 1.0212 0.0840 1.0013 0.0608 1.0098 0.0637 
 1 1.0238 0.0510 1.0148 0.0501 0.9972 0.0530 1.0100 0.0521 

50000 0 1.0340 0.0713 1.0047 0.0253 0.9981 0.0179 0.9991 0.0205 
 0.001 1.0269 0.0548 1.0086 0.0374 0.9975 0.0239 1.0002 0.0256 
 0.1 1.0167 0.0304 1.0106 0.0291 1.0066 0.0256 1.0066 0.0256 
 1 1.0069 0.0229 1.0025 0.0222 0.9998 0.0197 0.9999 0.0197 

 
Note: 1. means are calculated among estimations that successfully found more than 1 points of support for unobserved 
heterogeneity. 2. var(month) is the variance of calendar month variation in DGP.  
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Table A7: Estimated means and standard errors of the first moment for the unobserved 
heterogeneity distribution.  

Constant hazard, Gamma distributed unobserved heterogeneity    
  Loglikelihood AIC BIC HQIC 

# obs var(month) mean std. mean std. mean std. mean std. 
5000 0 0.1313 0.0207 0.1266 0.0088 0.1207 0.0045 0.1269 0.0085 

 0.001 0.1430 0.0871 0.1287 0.0119 0.1188 0.0097 0.1278 0.0124 
 0.1 0.1342 0.0242 0.1266 0.0131 0.1180 0.0089 0.1249 0.0113 
 1 0.1294 0.0209 0.1355 0.0904 0.1236 0.0110 0.1252 0.0125 

10000 0 0.1346 0.0456 0.1277 0.0068 0.1291 0.0066 0.1277 0.0060 
 0.001 0.1373 0.0335 0.1307 0.0190 0.1284 0.0097 0.1277 0.0098 
 0.1 0.1297 0.0140 0.1275 0.0083 0.1281 0.0088 0.1282 0.0085 
 1 0.1303 0.0130 0.1284 0.0111 0.1298 0.0092 0.1286 0.0097 

50000 0 0.1258 0.0050 0.1251 0.0033 0.1249 0.0024 0.1249 0.0028 
 0.001 0.1298 0.0296 0.1251 0.0055 0.1246 0.0039 0.1247 0.0039 
 0.1 0.1255 0.0044 0.1251 0.0040 0.1252 0.0037 0.1249 0.0038 
 1 0.1253 0.0046 0.1249 0.0046 0.1242 0.0041 0.1242 0.0041 
          
          
Weibull hazard, 3 points distributed unobserved heterogeneity     

  Loglikelihood AIC BIC HQIC 
# obs var(month) mean std. mean std. mean std. mean std. 

5000 0 0.1304 0.0280 0.1226 0.0088 0.1230 0.0090 0.1227 0.0087 
 0.001 0.1265 0.0206 0.1219 0.0142 0.1221 0.0143 0.1220 0.0142 
 0.1 0.1289 0.0205 0.1251 0.0146 0.1239 0.0143 0.1249 0.0143 
 1 0.1241 0.0187 0.1219 0.0156 0.1233 0.0153 0.1223 0.0161 

10000 0 0.1243 0.0077 0.1236 0.0056 0.1237 0.0056 0.1237 0.0055 
 0.001 0.1274 0.0177 0.1235 0.0108 0.1245 0.0117 0.1236 0.0108 
 0.1 0.1253 0.0105 0.1246 0.0090 0.1256 0.0093 0.1250 0.0092 
 1 0.1283 0.0148 0.1266 0.0121 0.1266 0.0106 0.1259 0.0108 

50000 0 0.1275 0.0100 0.1258 0.0031 0.1256 0.0022 0.1256 0.0022 
 0.001 0.1267 0.0057 0.1257 0.0049 0.1257 0.0048 0.1257 0.0049 
 0.1 0.1260 0.0055 0.1258 0.0053 0.1258 0.0052 0.1258 0.0052 
 1 0.1260 0.0043 0.1257 0.0041 0.1258 0.0039 0.1257 0.0039 
 
Note: 1. means are calculated among estimations that successfully found more than 1 points of support for unobserved 
heterogeneity. 2. var(month) is the variance of calendar month variation in DGP. 3. the true first moment in DGP is 
(rescaled) 0.125893. 
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Table A8: Estimated means and standard errors of the second moment for unobserved 
heterogeneity distribution.  

Constant hazard, Gamma distributed unobserved heterogeneity    
  Loglikelihood AIC BIC HQIC 

# obs var(month) mean std. mean std. mean std. mean std. 
5000 0 0.0446 0.0663 0.0237 0.0117 0.0197 0.0021 0.0215 0.0039 

 0.001 0.2027 1.5527 0.0274 0.0198 0.0187 0.0031 0.0222 0.0048 
 0.1 0.0606 0.0967 0.0274 0.0158 0.0237 0.0039 0.0241 0.0048 
 1 0.0387 0.0513 5.0320 45.0592 0.0244 0.0046 0.0235 0.0052 

10000 0 0.1174 0.7808 0.0251 0.0088 0.0224 0.0032 0.0217 0.0044 
 0.001 0.0639 0.1549 0.0334 0.0478 0.0230 0.0041 0.0220 0.0039 
 0.1 0.0367 0.0349 0.0254 0.0079 0.0261 0.0040 0.0247 0.0047 
 1 0.0328 0.0289 0.0264 0.0150 0.0260 0.0039 0.0248 0.0047 

50000 0 0.0274 0.0109 0.0240 0.0046 0.0204 0.0009 0.0212 0.0026 
 0.001 0.0702 0.3879 0.0245 0.0116 0.0203 0.0013 0.0216 0.0039 
 0.1 0.0268 0.0060 0.0243 0.0048 0.0228 0.0022 0.0228 0.0034 
 1 0.0261 0.0075 0.0253 0.0090 0.0219 0.0019 0.0225 0.0031 
          
          

Weibull hazard, 3 points distributed unobserved heterogeneity     
  Loglikelihood AIC BIC HQIC 

# obs var(month) mean std. mean std. mean std. mean std. 
5000 0 0.0519 0.0869 0.0250 0.0060 0.0246 0.0042 0.0243 0.0038 

 0.001 0.0415 0.0483 0.0250 0.0069 0.0246 0.0063 0.0242 0.0060 
 0.1 0.0431 0.0531 0.0263 0.0074 0.0285 0.0071 0.0262 0.0070 
 1 0.0343 0.0532 0.0258 0.0098 0.0278 0.0072 0.0259 0.0099 

10000 0 0.0321 0.0169 0.0267 0.0051 0.0258 0.0029 0.0260 0.0034 
 0.001 0.0403 0.0380 0.0273 0.0080 0.0267 0.0057 0.0259 0.0047 
 0.1 0.0298 0.0108 0.0268 0.0060 0.0288 0.0048 0.0263 0.0042 
 1 0.0337 0.0297 0.0282 0.0105 0.0283 0.0058 0.0266 0.0049 

50000 0 0.0329 0.0277 0.0263 0.0042 0.0255 0.0009 0.0256 0.0012 
 0.001 0.0295 0.0091 0.0266 0.0043 0.0255 0.0020 0.0258 0.0027 
 0.1 0.0276 0.0048 0.0266 0.0035 0.0260 0.0022 0.0260 0.0022 
 1 0.0270 0.0037 0.0261 0.0029 0.0257 0.0017 0.0257 0.0018 
 
Note: 1. means are calculated among estimations that successfully found more than 1 points of support for unobserved 
heterogeneity. 2. var(month) is the variance of calendar month variation in DGP. 3. the true second moment in DGP is 
(rescaled) 0.026111 . 
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Figure A1: Kernel densities of estimated β  by sample sizes. Constant hazard, 3 points mixture, var(month)=0.1. 
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Figure A2: Kernel densities of estimated β  by sample sizes. Weibull hazard, Gamma mixture, var(month)=0.1. 

Weibull hazard, Gamma, var=0.1
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Figure A3: 95% Confidence intervals for baseline hazard rate estimates, across calendar variations. Constant hazard, 3 points 

mixture. 

With 5000 individuals 
month

 true baseline  with var(month)=0
 with var(month)=1

1 12

.484021

2.96493

With 10000 individuals 
month

 true baseline  with var(month)=0
 with var(month)=1

1 12

.5

1.95744

With 50000 individuals 
month

 true baseline  with var(month)=0
 with var(month)=1

1 12

.5

1.33194

 
Note: confidence intervals are calculated based on the estimated standard errors (in exponential form) for the duration baseline estimators from the estimations that produce 
Table 4-1. Therefore they do not have the interpretation as confidence intervals for transition probabilities. 
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Figure A4: 95% Confidence intervals for baseline hazard rate estimates, across calendar variations. Weibull hazard, Gamma mixture. 

With 5000 individuals 
month

 true baseline  with var(month)=0
 with var(month)=1

1 12
.266513

2.29975

With 10000 individuals 
month

 true baseline  with var(month)=0
 with var(month)=1

1 12
.40175

1.25362

With 50000 individuals 
month

 true baseline  with var(month)=0
 with var(month)=1

1 12
.153272

3.46961

 
Note: confidence intervals are calculated based on the estimated standard errors (in exponential form) for the duration baseline estimators from the estimations that produce 
Table 4-2. Therefore they do not have the interpretation as confidence intervals for transition probabilities. 
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Figure A5: 95% Confidence intervals for baseline hazard rate estimates, across sample sizes, var(month)=0.1. 

Constant Hazard 3 points Mixture, var(month)=0.1
month
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Figure A6: Kernel Densities of estimated expectation of µ̂ . Constant hazard, 3 points mixture, 5,000 individuals. 
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Figure A7: Kernel Densities of estimated expectation of µ̂ . Weibull hazard, Gamma mixture, 5,000 individuals. 
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Figure A8: Kernel Densities of estimated expectation of µ̂  by calendar variations. Constant hazard, 3 points mixture, 5,000 
individuals. 
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Figure A9: Kernel Densities of estimated expectation of µ̂  by calendar variations. Weibull hazard, Gamma mixture, 5,000 individuals. 
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Figure A10: Kernel Densities of estimated expectation of µ̂  by sample sizes. Constant hazard, 3 points mixture, var(month)=0.1. 
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Figure A11: Kernel Densities of estimated expectation of µ̂  by sample sizes. Weibull hazard, Gamma mixture, var(month)=0.1. 
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Figure A12-1: Kernel Densities of estimated 1̂β . 10,000 individuals. 
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Figure A12-2: Kernel Densities of estimated 2β̂ . 10,000 individuals. 
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Figure A13-1: Kernel Densities of estimated 1ˆ( )E µ . 10,000 individuals. 
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Figure A13-2: Kernel Densities of estimated 2ˆ( )E µ . 10,000 individuals. 
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