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Piecewise deterministic optimal control problems
by
Atle Seierstad, University of Oslo

Piecewise deterministic control problems are problems involving stochas-
tic disturbances of a special type. In certain situations, in an otherwise
deterministic control system, it may happen that the state jumps at certain
stochastic points of time. Examples are sudden oil finds, or sudden discov-
eries of metal deposits. Similarly, in seemingly deterministic processes, the
dynamics may suddenly change character: At certain stochastic points in
time, the right—hand side of the differential equation governing the system
changes form, such changes being effected by jumps in a (dummy) state vari-
able. Examples of such phenomena are sudden inventions, sudden ecological
disasters, earthquakes, floods, storms, fires, the sudden capture of a criminal,
that suddenly change the prospects of the firm, the society, the agriculture,
the criminal... .Several papers have discussed such problems, often using
more or less ad hoc methods. (Sometimes it is possible to rewrite the prob-
lem so that deterministic control theory applies.) A systematic method for
solving such problems, based on the HJB-equation (the Hamilton-Jacoby-
Bellman equation) for the problem, is presented in Davis (1993), "Markov
Models and Optimization", and also briefly discussed below. In this paper a
related method, closer to deterministic control theory, is presented first. It is
easiest to apply to problems with a bound on the number of possible jumps.

Thus, the main purpose of this paper is to show how some piecewise de-
terministic optimal control problems can be solved by techniques similar to
those used in deterministic problems. The paper includes statements of sev-
eral theoretical results. Proofs are given for the results involving the HJB-
equation and fields of extremals, (for the HJB-equation, replicating the ones
in Davis (1993)).

1 Free end, fixed final time problems
Consider the following control system:

i‘:f(thau)ate [OaT]a :L‘(O)ZI'OGRTL, uwelUCR". []_]

Here, the control region U, the initial point 2°, f and the terminal time T
are fixed. The vector u is a control, subject to choice in U. At certain jump
time-points 7;, 0 < 7, < 75 < ..., the state jumps according to

z(1j+) — x(75—) = g(75, 2(5—)) 2]
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where ¢ is a fixed function. (Here, z(7;+) =right limit, z(7;—) =left limit.)
The points 7; are random variables taking values in [0,00). It will often
be assumed that at most N < oo jump points 7; can occur in [0,7]. The
stochastic assumptions on the jump points 7; are as follows: Given 7;_1, then
7;, © > 1, is exponentially distributed in [r;_1, 00) with parameter (intensity)
A(i) > 0, so the density of 7, = 7 > 7,_; is A(i)e(2@=7i-1))  Moreover,
71 is exponentially distributed in [0, c0) with parameter A(1). It is assumed
that sup, A(1) < co. (In some remarks, these stochastic assumptions will be
generalized.) The case where a maximum of N jumps can occur is the case
where A(i) =0, i > N. The problem to be solved is:

max B / folt, )t + 3 golm xl(r=) + he(@(T-)] 3

u(.,.
( ) T]'<T

subject to [1]. Here fo, go and hy are fixed functions, f; measures the
running benefit obtained from the process, ho is a scrap value (or bequest
function), and gy measures the benefit obtained at jump times. Write w =
(11, 72,...), 7 < Tjp1. The control functions u(t,w) = u(t, 7, 7, ...), are, sep-
arately, piecewise and left—continuous in ¢ and piecewise and right—continuous
in each 7;. The control functions are assumed to depend (only) on the history
up till now, hence for any given ¢, u(t,w) depends only on the 7;’s having oc-
curred, (i.e., 7; < t). Such controls are called non-anticipating. (In Remark 1
below, a more precise description of these controls are given.) The optimiza-
tion problem is to maximize the criterion in [3] in the class of non-anticipating
controls. We then imagine that u equals u(t,w) in [1] and [3], and that =
in [3] equals z(t,w) := x"(t,w), the solution of the equations in [1],[2], for
u = u(t,w). The function z"(t,w) is constructed by solving [1] successively
on the intervals (0, 7), (71, 72), (T2, 73), ...,. First, [1] is solved on (0, 7), using
(0,2%) as initial point. Next, [1] is solved on (71, 7) using (71, 2%(71+,w)
as initial point. Then, [1] is solved on (72, 73), using (7o, "(72+,w) as ini-
tial point, and so on. The initial states z"(m+,w), z%(2+,w), ..., ) are all
obtained from [2|. For convenience, the function z(¢,w) is taken to be left—
continuous, (sometimes we write x(t—,w) in certain formulas, although we
could as well have written x(f,w)). The functions z(t,w) become right—
continuous in each 7;.

A solution methods will be presented in a moment. The method yields
candidates for the optimal controls that come out in a slightly different form
than u(t,w). After presenting the method, the relationship between the var-
ious types of controls is discussed.



Remark 1 (Comment on non-anticipating controls)

A more precise definition of non-anticipating controls is as follows: For any
given w = (71, 7y, ...) and t, let i(t,w) be the largest index ¢ such that 7; < t.
Then, u(t,w) is called non-anticipating if for any ¢, any w = (71,7, ...) and
W' = (1],7},...), the equality u(t,w) = u(t,w’) holds, whenever i(t,w) =
i(t,w') and 7; = 7} for j <i(w,1). O

When ¢t > 7;, write u(t,w’) = u(t, 7, ...,7;, T, T+ 1,T +2,...). A simi-
lar notation is used also in connection with other nonanticipating functions.
Note that, as long as t € (75, 7j11], u(t,w) = u(t,w?).

2 Solution method

In this section, the functions f, fo, go, ¢, and hg are assumed to be C2.
It is also assumed that the maximal number of jumps NN is finite. In this
case, one standard method of solving the problem is as follows.

First, find a control 4(¢, z, p) such that

Tl(t, xap) maximizes H(t,l‘, U,p) = fO(taxa U) +pf(t7 ZL',U) foru e U. [4]

(In this maximization, ¢, x, p are just parameters in the problem.) Then let us
write down the so-called characteristic equations. (Below H,,go,ho. denote
gradients with respect to x, g., is a Jacobian matrix with respect to z, and
I is the identity matrix.)

:L'(t) = f(t,:L‘, ﬁ(t, xap)) [5]

p(t) = —H.(t, 2, 0(t, 2,p),p) + A(j + 1)p
=AU+ Dlgoo(t, ) + p(t:t, 2+ gt 2);j + 1) + go(t, )],

with boundary conditions

.%'(8) =Y, p(T) = [hOx(xﬂx:z(T;s,y,j) [7]



Here, the pair (s,y) is arbitrary. The ordinary differential equations [5]-[7]
are solved by backwards recursion: First [5]-[7] are solved on [s, T] for j = N,
in which case A\(N + 1) = 0 and [6] reduces to p(t) = —H,(t,z,u(t,z,p), p).
The solution pair z(.), p(.) obtained is denoted z(t;s,y, N), p(t;s,y, N).
Then [5]-7] are solved on [s, T| for j = N — 1. In this case, the known func-
tion p(.;.,.,N) is inserted in [6]. The pair of solutions obtained is denoted
z(t;s,y, N—1), p(t; s,y, N—1). Then [5]-[7] are solved on [s, T] for j = N—2,
with p(.;.,., N — 1) inserted in [6]. And so on. The controls u(t;s,y,j) :=
u(t, z(t;s,v,7), p(t;s,y,7)), 7 =0,1,..., are our candidates for the optimal
controls, (they yield non-anticipating candidates for optimality, see Remark
2 below).We call the solutions x(¢;s,y,7),j = 0,1,2,... characteristic solu-
tions, (and w(t;s,y,7),p(t; s, vy, j), characteristic controls, respectively char-
acteristic adjoint functions). Finally, (z(¢;s,y,7),p(t;s,y,7)),7 = 0,1, ... are
called characteristic pairs, and (x(¢; s,y, 7), u(t; s, vy, 4), p(t; s, y, 7)) character-
istic triples. (Sometimes the word "extremal" are used instead of the word
"characteristic".)

Remark 2 Characteristic triples yield non-anticipating candidate
controls

Let us show that characteristic triples give rise to non-anticipating candi-
date controls, ("candidate" = candidate for optimality). For the given ini-
tial point (0,z°), the characteristic triple z(¢; s, v, ), u(t; s, vy, 7), p(t;s,y,7)
give rise to non-anticipating functions x(t,w), u(t,w), p(t,w): As always,
w = (1,7,...). Fort < m,2(t,w) = x(t;0,2°0). For r; < t < 7,
r(t,w) = z(t;m,x(mn—w) + g(m,2(m—,w)),1). Continuing in this man-
ner, in general, we have that, for 7, <t < 744, 2(t,w) = z(¢; 7, 2(1j—, w) +
g(1;, x(1j—,w)), 7). Furthermore, (for 7; <t < 741),

u(t; i, ..., 1) = (u(t; 7, 2(m+,w), 4), p(t 1, .., 1) = (75, (T4, w), 7).
In this manner a triple (¢, w), u(t,w), p(t,w) is obtained such that necessary
conditions specified below (Theorem 1) are satisfied. Hence u(t,w) is a can-
didate for optimality. If the collection u(¢;s,y,j) gives rise to an optimal
control u*(¢,w) in problem [1]-[3], (which we may hope that it does!), we call
the collection u(¢; s,y,7),j =0, 1, ... optimal in the problem. O

Example 1 Consider the problem:
T
maxE[/ —u?/2dt + ax(T)], t=ueR, z(0)=0,
0

with a possibility for a single, unit upwards jump in z(t) at 7 € [0, 00), with
7 being exponentially distributed with intensity A, (i.e. the jump point 7 is
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distributed with density e 7).

The maximum condition gives & = p, and the characteristic equations for
j = 1 (i.e. after a jump) becomes p = 0, & = p, with p(T") = a. Here, t
will denote running time. Hence, u(t; s,y,1) = p(t;s,y,1) = a, z(t;s,y,1) =
y+a(t—s).

Next, for j = 0, the characteristic equations become: & = p, p = —\a + Ap,
with p(T; s,y,0) = a. Then, p(t;s,y,0) = a+ Ce* where C is determined by
p(T;s,9,0) =a, so C =0, and p(t;s,y,0) = a. Thus, u(t;s,y,0) = a is the
control also before the jump, which should not come as a surprise. Sufficient
conditions presented below (Theorem 2) secure that the optimal control has
been found.

Next, replace az(T) in the criterion by az(T)?/2, with 1 — aT > 0.

As above, . = p,p(t;s,y,1) = p(T;s,y,1) and z(¢; s,y,1)) =

y + p(T;s,y,1)(t — s). Now, p(T;s,y,1) is determined by the condition
that ax(T, s,y, 1) = aly + p(T;s,y, 1)(T — s)) = p(T;s,y,1), which gives
p(T;s,y,1) = ay/(1 + a(s = T)), so u(t;s,y,1) = ay/(1 + a(s — T)) and
z(t;s,y, 1) =y+ay(t —s)/(1 —a(T —s)).

Let us find the characteristic solutions for j = 0. The characteristic equa-
tions become p = —Xa(x +1)/(1+a(t —T)) + Ap, © = p . From this pair of
equations the following second order differential equation for x follows:

d*z/dt* = —Xa(x +1)/(1 4+ a(t — T)) + Adx/dt. [%]
We prove below that this equation has the solution
z(t;s,y,0) = =1+ (CA(t) + D)(1 + a(t — T)), [¢]

where ((t) f;; e* /(1+a(c—T))?do and where C and D are two arbitrary
(mtegramon) constants. The boundary conditions are z(s;s,y,0) = y and
p(T;s,9,0) = ax(T;s,y,0), so, (recalling & = u = p), we get #(T,s,y,0) =
ax(T;s,y,0). Now, [+%] yields that @(T,s,y,0) equals C3(T) + (CB(T) +
D)a = Ce* + aD, so the next to last equality becomes Ce* + aD =
a(—1 + D). From this equality and z(s;s,y,0) = y, the two integration
constants can be determined for any (s,y). Actually, before any jumps
have happened, it suffices to find explicit formulas for C' and D in terms
of (s,y), for (s,y) = (0,0). In this case the two equalities become Ce*”

aD = a(—1+ D) and 2(0;0,0,0) = —1 + (CF(0) + D)(1 — aT') = 0,



from which C' and D can be determined. The first equality immediately
gives C' = —ae™*", and inserting this value for C in the second ones gives
D = 1/[1—aT]+ae " 3(0). The candidates for the optimal policy is hence to
use u(t;0,0,0) = (d/dt)[—ae M B(t) +1/{1 —aT}+ae 1 B(0)](1+a(t—T))]
as long as no jump has occurred. When a jump has occurred at some
7, we use the control u(t,w) = u(t,7) := u(t;7,z(r—;0,0,0) + 1,1) =
a(x(7—;0,0,0) + 1)/(1 + a(r — T')) from then on, this control is constant
in ¢t,¢t > 7). (Note that from the characteristic triples we have obtained non-
anticipating controls.)

To prove [xx], define w(t) by w(1 + a(t —T)) =x + 1. Then
(dw/dt)(1+a(t —T)) + wa = dz/dt and

(d*w/dt*)(1 + a(t —T)) + 2(dw/dt)a = d*z/dt*, so
(Pw/dt*)(1+a(t—T))+2(dw/dt)a = —Aa(x+1)/(1+a(t—T))+ Adz/dt =
— daw + A(dw/dt)(1 4+ a(t —T)) + Aaw, and

d*w/dt* = (A — 2a/(1 + a(t — T))]dw/dt. Integrating this separable equa-
tion, we get dw/dt = Ce /(1 + a(t —T))?, so w(t) = CB(t) + D. Here C
and D are two integration constants. By definition of w(t), z(¢;s,y,0) =
—1+w(t)(1+a(t —T)) and [**] follows.

Do sufficient conditions apply here? Yes, but because the scrap value func-
tion is convex rather than concave, a theorem not using concavity is needed,
in this example Theorem 3 below is applicable.

Example 2

maXE'{fO1 —u?/2dt + x(1)}, subject to dz/ds = u € R, z(0) = 0, z(1;+) —

z(7;—) = x(1—).

We assume that a maximum of N < oo jumps can occur, and that 7; is
exponentially distributed in [7;_;, 00) with intensity A;, all A; different. An
interpretation of the problem might be that x is the value of an investor’s
stock holding in a research firm, which now and then makes an invention.
Each time an invention occurs, the price of the stock doubles. Moreover, any
change in the stock (using u # 0) is costly. (The manner this is taken care
of is debatable.) The best opportunities for inventions are exploited first, so
we may imagine that ); is a decreasing sequence.

Maximization of the Hamiltonian yields @ = p, hence u(t; s, y,j) = p(t; s, 9, 7).

It remains to find p(t;s,y, ). Now, (d/dt)p(t;s,y, N) = 0, so p(t;s,y, N) =
p(1;s,y,N) = 1. It is independent of the starting point (s,y). This will also
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be seen to hold for j < N, so we drop (s,y) in the symbols for the adjoint
functions. Next, (d/dt)p(t; N — 1) = =2 Ayp(t; N) + Ayp(t; N — 1), which
has the solution p(t; N — 1) = 2— e’ =D _(To determine this solution also
p(1) = 1 has been used.) The formula is easily obtained by using e *¥(~1 ag
integrating factor (i.e. by multiplying on both sides of the differential equa-
tion by this factor). The method is shown in detail in the next calculation.
Let us find p(t; N —2) :

(d/dt)p(t; N —2) = =2An ap(t; N — 1) + Ay ap(t; N — 2) =
—2An_12 4+ 2An 1 D L (A ))p(t; N — 2).

Using e~ ~-1)0=1) ag integrating factor, i.e. multiplying on both sides by
this factor, and rearranging, we get

eI =D. (d/dD)p(t: N — 2) — Ay_ye= 1D p(p: N — 2) =
_4AN_1€ (AN-1)(t— 1) +2AN_16(>\N—)\N71)(t—1).

The left-hand side of the first equality equals (d/dt)[e”*Yp(t; N — 2)], so
integrating on both sides yields

e -1yt N — 2) =
467()\]\7_1)(2571) + 2/\N—1(AN — AN_l)ile()\Ni)\N_l)(til) + C,

where C' is an integration constant. Multiplying by e’ -1~ on both sides,
and using p(1, N—1) = 1 yield p(t; N —2)] = 4+2Ay_1(Ay —Ay) e ED 4
(1—4—2Ay_1(Axy — Ay_1)"H)e*—1=D Tn general, we guess that p(t; N — )
has the following form: p(t; N —j) = 2743, _; aie* =" Let us prove
that p(t; N — (j + 1)) has a similar form. We have

(d/dt)p(t; N — (j + 1)) = =2An_jp(; N — j) + An- Jp(t N—-(@G+1) =
—2AN—2" = 2An—j Ppcicjr BN + Qvoy)p(BN = (5 + 1))

Using the integrating factor e=*~-1=1 in the differential equation for p(t; N —
(7 + 1)) yields that p(t; N — (j + 1)) has the form: p(t; N — (j + 1)) =
XY hcics a§-+1e>‘N*i(t_1)’ , were, for i < j — 1,

]+1 =2AN- ]a’]/()\N = AN=i), 1 < . [a]

The last coefficient in the expression for p(t; N — j), ag_l

constant. It is determined by p(1; N — j)) =1, so

, 1s an integration



1— 2j — Z CL; = a§+17 [b]

0<i<j—1

Using [a] for a’,, af, ..., aj,, yields

af ) = ap i1 <m<2AN —m/(AN-m — Av—i), B<J. [c]

The coefficients aﬁﬂ, k=0,1,2,..., N—1, are determined by the following
difference equation, obtained by combining [b] and |c|:

afty=1-2"2 = " 6l icmeri2Anm/Avom — Av—i). [d]
0<i<k

First, as p(t; N —1) = 2 — )" =) we get a? = —1. Then, [d] gives us all
ab ,, k=1,2,..,,N—1. By [c], for any j,j < k — 1 we know all aj.. Thus,
we know p(t, N —j) = u(t, N — j). A sufficient condition based on concavity,
(Remark 3 below), gives the optimality of u(t, N — j),j = 0,1,2,..., N, (or
of the associated non-anticipating control u(t,w)).

In Remark 2, we saw that characteristic pairs give rise to non-anticipating
controls. Let us give some comments on how so-called Markov controls arise.

Remark 3 (Characteristic controls yield Markov candidate con-
trols)

When constructing the characteristic controls w(t;s,y,j) by the method
above, we most often obtain that

w(t'ss,y, 7)) = u(t'st,x(t;8,9,7),7), ' >t>s 8]

In fact, for any given j, when (¢, z,p) is unique and C*, for any given
initial point (s, (y,p)) solutions to [5] and [6], are unique. Next, let p be a
parameter to be determined by p(T) = ho.(z(T'; s,y,7)). Often this condi-
tion gives a unique value of p. Under such circumstances, [8] will hold.

Let us discuss [8] a little more. Suppose that the solution start in (s,y, j),
(since j is mentioned, it means that exactly j jumps have already occurred
in [0,s)). The control u(t; s, y,j) then (hopefully) describes the optimal be-
haviour from s on. At any time ¢’ > s, the control value u(t'; s, y, j) should
be used as long as no further jumps occur. Let z be a point that is reached



by z(.;s,y,j) at time ¢, and assume that even at time ¢ only 7 jumps have oc-
curred. At atimet’ > ¢ we have then two prescriptions for which control value
to use, namely u(t'; s,y,7) and u(t'; t, x, j) = u(t'; t, x(t; s,y,7), 7). These two
values should coincide, and that is what [8] require them to do. Letting in par-
ticular ¢ = t = s, then, assuming [8|, we can say that u(t,z,7) := u(t;t, x, )
is the control value to use when we are at point (¢,x,7). A control of the
form wu(t,x,j) is called a Markov control. Thus, most often, characteristic
controls give rise to Markov candidate controls. 0

Remark 4 (Non-anticipating-, characteristic-, and Markov controls)

First, Markov controls and non-anticipating controls will be compared. Given
that j jumps have occurred at 7y,...,7;, a non-anticipating control u(t,w)
makes it possible to calculate the state x at time ¢ by using [1] and [2]. At
such a point (¢,z), the control function prescribes the control value to be
u(t;w), or, "looking ahead", to be u(t™,w). Of course, even if different w’s
(i.e. different 7,...,7;) by chance lead us to the same point (¢, ), differ-
ent control values (depending on w) may be prescribed. However, the above
system has the property that the future development of the system depends
only on ¢,z and j and not when the jumps 7,...,7; have occurred. We
can therefore expect optimal behaviour at time s to depend only on (¢, x, j).
Thus, an optimal control u*(¢*,w) will prescribe the same control value at
(t,z), irrespectively of how the system came to x at time ¢, given that j
jumps have occurred. Hence, optimal controls can be expected to be of the
type u*(t*, x, j), i.e. Markov controls. We saw in Remark 3 that character-
istic controls most often yield Markov controls, as the consistency condition
[8] most often holds. They also yield non-anticipating controls, as we saw in
Remark 2.

If Markov controls u(t, z, j) are given, let us imagine that these are inserted
into [1|, which then are solved on [s, T for initial condition (s,y). The so-
lutions obtained are denoted x(¢;s,y,7), (they satisfy x(¢;s,y,j) = y), and
corresponding controls are w(t; s, y,7) = u(t,z(t;s,y,75),7). (Normally they
automatically satisfy the consistency condition [8].) As in Remark 2, solu-
tions z(7, s,y, j) give rise to nonanticipating solutions z(¢,w), and then also
to non-anticipating controls u(t, w)(= u(t, z(t,w),5),t € (tj,41]- O

The solution method above yields characteristic controls u(t; s, y, j), which
also give rise to non-anticipating candidate controls u(¢,w) with correspond-
ing solutions z(t,w).



Remark 5 (Explicit dependence on j)

The functions fy, f, g0, g can be allowed to depend explicitly on j. In f
and f, 7 has value 0 as long as no jump has occurred, (i.e. in (0,71)), the
value 1 when exactly one jump has occurred, (i.e. in (7,72)), the value 2
when exactly two jumps have occurred (i.e. in (79, 73)), and so on. To sim-
plify some statements, let 79 = 0,w" = 0, and let w’ := (79,...,t;). The
differential equation is thus

&= f(t,z,u,j),t € (15,7j41), x(0+) =2 uel, 9]

the jump condition is, for 7 > 0,

z(ri+) — z(—) = g(75,2(75—), J), [10]

and the criterion is

min{7T,7j41}
E[Z/ fO(taxvuvj)dt+ Z gO(Ter(T]‘_)’j) + hO(x(T_))] [11]

j min{T,7; } 7 <T

The solution procedure now uses the four relationships:

a(t, x, p, j) maximizes H(t, x,u,p, j) := fo(t, 2, u,j) +pf(t ,u,j) foru e U.
[12]

a(t) = f(t,z, at, z,p,j), J) [13]

p(t) = —H,(t,z,a(t,z,p,7),p,j) + AX(J + 1)p
[14]

with boundary conditions

"L‘(S) = yap(T) = [hOx(x)]x:m(T;s,y,j)' [15]

From now on, this explicit dependence on j will be assumed. We shall also
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require that for a pair z(¢,w), ,u(t,w) to be called admissible , the inequali-
ties sup, , |z(t, w)| < oo and sup,, |u(t,w)| < oo have to be satisfied. O

3. Precise necessary conditions and sufficient conditions

Let "v.e." (virtually everywhere ) mean everywhere except a finite (or count-

able ) number of points, and let a.s. mean almost surely, i.e. with probability
1.

Theorem 1 (Necessary condition, free end) Assume that z*(t,w), u* (¢, w),
is an optimal pair in problem [1]-[3], such that u*(¢,w) is bounded. Then,
for each w, there exists a non-anticipating function ¢ — p(¢,w), continuous
in ¢t between the points 7; in w, differentiable v.e., such that, a.s., for v.e.
t>7,5=012, ..,

U — fO(tax*(taTla"'7Tj)au’j)+
p(t,Tl,...,Tj)f(t,l'*(t,Tl,...,Tj),u,j)
has a maximum at v*(t,7,...,7;) in U. [16]
Moreover, t — p(t,7,...,7;), t > 7;, satisfies
p(t,Tl, Ce ,Tj) = —f()z(t,l'*(t,Tl, Ce ,Tj),u*(t,Tl, P ,Tj),j)
—p(t, 1, ) [t 2™ (T, ), W (T, Ty), ) —
A7+ Dgou(t, z*(t, 71, .., 75), 5+ 1) +p(t+, 71, ..., 75, ){ I+

gz(ta l'*(t, T1y - 7Tj>7j + 1)}] + )\(.7 + 1)p(t7 T1ye e ey Tj)' [17]
p(T,1,...75) = hog (2™ (T—, 11, ...75)). [18]

(As explained earlier, z*(¢, 79, ..., 7j) = «*(¢, 70, ..., 75, T, T+ 1, ...), and simi-
larly for the p-function.) The function p(¢,7,...,7;),t > 7, is, separately,
piecewise and left—continuous in ¢, and piecewise and right—continuous in
each 7;,7 < J. O

Let us state precise conditions for Theorem 1 to hold. (See Remark 5 and
Remark 3 in Seierstad (2002)). It suffices to assume that fo, f, g0, g, ho, foz,
fes 9ozs 9z, how, (exist and) are all, separately, piecewise continuous in ¢, and
separately continuous in x and in u. The five functions fy, f, g0, g, ho are Lip-
schitz continuous with respect to x with a common rank k", n =1, 2, ... < o0,
independent of (¢, u, j),u € UNB(0,n). The five functions satisfy an inequal-
ity of the following form: For some constants a,,, Kk,

lop(t, x,u, j)| < ay + Kplz|, forall (t,z,u,j),u € UnNB0,n). [19]
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Finally, sup; A(j) < oo. Now, N may equal ooc.

If these conditions hold even for n = oo, then in the theorem, u*(.,.) need not
be bounded. If N < oo and a,, = a, k,, = K" = k for all n, then fy, f, 90, g, ho
need only be defined on B(0,Z), where

=14 {la+ 1+ k) (e /r)]/r + 2O H(1 + w)N e T,

and all properties in the preceding paragraph need only hold for x in B(0, Z).
An alternative set of conditions in case N < oo is that, (for each j), fo, f, go,
9, ho, foxs fes Goxs "es o, are continuous functions, and that sup, , [2*(t,w)| <
00.

From now on, these conditions are assumed. (Exceptions in certain remarks
are explicitly stated.)

Formally, to solve a control problem completely, one has to find all pos-
sible controls u**(¢,w) satisfying the necessary conditions in Theorem 1. If
one such candidate u**(t,w) is constructed from characteristic controls, then,
in many problems, one can prove that no other u™(t,w) satisfies [16]-[18],
i.e. there is a unique candidate for optimality. If one knows that the prob-
lem must have an optimal control, then it must be this unique candidate.
(We have not provided results concerning existence of optimal controls, they
are, however, similar to the Fillipov—Cesari results in deterministic control
theory.)

Connected with this necessary condition is a sufficient condition, based on
concavity: Define H(t,z,p,j) = sup,cy H(t,x,u,p,j). Then the following
theorem holds.

Theorem 2 (Sufficient condition based on concavity) Suppose the
triple (z*(t,w), u*(t,w), p(t,w)) satisfies the necessary conditions [16]-[18],

with ((z*(t,w),u*(t,w)) satisfying [9], [10]). Suppose, furthermore, that

x — ho(z) and © — go(¢, z, j) are concave, and, for each j,w’, t > 75, * —
H(t,z,p(t,w?), j), and x — p(t,w’)g(t, z, j) are concave. Then (z*(t,w), u*(t,w))
is optimal. O

The concavity condition on ﬁ(t, x,p(t,w?), 7) holds in particular when (z,u) —
H(t, 2,0, p(t,%), ) 1= folt,2,6,3) + plt, ) f (1,2, ) is concave,
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Remark 6 (Sufficient concavity conditions for characteristic con-
trols, N < o0)

Similar to Theorem 2, sufficient for the characteristic triple z(t; s, v, 7), u(t; s, y, 5),
p(t; s,y,7) to yield an optimal non-anticipating control is concavity of ©z —

gO(tal‘a.j)a T — ho([L‘), €T — ﬁ(t,l’,p(t, Sayaj)aj)a and v — p(t7 Sayaj)g(tvl‘a.j)
for all (s,y,J). O

Above, we have dropped stating assumptions concerning the dependence
of x(t;s,y,7),u(t;s,y,j), and p(t;s,y,j) on t,s, and y. To a large extent,
we can avoid stating explicitly such assumptions, by saying that, implic-
itly, (for example in the preceding remark), it is assumed that the non-
anticipating triples (z(t,w),u(t,w),p(t,w)) arising from the characteristic
triples satisfy the standard assumptions. It is implicit in what was said
above that ¢t — (x(t,s,y,7),p(t;s,y,7)) is continuous in t € [s,T] and that
t — (&(t,8,9,7),p(t; s,y,7)) is piecewise continuous in ¢ € (s, 7).

When at most N jumps can occur, there is a recursive procedure related

to the necessary conditions. Loosely speaking, first (z*(¢;71,...,7n),
w*(t; 1, . TN), (8T, ..., 7)) s constructed, then (z*(¢; 7, ..., 7n_1),
w*(t; 1, .y Tn-1), P(E; 71, ..., Tn—1)), and so on. One way of systematizing

this procedure, was show in the solution method connected with [4]-[6] above.

Now, Theorem 1 also holds if there is no bound on the number of jumps that

can occur, (N = oo). But, in this case no recursive procedure is available .
Still, in principle, one seeks triples (z*(t; 7, ..., 7;), w*(t; 7, ..., 75), p(t; 11, .., T5))
satisfying the necessary conditions for 7 =0,1,2,..... Sometimes, it may pay
instead to turn to the so-called HJB-equation described later on.

The next theorem gives a sufficient condition not requiring concavity. The
following definitions are needed: Let

Qu(.,)(j) = {(t,z(t,w’)) : t € (1;,T), for some w),
Q(]) = Ux(.,.)Qz(-,-)(j)a [20]

the union taken over all admissible solutions z(.,.). Thus Q(j) consist of
all points (s,y) that can be reached after j jumps, considering all possible
admissible solutions and spacings of these j jumps.

In the next theorem also sets Q°(j) C (0,7) x R"™ appear, being (for each
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j) larger than (7). Sometimes, these sets can be constructed by taking the
union of Q. () for all solutions z(.,.), starting at time 0 at given start
points 2V, where 2" runs through a (perhaps small) open ball around z°. In
other cases, Q°(j) can, for example, be the whole set (0,7") x R™.

Theorem 3 (Sufficiency based on a field of characteristic solutions)
Assume that a maximum of /N jumps can occur. Assume that hg, fo, f, go and
g are C*-functions, and that the function 4 (¢, z, p, j) (see [12]) is COx C* x C*!
in an open set Q*(j). Assume that open sets Q°(j), Q°(j) containing Q(j),
and solutions z(t;s,y,7), p(t;s,y,j) of [13]-[15], (the characteristic equa-
tions with boundary conditions), have been found for (s,y) = (0,2°) in
case j = 0, and for any (s,y) € Q°(j) and any j, being C* x C? in (s,y)
for (s,y) € Q°(j), for any t € (s,T], and any j. Moreover, assume that
p(s;s,y,7) and py(s;s,y, ) are bounded on bounded subsets of Q°(j). As-
sume that (t,z(t;s,y,7),p(t;s,y,7)) belongs to Q*(j) for all t € [s,T], and
(t,z(t;s,y)) belongs to Q°(j) for all (s,y) € Q°(5), all t € (s,T), and that if
(s,9) € Q(5), then (s,y+ g(s,y,7+ 1)) € Q°(j + 1). Moreover, assume the
following “consistency condition": For any (s,y) in Q(j) and t € (s, T],

(x(t; 8", 2(s's 8,9, 7),7),p(t; 8", 2(s'5 8,9, 5), J)) =
(z(t;s,v,7),p(t; s,y,7)), for all s € (s,1). [21]

Furthermore, assume that H(s,z,p,j) is C° x C? x C? in Q*(j). Finally,
assume that

a(t, z,p,j) is bounded on bounded subsets of Q*(j). [22]

Define u(t; s, y, j) = u(t; x(t; s,y,7),p(t;5,9,7),5)), 7 = 0,..., N. Then u(t; 5,9, 7) :
7 =0,...,N are optimal controls. O

In fact, in certain cases, the C' x C? of (s,y) — (z(t;s,v,7),p(t;s,y,7))
automatically holds, see Remark 28 below.

While the results in the theorem do follow from the stated premisses, note
that, hidden in the premisses is the fact that, in order for the stated differ-
entiability of (s,y) — (z(¢;s,9,7),p(t;s,y,7)) to hold, the system must, in
most cases, satisfy further differentiability properties (see Remark 28 below).

This theorem does not require concavity assumptions. So why use the
preceding Theorem 2 (or Remark 6) at all? The answer is that when con-
cavity holds, these tools are easier to apply, and in particular, there may be
situations where concavity holds, but where it is impossible to find open sets
Q°(j) and entities z(t; s, v, ), p(t; s,y, j) satisfying all conditions in Theorem
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3. (Note than in a latter remark, (Remark 19), the conditions on the depen-
dence of z(t;s,y,7),p(t; s,y,7) on (s,y) are slightly weakened.)

Example 1 revisited Consider the case of the scrap value function az(7)?/2.
Let Q°(j) = (0,T) x R for j = 0,1. In Example 1, in this case, functions
x(t;8,y,7),p(t;8,9,7), 7 = 0,1 were found for each (s,y), having the re-
quired C'-property. Moreover, H and @ are C2, and [21] and [22] hold.
Hence, u(t; s,y,7), j = 0,1 is an optimal collection.

Connected with Theorem 3, there is a sufficient condition that involves solu-
tions of a sequence of partial differential equation, the HJB-equations of the
problem. In fact, the solutions (z(¢; s, v, 7), p(t; s, vy, j)) yield the solutions to
these equations. A discussion of this theme is postponed to the next section
on end constrained problems.

Remark 7 (Time and state dependent jump intensity)

Assume that A(j) is a C'-function of (¢, ). Then the density of 7 = _
[Tj—1,00) is
A(T, :L‘(T)’ j) f‘rj71 _>\(0',$(o')’j)d0.,

where z(s) = z(s,w). Now, an auxiliary state variable z is needed, together
with a modified adjoint equation:

dz/dt = XNt,x, 7+ 1){z—go(t,x,j+ 1) — z(t;t, e+ g(t,x,j+1),7+1)}—
fO(taxaﬁ(taxap)7j>7 [23]

dp/dt = —H,(t,x,u(t,z,p),p,j) + A(t,z,j + 1)p—
Atz j+1D)]goo(t,z, i+ 1) +pt tx+g(t, 2, j+1), j+ 1)L +g,(t, 2, j+1))]—
Ae(t, 2,5+ D{go(t,z, g+ 1)+ 2(t, t, e+ g(t,z, 5+ 1), 5+ 1) — 2} [24]

Instead of finding characteristic pairs satisfying [5],[6] for N, N — 1, N —
2, ..., one now has to find characteristic triples z(t; s, v, 7), p(t; s, 9, 4), 2(t; s, v, 7),
for j = N,N — 1,... that satisfy simultaneously [5], [23] and [24], with

2(s) =y, p(T') = hoo(x(T)), 2(T) = ho(x(T)). N
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Remark 8 (Stochastic jump sizes)

A stochastic disturbance V; € R” may be included in go(¢, x, j) and g(t, z, 5).
Thus, we now write go(t,z,V}, j) and g(t,z,V}, j). Here g and g, are, sep-
arately, C? in (¢,z), and the functions, as well as their first and second
derivatives with respect to t and = are, separately, continuous in v. Thus at
the jump times 7;, the stochastic variable V; influences gy and g, so [2] now
reads z(7;+) — x(1;,—) = g(7;, x(1—), V}, j). If the stochastic variable V; has
a distribution which depends on 7;, then the solution method connected with
[5]-[7] again works when N < oo, though in [6] we replace

by

E[g()z(t,l', ‘/j+17j =+ 1)+
ptit, x4 g(t,x, Vigr, j+1);5 + D)1 + go(t, 2, Vi1, j + 1)) [¢] [25]

(The expectation is with respect to Vj).

If the distribution of V; depends on all 7;, ¢ < j, and all earlier outcomes
v;,0 < j, then in w, we now include all outcomes of the Vs, so w =
(70, Vo, T1, V1, T2, Vg, - . .), (vg having no effect), and non-anticipating entities
at time ¢ now depend on the outcomes (7;,v;) having occurred before ¢, e.g.
p(t,w) now equals p(t; 71,01, ...7;,v;) when 7; <t < 7j41. Assume that [19]
holds for all Vj, for ¢ = go,g. The necessary conditions of Theorem 1 still
apply, provided we in [17] replace

Gou(t,x*(t, 1, .o 7). 1) +p(t+, 7y 7 O{ T 9. (8, 2" (8, 71, .o, 7). J4+1) }

by
E[gOI(tam*(taTlavla oo 77—]'7/0_7')7 ‘/j+17j + 1)+
p(t+,71,7]1, ce aTjavjat7 ‘/;-Fl){‘[—'—
gz(tam*(taTlavla .. '77-]'7/0j)7 ‘/]'Jrlaj + 1)}‘7-17/017 oo 7Tjavj7t)] [26]

The function p(¢,w) is, separately, piecewise and left—continuous in ¢, and
is piecewise and right—continuous in each 7;, and in each v;, when the expec-

tation Ela(V,, )|, v1,...,7),v;, Tj1] is continuous in 71, vy, ..., 75,05, Tj41
for any piecewise and right—continuous function a(V7,, ). O
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Remark 9 (Reformulation of the necessary conditions)

Define pu((t,00)|70,...,7;) = exp[=A(j + 1)(t — 73)], u(t|70, ..., 75) = 1 —
p((t, 00) |10, ..., 75), 5 =0,1,2,...., (7o = 0), and p*(¢t, 7y, ..., 75) =

p((too)|ro, ..., 7j)p(t, T, ..., 7j). Let Dy denote the density of the cumulative
distribution p, and let a dot above a function mean a derivative with respect
to time ¢. Then p*(t, 7, ..., 7;) satisfies the differential equation [27] below.
In fact the necessary conditions [16]-[18] yield the following necessary condi-
tions:

Assume that z*(¢,w), u*(t,w) is an optimal pair in problem [9]-[11]. Then,
there exists a non-anticipating function p*(t,w), such that for all w, t —
p*(t,w) is continuous between the points 7; in w, and such that for Ay = 1,
a.s., for vee. t > 7,

u — [Aofo(t, l'*(t, Tlyew- ,Tj), U,j)ILL((t, OO)‘T(), ceey Tj)+
Pty .., m) f(E (T, ., 1), uw, 5)] Do, -, 7))
has a maximum at u*(¢,7y,...,7;) in U. [27]

Moreover, (still for Ay = 1), for each w, t — p*(t,7y,...,75), t > 7; is
differentiable v.e., and satisfies v.e.

prt,m,..., 1) =
—ANofou (6, 2" (t, 7, ..., 1), w (¢, 11, ..., 75), 5)((t, 00|70, ..., T§)
—p (t, 1, ) [t 2 (T, ) W (T, ), ) —
Nogoo (t, 2 (t, 11, ..., 15), 7+ 1)p(t]mo, ..., 75)—
Pty O 4 g (2" (T, 1), 7+ 1) it T, -, 7).

28]

Finally,

p (T, m,...75) = hog(x*(T—, 71, ... 7)) u((T, 00) |70, ..., T§). [29]

Here, p*(t,w) is, separately, piecewise and left—continuous in ¢, and piece-
wise and right-continuous in each 7;. ([l
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Remark 10 (General distribution of jump times)

The necessary conditions in Remark 9 also hold, if the probability distri-
bution of the 7’s are not of the type above. In fact, the above neces-
sary conditions [27]-[29] hold for any given sequence of conditional densities
L(t|mo, ... 75),7 =0,1,..., (for j = 0, the density is simply z(t) = p(t|m)). If
N = oo, for the necessary conditions to hold, a condition ([29%] below) is
needed. Define ©,,(t,w?) to be the conditional probability that exactly m
more jumps occur in [0, ¢], given w’, 7; < ¢. Assume the following inequality

Om(t,w’) < ®(t, j)o(t, j)™, [297]

for some positive numbers k, ®(, 7),v(t, 7),v(t,7) € (0,1/(1 + K)), where
lg(t,z,j)| < a+ k|z| for all t,z,j, o some given positive number, x being
also a Lipschitz rank of z — ¢(t,z,7),j = 1,2, .... Again a stochastic distur-
bance V' can be allowed, with modifications as described in Remark 8.

The necessary conditions, with Ay = 1 are sufficient if x —
maXuGU{fO(t7 z,u, j):u((t? OO)‘T()a sy Tj) + p*(t7 W)f(t, z, uaj)}D:u(TO? ES) Tj)’
r — p*(t,w)g(t,z,j), © — go(t,x,j), and x — ho(x) are concave for ¢t €

(75 Tj41)-

The theory above applies also to the case where f and fy depend on the
7;’s, provided, for any given (z,u), these functions are nonanticipating in
(t,w). In Theorem 1, as well as in [27], [28], in the functions fo, f, fo.z, fo We
simply replace j by 79, ..., 7;. Now, we must assume that the Lipschitz conti-
nuity is uniform in w, (i.e the Lipschitz constants are independent of w), and
that inequality [19] holds for fo, and f, for all w. Moreover, it is assumed
that fo, f, for and f, are separately piecewise and right—continuous in each 7;.

The same solution procedure applies as before: Let us relate it to the neces-
sary conditions [27]-[29], (with Ay = 1):

First, let u(t, z, p*, 10, ..., 7;) maximize fy(t,z,u, 10, ..., 7;)p((t, 00)|70, ... 7j) +
p*f(t,x,u, 0, ...,7;). Then, in the case N < oo, consider the equations

l'(t, TOy ---y Tj) = f(t, xZ, ’ll(t, l’,p*, TOy -ns Tj), TOy ---y Tj) [30]

p*(t, TOy «--y Tj) =

18



—fou(t, z, U(t, z, p, 70, ooy Tj), Toy ooy ) 11( (T, 00) | 70, -y T5)
—p* fo(t,z,0(t, x, p*, 11, ..., T5), Toys ooy T)
—gox(t, x, 7 + 1) fu(t|70, ..., 75)
— p*(t+, 705 oo, T O + g2 (t, z, § + 1)]i1(t] 70, ..., T5)- [31]

Boundary conditions for (z(¢,y, 70, ..., 75), p(t, y, 70, ..., 7j)) are again, for s =
7;, the two equalities x(7;) = y, and

PH(T) = hoo (x(T))p((t, 00)[ 70, -, 75-) [32]

In case N < oo, again these equations can be solved backwards. First for
j = N, solutions of the equations are found which we denote z(t;y, 79, ..., Tv ),
p*(t;y, 10, ..., 75 ). Next, for j = N — 1, solutions of the equations are found
which we denote z(t;y, 70, ..., Tv-1), P*(t; Y, To, ..., TN—1), (in this case knowl-
edge of p*(t;y, 70, ..., Tv_1, t) is needed), and so on.

An analogous solution method involving the p-functions rather than the p*-
functions can be written down. For brevity it is dropped. 0

4 Problems with terminal constraints

Let us next consider problems with terminal constraints. The tools available
in the general case are a little complicated, so we first consider a very special
situation, where x is a scalar, the jump sizes are constant, the scrap value
function is zero, and where the terminal inequality condition z(T—,w) > &
a.s., is imposed, Z a given number. Such a terminal condition is sometimes
called hard, as opposed to a soft one, that takes the form Fz(T—,w) > z, &
a given number. Below, mainly hard end constraints are treated. Soft end
constraints are briefly mentioned in Remark 15 below. Thus, we now have a
system that, in addition to [9]-[11], includes the conditions:

r€ERh=0,9=c#0,2(T—,w) > 7 as,N <o [33]

and that fy and f are independent of j. Now, if j jumps have occurred,
then as long as no further jumps occur, x(¢; s, vy, j) has to be steered in such
a manner that if none, or one or more jumps occur in the future ( after ¢), we
are able to satisfy the end constraint. At most N —j jumps can occur after s.
Even if ¢ is very close to T, such a number of jumps can occur with positive
probability. If ¢ > 0, we often need only be concerned with satisfying the
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inequality x(T—,s,y,j) > @: It this inequality is satisfied, and given any ¢
close to T, and also given that j jumps have occurred in [0, ¢], then if one or
more jumps occur after ¢, it is easier to obtain z(T—;s,y,75') > =, 7' > j,
(sometimes these inequalities will even be automatically satisfied). If ¢ < 0,
a more detailed discussion is useful. We will only consider two situations.

u) = +oo for all (¢, z) in a neighborhood of
x — Nc¢} [34]

IN
=

or, for some constant K,

sup,cp f(t, x,u) < K for all (¢,x) in a neighborhood of
{(T,z) :2 <z <z - Nc} [35]

Let 27 = 2 both in case c is positive, and in case [34], (even if ¢ is nega-
tive). In the case where c is negative and [35] holds, let 27 = & — (N — j)c.
In this case, we have to arrange it so that if j jumps have occurred, then we
must make sure that x(T—;s,y,7) + ke > & for k =0,..., N — j, (k jumps
downwards can occur arbitrarily close to T". The most demanding equality
is obtained for £ = N —j. So, in general we have to seek solutions z(¢; s, v, 7)
satisfying the end condition

o(Tss,y,5) > &, 36]

As usual, there is a slackness condition that the adjoint function must sat-
isfy at time 7. The functions p(7T;s,y,j) must satisfy the transversality
conditions

p(T;s,y,5) 2 0,= 0if 2(T;s,y,5) > 27,5 =0,..., N. [37]

The solution method for problem [9]-[11], [33], is the same as before, except
that the boundary conditions are:

x(s;s,y,7) =y, [36] and [37] [38]
The solution method now consist of [12]-[14], [38].

Example 3 max E{f03(3 — 5)(1 — u)ds}, subject to @ = u € [0, 1], (0) = 0,
x(3) > 1 with probability 1. There is a probability with intensity A > 0 that
a single unit jump downwards occurs.

The conditions [12]-[14], [38] will be applied. After a jump, the solution
is u(t;s,y,1) = 0if y > 1, and if y < 1, u(t;s,y,1) = 0 for s < y + 2,
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while u(t;s,y,1) = 1 for t > y + 2. To see this note that p(¢;s,y,1) =
p(s;s,y,1). From the maximum condition, evidently u = 0 to begin with
(where 3 —¢ > p), (if at all) and u = 1 at the end (if at all). Consider the
case where we do have a point o € (0,1) at which we switch from 0 to 1.
Then, x(t;s,y,1) = y for t < o,z(t;s,y,1) =y +t—o0 fort > o, with o
determined by z(3;t,y,1) = 1,ie. y+3—oc =1, 0oroc =y +2. At s = 0,
by the maximum condition, 3 — o = p(0o, s,y,1), so p(t;s,y,1) =1—1y, (pis
independent of s and t). The formula for p(¢; s,y, 1) is valid if o € (s, 3), i.e.
y € (s—2,1). It works also for o = s,(y = s — 2) and we use it, though then
any p(t;s,y,1) > 1 —y would also work. The general formula for p(t;s,y, 1)
is then p(t;s,y,1) = max(0,1 —y),y > s — 2, (from points (s,y),y < s — 2,
it is not possible to reach (3,1) (or above).

To find wu(t;s,y,0), then, again, from the maximum condition, v = 0
when 3 — ¢ > p (this happens to begin with, if at all), while v = 1 when
3 —t < p (this happens at the end, if at all). For j = 0 we need only
consider (s,y) = (0,0), below p(t) is a shorthand for p(¢;0,0,0), similarly
x(t) = x(t,0,0,0).

We guess, or try the possibility, that x(¢)—1 < 1, in which case p(¢; t, z(t)—
1,1) = 2—x(t). Now, dp/dt = A\p(t)—Ap(t,t,z—1,1) = Ap—A2+Az(t,0,0,0),
while dz/dt = 0if 3—t > pand dz/dt = 1if 3—t < p. We guess that the two
last inequalities occur on intervals [0, «v), and (a, 3], respectively, (this will be
confirmed). Thus on the first interval, x(t) = 0, and so p(t) = 2+ Ce* here ,
for some integration constant C'. On the last interval, z(t) = D+¢, D an in-
tegration constant, and we guess that z(3) = 2 .(We are in case (B) so a jump
may occur close to s = 3, i.e. x(T—) has to equal at least 2). Thus, D = —1,
which means a = 1, and which gives that dp/dt = Ap(t) — A2+ A(t — 1) for

€ (1,3), dp/dt = Ap(t) — A2 for t € (0,1). (One may note that we use the
unique formula for p(t,¢,y, 1) for ¢ < 1in these cases, since 0 < 1—y = 2—x(t)
fort <2.) y=2(¢0,0,0)—1€ (t—2,1), fort < 1.)

This equation has the solution p(t) = 3—t —1/A 4+ =D /X for t € (1,3),
(the integration constant is determined by 3 — a = p(«), i.e. 2 = p(1)) and
for t € (0,1), p(t) =2, (2 = p(1) gives also C' = 0).

Let us confirm a couple of properties: The transversality condition re-
quired in [25] is satisfied (p(3) > 0). Moreover, as 3 —t is decreasing and p(¢)
is non-decreasing, the maximum condition is satisfied by u = 0 before a = 1,
and by u = 1 afterwards. Note that a solution has to be found such that the
end constraint is met with probability 1. This requires z(7—,0,0,0) > 2.
The solution z(¢;0,0,0) = max{0,t — 1} satisfies the latter inequality and it
describes the optimal behaviour before a jump. After a jump, we use u = 0
until ¢ = 1, and then uw = 1, if the jump occurs in [0, 1), if the jump occurs
in [1,3), we use u = 1 all the time after the jump.
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Note that the solution is the same for all A > 0. Sufficient conditions, see
Remark 12 below, apply here.

Example 4 Consider the problem
T
maXE/ —u?/2dt, i =u, v(0)=-2, 2(T)>0as.,u>0
0

with a possibility for a single, unit upwards jump in x(¢) at 7 € [0, 00), T expo-
nentially distributed with intensity \. When y > 0, evidently u(t;s,y,1) =
u(t; s,y,0) = 0 are optimal, (with the p-function vanishing), so we con-
sider only y’s satisfying y < 0. To find u(¢;s,y, 1), the solution method
[12]-[14],[38] is used, and we seek a solution satisfying z(T;s,y,1) > 0.
In fact, we guess that, after a jump has occurred, we steer x in such a
way that z(T;s,y,1) = 0 if y < 0. (The guess is confirmed below .) As
u = p(t;s,y,1) = p(s,y), we choose p(s,y) such that if we start in (s,y),
with y < 0, we end in (7,0), i.e., z(T;s,y,1) = y + fsTﬁ(s,y)dt =0, or
p(s,y) = —y/(T — s). Moreover, u(t;s,y,1) = y/(s = T),z(t;s,y,1) =
yt—T)/(s—T) for y < 0.

To find u(t; s,y,0), y < 0, consider the characteristic equations: & = p,
p=-ttr+1,1)+ p =N+ 1)/(T—1t)+ Ip. f z+1 > 0, drop
the term A(z + 1)/(T — t)) in the second equation. Differensiating the first
equation and inserting from the second and first equations give d?z/dt* =
Mz /dt — Nx +1)/(t —T), for z < —1, (drop the last term in the opposite
case), with boundary conditions z(s;s,y,0) = y, (T; s,y,0) = 0. Defining
w(t) by w(t)(t—T) = x+1, we get do/dt = (dw/dt)(t—T)+w and d*z/dt* =
(dPw/dt*)(t —T) +2dw/dt = Mdz/dt — XNz +1)/(t—T) = Ndw/dt)(t —T) +
Aw — \w, so d*w/dt?* = (A —2/(t — T))dw/dt. Integrating this separable
equation, we get w(t) = Ce'/(t — T)2, and w(t) = D+ [/ Ce" /(0 — T)do,
sow(t)t—T)—1=xz(t) = x(t;s,y,0) = B(t; s,y) = (t—T)[D—i—fst Cer /(o—
T)2do]—1 = (T—t)[(y+1)/(T—s)— [} Ce* /(T—0)?do] 1, as long as x(t) <
—1, (we have used z(s) = y to determine D). The equation for z is simpler
when y > —1, then x(t;s,9,0) = D'+ C'e’=%). With x(T) = 0, x(s) = v,
this gives z(¢;s,9,0) = B*(t;s,y) = —ye /(e — ) + yert /(e? — ),
for y € (—1,0).

Ultimately, before any jump, we only need to know the solution z(t; s, y, 0)
for (s,y) = (0, —2). The solution z(¢; 0, —2,0) is “smoothly pasted" together
at the point ¢’ < T at which the line x = —1 is crossed, by putting —1 =
B(t",0,—2), as well as by putting the first derivatives equal to zero, which
yields e " /(AT — M) = [05*(t;t", —1)/Ot]y—r = [0B(t;0,=2)/Ot]j—pr =
(—1)[—1/T—fg// Ce /(o —T)*do] — Ce” /(T —1"). (The first characteristic
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equation does tell that & is continuous.) The two equations determine C' and
t": The first equation reduces to —1/T — C’f;ﬁ e* /(T — o)*do = 0, using
this in the second one, it reduces to A\e*” /(e* — ") =

—CeM' (T —t"), or \/(e’ —eM') = —C/(T — t"), which gives C' = (t" —
TYN/ (X — "), Using this, the first equality becomes

—1/T = —{X(T = t") /(X — M)} [ X (T — 0)2do.

For ¢ = 0, the right-hand side is 0, while for ¢ = T it is —oo, (when
t" — T, the square bracket has a positive limit, while the integral diverges).
So a solution for ¢” and hence also for C' exist.

Having found C and ", if y < —1, then z(¢;0, —2,0) = ((¢; 0, —2) for ¢ in
(0,t") and z(t;0,—2,0) = 5*(¢;t”,—1) for t > t”. Using sufficient conditions
based on concavity (Remark 12 below), it can be shown that the solutions
x(t;s,y,1) and x(¢;0,—2,0) are optimal. Here the solution depends on .

The general end constrained case
The following ("hard") end conditions are imposed. With probability 1,

i (T—, w) = Iy, i=1,...,n [394]
i (T— w) > iy, i>n'+1,...,n" (390]

In addition to the earlier assumptions on the system mentioned subsequent
to Theorem 1, it is now assumed that fy, and f, are uniformly continuous
in (z,u), uniformly in (¢, j), and that g,(¢,x,j) is uniformly continuous in
z, uniformly in ¢, j, that, for all ¢, z, |g.(t, 7, 5)| < M}, |g(t,0,7)] < Mj, for
some constants M]’-, and that

> M < oo [40]
j=1

Let IT be the map (x1,...,2,) — (x1,...,2Z,), and let
B:{xEanxi:O,ign',xizo,n'—i—lgign”}. [41]

The possibility of being able to satisfy [39] depends on the behaviour of the
process (i.e. on the "controllability" properties of the process). For example,
if f is a bounded function (case [42 b| below), we cannot hope to have
[39a]) satisfied, when large jumps in x;(.), i < n/, occur close to T. Define
9% (z) =z, g (x) =2+ g(T,2,j+1), " (2) = ¢ (2) + 9(T, g (2), j +2),
and recursively ¢¥J(x) = g* Y (x) + (T, g* "1 (x),j + k). We shall only
discuss systems satisfying one of the two condition: For some 7" € [0,7T),
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R™ c T{f(t,a*(t,w?),u,j) —b:uec Ube B}
for all (t,w),t € [T",T] [42 a]

or
SUD; serr 1 uer LS (1, r*(t,w?), u, j)| < oo for all w, g; =0,i <n' [42 b]

We shall now require that for a pair z(¢,w), , u(t,w) to be called admissible ,
the inequalities sup, , [2(t,w)| < oo and, (for any 7" < T'), sup,<q, [u(t, w)| <
oo have to be satisfied. (Note the occurrence of 7" < T'in the last inequality,
Example 4 explains why.)

In necessary conditions, z*(¢,w) is assumed to be the optimal solution.
But, as for other constraints qualifications, in practice, we need that [42]
holds for all admissible pairs. (If [42] fails for some admissible solutions, it
must automatically be considered a candidate for optimality.) The problem
now consists of [9]-[11], [39] |,[40], [42]. For solutions to be admissible, [39 |
has to hold. As long as only j jumps have occurred, in case [42b|, we have
to steer the system in such a manner that the equalities z; = Z;, ¢ < n/
and the inequalities (¢®9(z)); > &5, k = 0,...,N —j, i = n' +1,...,n"
hold for x = x(T'—; s,y, 7). The reason is that, however close ¢ is to T, fur-
ther jumps can occur. In case [42 a|, we steer the system such that [39] holds.

Solution method in the end constrained case, with N < 1

Assuming that f, fy, go, g, and hg are C?, the method for finding solutions
described in connection with [12]-[14] (|4]-[6] above also works here, the only
change needed is a change of the terminal condition on p(7"): We will need
numbers, (multipliers), A;(k,s,y,5),k = 0,...,N —j, i = 1,...,n", (with
Ak, s,y,7) = (A(k, 8,9,5), s Apr(K, 8,9, 7),0,...,0) € R, to formulate the
condition.

p(T:5,y,5) = (hoo(x(Ti 5,9, 5)) + > Ak, s,y,0)95 (2(Ts 5,9, 5)),

0<k<N—j
Ai(k,s,y,7) > 0,M(k,s,y,7) =0 if (¢ (x(T; s,9,5)))i > 24, i =n/4+1,...,0".
pZ(T7 S, yaj) = (hOx(x(Tv S, yaj))laz > TLN.
Ai(k,s,y,7) =0,i <n',k >0, and also for i > n’ in case [42a], [43]

To solve the end constrained problem, (i.e. to find characteristic pairs) one
applies [12]-[14], with boundary conditions

[39] [.[43] and z(s; 5, y,5) =y [44]
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(Formally, there may be a need to find also "abnormal" triples, this is com-
mented upon subsequent to Theorem 4 below.)

Remark 2 describes how characteristic triples z(¢; s, y, j), u(t; s, y, 7), p(t; s, 9, j)
give rise to corresponding non-anticipating entities z(t,w), u(t,w), p(t,w).
Similarly, to A(k, s, y, j) corresponds A(k, 11, ..., 7;) == Ak, 75, 2(Tj+; 71, ..., 75
when 7; < T. (We can even write A(k,w) instead of A(k,7,...,7;), j =
0,1...,N, if we agree that A(k,w) is a function that is non-anticipating at
time 7T'.)

Remark 11 Which start-points should enter characteristic triples

Let us discuss a little more the start points (s,y) used to construct the
characteristic solutions.

At the outset, we must assume that admissible solutions exist. Now ad-
missibility implies that the terminal conditions are satisfied, and this sense of
admissibility should also be understood when reading the definition of Q(j)
in [20]. The just mentioned assumption implies that ()(j) is nonempty. As
before, solutions z(t; s, ¥, j) must be constructed for all points in Q(j), (as
well as for (0,2%) when j = 0). O

In a sufficient condition below larger open sets Q°(j) appear. Sometimes
they can be constructed again by considering all solutions z(¢,w), starting
at t = 0 at all 2° in an open ball around z° as mentioned in the discus-
sion subsequent to [20]. Occasionally, even Q(j) = (0,7) x R™ works. But
note that now it can be more difficult (or in some cases impossible) to find
such larger open sets Q°(j), that have the property that characteristic solu-
tions can start anywhere in these sets and still satisfy the terminal conditions.

To obtain a maximum principle (necessary condition), a condition is needed
that secures that “enough choices" of values of & are available: Let II be the
map (z1,...,%,) — (21,...,2y). For some n > 0,¢ > 0, some bounded
non-anticipating function z(¢,w), piecewise and left—continuous in ¢, right—
continuous in each 7;, for all w, for all t € [T"—n, T such that ¢ € (75, 7j41),

B(i* (t,w) + 2(t,w),m) € T{f(t, " (L,w), 4, ) — b w € U N B(0,¢),b € B}
45)
In case of [42 al, this condition often follows automatically.
The following maximum principle will normally hold as a necessary condi-
tion for optimality. The assumptions on fy, f, go, g, ho subsequent to [39] and
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to Theorem 1 are again postulated. Moreover, it is assumed that, for some
d> 0, 1f,(t,x,u*(t,w), 7) is uniformly continuous in x € B(z*(t,w), d), uni-
formly in t,w, j. (Alternative assumptions are stated in Remark 18.)

Theorem 4 (Necessary conditions, end constrained case)

Let 2*(t,w), u*(t,w) be an optimal pair in the end constrained problem [9]-
[11], [39] ],[40], [42]. Assume [45]. Then Theorem 1 holds with two modifica-
tion: The transversality condition [18] on p(7,w) is changed to the following
one: There exist multipliers A;(k,7,...,7;), k=0,...,.N —j,i=1,....n"
such that [43| holds for (A;(k, s, y,7),p(T; s,y,75), x(T;s,y,7), ho(z(T;, s,v,7))
replaced by (A;(k, 11, ...,7),p(T; 7, .., 75), 2" (s, ..., 75), Noho(2* (T 14, - . .
Moreover, in [16]-[17], fo, foz, and go, are replaced by Agfo, Ao for, and Aggos,
respectively. Here, Ag € {0,1}. Finally,

T
sup E/ p(t,w)z(t, w)dt < oo, [46]

|z(tw)|<1 0
(z2(t,w) having properties as in [45]). O
The functions A(k, 7, ..., 7;) can normally be assumed to be bounded func-

tions, and piecewise and right—continuous in each variable separately. The
condition [45] will automatically ensure Ay = 1 if 2(¢,w) = 0.

Unless sufficient conditions, (Theorems 5, 6 below) are used, to ensure that
all candidates for optimality have been found, it is necessary to apply the
solution procedure both for Ay = 1 and Ay = 0, (the latter value requires ob-
vious modifications of [12]-[14], [43], compare the ones occurring in Theorem
4.)

The word "normally" was used a couple of times above to indicate that there
are cases, rather exceptional ones, in which necessary conditions require mul-

tipliers less well-behaved than the above ones. A proof of such conditions
appears in Seierstad (2002).

The sufficient conditions in Theorem 2 now takes the following form, (for-
mally we then need not assume [45]):
Theorem 5 (Sufficient conditions, end constrained problems)

If we substitute the transversality condition of Theorem 1 with the one in
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Theorem 4 for Ag = 1, then Theorem 2 still holds in the end constrained
case. 0

Remark 12 (Sufficient concavity condition for characteristic triples)

Similarly, the characteristic triples x(¢;s,v,7),u(t;s,y,7), p(t;s,y,j) yield
an optimal control, if the concavity conditions in Remark 6 holds. 0

In the next sufficiency theorem, we need a new boundary condition. To
formulate it, a few entities need to be defined. Define s — z(t;s,y,7) to
be the solution of the following differential equation (linear in z), when

((t; sy, ), p(t; 5,9, 7)) is inserted for (z, p):

2t) =ANg+D{z—go(t,x,7+1) —2(t,t,x +g(t,x,7+1),5+1)}—
fo(t,x,ﬁ(t,x,p,j),j), Z(T) = hO(x(T;Sayaj)) [47]

(It is the same as [23] above.) Assume that all x(t;s,vy,7),p(t;s,vy,J) are
known. Solving [47]| by using backwards recursion yields solutions z(¢; s, y, j)-
(With A(N 4+ 1) =0, z(t; s,y, N) can first be constructed from [47|.) Define

J(t,x,j) = z(t;t,x, j). [48]

The boundary conditions are: For any admissible solution z(t,w),

sup |J(t, 2(t,w),j| < oo, and forallw € {w: 7, <T < 741}
twe{wr; <T<tj41}

The inequality [49] automatically holds in case [22] holds. The bounded-
ness property [22] may however fail to hold in end constrained problems. In
such cases [49] is needed.

Theorem 6 (Sufficient conditions for a field of characteristic triples,
with N < oo and terminal constraints) In Theorem 3, make the fol-
lowing changes: Delete [22], add [49], and replace the boundedness prop-
erties of p(s;s,y,j) and py(s;s,y) by the conditions that p(p; p, x(p;s,y) +
g(psx(p;8,y),5),J + 1) and py(p; p,z(p;s,y) + g(p,x(p;s,y),5),J + 1) are
locally bounded in (s, y), uniformly in p. Provided the sets Q(j) are as de-
scribed in Remark 11, and the characteristic pairs now satisfy the present
terminal and transversality conditions [29], [43],[49], with A;(k, s,y,j) con-
tinuous for i = n’+1,...,n” , then the conclusions of Theorem 3 are still valid
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in the end constrained case [9]-[11], [39]. O
Example 4 revisited

Theorem 6 can also be applied to obtain optimality of the proposed can-
didates. Below only condition [49] is discussed: Let j = 1, and note that,
for y < 0, J(s,9,1) := [ —(y/(T —1))?/2dt = —y?>/2(T — s), whereas
J(s,y,1) = 0 for y > 0, so J(s,y,1) = —(min{0,y})?/2(T — s). For
any (s,y,1)-admissible function Z(t), with corresponding control u(t), for
which #(T) = 0, lim;_7 —(min{0,2(¢)})?/(T — t) = 0, because controls
are bounded functions, (they have individual bounds). Then [49] holds for
(s,y,1)- admissible solutions that satisfy z(7) = 0. If z(T) > 0, z(t) >
0 for t close to T, and for such t, 0 = J(s,2(s),1) = z(s;s,2(s),1) =
lim, 7 J(s,2(s),1), so [49] also holds in this case. Next, consider the case
j = 0. We need an expression for J(s,y,0) only for y € (—1,00). Now,
i(t; s,y,0) = —=Amin{0, y}er/(e** — ), for y € (—1,00), and J(s,y,0) =
2(s; s,9,0), where z(¢; s,y,0) is the solution of 2 =
Az — A(min{0, z + 1})?/2(T — t) — A2(min{0, y})2e* /2(e** — )2 =
Az — A2(min{0, y})%e? /2(e?s — )2
Thus, z(; s,9,0) = —A(min{0, 2})?(e*+T) —e2) /2(er—eAT)2 and J (s, y,0) =
—A(min{0, y})2(eM+T) —e23) /2(e** — eAT)2 = A(min{0, y})%e* /2(e** — 1)
for y € (—1,00). Having this formula, a test of [49], as carried out above,
can again be done for j = 0. The case £(7) > 0 is trivial. If 2(T") = 0,
2(s;5,2(5),0) = J(s,2(s),0) = M(min{0, 2(s)})%e**/2(e** — e*T) — 0, when
s — T', because controls are bounded.

Sometimes, Theorem 6 does not apply, because solutions with open do-
mains Q(j) for (s,y) do not exist. Consider the following example:

Example 5
3
maXE/ utdt, &= —u, wu€l0,1], z(0)=1, z(3—) >0 a.s.,
0

with a possibility for a single, unit upwards jump in x(¢), with probability
given by the intensity .

a. Considering first the situation after a jump with initial condition (s, ).
Let us intuitively construct the solution in this case. To get some “sizable"
positive value of the criterion, we have to use u = 1 for some time, The
constraint x(3) > 0 limits the time interval on which we can use v = 1. It
evidently pays to postpone the use of u = 1 as long as possible, due to the
factor ¢ in the integrand. Hence, the optimal path is evidently z = y until
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time ¢” given by y = 3—1t". Afterwards, v = 1 and this yields x(3) = 0. Here
we assumed s < 3 —y. Now, p(¢;s,y,1) is constant, and to have a switch
point at t”, p(t”; s,y) = 3—y. If on the other hand s > 3—y, we can use u = 1
all the time, and still we do not reach (3,0), so 0 = p(3;s,y,1) = p(t;s,y, 1).
If s =3 —y, u=1 all the time, in this case any p(¢;s,y,1) = p* € [0, 5]
works. Evidently, z(t, s,y,1) = max{y, max{s,3 —y} +y — t} =

y + max{0, max{s,3 — y} — t}.

b. Before a jump, we need only consider the case (s,y)=(0,1). Our in-
tuition tells us that an optimal policy is as follows. The factor t in the
integrand in the criterion makes it optimal to postpone using v = 1. When
we surely have no jump, v = 1 is optimal on a unit interval I at the very
end. However, with a positive probability for a jump, it may pay to have
I = (a,a+ 1) at which u = 1 somewhat earlier than at the very end. It may
be advantageous to make room for having u = 1 on an additional set in case
of a jump (a jump makes this possible). At least for A small, presumably we
will not exploit the latter possibility fully (or at all), for A large, we would
expect a to be close to (or equal to) 1. It can never pay to have a < 1, for if
we experience a jump at any point, x is < 2 here, and we don’t need a larger
interval than one of length 2 for = to decrease down to zero.

c. Now, we put the solution method [4]-[6], [38] to work. For adjoint func-
tions p(t) := p(¢;0,1,0) and p(t; s,y, 1), t > 7, corresponding to the situation
before a jump has occurred, and after a jump has occurred, respectively, the
following maximum conditions hold:

(u—u(t;s,y, 1))t + p(t;s,y, 1) (u(t; s,y,1) —u) <0 for all w € [0,1]  [%]
and for u*(t) :=wu(t;0,1,0),
(u—u*(t))t + p(t)(u*(t) —u) <0 for all u € [0, 1] [k ]
where p(t) satisfies the differential equation:
p(t) = =Ap(t;t) + Ap(t) [ ]

p(t;t) := p(t; s, z(t+),1), with end condition p(3) > 0, = 0 if z*(3—) > 0,
(we write z(¢;0,1,0) = z*(t)), and where p(t;s,y,1), for t > 7 satisfies the
adjoint equation p =0, p(3—;s,y,1) >0, (=0 if z(3—;s,y,1) > 0).

d. We now take for granted that «*(7') = 0, for t € [0,a], a >= 1,
u*(t) = 1in (a,a+ 1) and u*(t) = 0 for t > a + 1. Observe that if a jump
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occurs at s € (1, 3], then we jump to a point (s, y) satisfying s > 3 — y, with
s > 3—yifa > 1. (To see this, note that if s < b:=a+1, 2*(s) = 1—(s—a),
soy=2—(s—a)>2—-s+1=3—-s. Ifs>b>2 2"(s) >x(3) >0, so
y=2x(s)+1>1,and s > 2 >3 —y, in fact, s > b > 2, if a > 1.) From
a., recall that p(t;s,y,1) = 3 —y, if s < 3 — y, whereas p(t;s,y,1) = 0 for
s > 3—y. Thus, for s > 1, we jump to a point (s, y) for which p(s;s,y,0) = 0.

e. We shall first consider a “medium sized" value of A\: We shall assume
that 1/(e* — 1) € (1,2). Define h*(t) := [’ Xe p(s; 5, 2(s;0,1,0) + 1, 1)dr.
Evidently, p(t) = e*(h*(t) + h) for some constant h > 0. Assume for the
moment that there exists an interval [a,b] C (0,3), b = a + 1, in the interior
of which ¥ (t) —h > 0, ¥(t) :== et — h*(t) > 0, with the opposite (strict)
inequality holding outside [a,b]. Then, by (**), for t < 7, u*(t) = 1y
(the indicator function of the set (a,b)). If no jump occurs in [0, 3], we have
guessed z*(3—) = 0, which is consistent with the above choice of control.
(There is a positive probability that there is no jump in [0, 3], so we must
have z*(3—) > 0, in the case of no jump in [0,3].). We have also guessed
(or we know) that a > 1, in fact we now guess that a > 1. Consider first
t > a. Then h*(t) = 0, (if we jump at s > ¢, we jump to a point where
p(t;s,2(s;1,0,0) + 1,1) = 0, see d.) Thus, for t > a, ¥(t) = e Mt =: ¢(t).
Now, as a and b are switch points, ¥(a) —h =1(b) —h =0, so ¢(a) = ¢(b),
which implies a(a) := (a + 1)e M) — ge™?@ = e (g(e™* — 1) + ) = 0.
This equation always has a solution a = 1/(e* — 1) € (0,00). We have
in fact assumed that 1/(e* — 1) € (1,2), so we have identified the in-
terval (a,a + 1) in this case. Note that the function te=*' increases un-
til £ = 1/\ and then decreases. Since be™** = ae % 1/\ belongs to
(a,b) and te=™ > ae™?* in this interval. Let us show that u = 1 yields
maximum of the Hamiltonian for ¢ € (a,b), (cf. (**)). A jump after ¢
at T, gives p(s;s) = 0, and ¥(t) = ¢(t), so ¥(t) — h > ¢(a) — h = 0.
Consider next ¢ < a. Then, ¢¥(t) < ¢(t) < ¢(a), so ¥(t) —h is < 0
showing that (**) is satisfied for w*(¢) = 0. Similarly, for t > b = a + 1,
P(t) < o(t) < @(b), so (t) —h < 0, thus u*(t) = 0 satisfies (**). Having
made a number of guesses it is reassuring to know that in this problem, suf-
ficient conditions work.

f. For the persisting reader, we have considered other possible cases.
Consider first the case where 1/(e* — 1) > 2. Recall that in the interval
(1/(e*—=1),1+1/(e*Y ¢(t) := te~™ first increases until some point and then
decreases, with ¢(1/(e* — 1)) = ¢(1+1/(e* —1)). Now, we let a = 2, b = 3,
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h:=¢(a) < p(1/(e* —1)) = ¢(1+1/(e* —1)). Note that ) < ¢ everywhere,
in fact ¢» = ¢ for t > 1, as h*(¢) = 0 for such ¢. Evidently ¢(¢) = ¢(t) > h in
(2,14+1/(e—1)), which contains (2, 3). So for t € (2,3), by (**), u*(t) = 1,
u*(t) = 0 elsewhere, ((t) < ¢(t) < ¢(2) for t < 2, since 1) is increasing for
t<2)

Finally, consider the case 1/(e* — 1) < 1, in which case we believe that
a = 1. Note that if s = 3 — y, then u(¢;s,y,1) = 1 and the function
p(t;s,y,1) = p(s,y,1) is undetermined, it can take any value in [0,s]. A
jump at s > 2, or at s < 1 brings us to a point y = z*(s—) + 1 for which
p(t; s,y,1) = 0 ,while if a jump s occurs in [1, 2], then we jump to y =3 — s,
(z*(s) =1—(s—1),s0y =1+az(s) =2—(s—1) = 3 —s), in which
case p(t; s,y, 1) is undetermined in [0,¢]. Surprisingly, in what follows, we
need to specify suitable nonzero values of p* = p(s; s, x(s—,0,1,0) + 1,1) in
[1,2]: and we shall put p* = v*s, v* to be determined. If a jump s occurs
before 1, as we saw above, we jump to y satisfying s < 3 — y, in which
case p° = 3 —y = 1. Trusting our guess that v* = 1 in (a,b) = (1,2),
(= 0 outside), we need to have ¥ (1) = 1(2). This can be obtained if we
choose v* € [0,1] in the following manner: Note that for ¢ > 1, ¢(t) =
o) = fuo e My zdz = ¢(t) — {yte ™ — 4*2e7 2 + yre M /N — e A AL
Solve (2) —(1) = (262 —e ) (1—7*) —=7* (e —e~*) /A = 0 for v*, which
yields 0 < v* = (27 —e ™) /[2e7*? —e ™ + (e7*? — e7*) /)] < 1. Note that
Y'(t) = e (1 + A(v* — 1)t). Now, due to the linear factor in ¢, ¢’ changes
sign at most once in [1,2]. In fact, ¢’ changes sign exactly ones, at a point in
(1,2), because ¥ (1) = 1(2). So v(t) first increasing and then decreasing in
[1,2]. Thus, ¢(t) > ¢ (b) =: h, for t € (1,2). Moreover, ¢'(t) = ¢'(t),t > 2,
and ¥(2) = ¢(2), with ¢/(t) < 0, for t > 2> 1> 1/(e* — 1), so ¥(t) < ¥(2),
for t > 2, and u* = 0 for such ¢, (compatible with the guess we have already
made). Finally, for t < 1, ¢/(t) = (d/dt)[te ™ — [! \e"*?do+constant] =
e M1 — M) + Xe ™ > e > 0. Thus, ¥(t) < (1) < h for t < 1, which
implies u* = 0 for such ¢ in [**], (compatible with the guess we have already
made).

Generally, the results in the various cases above conform with our intuition.

In each case, it is easily seen that the candidate proposed satisfies sufficient
conditions, (concavity holds).

g. Replace the initial point (0,1) by (0,2"), 2”7 € (0,2), and assume
that 2 > 1/(e* — 1) > 1. Let us indicate why the optimal value function
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" — J(0,2”,0) is not differentiable: For such an initial condition, the solu-
tion is as follows: Before a jump, u*(t) = 1(qq447), where a = 1/(e* — 1) if
1/(e*—1) € (2—a",3—2"), with a equal to the left end or right end of this in-
terval in cases analogous to the ones above. Define 2" by 2 —2" = 1/(e* —1).
For 2" > #", a = 1/(e* — 1), so a is independent of 2”, whereas if 2" < 2",
then a depends on z”, in fact a = 2 — x”. This entails that J(0,z",0) is not
differentiable at =" = z”.

Remark 13 Stochastic jump sizes

Even in the end constrained case, the function gy and ¢ can contain dis-
turbances V. We confine ourselves to a brief comment on the change needed
for the solution procedure connected with [12]-[14] to work in this case, and
now it is assumed that the V;’s are stochastically independent of 7;, V;, 7 < j.
The only change needed is a redefinition of g%/, k > 1: Let % (x) = z,
ng("L‘v Uj) = :E—f—g(T, T, Vj, j+1)v QQ’j(xv Yj, Uj+1) = :E—f—g(T, gl’j(l‘v Uj)) Vi1, ]+
2), ., G801, o) = 2+ g(T, 9" (2,v05, .., V1), Vi, § + k), and
define now ¢ by g%(z) = infy, 0., 65 (2,05, ., vj4), (actually essinf -
almost sure infimum — should be used). 0J

Remark 14 Restriction on the time path

Consider the end constrained optimization problem [9]-[11], [39] [40], [42]
with the added restriction that there are given open sets Q(j) C (0,T) x R"
in which admissible solutions x(t; 71, ... 7;) are required to stay, j =0,1,...,
(ie. (t,z(t;w’)) € Q(5)). (This amounts to an additional requirement, on
solutions to be called admissible.) Controls u(¢;7,...,7;), j = 0,1,... are
admissible if the corresponding solutions are admissible. Theorem 6 applies
even to the present problem in the sense that it yields optimality in the
present class of admissible controls provided (¢,z(t;s,y,7)) € Q(j) for all
t > s, all (s,y) € Q°(j). (Of course, it is now understood that in the defini-
tion of the sets Q(7) in [20], the solutions z(.,w) are admissible in the present
sense). O

Remark 15 Soft terminal constraints

Consider the problem were, for simplicity, hg = 0 and the hard end con-
ditions [39] are replaced by the following soft ones:

Elai(T— w)] =&, i=1,...n [504]
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Elx(T—w)] >, i>n'+1,...,n" [500]

Consider the solution procedure for problem [9]-[11], [39], [40]. When [39] is
replaced by [50], the condition [43] in this procedure has to be replaced by the
following one. Define an auxiliary scrap value function hy = >, A\iz;, where
the multipliers S\i, so far are unknowns. Apply the solution procedure for this
ho-function, and at the end, determine the 'S by using the conditions [50],
and [51] below: For some non-negative multipliers Niyi=1,...n,

N>0i=n+1,...,7", [51a]
i =0if Elg;(Tyw)] > @i =n"+1,...,n" [510]
N=0i=n"41,...n. [51¢]

In [50] and [51 b], z(.,w) is the nonanticipating solution starting at (0, z"),
constructed by the method described in Remark 2. Note that in the present
case, no controllability condition like that in [45] is needed. O

Related to Theorems 6 and 3, there is a sufficient condition based on the
so-called HJB-equations of the problem. To introduce this approach, let us
make some introductory comments. We need the following convention: A
function defined on a possibly non-open set A is C* on A if it has an ex-

tension to a larger open set which is C''. Define the optimal value function
by

min{7T,741}
T (s,0.5) =mas( EY [ Lo (8)folt, 2t ), u(t, ), i)dt+
UL-se min{7T,7;}
Z gO(Ti7 x(Ti_a w)a Z) + hO(x(T_a LU))‘S, Y, j]} [52]
s<7; <T

where the maximization is over all (s,y, j)-admissible controls u(.,w), and
where z(t,w) = 2“0 (t,w). As before, a (s,v,j)-admissible control is a
nonanticipating control for which z(¢,w) = 2*(+)(t, w) satisfies the terminal
conditions and starts in (s, v, j), (j jumps have already occurred). Without
being too precise, let it be noted that very often, especially in the free end
case, for each j, J*(s,y,7) is C' in (an open set containing) clQ(j) and
satisfies the “j-th" HJB-equation:

0= Js(sayvj) + Iilea(}({fo(s,y,u,j) + Jy(sayaj)f(57y7u7j)}
G+ D{go(s,y, 5+ 1)+ J(s,y+g(s,y,5+1),5+1) = J(s,y,5)}. [53]
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In the free end case, the boundary condition on J(s,y,j) is
J(T,,5) = ho(x). 54

In the case where a maximum of N jumps can occur, there is a recursive
procedure available for solving the HJB-equation. First [53]-[54] are solved
for j = N, then for j = N — 1, (then we need the knowledge of J(t,z, N)),
and next for j = N — 2, (then we need J(t,z, N — 1)), and so on backward.
In end constrained cases, [55] below is used instead of [54], (then J(s,y,j) is
perhaps not meaningfully defined for s = T).

Related to the HJB-equation is a sufficient condition, or verification the-
orem. We need the following boundary conditions.

ho(z*(T,w)) = lin% J(s,x*(s,w), ) for all w = (1, 72, .. .),

for which 7; < T < 744 [55a]

For all admissible solutions z(t;w), lirr% J(s,2(t;w), j) > ho(z(T,w)),

for all w = (71, 72,...) for which 7; <T < 7;44. [55b]

For the next theorem, let us postulate that the system satisfies the prop-
erties stated subsequent to Theorem 1.

Theorem 7 Assume that J(s,y,j),7 =0,1,..., are C' functions on Q(j) sat-
isfying the HJB-equation [53] for all (s,y) € Q(j), and the boundary condi-
tion [55 b]. Assume that for any admissible solution z(¢,w), |J(t, z(t,w), j)| <
ay + kyle(t,w)|, and that s — J(s,z(s,w),j) for s € (7, 7j11) is Lipschitz
continuous with rank #;(1 + ,)?, for some constant #;. ( The constants
ay, kj, and k; may depend on xz(.,.).) Finally, assume that there exists an
admissible pair (z*(s,w), u*(s,w)) satisfying [55 a] and the equality

ma(}(H(t, ¥ (tw),u, ot 2" (t,w), 7),7) = H(t, 2" (t,w),u"(t,w), Ji(t, 2" (t,w), j),j)
ue
for all w such that 7; < ¢ < 7,41. Then u*(¢,w) is optimal. O

The condition [55] is automatically satisfied if J(s,y,j) can be continuously
extended to Q(7) U(({T} x R")NclQ(5)), 7 =0,1,..., and [54] holds.

The relationship between Theorems 6 and 7 is as follows. A standard man-
ner of solving the HJB-equation is using the so-called characteristic equa-

tions. Defining H(s,z,p) = max,{fo(s,z,u) + pf(s,x,u)}, the so-called
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characteristic equations for the solution of the j-th first order partial dif-
ferential HIB-equation is @(s) = H,(s,z,p),p(s) = —H(s,x,p) — \(j +
1)(0/0x){go(s,x, 5+ 1)+ J(s,z + g(s,z,j+1),7+ 1) — J(s,2,7)}. Tt can
be shown that these two equations imply that p(s;s,y,7) = Jy(s,9,7), so
the latter equation can alternatively be written p(s) = —H, (s, z,p) + A(j +
Dlp—gou(s,z,j+1) —p(sis,x+g(s,2,j+1),j+ 1) +g.(s, 2, j+1))]. If H
is C! in z, the equation for z and the last equation for p can be shown to be
the same as [13]-[14] above. When all x(¢;s,y, j) and p(t; s,y, j) have been
found, from [47], [48] functions J(s,y, j) are obtained, and they will satisfy
the HJB-equation [53].

When using the HJB-equation(s), we always get candidate controls on Markov
form, namely as any control function that yields the maximum in the HJB-
equation.

Sometimes, it is possible to use Theorem 7 (but not Theorem 6), in cases
where open sets Q°(j) cannot be found, for which the conditions in Theorem
6 are satisfied. Of course, a method of producing the functions J(s,y,j) of
Theorem 7 in case N < oo is to use characteristic solutions, together with
the functions z(¢;s,y,j) and put J(s,y,7) = 2(s;s,y,7), see [47], [48]. We
can hope that these solutions can be defined for (s,y) € Q(j). Finally, we
can check if J(s,y, j) has a C'-extension to some larger open set.

Remark 16 Infinite number of jumps, all \(i) equal

When N = oo, there is an infinite family of HJB-equations [53]. So, as-
sume not only that N = oo, but also that all A\(i) = A and that go, g, fo, f
are independent of j. Then evidently, J*(s,y, j) is independent of j, and the
family of HJB-equations reduces to one, namely the one obtained from [53|
by deleting the arguments 7 and j + 1.

Whether all the \’s are equal or not, it is only in rare cases that explicit
formulas for solutions of the HJB-equation(s) can be found.

In the present case, the adjoint equations also reduce to a single equation.
In the case of this remark, Davis (1993) has discussed the usefulness of the
HJB-equation for numerical solutions of the problem. He also considers HJB-

equations in problems with additional features, for example problems where
the state jumps each time it reaches a boundary. 0
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Example 6 (The following problem is essentially Example 1, with N = 00.)
Consider the problem:

T
maxE[/ —u?/2dt + ax(T)], t=ueR, x(0)=0,
0

with a possibility for an infinite number of upwards jump in x(t) with the
same intensity A for all jumps 7;, and with the same size b, (i.e. z(7+) —

x(r;—)=0) .

The single HIB-equation is 0 = J; + max,[—u?/2 + Ju] + A[(J(s,y + b) —
J(s,y)]. The maximum is calculated by putting the first derivative of u
equal to zero, it yields the maximum point v = J,. Inserting this in the
HJB-equation gives 0 = Js + (J,)?/2 + A[(J(s,y + b) — J(s,y)]. We guess
that J(s,y) is of the form ¢(s) + kxz, k a constant. The HJB-equation yields
that 0 = ¢' + k?/2 + \kb, so ¢(s) = cs + C, where ¢ := —k*/2 — kb, and
C' is an integration constant. Now, ax = ¢(T) + kx = T + C + kzx, so
k = a,C = —cT', hence ¢(s) = ¢(s —T'). The control is u = J, = a.

Remark 17 (Infinite horizon, infinite number of possible jumps)

In this remark, we shall briefly comment upon a sufficient condition for op-
timality in the case where T' = oo, hg = 0, N = oo (an infinite number of
possible jumps), all \(j) = A, and where go, g, fo, and f are independent of j.
Then, for all j, J(s,z,j) = J(s,x,0), and the conclusion of Theorem 7 still
holds provided the boundary conditions [55] are replaced by the following
conditions.

0 = limsup EJ(s, z*(s,w),0) [55%a]

S§—00

For all admissible solutions #(¢; w), liminf EJ(s, #(s;w),0) > 0.  [550

S§—00

0

A special case is where, in addition, go(t, ) = e ?'¢%(x
0, and where g and f are independent of £. Then J(s,
J(z) satisfies the "current value HJB-equation"

0=—3J +max{f*+J,f} + Mg* + J(y + 9()) — J(v)}.

),
z,0) = e P J(z), where

Y
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Example 7
max [ (zu)*edt,

subject to
dz/dt = az(1 —u),z(0) = 2° > 0,u € (0,00) and z(7+) = ka(7—),

where an infinite number of jumps with intensity A can occur. It is as-
sumed that o € (0,1),6>0,a >0,k >0, and xk:= 3 — A(k* — 1) — aa > 0.

We guess that J = Ay®, A > 0. Then the current value HJB-equation re-
duces to 0 = —fy® + max,soly*u® /A + ay®a(l — u)] + A\(k* — 1)y“. Here, y*
can be cancelled, and the maximization gives u = B, where B = (aA)"/(@=1),
so the HJB-equation reduces to 0 = =3+ B*/A+ aa(l — B) + A\(k* — 1) =
—k +a(l —a)B, or k = (1 — a)yAY/(07%) ~ = g/(e=) Hence, A =
(k/y(1=a))*"! and B = a/@ Vg /y(1—a))k/a(l—a). All admissible z(t, w)
are nonnegative, so [55*b] is evidently satisfied. Moreover, dz/dt = cz, for
¢ = a(1l — B). Note that for each ¢, such that 7; <t < 7544, for t € (75, 7j41),
T(t—, 71, ..., 7)) = 2(1j+)e ) = ka(r;—)e®=). Using this equality for j
replaced by j—1,j—2, ..., 0, we get x(t—, 71, ..., 7j) = k7ae’. From the theory
of Poisson processes, we know that the probability of j jumps in an interval
[0,¢] is (At)Pe=* /4!. Hence, we get that the expected value EJ(t, kiz%), for
m = k%, equals AE[(m/(20)%e=F] = A(x0)2elac=Bt S0 (mAt)e A /51 =
A(z0)eloacPtemAte=M — A(g0)aglactm=DA=B)t — A(z0)ae=r(1-0)"" The co-
efficient in front of ¢ is negative, hence, the limit of the last expression, as
t goes to infinity, is zero, so [55*a] holds. The optimal (Markov) control is
u(s,y) = B, thus independent of (s,y).

Remark 18 (Generalizations (dependence on w))

The functions fy, f, go, and g can be allowed to depend on w, provided
they are nonanticipating in (¢,w) for each x,u. Then the explicit depen-
dence on w must be entered in all formulas. This is done by replacing all
lower case j's in the formulas by w?. In particular, Q(j) becomes Q(w’).
Then the conditions subsequent to Theorem 1 must hold uniformly in w, i.e.
the inequality involving ¢ must hold for all w, and the uniform continuity of
r — fu(t,x,u*(t,w),w) must be uniform in (¢,w).

Instead of assuming that [19] holds for ¢ = fy and ¢ = f, then, when
B(0,n) in [19] is replaced by B(0,n) + {u*(t)} and |z| by |« — 2*(¢)|, it can
be assumed that this modified condition [19] holds for ¢ = fy(t, z,u,w) —
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folt,z*(t,w), u*(t,w),w), and ¢ = f(t,z,u,w) — f(t,2*(t,w),u*(t,w),w). In
this case, replace B(0,c) in [45] by B(0, c) + {u*(t,w)}.

In this case, u*(t,w) need not be bounded, if only
EfoTHfo(t,x*(t,w) u(t,w),w)| + [ f(t 2% (t,w), u(t,w), w)|]dt < oo. 0

Remark 19 (Weakened differentiability assumptions on the char-
acteristic solutions.)

The differentiability conditions on z(;s,y, j), p(t; s, y, ), a(t, z,p, j) and
H(t,x,p,j)in Theorems 3 and 6 can be weakened as follows. Let ¢ (¢, z,p, ), k =
1,...,kj, be Cl-functions in (¢, z, p) for each j and assume that for any given

J, for any (s,y) € Q°(5), if

t € (s,T) and ¢x(t, z(t; 8,,5),p(t; 5,9, 5),5) = 0, then
(bkt + ¢kx(a/at>x(tiv $,Y, j) + (bkp(a/at)p(tia S, ya]) 7& 07 [56]

the partial derivatives ¢y, ¢r, and ¢y, being evaluated at (¢, z(¢; s, y, 5), p(t: s,y,7),7)-
(The expression on the left—hand side in [56] is assumed to be either > 0,
for both the right and left limit, or < 0 for both limits.) Assume that, for
any (t,z,p) € Q*(j), ¢r(t,x,p) = 0 for at most one k. Assume also that
for each j, (t,x,p) — 4(t,z,p,j) has a C° x C' x C''-extension to an open
set containing clA, for any set A of the form N;®*, ®* = {(¢,z,p) € Q*(J) :
¢i(t,z,p,j) > 0}, or & = {(t,z,p) € Q*(j) : ¢i(t,x,p,j) < 0}, (the direc-
tion of the inequality sign may depend on 7). Assume that f](t,x,p,j) is
C? in {(t,z,p) € Q*(j) : ¢w(t,x,p,7) # 0 for all k}. Let Q'(j) := {(s,y) €
Q°(J) : dr(s,y,p(s;8,9,7),7) = 0 for some k}, and Qs,,; = {t € [s,T) :
or(t,x(t;s,y,7),p(t; 8,9,7),7) = 0 for some k}, and assume that for any
(s,9) € @)\ Q'(j), for any t & Qs ;. (s ¢) = (x(t; 5,4/, 4), p(t; 5", y', J)
is C'x C? for all (¢, y') in a neighborhood Ny 5, ; of (s, y). Define J(s,y, j) :=
2(s;8,y,7) (see [47]) and assume that M (s,y,j) :== J(s,y+g(s,y,7+1),j+1)
is C° x C? in Qo(j) \ Ql(.7>a that Supte[s,T)\Q&y,j |M(t,(£(t; Sayaj)aj)‘a
SUPyels 11\Qu.,, [ Ma(t, 2(6 5, y,5), 7)| and supses ro.,, | Maa(t, 2(t; 5,9, 5), J))
are locally bounded on Q°(5)\ Q'(j), and that for any (s,y) € Q°(5)\ Q*(j),
(s y) — J(s',y +g(s',y,j+1),7+1) has a C° x C?-extension to an open
set around the set {(s',y') = (s',2(s';s,9,7j)) : s € [a,b]}, for any interval
la,b] C (s,T) for which (a,b) N Qs,; = 0.

Finally, assume that for any admissible solution x(.,w), if (s, z(s,w’)) €
Dy = {(s,9) € Q) : dr(s,y,p(s;5,9,7),j) = 0}, s > 7j, then for some
€>0,(s,z(s,w?)) & P, for s' € (s,s+¢€). O

Note that in this Remark, z(s;s,y,j + 1) is perhaps only C° x C? in
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Q°(7+1)\Q*(j+1), so, (more or less), the following recursive property must
hold: (s,y) € Q°(H)\Q'(J) = (s,y+9(s,5,7+1)) €Q°(G+ D\ Q'(j +1).
Thus, given the functions ¢x(., .,.,j+ 1), functions ¢ (., ., ., j) must be found
such that also this property holds.

In the case of Remark 18, for the conclusions in Remark 19 to hold, it
can be assumed that the above conditions hold for j replaced by w’, (the
replacement is not carried out for j in kj), each ¢y, separately, piecewise and
right—continuous in each 7;,7 < j. See Remark 27 below.

Remark 20 (A(j) = )\(tal‘auv.j)uqo = gO(tvl'a‘/jijaj)a g = g(t,x,Vj,wj,j))

In this remark the intensities A(j) are allowed to depend on (¢, z, u), so A(j) =
Aty x,u,7), with A(.,.,.,.) < K, for some K. Moreover, gy and g are as-
sumed to depend on two additional variables V;, w;, so go = go(t, z, V}, w;, j),
g = g(t,z,V;,w;,j). Here, V; is a stochastic variable in R", with cumula-
tive distribution 7 (¢, z, 7). If jump number j occurs at ¢ = 7; and the state
before the jump is © = x(7,—,w), then the cumulative distribution of V; is
n(t,x,j) = w(7;, (17;—,w), j). Furthermore, w; is a control variable taking
values in a given set W;. It is assumed that at each jump point 7; it is possi-
ble to choose w; after having observed the "size" v; of the jump, and w; can
also depend on all earlier 7;,v;, ; < t. Now, w = (71, v1, T2, Vs, ...), and the
controls u(t,w) and w;(t,v,w) depend only on 7;, V; for 7; < t. The functions
90, 9, Yoz, g are continuous in (z, V,w), uniformly in ¢, and piecewise and
left—continuous in t.

Optimal non-anticipating controls are denoted u*(t,w),wj(t,v,w). The
HJB-equations are now

0=Js(s,9,7) + sgg{fo(s, y,u, J) + Jy(s,y,7) f(s,y,u, 5)+

A, u, j + 1D E[ sup {go(s,y,V,w,j+ 1)+

weWj11

(s,y+g(s,y,Viw,j+1),5+1)—J(s,y,5)}s, v, i} [567]

The expectation is calculated by means of 7(s,y, j).
Moreover, provided A depends only on (¢, x, j), and 7 only on (t, j), the equa-
tions in the ("characteristic") solution method must be modified as follows:

First, in addition to @, we also need the function w(¢, z, v, j + 1) yielding, by
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assumption, the maximum in
manEWj[QO(tvl'avawaj + 1) + Z(t,t,l’ + g(t,x,v,w,j + 1)7.] + ]')

There are now three "states" x,p, z, whose differential equations must be
solved simultaneously:

l" - f(t,x,fb(t,l’,p,j),j),

p = _pHx(taxaa(taxapaj>7j> + )‘(taxaj + 1)p_

)‘(taj + 1){E[(t,t,l' —|—g(t,l', ‘/jJrlauA](taxa ‘/]'Jrlaj + 1)7] + 1)([+

gw(t’x7 V}'_H,ﬁ](t,:v, Vj+1,j—|—1),j—|—1))+go(t,$, ‘/j-i-lvw(taxv V}'_H,j-f-l),j—f—
De,jl}+

{Z - E[Qo(ta xz, V}'-l—law(ta z, V}'-}—l,j + 1)7j + 1)+

Z(t,t,l’ —|—g(t,l', ‘/jJrlauA}(taxa ‘/]'Jrlaj + 1)7] + 1)|t7j]})\$(t7x7.7 + 1)7

z= )‘(tal‘v.] + 1){2 - E[QO(tvxa ‘/j-i-law(t)xa ‘/j-‘rl).j + 1)’j + 1)+
Z(t,t,[L‘ +g(tal‘7 V}-}—law(tvl'a ‘/j-l-l)j + 1)a] + 1)|taj]}

The expectation is calculated by means of 7 (¢,j). For each j, these equa-
tions are solved simultaneously in (z,p, z), with side conditions in the free
end case x(s) = y,p(T) = ho(x(T)), 2(T) = ho(x(T")) and in the hard end
constrained case, [44]| and z(T') = ho(x(T)), (in which case g is assumed to
be independent of w). O

For necessary conditions in the case A = A\(t,z,w), see Seierstad 2001.
5 Optimal stopping problems

In this section, control problems are studied in which (also) the terminal
time is subject to choice. First, we describe the necessary changes in the
basic solution method, and state a corresponding sufficient condition, based
on the field of characteristics obtained. Next, the approach connected with
the HJB-equation will be discussed.

The problem studied is now the maximization problem:

min{7;41,T}
max E[ / fo(t,l',u,j)dt“r‘z gO(Tj,l‘(Tj—),j)—f—ho(T,l‘(T—))]

u(.,.), T€[TL,T2] min{r;,T} T

[57]
where the maximization is subject to the standard restrictions [9], [10], (the
differential equation, the given start point, the jump condition, and the re-
striction u € U). A fixed interval [T7,T5] is specified, within which 7" is
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subject to choice. We mainly consider the case of a free end (no terminal
conditions). Again jump intensities A(i) are specified, and the basic solutions
procedure will only work if, for some N < 0o, A(7) =0 for ¢ > N.

The basic solution procedure will now be changed to allow for the optimal
choice of T'. Tt is assumed that fy, f, go, g, and hg are C2. Since T is subject to
choice, we expect T to become a function of (s,y,7), T = T(s,y,j) € [T1, T3]
For each starting point (s,y,7), we shall also choose T'. Since we have one
more unknown, we need to add further conditions to the basic conditions
[12]-[15] of the solution method. In addition, [14| needs modification. Let us
write down all equations needed for the solution method. (In the method,
we need an auxiliary state variable z that we have met before.)

Solution method for free terminal time, free end, N < oo The solution
method makes use of the following relationships.

u(t, x, p, j) maximizes H(t,z,u,p,j) = fo(t,z,u,j)+pf(t,z,u,j) foru € U.
[58]

#(t) = f(t, z, alt, z,p, ), 7), [59]

p(t) = —Hy(t,z,a(t,z,p),p,j) + AN(J + 1)p

with boundary conditions

l'(S) = yap(T) = [h0$(T7 ‘r)]m:x(T;s,y,T,j) [61]

() (]+1)[ _QO(tvl'aj—i_l)_J(t,$+g(t7$aj+1)aj+1)]_
otz at, 2, p, ), 5), 2(T) = ho(T, 2(T'; 5,9, T, j)) [62]

(T, (T, s,y,T,5),p(T, 5,9, T, j),j) = 0if T € (max{s, Ty }, T2),
(T, x(T,s,y,T,7),p(T,s,y,T,5),7) > 0if T =Ty,
n(T,x(T,s,y,T,7),p(T,s,4,T,7),7) <0if T =max{s, 71},
where n(T,z,p,j) := max H(T,x,u,p,j)+ ho(T, )+

MG+ D[go(T, 2,5+ 1)+ J(T,x 4+ g(T,x,5+1),5+ 1) — ho(T, )] [63]
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J(s,9,T,j) = 2(s;5,9,T,j), and [64a]

J(S7 y?.]) = J(S7 y7 T(S’ y’j)’j)’for S < T(S’ y’j)’ J(87 y7.])
= hO(Say) for s = T(Sayaj)' [64b]

Condition [64] contains only definitions: we need the entity
J(s,y,7+ 1) in [60] and [62]. Next, T is a parameter that is determined in
the solution procedure. Before knowing the correct value of T', we need to
solve [59]-[61], for arbitrary T, (as well as arbitrary (s,y, j)), so we write the
solution pair as (x(t;s,y, T, j),p(t; s,y, T, j)). Moreover, there is not a full si-
multaneity between the differential equations. In fact when z(¢;s,y, T, j) and
p(t;s,y,T,j) are known, we can insert these functions for x and p in [62],
and solve this linear equation in z, to find the solution z = z(¢;s,y,7, 7).
Once z(t;s,y,T,j) and p(t;s,y,T,j) are known, we can use [63] to deter-
mine 7" = T'(s,y,7). A full explanation of the use of these equations, are
thus as follows, (again a recursive solution procedure is available). First,
("step N"), z(t;s,y, T, N), p(t;s,y,T, N) are found using [59]-[61], where T
is a given parameter. At this step A\(N 4 1) = 0. Condition [62] is used to
determine z(t; s,y,T, N) and condition [63] is used to determine the (hope-
fully) optimal T'= T'(s,y, N), Then, J(s,y,T,N) and J(s,y, N) are written
down, using [64]. Next, ("step N — 1"), from [59]-[61], =(¢;s,y,T, N — 1),
p(t;s,y, T, N — 1) are found, (in [60] the function J(s,y, N) just constructed
enters). Again, using the known J(s,y, N), [62] yields z(¢;s,y, T, N — 1),
Moreover, using [63| (and the known J(s,y, N)), the optimal T' = T'(s,y, N —
1) is determined. Then, J(s,y,T,N — 1) and J(s,y, N — 1) are written
down, using [64]. Next, ("step N — 2"), from [59]-[61], =(t;s,y, T, N —
2),p(t;s,y, T, N — 2) are found (in [60] the known function J(s,y, N — 1)
enters). Then z(¢;s,y,T, N — 2) is found by means of [62], using the known
J(s,y, N —1). Moreover, inserting the known J(s,y, N — 1) and using [63],
the optimal 7" = T'(s,y, N — 2) is determined. Then, J(s,y,T, N — 2) and
J(s,y, N — 2) are written down, using [64]. And so on. At each step
quintuples z(t;s,y,T,7), p(t; 5,9, T, j), 2(t; 5,4, T, 7), T(s,y,5), J(s,y,4).d =
N,N —1,...., are obtained.

We call the collection x(t;s,y,7) = z(t;s,y,T(s,y,5),7),p(t;s,y,7) ==
p(t;s,y, T(s,9,7),7)s J(s,y,7), T(s,y,j) a characteristic quadruple, and if
we add u(t; s,y,7) == u(t;z(t; 8,9, 5),p(t; s,y,7)), we speak of a characteristic
quintuple. Recall that s € [0, T3], and that s < T'(s,y,j) < T3. The function
u(t; s,y,7) is defined for t € [s,T(s,vy, j)], and the same goes for z(¢; s, vy, j),

p(t;s,y,7).
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Also in the present situation, using the characteristic solutions x(¢; s, y, j),
we can write down the corresponding non-anticipating solution z(t,w), and
then the corresponding candidate control u(t,w) (and also p(t,w)). The
candidate stopping time T'(w) is defined as follows: Define first Tj(7;) ::
T(7j, x(mj—,w)+g(15, x(1j—, w), 7)), j— 1,2, .... Next, define Ty(79) = T(0,2°,0),
T(w) = min{T (15) : T( i) < Tjt1,] 0,1,. .}. Note that T' = T'(w) only
depends on 7;’s that are < 7', in other words, the function 17 m(t) is
non-anticipating.

Remark 21 The formulation of [63] is chosen such that it also works in
case of end constraints, briefly treated in Remark 23 below. In the free end
case N (T, x, 8,y,7) == n(T, 2, p(T; 5,9, T, j),j) =

fo(T, 2, (T, 2, p(T5 8,9, T, 5),7),J) +

hOz(T7 .T)f(T, Z, /&(Ta x,p(T; 5, Y, Taj)aj)a]) + hOt(Ta %’) + )‘(] + 1)[gO(T7 xaj +
1)+ J(Tyz + 9T, 3, j + 1), + 1) — ho(T, ).

Defining n*(T, s,y,7) = (T, z(T; s,y,T,j), s,y, j), it is easily seen (and
shown below) that n*(T, s,y,j) = Jr(s,y,T,j). Thus, assuming that
J(s,y,T,j) gives the optimal value when stopping at 7', then [63] is a neces-
sary condition for choosing T optimally, (e.g. if T'(s,y,j) € (max{s, T1}, T3),
by necessity, Jr = 0 at this point). O

Below, two examples are presented showing the use of this procedure.
Since we in particular want to describe the use of [63] in determining the
optimal stopping time, we have chosen examples that are quite trivial, in
particular no control u appears.

Example 6 Consider a pure stopping problem (no control u):
max Ez(T), when T € [0,b], i =¢e " 2(0)=0

and where x(t) can have two downwards unit jumps with intensity A\, A < 1,
—In(A\) < b, b a fixed number .

The procedure [58]-[64] will be used. Evidently, z(t;s,y,T,2) = y+e *—e ™,
p(t;s,y,T,2) = 1. Furthermore, (T, z,p,2) equals e Tp so n*(T,s,y,2) :=
(T, z(T,s,y,2,p(T,s,y,2),2) = e L. Moreover, z(t;s,y,T,2) = 2(T;s,y,T,2) =
y+e*—e 1 J(s,y,T,2) =y+e*—e L. In this case we always choose to
wait until ¢ = b before stopping, a trivial result ([63] = T = b). Note that
J(s,y,2) =y +e*—eb,

Next, let us consider 7 = 1. In this case, p = Ap — A. With the end
condition p(7T,s,y,T,1) = 1, this gives p(t;s,y,T,1) = 1. Furthermore,
n(T,z,p,1) =e Tp+ANo—1+e T —eb—1x). Hence, for n*(T,s,y,1) :==
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n(t,z(T,s,y, T,1),p(T,s,y,T,1),1) = e T+ A(—=1+e" T —e?), we have that
(T, s,y,1) =0if e T(1+AN) = AX1+e ), ie. T =T*=T*(b) :=
(L + et (1N € (0,b). (If e = A, T*(b) = b, as dT*(b)/db €
(0,1), T*(b) < b for greater b’s, those satisfying e™® < \.) Now, if T <
T, n*(T,s,y,1) > 0, and if T > T*, n(T,s,y,1) < 0. Hence, we cannot
have T'(s,y,1) = 0 or T(s,y,1) = b, the only possibility is T(s,y,1) =
T*. Now, & = e ' again gives z(t;s,y,T,1) = y+e 5 — e, and 2(t) =
ANz —(z—1+et—e D)) =Xz — (2(t;8,y,T,1) —1+e bt —e )] = Mz —
(y—1+e*—e?), s02(t;8,y,T,1) =y+e*—1—e+ CeM where C
is determined by z(T;s,y,T,1) = x(T;s,y,T,1). The last equality gives
y+e*—1—el+CeM =y+e*—e T which gives C =e M (1 4+~
e 1), 50 z(t;8,y,T,1) =y —1+e*—e P+ (14+e?—e)erT). Hence,
Js,y,T,1) =y —1+e*—e+ (1+eb—e e D and for s < T,
J(s,y, T(s,y,1), 1) =y —1+e*—e P+ (1+e?—eT)er"T") while for
s>T% J(s,y,1) =v.

Finally, as before, p(T,0,0,0) = 1, (we now need only consider (s,y) =
(0,0). Moreover, for T < T* n(T,x,p,0) =e T+ Mz —2+e T —e P+ (1+
et —e AT g} = e T M —2+e T —e b4 (1+e b —e 1)1,
Hence, n*(T,0,0,0) :=n(T, z(T,0,0,0),p(T;0,0,0),0) = e T+ A\{—2+e T —
e+ (1+et—e™)eMT=TN For T =T*, n*(T,0,0,0) = A1 +e?)(1 +
NP A=A1+e D) (14+N)"1=1) < AM(1+A)(1+A)"t=1) = 0. Moreover, for
T <T* (d/dT)n* = —e T(14+ X))+ 2(1+e P —eT)eM=T)) < —e 17 (1 +
MN+ANA+e?t—e )= A1 +e)A+N) T+ X2 (1 +e = A1 +eb)(1+
A)~1) = 0. Thus, if T** is the solution of n*(T,0,0,0) = 0, then T** < T* and
the optimal stopping time is max{0,7**}. (Before this time, if it is greater
than 0, n*(7,0,0,0) > 0, after this time, n*(7,0,0,0) < 0.)

Both the sufficient conditions below, (Remark 22, and Theorem 8, with
Remark 23), can be used to show optimality of this solution.

Sufficient conditions and necessary conditions for free terminal
time

Define the set
Gy i={(s.y) € [T1.Ty) x R : 5 < T(s,y,5)}. 65]

This set may be called a continuation region: If the state at time ¢ belongs
to this set, it is still some time left before we stop. Normally, J(s,y, ) is the
maximal expected reward obtained when starting at (s,y,7), so, normally,
we must have that

G(7) = A{(s,y) € [0, T2) X R™ - J(s,y,5) > ho(s,y)} = G;. [60]
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(At a point (s,y, j) where the strict inequality holds, we don’t want to stop,
ie. sis <T(s,y,7))-

We now turn to a sufficiency theorem, in which the following assumption
is needed: For t > T1, if the state crosses the boundary 0G; of the set G}, it
does so non-tangentially, or “at a certain angel”.

This non-tangentiality property is secured by the condition that for each
(s,y) € 0G,; N (T1,T3) x R"*, for all u € U,

Jt**(sayaj) - ht(say) + (J:*(Svyvj) - hOx(Say))f(57y>u7j) 7é 0. [67]

Here, for the moment, we assume that .J is extendable as a C'-function from
G to a larger open set containing clG(j), this extension being denoted J**.
Often, J** is different from the true J-function outside G;.

Also the following condition is needed.

0= hoi(s, y) +sup{fo(s, y, . J) + hoa(s, 4)f (5, v, . )}
+)‘(.] + 1){90(Sayaj + 1) + J(Say + g(sayaj + 1)7.] + 1) - hO(Svy)} [68]

Let Q(j) be defined as before, with the modification that the admissible
z(.,.)’s used in the construction has individual sets of definitions [0, T (w)].

Theorem 8 (Sufficient condition for characteristic solutions, N <
o0) Assume that fo, f, go, ho and g are C?-functions and that ﬁ(t,x,p,j)
and u(t,z,p, j) are, respectively, C° x C? x C? and C° x C!' x C! in an
open set Q*(j). Assume that a collection of open sets D°(j) C (0,T) x
R™ and a collection of solutions xz(t;s,y,j),p(t;s,y,7), with correspond-
ing stopping times 7'(s,y,j) € [max{s,T1},Ts| and controls u(t,s,y,j) =
a(t; x(t;8,y,7),p(t, s,y, 7)) have been found for (s,y) € D°(j), for j = 0 even
for (s,y) = (0,2%), with p(T'(s,,5); 5,9, ) = hoe(T (5,9, ), (T (5,9, 7); 5,9, ))
and z(t; s,vy, 7) starting at (s,y,j). Assume that the following conditions are
satisfied: Define z(t;s,y,j) by

2t)= A0+ [z —golt, 2,5 +1)—
2ttt + gt o, i+ 1), 5+ )] — folt, z,u(t; 5,9, 5), 7), (*)

where x = z(t; s,y, j), with terminal condition z(T(s,y,7);s,y,j) =
ho(T'(s,y,5),2(T'(s,y,7);s,y,7)). Definealso J(s,y, j) = z(s; s, y, j) for (s,y) €
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D°(j), and J(s,y,j) = ho(s,y), for (s,y) € ([T1,Ts] x R™)\ D°(j). The sets
D°(j) satisfy the conditions that, for any (s,y) € D°(j), T(s,y,j) > s, and
that T'(s,y,j) = sup{t : (t',z(t';s,9,7)) € D°(j) for ' € [s,t]} > s. More-
over, assume that for any admissible solution z(.,w), (s,z(s,w’)) € D°(j)
when s < Ty, Assume that [67] is satisfied for a suitable C'-extension J** of
J, and that [68] holds for all (s,y) € ([T1, T3] x R") \ D°(j). Assume, for
all (s,y) € D°(4),t € [s,T(s,y,J)], that (¢, z(t;s,y,7), p(t; 5,9, 7)) belongs to
Q*(j), and for " € (s,1),

(x(t,s",2(s';8,9,7),5), p(t, 8", 2(8's 8,9, 7)., 4) = (x(t;5,9,5),p(t; 5,v,5)) and
T(s' x(s;8,9,7),7) =T(s,y,7) if T(s,y,7) > s'. Assume that either,

T(Sa ya]) € (T17T2> or T(Say7j> = max{s, Tl} or T(Say7j> = T27 [68*]

for all (s,y) € D°(j), (in the sense that either the first property holds for all
such (s,y), or the second property holds for all such (s, y), or the third one
hold for all such (s,y)). Assume that J(s,y,j) > ho(s,y) for (s,y) € D°(j)N
Q(j),s € [, T>) and that n(T'(s,y, j), z(T(s,y,5); 5,9, 3), (T (8,9, ): 8, 4. §), J) =
0if T(s,y,j) € (max{s,T1},Ts), (for n, see [63]). Assume that in D°(j),
(s,9) — (x(t;8,9,7),p(t;8,9,7), T(s,y,7)) is C' x C?. Moreover, assume
that

u(t, z,p, j) is bounded on bounded subsets of Q(j). [

Finally, assume that p(s;s,y+ g(s,y,7+1),7+ 1) and p.(s; s,y + g(s,y,7+
1),7 + 1) are bounded on bounded subsets of D°(j). Then the family of
characteristic quadruples (with corresponding controls wu(t; s, y,j) =

u(t, xz(t;s,y,7),p(t; s,y,4)) is optimal. (The family yields an optimal non-
anticipating control u(¢,w), and an optimal stopping time T'(w).)

Remark 21* If n*(T,s,y,j) = n(T,z(T;s,y,T,7),p(T;s,y,T,7),7) > 0
for T € (s,T(s,y,j)), then J(s,y,7) > ho(s,y) in D°(j). O.

It is possible to weaken the differentiability assumptions in Theorem 8 to
those of Remark 19, and weaken condition [68*]. For details see Theorem 16
below. (Typically, when T'(s,y, j) moves, say, towards T5, one looses differ-
entiability of T'(s,y, j), such situations must be "passed over rapidly", that
is assumed to be the case in Theorem 16.)

Remark 22. A sufficient condition based on concavity can also be stated.
We state only the most essential conditions: Assume that the concavity con-
ditions in Remark 6 are satisfied. Moreover, for each j, assume that for the
T'(s,y,j) obtained in the solution procedure, we have that

46



(T, x(T,s,y, T, 7),p(T, 5,9, T57)) = 0if T € [max{Th,s},T(s,y, 7)),
(T, z(T,s,y,T,7),p(T,s,y,T,7)) <0if T € (T(s,y,7),Ts]. Then the char-
acteristic solutions are optimal. ]

Example 8 Again, for simplicity, we shall consider a pure stopping problem
(no control u):

max Ez(T), when T € [0,b0], &= —z, 2(0)=2">0

and where z(t) can have a single unit upwards jumps with intensity A > z°.
The state x is always positive, so all start values y are chosen to be > 0. After
one jump, it surely pays to stop at once, J(s,y,1) =y, and p(t;s,y,1) = 1.

Let us find z(¢;0,2°,T,0), p(t;0,2° T,0). Evidently, z(¢;0,2° T,0) = 2% ¢
and p = p+ Ap — \. With p(T) = 1, this gives p(¢,0,2°, T,0) = [1 — N/(1 +
M)]eHVET) L A/ (14 N). Next, n(T, z, p,0) in [49] reduces to n(T, z, p,0) :=
—ap+ Mz +1—2) = —ap + X, so n*(T,0,2°,0) := n(T,z(T,0,2°T,0),
p(T,0,2° T,0),0) = —2%e~T+\. Now, n*(T,0,2°,0) = 0 gives T =g —In X <

0, which does not work. Now, both 7*(b,0,2° 0) > 0, and, for any *(0, 0, z°, 0) >
0, so the only useful proposal is T'(0, 2%, 0) = b.

Remark 22 directly gives that this proposal T(0,2° 0) = b is optimal,
since n*(T,0,2°,0) > 0 for all T.

To use Theorem 8, we need entities z(t; s,y,0), p(t;s,y,0) and T'(s,y,0)
also for (s,y) # (0,2°). But since here Q(0) = {(s,2% %) : s € (0,b)}, we
need only consider points (s, y), for which y is very close to 2°¢~*, and for such
points n*(T, s,1,0) ~ n*(T,s, 2% *,0) = n*(T,0,2°,0) > 0, so T'(s,y,0) = b,
and Theorem 8 then also gives optimality.

Finally, let us state necessary conditions for the present problem. (Again,
normally they are satisfied, but exceptions exist.)

Theorem 9 (Necessary condition for free terminal time) Assume
that =*(t,w), u*(t,w), T (w) is an optimal triple. Then the necessary condi-
tions of Theorem 1 are satisfied for T" replaced by T'(7y, ..., 7;) (i.e. for any
given j, the stated conditions are satisfied on [0, T'(7p, ..., 7;)], moreover, a.s.,
[63] is satisfied for T'(s,y, j),n(T,x(T;s,y,T,7),p(T;s,y,T, j),7) replaced by
(T(w)’ n(Ta l'*(T, w)a p(T, w)a j) when T(w) S (Tj’ Tj+1)' O

The HJB-equation in optimal stopping

An alternative solution tool is the HJB-equation. Assume for the moment
that [0, 7] in [57] is replaced by [s,T], and, moreover that the maximum is
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found for all pairs (z(t,w), u(t,w)) where (., .) starts at (s, y, j) and we allow
T to be subject to choice in [max{s, T1}, T5]. The maximal value obtained is
denoted J*(s,y,7), (the value will evidently depend on (s,y,j)). When the
solution procedure above is used, in well behaved cases, J(s,y,j) coincides
J*(s,y,7). Let the set ("continuation region") G*(j) be defined by:

G*(j) = {(Svy) S [TlaTQ] X an J*(Svyvj) > hO(Svy)} [69]

By definition of G*(j), J*(s,vy,7) < ho(s,y) for (s,y) € G.(j) := ([T1,Tz] %
R™)\ G*(j). But, of course, the optimal value is never strictly smaller than
ho(s,y), since we always have the possibility to stop immediately at (s,y)
and get ho(s,y). So, J*(s,y,7) = ho(s,y) for (s,y) € G.(j). Moreover, it
is natural to call G*(j) the continuation region. We don’t stop immediately
at (s,y) when we are in G*(j), since by continuing, we can get something
better: J*(s,y, j) instead of hy(s,y).

Assume that J*(s,y,7) is continuous in (s,y). Then, normally, for each

7, J*(s,y, ) satisfies the conditions [70],[71] and [72] below:

J(8,4,7) = ho(s,y) for (s,y) € 0°G"(5) := {(s,y) € 9G"(j),s > T1} [70]

where 0G*(j) denotes the boundary of G*(j).

At each point (s,y) € ([0,71) x R*) UG*(j) at which J*(s,y, ) is differ-
entiable in (s,y), the following equality, (HJB-equation) holds, for J = J*.

0= JS(S,y,j) + Sug{f0(57y7u7j) + Jy(S,y,j)f(S,y,u,j)}
ue

A0+ Digo(s, 9,0+ D)+ J(s,y +9(s,9,5+1),5 +1) = J(s,9,0)} [71]

Moreover, the following inequality holds for all (s,y) € 0G*(j),s €
(Tl,TQ)I

0 Z hOt(Sa y) + Sug{f0(57 y7U,j) + hOJ:(tvy)f(Sa Y, Ua])}
ue

_'_)‘(.7 + 1){90(57y7j + 1) + J(Say + g(S,y),j + 1) - hO(Say)} [72]

48



The intuition behind [72] is as follows: Denote the expression on the right—
hand side when the sup sign is dropped by a(s, u,y). The entity a(s,y, u)ds
gives the change in reward if instead of stopping immediately at s, we con-
tinue to s + ds, (see the next section below). Clearly, this must be < 0 for
any control u.

Equality [71] is the HIJB-equation of the problem. The problem now con-
sists in solving the HJB-equation [71]| for the unknown J, with boundary
conditions [70], [72].

Also in the optimal stopping case, a sufficient condition is connected with
the HJB- equation.

Theorem 10 (Sufficient condition for the HIB-equation) Assume that
open sets G(j) € R™! and functions .J(s,y, j), defined on clQ(j) have been
found, being C* and satisfying [71] in D(j) := Q(j) N G(j)} and satisfying
J(t,x,§) > ho(t,z) for (t,2) in D(j), t > Ty, and Q(5)N([0, T1) xR™) € G(j).

Moreover, assume that for (s, ) € Q(7)N([T1, To] x RM\G(5), J(t, z, ) =
ho(t, z), that [68] is satisfied here, and that J(s,y,7) is CY on clQ(j). As-
sume also that for each (s,y) € (8G(5)) N QW) s € (T1,Ty), for all u € U,
the condition [67] holds, for a suitable C''-extension of J(s,y,j)lay) As-
sume, furthermore that, for any admissible pair z(t,w), T(w), for any w,
for all t, |J(t, x(t,w), )| < au(,) + Ka(,)|z(t,w)| for some positive constants
()5 Fa(), and ¢ — J(t,x(t,w?),7), t € (15, T(w)), is Lipschitz continuous
in ¢ with Lipschitz rank £, (1 + ,4)7, for some constant (3, ). Assume,
finally, that there exists a control function u*(f,w), with corresponding so-
lution 2*(t,w), which yields the supremum in the HJB-equation [71], for
(s,y) = (s,2*(s,w)) € D(j). Then (u*(t,w),T*(w)) is an optimal pair in the
class of all pairs u(t,w), T'(w), where T*(w) := inf{Tj(w?) : Tj(w?) < Tj41},
Ti(w?) = sup{t > 7; : (s,2*(s+,w?)) € D(j) for s € [1;,8)}, T;(w?) = 75 if
the set is empty. O

As said before, a standard method for solving the HJB-equation is to use
the characteristic equations. Thus, note that the functions J(s,y, j) defined
in [64] automatically satisfies [71] for (s,y) € G}, provided enough differentia-
bility is exhibited by the functions x(¢;s,y, T, j), p(t; s,y, T, j), and T(s,y, j).

Example 9 Assume in Example 8 the possibility of an infinite number of
jumps, all with intensity A. The HIB-equation 0 = J,+J,(—x)+AJ = A\J(z+
1) (as well as the adjoint equation) is now satisfied for a single function J

49



independent of j.

Let us do some preliminary calculations. The expected value z(o) of z(0),
o € (t,b] can be found as follows: Given z(o), the conditional expected
value of z(o + do) is approximately equal to (x(o) 4+ &(0)do)(1 — Ado) +
(z(o) + 1)Ado, the two terms arising, respectively, from the two events: no
jump in (0,0 + do), and one jump in (0,0 4+ do). (For do small the pos-
sibility of more than one jump may be discarded.) Then Ez(c + do) ~
z(0)(1=Ado)—z(0)do(1—Ado)+(x(0)+1)Ado ~ x(0)—x(0)do+Ado. Hence,
Elz(oc+do) —x(0)]/do ~ —x(o) + A, (still conditional expectation). Hence,
taking unconditional expectation on both sides gives 2 = —z(o) + A . This
differential equation has the solution z(t) = A+ (y — N)e~ =% (2(s) = y).
Does it pay to stop at b rather than stopping at once? This requires y < z(b),
which yields y(1 — e~ %)) < A\(1 —e~®), or y < . So if this inequality
holds it pays to continue. (In fact in example 7 above, we saw that even if
only one jump may occur, it pays to continue.) What is the optimal strat-
egy if y > A7 We suspect that if y is not too large it may still pay to continue.

It is difficult to solve the HJB-equation (or the adjoint equation) in this
case. So a guess is needed. Let us calculate the expected reward when start-
ing in (s, y) and waiting until the first jump occurs and then stopping at once,
or if no jump occurs stopping at b. (Denote this policy R*.) The expected
reward is evidently

b 9]
/ (ye®™F + 1)/\6’\(S_p)dp—|—/ ye* " AP dp
s b
_ 77(&:9) — y)\/(l + )\)(1 N e(1—|—)\)(s—b)) +1— e)\(s—b) + ye(l—l—)\)(s—b)

Note that n(b,y) > A, when y > A Note also that dn(s,y)/0ds =
yeITNE=b) _ \eAs=0) is negative when y = X\, s < b. Thus for y > ),
the function ¢ — n(t,\) stays above A\ when going backwards. Thus the
solution x,(s) of y = n(t,y) satisfies z,(¢) > A. The formula is

z,(s) = (1+\) (1 _ e’\(s’b)) / (1 _ €(1+/\)(sfb))

which evidently is < (1 + ).
We have seen that (1 + \) > z,.(s) > A . Compared to the above strat-
egy, (R*), it pays to stop if y > z.(s). Note also that if y < A then it pays

to continue even if only one jump can occur as seen above. (And perhaps we
don’t stop immediately after that jump.) At such y we surely know what to
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do. So from now on we only consider y > A .

Note that then y+1 > A+1 > x,(s). If we propose the set {(s,y) : y > x.(s)}
to be the "stopping region", then we see that if A < y < x,(s), a jump at
(s,y) brings y+1 into this stopping set. Thus if we now, put J(s,y) = n(s,y)
in the continuation region {(s,y) : v < z.(s)}, while J(s,y) = y elsewhere,
theoretical results tell us that J(s,y) satisfies the HJB equation, for (s,y) in
Gy :={(s,y) : s < b,A <y < x.(t)}. To explain intuitively the satisfaction
of the HJB-equation, simply note that J(¢,x) as here defined is the opti-
mal value function in a very restricted problem: That one in which we are
given no choices, and in which we get the reward y + 1, when we jump from
(s,y) € Gx to (s,y + 1). However, that J(s,y) satisfies the HJB-equation
in G can be directly tested by insertion into the equation. We also check
that the correct inequality [68] is satisfied by the function ho(s,y) = y out-
side the continuation region. Using sufficiency results (Theorem 10), we can
conclude that the optimal policy has been found: Not only for y < A, but
also at points (s,y) € Gy, we continue. The continuation region in fact is
G = {(s,y) : s < by < x.(s)}. (We can in principle construct solutions
of the HJB equation also for (s,y) € G, (s,y) ¢ G\, by successively con-
structing solutions in {(s,y) : s < b,2.(s) =2 <y < x.(s) — 1, {(s,y) : s <
b,z.(s)—3 <y < x,(s)—2,..., since we always jump from a given set in this
sequence to the preceding one in this sequence, on which we have already
constructed the solution. But we don’t need these solutions.)

Remark 23 End constraints Assume in problem [9], [10], [57], with T

subject to choice in [T}, T»], that the following terminal conditions are intro-
duced: A.s.,

i (T(w),w) =i =1,..,n, [73a]

ri(T(w),w) > &,i=n"+1,...,n". [73b]

Then Theorems 8 and 10 also hold in the case of end constraints, provided

the following changes are made: In case of Theorem 10, drop the assumption

that J(s,y,j) is C° on clQ(j), (but not the C'-assumption) on J(s,y,7)),
and add the condition that

im0 (1), ) = ho(T (@), 2" (")), 740

if 7; < T*(w) < 741, and that, for any admissible z(.,.),

if (s5,2(s,w”)) € dG(j),s > T, then 1im J(t, z(t,w?),§) = ho(s,y). [74b]
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In case of Theorem 8, drop [68**], and add [74b| for G(j) replaced by
G;, with p(T) = [hoz(T, )|s=a(rs,y1,5) replaced by [43] for T = T'(s,vy, j),
Ai(k, s,y,7) continuous for i = n’ 4+ 1,...,n”. Finally, replace the bounded-
ness conditions on M (s,y,j) = p(s;s,y+9(s,y,7),7+1) and on p,(s, s,y +
9/s,9,7),7+ 1) by the local boundedness conditions that
SUD¢els,T(s,y,w)) |M(t’ {L‘(t; 85 y)a j)|7 SUD¢e[s, T(s,y,w7)) |Mx(t7 ZL’(t; S, y)v.])| and
SUD; (s 7(s.y.4)) | Mz (t, ©(t; 5,9),w”)| are locally bounded on D°(w?).

Furthermore, normally, Theorem 9 holds with the modification that the
transversality conditions must be those appearing in Theorem 4, changed
by replacing T by T™*(w). (Again only the cases [42] are considered, and [45]
is assumed, for T' = T™*(w).) O

6 Proofs of a selection of the above results

Proofs are given for sufficient conditions (verification results) based on the
HJB-equation and characteristic solutions, as well as for the necessity of
the HJB-equation. Certain details are treated with less than full rigor. To
simplify the notation, we shall consider the special case where fy, = 0 and
go = 0. The general case is treated by applying the "special case" to a rede-
fined problem where an auxiliary additional state 2° is introduced governed
by

i = fo(t, v, u,7),2°(0) =0,u € U [75]
20 (1j4) — 2°(1;—) = gol7y, 2(1—), V;, wj, j), [76]

and where
E[z°(T=) + ho(T, 2(T—))] [77]

is maximized. We shall only consider the case where W; = W, the modifica-
tions needed if these sets depend on j being obvious.

In this "special problem", certain generalizations, as mentioned in various Re-
marks above are introduced. It is assumed that a function A = A\(¢, z, u, w), is
given, A(¢, x,u,w) being nonanticipating in (f,w),w = (79, Vo, 71, V1, ...). For
any k, the function A(¢,z,u,w),t > 74, gives the intensity of the next jump
Tk41 in [T, 00). The function \(¢,z,u,w) is piecewise and left—continuous
in ¢, piecewise and right—continuous in each 7, Vi, k > 0, and continuous
in (x,u), uniformly in ¢,w. Moreover, 0 < A(.,.,.,.) < K, for some K > 0.
Furthermore, for any k, the cumulative probability distribution of V}, is given
by 7(v) = w(v;Tk; x,w), where 7(v;t; z,w) is nonanticipating as a function
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of (t,w), so w(v;t; z,u,w) depends only on 7;, V;, such that 7; < t. Moreover,
7(v; t; x,w) is nondecreasing in v, (thus having one-sided limits in v), in fact,
for simplicity we assume piecewise continuity in v, and continuous differen-
tiability, except at jump points. Furthermore, 7(v;t;z,w) is piecewise and
left—continuous in ¢ uniformly in w, continuous in x, uniformly in ¢,w, and
piecewise and right—continuous in each 7;,V;,7 < k . The problem takes the
form:

max Ehy(T, z(T—, w)), (78]

subject to
b= f(t,z,u(t,w),w),z(0) =2"u c U [79]

the hard terminal conditions [39], w(t,v,w) € W and

x(Tk"_a w) - f(Tk—, w) = g(Tka x(Tk_a L«J), Vka w(Tka Vk7 w)a w)‘ [80]

Now, f(t,x,u,w) and ¢(t, z,v, w,w) depend on w, they are nonanticipating in
(t,w), (they depend only on 7;, V;, for i such that 7; < ¢). The control parame-
ter w(t,v,w) € W determines the jump size at any ¢ = 7, w(t, v, w) is nonan-
ticipating, (only dependent on (7;,V;), 7; < t), and w(t, v,w) is piecewise and
left—continuous in ¢ and continuous in V', and piecewise and right—continuous
in each 7;,V;,7; < t. Moreover, the controls u(t,w) € U are nonanticipat-
ing, piecewise and right—continuous in ¢, piecewise and left—continuous in
each 7;,V;, 7, < t. Such controls w(t,v,w) and u(t,w) are called admissi-
ble. It is assumed that ho is C!, that f and f,, are uniformly continuous
in (z,u) uniformly in ¢,w, piecewise and left—continuous in ¢ uniformly in w,
and piecewise and right—continuous in each 7; and V;,7; < t. Furthermore,
g(t,z,v,w,w) and g,(t, z,v, w,w) are continuous in (z, v, w) uniformly in ¢, w,
piecewise and left—continuous in ¢ uniformly in w and piecewise and right—
continuous in each 7;, and in each component V;, 7; < t. Moreover, hg, f and
g are Lipschitz continuous in  of ranks ky,, k5 and x4, and for some constants
ap and oy, |f(t, z,u,w)| < af + Kkrlz|, |g(t, z,v,w,w)| < ay + Ky|z| for all
t,x,u,v,w,w. We allow N = oco. First, the fixed horizon case, is studied, so
until further notice, 7" is fixed >0 and then we write ho(7, x) = ho(x).

Let wj = (711, Vit1, Tj42, Vji2,...). We say that (s,y,w?) is a starting point
for a solution z(t;s,y,w;),t > s, if exactly j jumps have occurred at 7 <

. <1 < s, and z(s—;s,y,w;) = y. Let (s,y,w’) be a given triple, and
imagine that in the above setting, (0,2 w°) (w° as before indicating zero
jumps) is replaced by (s,y,w?). Then w will be replaced by w;, we write
u(t,w;) and w(t,v,w;) and the solution starting in (s, y,w’) corresponding
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to these controls is written 2" (¢;s,y,w;). Define

J*(Sa Y, wj) = Sup E[ho(xu’w(T_v wj))|8a Y, wj]’ [81]
the supremum taken over all admissible u(.,w;), w(.,w;) which has a cor-
responding solution z“"(.,s,y,w;) starting in (s,y,w’) and satisfying the
terminal conditions. (Such a solution is called (s, y,w’)-admissible.)

Assume that for each given w/, Q(w?) consist of all points (s,y), s € [, T)
that can be reached by some (0,2°, w%)-admissible solution z(t,w) after j
jumps, for the given "jump parameters" in w?, (i.e. (s,9) = (s, z(s+,w)).
Below, we shall make use of the HJB - equation, that reads: For all w?, for
all (s,y) € Q(w?), s > 75,

0= Jy(s,y,w’) +sup {Jy(s,y, ) f(s,y,u, )+

ueU
A(s,y,u,w?)E[sup J(s,y + g(s,y, V,w,w’), (w5, V)]s, y,w’]—
wew
A(s, v, u,w?) I (s, y,w')}, 82]

where W := W(s,y,V,wj) ={weW: :y+g(s,y,V,ww) e Qu,sV)},
and where the expectation is calculated by means of m(v;s;y,w’). Below,
control functions u*(¢,w) and w*(t,w), with a corresponding solution z*(¢, w)
appear. We shall make use of the two properties:

w*(s, V,w?) yields the supremum over w in [82], for y = z*(s—,w?), [83]

u*(s,w’) yields the supremum over u in [82] for y = z*(s—, w’). [84]

We shall also make use of the following boundary condition: A.s., for w
such that T < T < Ti+1,

limy .p EJ(t,2(t—, w),w?) = Ehy(z(T—,w)) for any admissible z(¢,w),
[85]

We shall prove the following theorem: (For nonanticipating functions ¢ (s,w)
recall that we have ¥(s,w) = ¢(s,w’) when s € [15,7j11).)

Theorem 11 Sufficient condition for the HJB-equation Assume that
J(s,y,w?) is a function defined on Q(w’) and define J(s,y,w) = J(s,y,w’)
if s € [15,7j41), letting Q(w) := {(s,y) : s € [rj,7j+1) for some j and
(5,y) € Q(w?)} be the domain of definition of J(s,y,w).. For s € (1, 741) as-
sume that J(s,y,w) = J(s,y,w’) is extendable to some open sets larger than
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{(s,y) : Q(w?), s > 7;}, being C' in (s,y) here, satisfying the HJB-equation
[82] (for derivatives stemming from the C'-extension), with J, J;, and J, be-
ing, separately, piecewise and right—continuous in each 7;, each component of
each V;. Assume that, for any admissible solution x(t,w), J(s,y,w) satisfies
the boundary condition [85], as well as the conditions that |J (¢, z(t,w),w)| <
ay + ky|z(t,w)|, and that s — J(s,z(s+,w),w) for s € [r,7j11) is Lips-
chitz continuous with rank #;(1 + x,)?, uniformly in w, for some constants
oy, Kj, ky. (The constants o, Ky, and &, are perhaps dependent on (., .).)
Assume that there exists an admissible triple (z*(.,w),u*(.,w),w*(.,V,w))
satisfying [83] and [84]. Then (u*(¢,w),w*(¢,V,w)) is optimal in the problem
[78]-80],[39]. O

The condition [85] is automatically satisfied if, for each w such that 7; <
T < 7j11, J(s,y,w) can be extended continuously to Q(w’) U ({T} x R")Ncl
Q(w?)), and J(T,x,w) = ho(z) holds. In the free end case, very often func-
tions J can be found, for which these two conditions hold.

Remark 24 (Weakened differentiability conditions) In Theorem 11
it suffices that for each admissible x(.,w), J(s,y,w’) is C! in a neighborhood
of each point (s,z(s,w)), s € (75,7j41), except at a countable number of
point o} (w), (07 (w’) right—continuous in each 7;,V;). O

Theorem 12 (Necessary condition for the HIB-equation) Assume
that the sets Q'(w’) := {(s,y) € Q(w’) : s > 7;} are open, and that (s,y) —
J*(s,y,w?), s € (17, Tj41), is Ct in Q'(w?). Let a*(.,w), u*(.,w), w*(., V,w) be
an optimal triple in the problem [78]-[80], [39]. Assume moreover, that for
each j, each w’, (s,y) € Q'(w’), there exist optimal pairs u*(¢,w;; s, y, w?),
w*(t, V,w;; s,y,w’) with a corresponding solution z(t,w;; s, y, w’) starting at
(s,y,w’), with the property that for any admissible solution z(.,w),
u*(t,wy s, (s, w?),wl), w(t, V,wj; s, z(s,w?),w’), as functions of (s,w’, w;),
satisfy the same continuity conditions as x*(s,w), u*(s,w), w*(., V,w). Then
J*(s,y,w?) satisfies [82],[84] and

[A[(S7 Y, u, wj)E[SupweW J(Sa y+g(57 Y, V) w, w])a (w]a S, V))|Sa Y, wj]]yzzf(sf,wj) S
[)‘[(87 Y, u, WJ)E[J(Sa y+9(57 Y, V7 w*(s, ‘/7 wj)a aﬂ)a (wja S, V))|87 Y, w]]]y:x*(sf,wj}
A 86
where W :={w e W :y + g(s,y, V,w,w?) € Q(u?,s,V)}. u

Of course, J*(t, z(t—,w’),w’) > Elho(z(T—,w))|t, x(t—, w’),w’], with equal-

ity a.s. if x(.,.) = 2*(.,.). Now, when ¢ is close to T, there is only a
small probability that additional jumps occur in [t,T], so when ¢ — T, then
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Elho(x(T—,w))|t, z(t—,w?),w?] — ho(x(T—,w)). Hence, [85] evidently holds
for J = J*.

Remark 25 In Theorem 12, in fact, [82], [84], and [86] hold, even when
u*(t,wy; s, y,w?), w*(t, V,w; s,y,w’) do not exist, and for [82] to hold, we can
even drop the existence of u*(t,w), w*(t,V,w). O

For use in the formulation of a sufficient condition based on characteris-
tic triples, we shall now state a transversality condition needed in the end
constrained case. Thus in Theorem 13 below, in the end constrained case,
g is assumed to depend only on ¢, z,j,V; and the last jump time 7; before
t, so g(t,z, V;,w,w?) = g(t,z,V},7;,7). Define §%(z) = z,§"(x,Vj41) =
§O7j(x> + g(Ta f?o’j(x)’ VjJrla T_aj + 1)7 ) gk:,j(x’ ‘/}+17 ) Vk) =
GV (2, Viea, oo Vigw—1) + 9(T, 19 (2, Vg, oo, Vigr—1, Vi, T—, k). Next, de-
fine, g8 (x,wl) =
essianjH _____ ngk’j (l’, V}-l—la . V]-‘rk‘) '

For any w’, such that T" > 7, there exist multipliers A;(k,s,y,w?),i =
l.,n" k=0,..,N — j, with A(k,s,y,w’) =
(A (k,s,y,w), .oy Ay (K, 8,y,w),0...,0) € R™, such that

p(T;5,y,07) = hoo((Ts5,y,07)+ Y Ak, s,y,0))gh (T} 5,y,07),07),

0<k<N—j
Ai(k,s,y,w?) > 0,Mi(k, s,y,w?) = 0 if (¢ (2(T; s,y,w),w?)); > @4, i =n'+1,...,n".
In case [42a], A(k,s,y,w’) =0,k > 0. [867]

(Actually, we here need that [42a] holds for all w’.) In the free end case,
[86*] reduces to p(T; s, y,w’) = ho.(x(T;s,y,w?)), in which case g can have
the general form appearing in [86**] below.

In the next theorem, we assume that A is independent of z and u, and 7
is independent of z. Define M (¢, x,w’) := E[M(t,x,w’, Vji1)|t,w’], where

M(t7 z, wjv V}-l—l) = sup J(ta T+ g(ta z, V}-i—l) w, wj)a wjv ta ‘/j+1) [86**]
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Theorem 13 (Sufficiency based on a field of characteristic solutions)

Consider the problem [78]-[80],[39]. Assume that f is C°x C? in t and (z, u),
that hg is C?, that g is C° x C? and that A({,w) is continuous in t. As-
sume that (¢, z, p,w’) yields maximum of H (¢, x,u,p,w?) := pf(t, z,u,w’),
for (t,z,p) in a given open set Q*(w’). For s € (75,7j4+1), assume that a
collection of open sets Q"(w’) in R"™, containing Q(w’) N (7;,T) x R™, and

a collection of solutions x(t; s, y,w’), p(t; s, y,w’), z(t; s, y,w?), continuous in

t € [s,T], have been found, satisfying & = f(t, x, a(t, z, p,w?), w?),
p=—pf(t,x,0(t, 2, p,w?), w?) — At,w?) M (t, x,w?) + A(t, w)p,

2= AMt,w)z=At, W )M(t,x,0?), 2(T; s, y,w) = ho(z(T; s,y,w?)), z(t; s, y,w’)
starting in (s, y,w?), for any j, any w’, for any (s,y) € Q°(w’)UQ(w’). These
solutions are assumed to be, separately, piecewise and right—continuous in
each 7;, and in each component of each V;. Define J(s,y,w’) = z(s;s,y,w’),
and let J(s,y,w) = J(s,y,w?) if s € (15, Tj31], (5,y) € Q(w?). It is assumed
that z(¢;s,y,w’), p(t;s,y,w’) satisfies the terminal conditions [39] and the
transversality conditions [86*] with A;(k,s,y,w’) continuous for ¢ = n’ +
1,...,n". Assume that (¢, ,v,w’) gives maximum of J (¢, z+g(t, z,v, w,w’), w, t,v)
for (t,2) € Q(w’), and that the maximal value is a bounded function of
v. Furthermore, assume that (s,y) € Q°(w?) = (s,y + g(s,y,w?, s, Vj1) €
Q°(w?, s, V;11). Moreover, assume that, for any j, any w?, (s,y) — (z(¢; s, y, w?),
p(t;s,y,w?)) is C* for (s,y) € Q°(w?),s > 7, for any t € [s,T]. Assume
that, for all (s,y) € Q°(w?), (¢,x(t; s,y,w’), p(t; s,y,w’)) belongs to Q*(w?),
for all t € [s,T] and that (¢, z(¢;s,y,w”)) belongs to Q°(w?) for all t € (s, T).
Furthermore, assume that (z(.;s,y,w’), p(.;s,y,w’)) satisfies the following
"consistency condition":

(x(t7 8/7 x(slﬂ S? y? wj>7 wj>7p(t? SI7 x(sl7 87 y? w]>7 wj>> =
(2t 5,9,07), plts 5,9,07)), forall (s,y) € Q'),s <&/ <t.  [86™]

Moreover, assume that H (s, z, p,w!) is COxC2xC? in Q*(w?), that i(s, z, p, w’)
is C% x C' x C! here, that M(t,z,w’) is C° x C? on Q°(w’) and that
SUD (s | M (t, (t; 5,9, w7), W), supge sy [Ma(t, 2(t; 5,9, w7), 07|

SUD; (s, 1) | Max(t, 2(t; 5,9, w7),w7)| are locally bounded in (s,y) € Q%(w).
Assume that J(s,y,w) satisfies [85], and for each admissible x(.,w), that
|J(t, z(t,w),w)| < ay + kslz(t,w)| and that s — J(s,z(s+,w),w) is Lips-
chitz continuous in (7;,7;11), with constant #;(1 + K,)7, ay, kg, ks perhaps
dependent on z(.,w). Assume also that J, Js, and J, are, separately, piece-
wise and right—continuous in each 7;, and each component of each V;. Define
z(t,w) = z(t,0,2° w°), for t € [0, 1], and by induction, generally, z(t,w) =
x(t, 7, (T, ) +9(Thy (T, W), Vk, W (T, (T3, W), Uy w), W), W), fort € (i, Tey1]-

57



Assume that w(t,v,w) = w(t, z(t;w),v,w’), t € (75, Tj+1), satisfies the stan-
dard requirements on such controls described above. Assume, finally that
g (z,w?) is C% in x, for all k, j. Define u(t,w) := a(t, x(t;w), p(t;w),w’), t €
(75, 7j41]. Then u(t,w), w(t,v,w) make up an optimal pair. O

Proofs of Theorems 11, 12, 13 We need a differential formula (infinitesi-
mal generator) for piecewise deterministic equations. Let z(; a, y, w;), u(t, w;),

w(t,v,w;) be any nonanticipating triple satisfying [79],[80], starting in (a, y, w’)
and write A(t,w;) 1= A(t, z(t; a, y, wj), u(t,w;),w), 7(v; t,w;) == w(v; t, z(t; a, y, wj), w;).

Lemma 1 Let a,y,w’ be given entities, a € (0,7T), and let ¢(s,z,w) be a
given function, such that ¢(s, z,w), ¢s(s, x,w) and ¢, (s, z,w), for each w, are
continuous in (s,z),s € (T, Tk+1), nonanticipating in (s,w), and, for each
(s,z), piecewise and right—continuous in each 7; < s, and in each compo-
nent of each V;. Let z(s;w;) := x(.;a,y,w;) be any nonanticipating solution
starting in (a, y,w’), corresponding to any given controls u(t,w;), w(t, v,w;),
(7j41 > a). We assume that, for some positive constants a, ) and ky ),
|6(s, 2(s,w;), w)| < g ) F+ka(,)|2(s,wj)| forall s,w; and that s — ¢(s, 2(s,w;), w;)
for s € (7, Tk41),k > j is Lipschitz continuous with rank Az (1 + Kg)¥,
for some constant A, ). Define n(r;t,w;) = Elo(r,z(r—,w;),w;)[t,w;)],
r>t>a, (n(raw;) = n(r,aw’). The symbol |t,w;] means that the ex-
pectation is calculated by conditioning on all (7;, V;) in w; for which 7; < ¢,
(denote the largest such i by i(w;)), as well as on all (7;, V;) in the fixed w?.
Then

0" n(t;a,w’)/0t = Ely(t,w;)la, w’], [87]

where (07 /0) means a right derivative and where v(t,w;) =

¢t(t7x(t+7wj)’w) + ¢w(tvx(t+7wj)’w)f t,x(t—l—,wj),u(t—l—,wj),w)—f—
/\(tv w])E[¢(ta ZL‘(t—f-, wj)+g(t7 fL’(t—f—, wj)v ‘/7 w(t+7 ‘/7 wj)v w)a wi(wj)v ta V)|t7 wj)]_
At wi)o(t, x(t+,wj), w).

the expectation being calculated by means of 7(v; t+,w;). O

Proof of Lemma 1. First, we want to prove the following differential
formula, (formula for the right derivative of r — n(r;t,w;) at r = t).

[0Fn(r;t,w;)/Orle= = ¥(t,wj) [88]

The proof of [88] is as follows. (In the proofs of [88] and Lemma 1 certain
details have been relegated to points [A],[B] in Appendix). Write X (¢) :=
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z(t+,w;). Assume that exactly k& jumps have occurred in [0, ¢). For At small,
only a second order error is made by assuming that there is at most one jump
point 7,41 in (¢, t+At), with a probability approximately equal to A\(t+4, w;) At
for a jump,(see [A] in Appendix). Similarly, the approximation w(t+,v,w;,)
to the "true value" w(7j41,v,w;), (right limit assumption is used). By the
continuity assumptions postulated, a first order error is made by assuming
that ¢(t+At, X (t+ At), we, t, Vie1) and E[¢(t+ At, X (t+ At), wi, t, Vir1)] a
jump in (¢,t+At), X (t)] have roughly the same values irrespectively of where
the jump 74,1 occurs in (¢, ¢+ At), we use the values these expressions have at
t+. The expectation is calculated by means of 7(.; ¢+, w;)), an approximation
of the true distribution 7 (.; 741, w;) needed to calculate the expectation given
that the jump occurs at 7.1 € (¢,t + At). Using all these approximations,

Elp(t + At, X (t + At),w)|t,w;] =
o(t + At, X (t + At),w)Prno jump in (¢,t + At)|t, w;]+

Elp(t+ At, X (t+ At),w)| a jump in (¢, ¢+ At), t,w;|Pr[a jump in (¢,¢ +
At)|t,w;] ~

(1= At ) A{B(, 2t ;). 7) + dult, 2t ), w) At +

00 (b, 21, 03), ) F (b, 2+, w3, i+ wy), ) AL+

At+, wj) AtE[o(t, x(t+, wj)+g(t, x(t+, w;), V,w(t, V,w;),w;), wk, t, V)|t wj].

Subtracting ¢(t, X (t+),w) and dividing by At and letting At — 0, we get
[88].

Next, let us find (07 /dr)n(r;a,w’) at r = t > a, i.e. prove Lemma 1.
Now, [(8%/0r)(r; 4,5 o=

(07 for)Elo(r, w(r—, w),w))|a, wjllr= =

[(a+/aT)E[E[¢(T’, x(r—, w])v wj)|t7 w] |aa w]]]r:t

When calculating the right derivative with respect to r at r = t of the right—
hand side, we can take the derivative inside the outer expectation sign. (An
elaboration of this argument also shows that [(0F/0r)n(r; a,w;)],— exists.)
Then, by [88], Lemma 1 follows.

Let us next give an integral version of [87]. Assume given a solution z(.,w;),
starting in (a,y,w?), corresponding to u(.,w;), w(.,w;). Then we claim that:

E[p(b, z(b—,w;),w)|a,w?)] = ¢(a, x(a—,w?), w)+E[ff v(t, w;)dt]a, w?)].[89)]

The property in [89] is sometimes also expressed by saying that for any b,
k(b w;) == (b, x(b—,w;),w) — ff'y(t,wj)dt is a martingale, (the martingale
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property: E[x(b,w;)|a,w’)] = k(a,w’), for all b > a holds.)

To prove [89], note first that it may be proved that 7(s;a,w?) :=

E[¢(s, x(s—,wj),w)|a,w?)] is Lipschitz continuous,(|B]). Now, a general re-
sult says that two continuous functions on [a,b], with derivatives existing
everywhere in (a,b), are equal if their derivatives are equal, and their values
at a are equal. In this result, "derivatives" can be replaced by "right deriva-
tives", if Lipschitz continuity prevails (and right derivatives exist). Replacing
bby t € [a,b] in [89] and taking right derivatives on both sides of [89] reveals
that the two derivatives are equal, by [87]. Hence, [89] follows from the just
mentioned theoretical result.

Note that a stopping time o(w) is a function such that 1j, () () is nonan-
ticipating in (t,w) and o(w) is right—continuous in each 7;, each component

of each V,, 7; < t.

(s,2(s,w;),w) is C' in a neighbor-

Tj, Tj+1),* = 2(s,w), except at the countable
number of points (o (w), z(0}(w),w)), k = 1,2, ..., (0} (w) stopping times),
then still [89] holds. O

(The equality [89] even holds if o7 (w) is measurable in w.)

Proof of Lemma 2 Still s — E[¢(s, 2(s,w;),w)|a,w’] is Lipschitz continu-
ous in s € [0,T]. The derivative (d/ds)E[¢(s,x(s,w;),w)|a,w] fails to exist
on a null set. By [89], we have E[¢(b, 2(b—,w;),w)—¢(a, z(a—,w;), w)|a,w’] =

f;{(d/dT)E[qﬁ(r, 2(r,w),w)|a,w’]}—ds =

S, @ [ E[E[o(r, 2(r,w), w)]|s, w]|a, o]} ],—ods =
fabE[(d*/dT)E[gb(T,:E(T,w),w)|s,w]rzs|a,wj]ds = E[fabv(s,wj)dsm,wj]. The
next to last equality follows from Lebesgue’s dominated convergence theorem
applied to (E[¢(s+hp, x(s+hp,w),w)|s,w]— E[o(s, x(s,w),w)|s,w])/hn, hn |
0, Lipschitz continuity, and the fact that a right derivative exists at all

s # ol (w).

Proof of Theorem 11 Let x(t,w), u(t, w), w(t,v,w) be a (0, 2%, w°)-admissible
triple and let € > 0 be arbitrary. Choose a T” close to T', such that

EJ(T z(T'—,w),w) > Ehy(z(T—,w)) — € and Eho(z*(T—,w)) >

EJ(T', 2*(T'—,w),w) — ¢, (use [85]). It is asserted that J(0, 2" w°) >
EJ(T' z(T'—,w),w), with equality if (z(.,.),u(.,.),w(.,.)) =
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(x*(.y.),u*(.,.), w*(.,.)). To see this, by [82]-[84],y(t,w) :=

[(0F/0s)E[J (s, x(s,w),w)|t,w]]s=¢ < 0, with equality if (x(.,.), u(.,.),w(.,.)) =
(x*(.,.),u*(.,.),w*(.,.)). Hence, by [89], the assertion is correct. Thus,
EJ(T' z*(T'—,w),w) = J(0,2°,u°) > EJ(T", 2(T'—,w),w), so Ehy(z*(T—,w))+
e > J(0,2° W% = Ehg(x(T—,w))—e . Since € is arbitrary, Eho(x*(T—,w)) >
Ehy(x(T—,w)), so (z*(.,.),u*(.,.),w*(.,.,.)) is optimal.

Proof of Remark 24. Replacing the use of Lemma 1 by Lemma 2 in
the above proof, yields automatically a proof of Remark 24.

Proof of Theorem 12 For simplicity, it is assumed that A\ does not de-
pend on u. Let s,w’ be given, 7; < s. Let (s,z) € Q(w’) and let u(.,w;)
and w(.,.,w;) be arbitrary controls. Let u(.,w;) be used on an interval
[s,min{7;1,t}),t > s, and if 7,41 < t, let w(.,.,w;) govern the jump at
Tj4+1. By assumption, Q(w’) is open, so if ¢ — s is small enough, the corre-
sponding solution z(.,w;) (starting at (s,z,w’), 741 > s) has the property
that x(t'—,w;) belongs to Q(w’) for all ' € (s, ], as long as no jump occurs.
If 7541 < t, an optimal collection w*(., w;;1; ¢, y, W ™), w* (., ., wjs1; ', y, W ™)
is used from 7;4; on, with ¢’ = 7,41,y = 2" (7;41+, w;). By assumption such
optimal controls exist for each (s,y) € Q(w?™). If t < 741, u* (., wy, b, y, w?),
w*(., ., wj, t,y,w’) is used on [¢,T], with y = 2““(t—,w;). Let 2“*(.,w;)
correspond to the controls specified above, starting at = at time s, (i.e.
%Y (s—,w;) = x). In particular, if z = 2*(s—,w), then (u*(.,w;, t,y,w?),
w*(., . wj, by, wl)) = (u*(s,w), w*(s,V,w)). The optimal reward obtained,
when the state at ¢ is z is J*(¢, 2, w;) = sup, o Elho(T, 2" (T—, w;))|t, w;],
all 7' (.,w;) starting at (¢, 7,w;). (The reading of the symbol |t,w;] is as
above.) Now, for any t > s, for x = 2*(s—, w’)

J*(s,7,w7) = E[E[ho(z" " (T—,w)))|t, 2" (t—, w), w;]|s, z,w’] =
E[J*(t, 2" (t—, wj), w;)|s, 7, W], [90]

Furthermore, it can be shown that
J*(s,z,w?) > E[J*(t, 2" (t—, w;))|s, T, 0] [91]

for t > s, with equality, if s = ¢. To show [91], note that J*(s,z,w’) >

Elho(T, 2% (T—,w))l|s, x,w’] =

E[E[ho(T, "™ (T—,w))|t, 2" (t—, w), w;]|s, z,w!] = E[J*(t, 2" (t—, w;))|s, x, w’],
the last equality following from the fact that the pairs (u*(.,w;), w*(.,w;),

uw* (o, wj, by, w?), w*(., ., wj, t,y,w’) are optimal. The inequality [91] gives that

the right derivative at t = s of the right hand side is < 0, while [90] gives
that the right derivative of the right—hand side equals 0. The right derivative
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is the right—hand side of [82], with the sup’s deleted. These results entails,
in a shorthand notation, that for all w(.,.), AE[w(.,.)|]] < AE[w*(.,.)|] at
(s,7*(s—,w’)), as well as [82] and [84]. The last inequality then gives [86],
(omitting the proof that the expected value of the supremum can be approx-
imated by Efw(.,.)|] for some w(.,.).)

It can be proved that [82] holds even in the case where we drop the as-
sumption about the existence of the u*(.,w;;t,vy), w*(.,w;;t,y), because [91]
follows by another argument: It can be proved that

J*(s, x, wj) = sup E[J*(t, xﬁ’w(t—, w;),w;))|s, x, wj], [92]

where @ = 4(.,w;), v = (., V,w;), and z%?(.,w;) starts at (s, z,w’).
For simplicity, consider only the case where the controls w are absent. We
shall only give a heuristic proof of [92s| and we write max instead of sup.
Noting that any @ can be written @ = v’ for r € [s,t],a = ", for r € (¢,T],
J*(s,z,w’) = maxy Elho(x*(T—,w))|s, x,w!] =

max, ,» E[ho(T, 2" (T — w;))|s, z,w’] =

max, {max,» E[ho(T, s (T — w;))|s, z,w’]} =

max, {max,» E[E[ho(T,z"* (T—,w;))|t, 2% (t—, w;), wj]|s, z, )]} =
max,,{ F[max,» £ v(t—

[

[hO(Tv xU/’UN(T - wj))‘ta ' (t 7wj)7 wj]‘sa xawj]} =
max, E[J*(t, 2% (t—, w;),w;)|s, ¥, w].
The next to last equality involves an interchange of a maximization (max,»)
and an expectation and needs the following argument: The outer expecta-
tion can be looked upon as a sum. The maximization of a sum equals the
sum of the maximum of each term, provided each term contains a separate
control parameter, not entering the other terms. This is the case here, for
each realization of |t,w;|, a separate u” can be chosen.

Proof of Theorem 13 In the next lemma, the following transversality con-
dition is needed:
There exist multipliers (s, y),j = 1,...,m, continuous in (s,y) for
j=m'+1,..,m,
such that g(T: s,y) = Sy (5. 9)hyo (T 5.)) + o (x(T:5.),
wi(s,y) = 0,5 >m', p5(s,y) = 0if hy(x(T5s,y)) > 0,5 > m'. [93]

Lemma 3 Consider the control problem maxu(_){fOT M*(p,x)dp+ho(x(T))},
subject to z = f(t,x,u),z(0) = 2% h(z(T)) = 0,5 = 1,....m', hi(z;(T)) >
0,i =m'+1,...m, where f is C° x C? as a function of ¢ and (x,u), and
where h; is C?. Assume that ﬁ(t,x,q) = max,ey ¢f(t, z,u) exists and
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is C° x C% x C? in an open set Q* in R** and let a(t,z,q),(t,z,q) €
Q* be a CY x C' x C'-function that yields this maximum. Assume that
() is an open set in (0,7) x R", and that for each (s,y) € @, continu-
ous solutions t — (z(t;s,y),q(t;s,y)) of & = f(t,z,u(t,x,q)),z(s) = v,
G = —qfe(t,x,u(t,x,q)) — M (t,z) exist on [s,T], satisfying z(s;s,y) = v,
the transversality condition [93| and the just mentioned terminal conditions.
Assume that (s,y) — (z(t;s,v),q(t;s,9)) is Ct in (s,y) € Q,t € [s,T],
that (t,z(t;s,v),q(t;s,y)) € Q* for all t € [s,T], all (s,y) € @, and that
(t,z(t;s,y)) € Q for all (s,y) € Q, all t € (s,T). Assume that M*(t,z) is
C?xC?in Q, and that sup,c(, 1) [M*(t, 2(t; 5,y))|, supsersy | M (8, 2(t; 5, )|,
and sup;e( 1) | My, (¢, 2(t; s, y))| are locally bounded on Q. Define 2(t; s, y) =
Ji M (p, (ps 5,9))dp + ho(x(T; 5,y)). Then S(s,y) = 2(s;s,y) is C* on Q,
and satisfies the HJB- equation: 0 = S,(s,y) + sup,{S,(s,y)f(s,y,u)} +
M*(s,y) here. Moreover, q(s;s,y) = 2z,(s;s,y) = Sy(s,y) for (s,y) € Q. O
Proof of Lemma 3 Let (3, 7) be a given point in @) and define § = ¢(8$, 3, 7).
Define A := {(t,2(¢;5,9),q(t;5,9)) : t € [8,T]}. For some € > 0, B(A;¢) :=
{(t,z,q) :dist((t,z,q), A) < €} is contained in @Q*. Since ¢(8;s,y) is close to
q(5;8,9) when (s,y) is near ($,7), § any number close to §,5 > 3, then, by
standard theory of differential equations, a number s’ < § exists such that,
for all (s,y) near (3,9), x(t; s,y) and q(t; s,y) are defined on [s', T], being C*!
in (s,y) near ($,9), for any ¢t € (s',T]. Moreover, since M (p; x(p; s,y)) and
M. (p; z(p;s,y)) are locally bounded in (s, y), uniformly in p, and ¢(3; s, y) is
close to ¢($; 8, y) when (s,y) is close to (8, 7), then x(t; s,v), q(¢; s,y) are close
to z(t; 8,9),q(t; $,9), when (s,y) is near (8, 7), uniformly in ¢ € [¢/,T), and,
furthermore, (s,y) — x(¢;s,y) is Lipschitz continuous on a neighborhood of
(8,7), uniformly in ¢, (the same property has (s,y) —, q(t; s,y)). This means
that z,(¢; s,y) and 2,(t, s, y) exist and are continuous near (3, y). Finally, the
formula for z(¢; s,y) evidently gives that 2(¢; s, y) exist and is continuous. In
fact, 2(s;s,y) is Ct in Q.

It will be shown that ¢(T; s, y)z,(T;s,y) =

hoc(e(T: 5.9)), (T 5.9), (T 5,y)2(T: 5,y) = hos(a(T: 5,9)),(T:s,3). To
see this, note that 313 (s, y) hja(x (T 5,Y)) = Epes (s.)2015 (8, Y) hja(2 (T 5, y)).
If 13 (s,y) > 0, then, by continuity of (s',y') — ,u](s y'), g >m', wi(sy') >
0 for all (s',%') in a neighborhood of (s,y), hence h;(xz(T;s",y")) = 0 here,
ie. (0/0y)h;(z(T;s,y)) =0 and (0/0s)h;(x(T; ,y)) =0, thus
hj(z(T5s,y))xy, (T s,y) = 0 and hjm(x( :5,y))xs(T;s,y) = 0. This evi-
dently also holds for j < m’, hence ¥;u7(s, y)hj.(2(T;s,y))x,(T;s,y) = 0
and 3515 (s, y)hjo (2(T; 5, y))2s(T; s,y) = 0, so the two asserted equalities are
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satisfied.

Write w(t; s, y) = 2,(t; s, y)—q(t; 5,y)2, (¢ 5,y) and 0(¢; 5, y) = z(L; 8, y)—
q(t; s,y)zs(t; s,y). The two asserted equalities and z(T'; s, y) = ho(x(T; s,y))
imply

w(T;s,y) =0,w(T;s,y) =0. [94]

Let u € argmax,qf(t,z,u), (t,z,q) € Q*. From the first order conditions for
a local minimum at (%,q) of (2/,¢) — H(t, 2, ¢) — ¢ f(t, 2 0), it follows
that H,(t,#,q) = qu(t 1), and Hy(t,2,4) = f(t,&,4). This means that
z(.),q(.), and z(.) satisfy & = F,,¢ = —F,, 2* = qF, — F = —M?*, where
F = f](t,x, q) + M*(t,z). These equations are the characteristic equations
of the HJB-equation for S above. By well-known results in the theory of
nonlinear first—order partial differential equations, (see for example Seierstad
(1998), p. 391),

wi(t; s,y) = 0,104(t; s,y) =0, forall t e (s,T), [95]

which together with [94] gives w(t;s,y) = 0,%0(t; s,y
Then, (using Seierstad (1998), p. 391 again), S(s,y) = 2(s;s,y) is C' in Q,
and, in @, it satisfies the equation 0 = Sy(s,y) + FI( $,Y,q) + M*(s,y), with
q=q(s;s,y) = S(s,y). (For the Cl—property of S(s,y), see a corresponding
proof of the C' x C?-property in the next proof.) IT.e. the HJB-equation
holds in Q.

) =0 for all ¢t € [s,T].

Note If we want to apply Lemma 3 to a problem where an integral also
appears in the criterion, i.e. to a problem where an additional state 2° ap-
pears, with 2% = fo(t, z,u), 2°(0) = 0,(fo C° x C? x C?), and with criterion
2°(T) + ho(z(T)), then even (s,y) — 2°(t;s,y) need to be C! in Q, for
t € [s,T]. Now, given (8,7) in @, the above existence of B(A;¢) immediately
entails the C'-property of z°(¢; s, ).

Lemma 4 Assume in the situation of Lemma 3, that there exist a piece-
wise continuous control u(t) = u(t; 0, 2°), a solution x(t) = x(t;0,2°) of & =
f(t,z,u(t)), z(0) = 2°, and a solution q(t) = q(¢; 0,2%) of ¢ = —q f(t, z(t), u(t))—
M (t,x(t)), satisfying the transversality and terminal conditions in Lemma

3, the condition (¢,z(t)) € @ for all ¢ € (0,7), the maximum condition
q(O) f(t, z(t),u(t)) = H(t,z(t), q(t)), and the "consistency condition"
(x(t'st,x(t)),q(t';t,z(t))) = (x(t'), q(t')), for all ' > ¢,¢',t € [0,T]. Then,

Ss(t,x(t)) + Sy (t, x(t)) f(t, x(t),u(t)) + M*(t,z(t)) =0 [96]
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and

limg 7 S(t, 2(t)) = ho(z(T)). [07]
O

Proof of Lemma 4 By the consistency condition, ¢(t) = q(t;t,z(t)) =
Sy(t, z(t)), so by the maximum condition, [96] follows. Moreover, by consis-

tency, since z(t;, 2(t)) = [, M*(p, 2(p;t, x(t)))dp + ho(z (T t, x(t)) =
j;T M*(p,x(p, T/2,2(T/2))dp+ ho(x(T)),t > T/2, by the boundedness prop-
erty of M*, [97] follows.

Lemma 5 Let hj,j = 0,...,m, be C? let f be C" x C? in ¢ and (z,u),
and let \(t) be piecewise continuous. Let (t, z,p) be a C'-function yield-
ing maximum of pf(¢,z,u), for v € U, for all (t,z,p) in a given open set
Q*, and assume that H(¢,z,p) := maxucy pf(t, z,u) is C° x C% x C? here.
Consider the equation # = f(t,z,u), x(0) = 2%, with terminal conditions
hj(x(T)) =0,j =1,...,m' hj(z(T)) > 0,5 =m' +1,...,m. Assume that @
is an open set in (0,7) x R™, and that for each (s,y) € Q U {0,2"}, there
exist continuous solutions t — z(t; s,y), p(t; s,y) of & = f(t,z,u(t,z,p)) and
p = —pfe(t,x,a(t,z,p)) + A(t)p — AN(t) M, (t, ). Furthermore, assume that
(t,z(t;s,y), p(t; s,y)) belongs to Q*, for t € [s,T], for all (s,y) € Q, that
(t,x(t; s,y)) belongs to @ for t € (s,T), for all (s,y) € QU {0,z0}, and that
(s,9) — (z(t;s,y),p(t;s,9)) is C' in Q for ¢ in [s, T]. Assume that M (¢, z) is
C?x C?in Q, and that sup,c, 7y [M(t, 2(t; 5,9))], sup,c(s 1) | Ma(t, 2(t; 5, )|,
and sup;e(s 1) | Maa(t, 2(¢; 5,y))| are locally bounded on Q. Moreover, assume
that, for all (s,y) € QU{(0,2°)}, z(t; s,y), p(t; s,y) satisfy the terminal con-
ditions and the following transversality conditions: There exists multipliers
pi(s,y),j = 1,...,m, continuous in (s,y) € @ for j = m’ + 1,...,m, such
that p(T;s,y) = Sp;(s, y)hje(2(T55,9)) + hoo(x(T; 8, y)), pi(s,y) 2 0,5 =
m'+1,...,m,p(s,y) =0if hj(x(T;s,y)) > 0,7 =m'+1,...,m. Assume that
(x(t;0,2°), p(t; 0, 2°)) satisfies the consistency condition

(5 t,2(t;,0,2°),p(t'; t, 2(t;0,2°))) = (x(';0,2°), p(t'; 0,2°)),

for all ¢ > t,¢/,t € [0,T]. Let z(¢;s,y) be the solution of 2 = A(¢){z —
M(t,z(t;s,9))}, 2(T) = ho(x(T;s,y)). Then J(s,y) := z(s;s,y) is C! in
@ and satisfies the HJB-equation: 0 = Jy(s,y) + sup,{J,(s,y) f(s,y,u)} +
As){M(s,y) — J(s,y)}. Moreover, u(s;0,2°%) = a(s;x(s;0,2°),p(s;0,2%))
yields the supremum in this HIB-equation, when y = x(s;0, z°) and

limyr J (¢, 2(¢;0,2%)) = ho(x(T;0,2°)). Finally, p(s;s,y) = J,(s,9), (s,y) €
0. 0
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Proof of Lemma 5

Write I(s,y) = J(s,y)exp([; —A(p)dp). Then, we can show that J satis-

fies the HJB-equation of Lemma 5 1f and only if I satisfies the HJB-equation

of Lemma 4. The fact that J satisfies the HJB-equation is equivalent to
0= Jy(s,y) exp([; —A(p)dp)+max,{J,(s, y exp( [ — ( Ydp)f(s,y,u)}+
A(s)M(s,y) exp( [ —A(p)dp) — A(s)J (s, y) exp( [ —Mp)dp).

Le. I(s,y) satisfies 0 = [s+sup I, f+M*, where M*(s,y) = )\( )M (s,y) exp( [; —A(p)dp).

Hence Lemma 5 follows from Lemma 4, as z(;s,y),q(t; s,y) =

p(t;s,y) exp fT (p)dp) satisfy the conditions in Lemma 4.

Final step in the proof of Theorem 13

Let us apply Lemma 5 for [0, T'] replaced by [r;, T'], M(t,z) = E[sup,, J(t, z+
g(t,x, Vi, w,w?),w t, Vi)|t,w?].  Evidently, Lemma 5 implies that for
each w’, the HIB-equation in Theorem 11 holds in Q°(w’). Moreover, u(t, w?),
and w(t,v,w’), for ¢ > 7;, yield the suprema in the HJB-equation for y =
x(t—,w’). Since, by assumption [85] holds, then all conditions in Theorem
11 are satisfied, hence (u(t,w),w(t,v,w)) is optimal.

Proof of Theorem 3

In the situation of Theorem 3, for any given j, J(s,y,j) =

ho(x(T;5,)) + [ 2 folp. 2(p; 5, 5). i(p; x(p; 5,9, 4). p(ps 5.9, ) +
J(p,x(p;s,y) + g(p,x(pi sy, 5), J + 1), 5+ 1)]dp.

We consider only the case where fy = 0, for the general case, however, take
notice of Note to Lemma 3. By induction, assume that J(s,y, j+1) is C' x C?
on Q°(j) and that J(s,y,j+1), J,(s,y,j+1), and Jy,(s,y,j+1) are bounded
on bounded subsets of Q°(j). (This surely holds for j = N, since what fol-
lows works by putting J(s,y, N + 1) = 0.) Since J(s,y,j + 1) is bounded on
bounded subsets, the local boundedness properties of M (t,x,j) = J(t,x +
g(t,z,j+1),j+1), M.(t,x,7), and M,,(t,x,j) are satisfied. In fact, Lemma
5 gives that J(s,y) := J(s,y,7) is C' in Q°(j), and satisfies the HIB-
equation, and Jy(s,y,j) = p(s; S, y, j), (which even implies that J,,(s,y,7) =
py(8;8,y,7) exists and is continuous.) This means that I(s,y, ) :== I(s,y) =
J(s,y) exp(A(j)(T—s)) satisfies the HJB-equation of Lemma 3, with M*(s,y) :=
M*(5,3,5) = MG + DI (o + g(t,g + 1), + Dexp(A( + (T — s),
Since a(t,x,p,j), M*(s,y,j) and I(s,y,j) = p(s;s,y, ) exp(A(j)(T" — 1))
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are bounded on bounded subsets of their domains of definition, I(s,vy,7)
is also bounded on bounded subsets of Q°(j), by the HIB-equation. So even
I(s,y,7) is bounded on bounded subsets, and the same holds for J(s,y, j),
together with J,(s,y,7) and Jy,(s,y,j). Since u(t;s,y, j) yields the maxi-
mum in the HJB-equation when y in that equation is replaced by z(¢; s, v, j)
and [22] implies [85], then, by Theorem 11, Theorem 3 follows.

Proof of Theorem 6 The theorem follows directly from Theorem 13,
once it is noted that [49] implies [85].

Lemma 6 In the situation of Lemma 4, weaken the differentiability as-
sumptions on H(t,z, q), a(t, x,q) and (s,y) — (2(t;s,y), q(t; s,y)) as follows:
Assume that there exist C! -functions ¢, , k = 1, ..., k*, such that, for any
point (¢,z,q) in Q*, ¢r(t,z,q) = 0 for at most one k and such that H is
COxC?*xC?inQ*\ Z,Z = {(t,x,q) : ¢s(t,z,q) = 0 for some i}. Assume
that a(t,z,q) is C° x C' x C'in Q* \ Z. Assume also that (¢, x,q)|a, (]a
means restricted to A), has a C° x C'!' x C''-extension to an open set contain-
ing clA, for any set A of the form N;®!, &' = {(t,x,q) € Q* : ¢;(t, z,q) > 0},
or ® = {(t,x,q) € Q* : ¢;(t,z,q) < 0}, (the direction of the inequality sign
may depend on ).

Let 7' .= {(s,y) € Q : (s,y,q(s;s,y)) € Z}. Assume that for any (s,y) €
Q\Z',t €[5, T],t & Qsy, Qsy = {t € [s,T) : Or(t,2(t; 5, 9),q(L; 5,y)) = 0 for
some k}, (s',y") — (x(t,s',y),q(t; s',y')) is C" in a neighborhood of (s, y). Fi-
nally, for (s,y) € QU{(0,z°)},t € (s,T), for u(t; s,y) := a(t, x(t; s,9), q(t; s,y))

or(t, x(t;8,y),q(t; 5,9)) = 0 = ot 2(t;5,9), q(t; 8, y))+

Gralt, 2(t;5,9), q(t; 5,9)) (155 5,y) + Grg(t, 2(t; 5, 9), q(t; 5,9))q(tF; s, z[/) 7?

0 97*

(Either the expression is >0 for both the left and right limits, or the expres-
sion is < 0 for both limits.) Then S(s,y) is C'! and satisfies the HJB-equation
only for (s,y) € Q \ Z’, and [96] holds for all (¢, z(t;0,2%)) ¢ Z', (i.e. all ¢
except a countable number). O

Proof Write v = (s,y) and let v := (8,7) belong to @ \ Z’. We con-
sider only the case where there is only one function ¢, and only one "cross-
ing point" ¢ = ¢ in (8,T), where ¢({,z(L;0),q({;9)) = 0, the general case
being an easy extension. Let us prove that w(t) = w(¢;$,y) and w(t) =
w(t, 5,7) have equal left and right limits at ¢ = ¢, then again it follows that
w(t) = 0,%(t) = 0, for t # £, which will again finish the proof, since [94]
holds. By the extension property of u(t, x, ¢), the solution (z(t;v), ¢(t;v)) on
[s,T(v)), for v close to ¥ has an extension (z~(t;v),q (t;v)) to a slightly
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larger interval, in fact to an interval [t/,t'], t” < 4t > t, with v —
(x~(t;v), g~ (t;v)) being continuously differentiable near v for all ¢ in [t”, '],
and similarly, the solution (z(t;v),q(t;v)) on (T(v),T) has an extension
(z*(t;v), ¢ (t;v)) to an interval [t”, T, t" < i, with v — (¥ (;0), ¢ (t;v))
being continuously differentiable near o, for all ¢ in [t”,T]. By the "non-
tangentiallity" condition [97*] in Lemma 6, a C'-function T'(v), v near 9,
exists such that 7(9) = £, and gb(T(v),x’(T(v);v),q’(T(v) v)) = 0. Now,
for t* > £, t* close to i, as 2 (t*;v) = 2~ (T(v),v) + fT 17 (s;v), then,
neglecting the small term (integral) arising from d1fferent1at1ng under the in-
tegral sign, o (1% v) ~ —i* (T(0); 0)T'(0) + & (F(0); 0)T'(0) + 2, (T (0); v).
By the fact that @(f—, z(i— ;0), q(t—;0)) and a(t+, z(t+;0), q(t+ 0)) max-
imize the Hamiltonian ¢f at , then q(f; 'U)x+(f D)) = q(t;0)i (f ), or,
q(t;0)at (t50) =~ q(t; 0)x, (£ 0). Lettlng t* L t, q(t; 0)xy(t+;0) = q(t;0)w, (1—; D).
It is easily shown that z,(¢; 0) ft Mz, (p;0)+(d/dv)ho(x(T;0)) exists and
is continuous in ¢, for a proof in a more general situation, see the proof of
Lemma 7 below. Hence the equality of left and right limits at ¢ of w(t) and
w(t) follows. Now, w, = 0 and w0, = 0, for ¢ # £ by the same proof as in
Lemma 3. As [94] holds, w(¢;s,y) = 0 and w(t;s,y) = 0 for all t € [s,T],
and the proof is finished.

Lemma 7 In the situation of Lemma 6, define Z2 := {(s,y) € Q :
on(T,2(T; s,y),q(T; s,y)) = 0 for some k = 1,....k*}, Z' = {(s,y) € Q :
(s,y,q(s;s,y)) € Z}, and redefine the set Z' in Lemma 6 to be Z! U Z2,
(assuming that the conditions in Lemma 6 related to Z’ holds for this redef-
inition). Assume that M* is C° x C? only in @ \ Z’, and that

SUP¢e[s, T)\Qs.y |M* (t, l'(t, S, y))" SUPte[s, T)\Qs.y |M;(t7 l'(t, S y))|’ and
SUDte (s T0\Qs., | Mz (8, 2(t; 8,y))| are locally bounded on @\ Z'. It is assumed
that for any (s,y) € Q \ Z’, a C° x C*-extension of M* to an open set con-
taining {(t,z(t;s,y)) : t € [a,b]} exists for any interval [a,b] C (s,T) for
which (t,z(t,s,y)) ¢ Z' for t € (a,b). Then the conclusions in Lemma 6 still
hold.

Proof Let us first show that it is still meaningful to talk about about
solutions to the equations for z and ¢: We can, by insertion of x(¢;s,y)
and q(t;s,y) in the equation for x, test if this equation is satisfied v.e.,
(a(t, x(t; s,v),q(t;s,y)) has at most a countable number of discontinuity
points). Moreover, for ¢ ¢ Q. (t,z(t;s,v),q(t;s,y)) =

(t,x(t;s,y),q(t;t,x(t; s,y)) & Z, ie, (t,z(t,s,y)) & Z', so M* is C x C? near
(t,z(t,s,y)) and for all such ¢ (i.e. all ¢ except a countable number), the equa-
tion for g can be tested. To see that the proof of Lemma 6 goes through even
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in the present case, simply let M*~ and M** be C° x C? extensions of M* to
open sets G and G’ containing {(t,x(t;5,9)) : t € [5,1]} and {(t,2(t;5,9)) :
telt, T]}, respectively, 7' any given number in (t,T). Now, use M* = M*~
and M* = M** when defining ¢~ (¢,v) and ¢*(¢,v). Again, the local bound-
edness of M*(p;x(p;s,y)) and M: (p;x(p;s,y)) gives, as in Lemma 3, that
x(t;8,9),q(t; s,y) are close to z(t;8,7),q(t; $,9), when (s,y) is near (8,y),
uniformly in ¢ € [s', T)., Furthermore, (s,y) — x(¢; s, y) is Lipschitz continu-
ous in some ball B((3, %), d), uniformly in t ¢ (£ —e(5),t+¢€(0)), where €(8) >
0,lims_g€(0) = 0. Using the local boundedness of M (p;x(p;s,y)), evi-
dently, (s,y) — z(t; s,y) := j;T M*dp+ho(X(T;s,y))is C* for (s,y) € Q\ Z/,
with ¢ — z,(t;v) continuous and (s,y) — z(s;s,y) C! for (s,y) € Q\ 7.
Then the arguments in Lemma 6 goes through as before. (Note that in
Lemma 6, it is implicitly assumed that (s',y") — (=(T'; s, v), q(T; 5", y')) is
C! near (s,y) even if ¢(T,z(T;s,y),q(T;s,y)) = 0 for some k, however,
when (s,y) ¢ Z' U Z?, none of these equalities hold.)

Lemma 8 For k = 1, ..., k*, define ® := {(s,y) € Q : dx(s,v,q(s;s,y)) = 0},
and define @4y = {(s,y) € Q : ¢;(T,2(T;5,9),q(T;s,y)) = 0}. Assume in
the situation of Lemma 7, that, for any admissible solution z(.), () contains
all points (s, z(s)),s € (0,7) and that for any k£ = 1,...,2k*, for any s such
that (s,z(s)) € ®, a number ¢ > 0 exists, such that for s’ in (s,s + €),
(s',2(s")) ¢ ®r. Then except for a countable number of points s, (s,z(s))
belongs to @ \ Z'. O

Proof For any k, there is a finite set [, of points s such that (s,z(s)) € O
and (s, z(s")) ¢ O for s’ € (s, s+ 1/m). In fact, the number of points in I,
must be < T/(1/m) = mT. Evidently, {s: (s,z(s)) € ®,} C U1

Remark 26. In the case of Lemma 8, u(t; 0, 2°) will be optimal in the prob-
lem of Lemma 3, provided the following condition holds: For each (T, 3) €cl@
a ball N := B((T,9), a) exists such that

SUD (s y)c@nn.tefs,r] [4(t; 5,9))| < co. This condition can even be replaced by
the weaker condition that lim,, J(t,x(t)) = ho(x(7T)) for any admissible
z(.). (To see that the former condition implies the latter one, note that
for § = x(T), supseonniepsm |f (&Y, u(t;s,y))| = = < oo, so that for
(s,y) € B(T,g), (min{a,a/Z})/4), (p,x(p;s,y) belongs to B((T,9),a) for
p>s,as |x(p;s,y)—y| <E(t—s) <a/4, ly—7| < a/4. By the boundedness
property of M*, J(t,z(t)) — ho(x(T)).) O
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Remark 27 (Weakened differentiability assumptions on the char-
acteristic solutions.)

The differentiability conditions on z(; s,y,w?), p(t; s, y,w?), 4(t, x, p,w?),
H(t,z,p,w’) and M(t,s,w?) in Theorem 13 can be weakened as follows. Let
or(t,z,p,w?), k = 1,..., k%, be C*-functions in (t,z,p), nonanticipating and
piecewise and right—continuous in each 7;,7; < t, each component of each V;,
and assume that for any given w’, for any (s,y) € Q°(w), if

t € (s,T) and ¢y (L, x(t; s, y,w’), p(t; 5, y,w’),w?) = 0, then
(bkt + ¢kx(a/at>x(tiv $,Y, wj> + ¢kp(a/at>p(tiv $,Y, wj> 7& 07 [98]7

the partial derivatives ¢, dr, and ¢y, being evaluated at (¢, z(¢; s, y,w’),
p(t; s,y,w?),w’). (The expression on the left-hand side of the "nonequal-
ity" in [98] is assumed to be either > 0 for both the right and left limit,
or < 0 for both limits.) Assume that H(t,z,p,w?) is C° x C2 x C? in
{(t,z,p) € Q*(W) : éu(t,x,p,w?) # 0 for all k} and that a(t,z,p) is
CYx C'x C' here. Assume also that for each w’, (t, z, p) — u(t, z, p,w’)| s has
a C% x O x C''-extension to an open set containing clA, for any set A of the
form N;®', &' = {(t,z,p) € Q*(w!) : ¢;(t,z,p,w’) > 0}, or &' = {(¢,z,p) €
Q*(w9) 1 ¢i(t, z, p,w’) < 0}, (the direction of the inequality sign may depend
on i). Let QY (w?) := {(s,9) € Q°(w?) : dr(s,y,p(s;s,y,w’),w’) = 0 for some
kY, Qsywi = {t € [s,T) : dp(t,x(t; s,y,w?), p(t; s,y,w?),w’) = 0 for some
E}, and Q%) = {(5,9) € Q) : ou(Toa(T,,,59), p(T 5, y,07)) = 0
for some k = 1,...,k} and assume that for any (s,y) € Q°(w) \ (Q"'(w/) U
Q*(w?)), for any t & Qyui, (8,y) — (x(t; sy, w), p(t; s,y ,w?)) is C* for
all (s',y) in a neighborhood N 5, . of (s,y). Assume that for any (¢, z,p) €
Q*(w9), ¢r(t, s,p,w’)) = 0 for at most one k. Assume that M(s,y,w?) :=
Elsup,, J(s,y+g(s,y, V,w,w?),w?, s, V)|s,w] is COx C? in Q°(w’)\ (Q*(w/)U
Q?*(w’)). Assume that SUDrels TG, , s | M (t, z(t; s,v))],

SUDels, TNQ, , s |M,.(t, 2(t; 5, y),w’)| and SUPyels, TN\Q, , s | Mo (t, x(t; 5, 9), w)]
are locally bounded on Q°(w?) \ (Q'(w?) U Q?*(w?)), and that for any (s,y) €
Q° (W) \ (@Y (W) UQ?*(w?)), M(s',y',w?) has a C° x C?-extension to an open
set around the set {(s',y') = (s, z(s';s,y,w’)) : s € [a,b]}, for any interval
la,b] C (s,T) for which (a,b) N Qs,. = 0. Finally, assume that for any
admissible solution z(.,w), for any s > 7; such that (s, x(s,w’)) belongs to
Q' (w') U Q*(w?), then, for some ¢ > 0, (s, 2(s',w’)) ¢ Q' (w’) U Q*(w?) for
s € (s,s+e€). O

Proof of Remark 27 Similar to what was obtained in the finishing part of
the proof of Theorem 13, the HIB-equation holds for all (s,y) € Q%(w’) \
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(QY (W)U Q?*(w?)), by Lemma 7. By the last property in Remark 27, for any
admissible solution z(.,w), J(¢,z,w?) is continuously differentiable near any
point (s, z(s,w)), s € (75, 7j+1), except for a countable number of s’s. These
points depend as in Remark 24 on w’, or perhaps only "measurable", in which
case the conclusions in Remark 24 still hold, (note that Z' = Q'(w’) UQ?(w?)
is relatively open in [7;,T) x R")).

Proof of Remark 19. In case of Remark 19, M(s,y,w’) = z(s;s,y +
9(s,y,5 +1),7 + 1). Moreover, (s',y") — (=(T;,v,75),p(T; sy, 7)) is as-
sumed to be C! for (s',y') near any (s,y) in Q°(j) \ Q'(j), even if (s,y)
belongs to Q*(w’) = Q*(j). From this comment, evidently Remark 19 fol-
lows.

Lemma 9 In case of Lemmas 3 and 7, in the free end case, we can drop the
assumption of the continuous differentiability of (s,y) — (z(t; s,v); q(t; s,v)),
since it automatically holds. ([l

Proof (Sketch). We consider only the case of Lemma 3, for M* = 0, a
similar proof holds in case of Lemma 7. Let (3,9) belong to @, and let
(Z(t; s,y,p), G(t; 5, y,p)) be the solution of & = f(t, z,u(t, x,q)),

q - qf:v(ta z, Tl(t, Z, q))a .i'(S, S yap) =Y,

G(s;s,y,p) = p. A solution exist at least for (s,y,p) close to (8, ,q($;3,7)).
Then (x(t;5,9),q(t; 5,9)) equals (Z(¢; s, y,p1(y)), 4(t; 8,9, p1(y))), where pi (s, y)
is a solution of

Cj(T, S, yaP) - hOx(i(Tv S, yaP)) =0. (*)
At least this is so for s close to T', as we shall see. For § slightly smaller
than T, ¢(T;3,y,p) = p + fsqufzdt, z(T;s,y,p) =y + fST fdt. So for s
close to T, (0/0p)[q(T’; 8,y,p) — ho(Z(T; $,y,p))] ~ I, using the two pre-
ceding equalities and disregarding the small terms arising from the integrals
obtained by differentiating under the integral sign with respect to p. Hence,
a unique p;(s,y) exists for (s,y) close to (8,7), with pi(8,9) = ¢(T;$,9),
which is C!, by the implicit function theorem. Fix a 5§ = T, for which
this holds. Then consider the equation G(7};s,y,p) — p1(Z(T};s,y,p)) = 0.
Then, by exactly the same arguments, for § slightly smaller than 77, a
unique solution p = py(s,y) of this equation exists for (s,y) close to (s, 7),
with po(8,9) = q(T1;8,9), which is C', by the implicit function theorem.
Now, using (*) for p = py(s,9),5 = T,y = #(T1; 5y, pa(s, ) gives 0 =
(T Ty, 2(Txs s, y, p2(s,9)), po(Th, £(Th; 5.y, p2(s,y)))) —
hoo (2(T'3 11, 2(T1; 8,4, p2(s, ), 1 (Th, 2(Ths 8, y, (s, 9))))) =
G(T; Ty, (115 8,9, p2(s,9)), A(Ths 5,5 p2(s, ) —
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hoo (2(T Th, (11 5,9, (s, ), (T 8,9, p2(s, )
q(T5 5,9, p2(5,9)) — hoo(x(T; 5, y,p2(s, y))). Fixa s
holds.

Carrying out several such steps, say k£ times, we can reach back to any
given § = T, with ¢(Ts,y,pk(s,y)) — hos(2(T 5,9, pr(s,y))) = 0 holding
for a unique function py(s,y) being C*! close to (s,y) close to (5,9) € Q, with
pk(Te, ) = q(Tk—1;8,9). (It is possible to keep T; — Ti1, i = 1,....k — 1,
independent of i.)

T5 < 17 such that this

Remark 28 In Theorem 3, for j = 0, (s,y) — (z(t;s,v,7),p(t;8,9,7))
need only be CY x C' and for j = 0, the boundedness properties of p and
p, are not needed. If hy is CNT2 f(., ..., j) is CO x CI2 x CT2 ¢g(.,., ) is
C° x C72 and a(t,z,p,j) is C° x CIT1 x CI*1] then, for any j, (s,y) —
(x(t;8,9,7),q(t; s,9,7)) is CO x CITL x CI+1 ] this suffices for Theorem 3 to
hold. No C' x C?-assumption on (s,y) — (x(t;s,y,7),p(t;s,y,7)) is then
needed. (A proof is obtained from an obvious extension of Lemma 9 that
yield C9t-continuity of (s,y) — z(t;s,y,7),p(t;s,y,7).)

Free terminal time 7T

Now, the time 7' is subject to choice in a given set [1},73]. The problem
is to choose a triple u(.,w),w(.,.,w),T = T(w), such that the maximum
in [78] is obtained. The stopping time T'(w) depends on the history of the
system, i.e. 1oy (t) is required to be nonanticipating. Moreover, T is sep-
arately piecewise and right—continuous in each 7;, each component of each
V;. The class of triples (u(.,.),w(.,.,.),T(.)), with corresponding (0, z°, w°)-
admissible solutions x(.,w) is now the class in which an optimal triple is
sought for. Now, "admissible" includes the satisfaction of the given terminal
conditions: A.s.,

z(T(w),w)=&5,i=1,..,n

r(T(w),w) > &i=n"+1,..,n", [987]

Functions A(¢, z,u,w) and 7(¢, z,w), satisfying the same assumptions as
above, again describe the probability properties of the 7;’s and the V}’s. Now,
ho(t,z) is assumed to be Lipschitz continuous with rank x,, also in . We
also assume that f,g and hy are C?. We shall give two sets of sufficient
conditions. Assume that Q(w?) C [1;,T) x R", j = 0,1,... are given sets
with the property that the Q(w’)’s contain all possible reachable points in
the process when exactly 7 jumps have occurred, in the sense that, for any
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(0, 2°, w®)-admissible quadruple (z(t,w), u(t,w), w(t,v,w), T(w)), and for any
wl, any 741, (¢, x(t+;w?)) belongs to Q(w?), if ¢ € |17, T(w)),t < T¢41. Define
Q(w) := {(t,z) : for some j, t € [1;,7j41) and (¢,2) € Q(w’)}. Recall that
for sets A and B in R", A C B, A is called relatively open in B if there exists
an open set C' in R™ such that A = BN C.

Theorem 14 Given sets D(w’) C Q(w’), D(w?) relatively open in Q(w?),
and a function J(t, z,w), nonanticipating in (¢, w), defined on D(w) = {(¢, z) :
for some j,t € [1j,7;41) and (¢, 2) € D(w’)}. Define

J(t, x,w) = ho(t,x), for (t,z) € Q(w) \ D(w). [99].
Assume that {(¢,z) € Q(w?) : t < Ty} C D(w?), and that
(t,z) € D(w),t € [T, Ty) = J(t,x,w?) > hy(t, ). [100].

Assume also that (s,y) — J(s,y,w) is C' at any point (s,y) € D(w), thus
J(s,y,w) has a C'-extension to a neighborhood around (s,y). The exten-
sion, as well as its derivatives J; and J, are, separately, piecewise and right—
continuous in each 7; and in each component of each V;. Assume that the
HJB-equation [82] holds for (s, y) in D(w?).

Assume that for all w’, for all (s,y) € Q(w?) \ D(w?),s > T1,u € U,

hOt(Sa y) + hOJE(Sa y)f(s,y,u,wj)+ ) ) )
)‘(Sayauawj){E[SupweW J(S,y+g(s,y, Vawawj)awjasa V)|Say7w]]_
ho(s,y)} <0 [101].

Furthermore, assume that for all w/,

J(s,y,w")| p(s) has a C! extension denoted J*(s,y,w)

to an open set containing D(w’) U (Q(w’) N dD(w?)),

where D(w?) is the boundary of D(w’), and

T (5,10 ) — hou(5, ) + (12 (5, 9,09) — Bioa(5,9)) £ (5,10, 09) £ 0

for all (s,y) € Q(w?)NID(w?),u € U,s € (T1,Tz). [102]

Assume, furthermore that, for any admissible pair z(t,w), T(w) for all ¢ €
Dy y(w) =4t : (t',z(t',w)) € D(w)}, the following inequality holds

|J(t, 2(t,w),w)| < g,y + ka2t w)] [103]

for some positive constants (., y, k(). Assume also that t — J(¢, z(t,w),w)

.ye
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is Lipschitz continuous with Lipschitz rank (3, (1 + k,)?, for some constant
Ba(..), on any interval (s',s”) C Dy y(w)N (7}, Tj4+1). Assume, moreover, that
there exists a pair of control functions u*(t,w), w*(t, V,w), with correspond-
ing admissible solution z*(t,w) defined on [0, 7*(w)], which satisfy [83| and
[84], i.e. which yield the suprema in the HJB-equation, for s in [0,7™(w)].
Define 77 (w?) := sup{t : (s,2*(s,w?)) € D(w’) for all s € [1;,1)} > 75, (= 7;
if the set is empty), and assume that 7% (w) = min{7T7(w’) : T9(w?) < 741}
Assume, finally, that, for any admissible pair z(.,w), T'(w), for any w and any
ENS [Tl, T(w)], s e (Tj, TjJrl),

if (s,2(s,w)) € 0D(w’), then };rr; J(t, x(t,w),w) = ho(s,z(s,w)).  [104]

Then (u*(t,w), w*(t,V,w), T*(w)) is an optimal triple in the class of all triples
ult,w) w(t, V), T(w), 0

Sometimes [102] does not hold. In particular this can happen in end con-
strained problems, in which case, however, the following condition may hold:

For any admissible solution z(.,w) and for any w, if (¢, z(t,w?)) € dD(w’),t >
7j, then (s, x(s,w?)) ¢ OD(w’), for all ' such that s’ # t,¢' > 75,8 €
(s1,82), (81, 82) some interval containing ¢. [105]

Theorem 15. Theorem 14 even holds when [102] is replaced by [105], and
when it is assumed that for each admissible z(.,w), T'(w), J(s,y,w?) is merely
C' in a neighborhood of (s, z(s,w’)),s € (0,T(w’)) except for a countable
number of points o} (w’),k = 1,2, ..., o (w’) piecewise an right—continuous
in each 7;, each component of each V. 0

Proofs of Theorems 14 and 15 Let (z(t,w),u(t,w),w(t,V,w),T(w)) be
an arbitrary admissible quadruple. By [102] or [105], for each w, there ex-
ist a countable number of points s = 3 (w’),n = 1,2, in (7, T(w?)), (with
no accumulation points in this set), for which (s, z(s,w’)) € 9D(w’), and
for all s in (15, T(w)), s ¢ {B(w))}, U {oi(w’)}k, J is continuously dif-
ferentiable near (s,z(s,w’)). (In case of [102], by contradiction, if there
exists a sequence s, — s, (s,z(s,w?)) € OD(w?), (Sn,z(sp,w?)) € ID(W),
then by [104], ho(sp, T(Sn, w?)) = J(Sp, (55, w?),w?) = J* (s, (8, w?), w?),

ho(s,z(s,w?)) = J(s,z(s,w?),w’ = J*(s,z(s,w’),w’), which contradicts
[104] for u = u(t*), i.e. for one of these limits, as a subsequence of s,
converges from below or above to s.) Define ¥(s,w’) := J(s,z(s,w?),w’)

and define 1(s,w) = ¥(s,w?) if s € [15,7j41). Now, ¥(s,w’) is continuous at
each 37 (w?) (see [104]), and is hence Lipschitz continuous in (75, T'(w?)) with
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rank

max{ 3, ) (1+ky), kin,(1+ap+rp|(t,w))|} < B (1+k,) for some B0,
(by [53], [54] in Seierstad (2001)). For s € (7;,7j11), define 4(s,y,u,w) =
JS(S7 y? w) _'_ Jy(87 y? w)f(87 y? u? w) +

)‘(Sayau7w){E[Supw6W J(S7y+g(say7‘/aw7w)aw787 V)|Say7 ] (S y,w )} <
0, here the C'-extension of J is used when (s,y) € D(w?), if not, J = hy
is used. (The inequality, which holds for (s,y) € Q(w), follows from [101],
[82].) Moreover, (s, w) := {(d/dt) E[{(t,w)|s, w]} =t =

[(d/dt)E[J(t, z(t;w),w)|s,w]imst = F(s, 2(s+,w), u(s+,w),w) < 0 vee. in
[0, T (w)], (i.e. wherever y(s,w) is defined). Write v*(s,w) if (z(.,w), u(.,w), T'(w))
is replaced by (z*(.,w),u*(.,w),T*(w)). Then, in fact, v*(s,w) = 0 v.e., by
[82],[83] and [84]. Now, Remark 29 below yields that EhO(T(w), 2(T(w),w)) =
BI(T(w)= o(Tw)= ) = BY(T()=w) = (0,6) + B[y 1(t,w)dl <
¥(0,w°%) = J(0,2°% w®) = J(0,2° ° —|—Ef0 v (t,w) =

BT () (T ). ) = Bho(T* () (T* () )

Remark 29 If a« < T'(w) < b is a stopping time, and if ¢ is independent of
x, (the only case we need to consider), then [89] holds for b replaced by T'(w).

Proof of Remark 29 Redefine ¢(¢,w) to equal ¢(T(w),w) when t > T'(w).
Then ¢ is still nonanticipating , and v(¢,w) = 0 for ¢ > T'(w). Since [89]
holds for the redefined ¢, it holds as claimed in the remark.

In the next theorem it is assumed that A is independent of x and u, that
7 is independent of x, and that g = ¢(¢,z,V}, 7;,7). The function M is de-
fined in [86**]. Quite an impressive number of assumptions are needed in the
theorem, we have collected them in A.—D. below.

A. (Assumptions on H and 1)

Let ¢p(t,z,p,w’),k = 0,...,k} + 2, be C*-functions in (¢, z,p) in given open
sets Q*(w’), 7 = 1,2,..., for each w/, piecewise and right—continuous in
each 7;, each component of each V;, 7; < t. Assume that for any (¢,x,p) €
Q*(w9), ¢r(t, z,p,w’) = 0 for at most one k. Assume that u(t r,p,w’) yields
the maximum denoted H(t,z,p,w?) of u — H(t,x,u,p,w’), for (t,z,p) in
Q*(w’). Assume that ﬁ(t,x,p, wl) is C% x C? x 02 in {(t,z,p) € Q*(w’) :
on(t,z,p,w?) # 0 for all k} and that a(t,x,p,w’) is C° x C* x C! here.
Assume also that for each w?, (¢,x,p) — a(t,z,p,w’) has a C° x C* x C'-
extension to an open set containing clA, for any set A of the form M;®?,
O = {(t,z,p) € Q*(w) : ¢i(t,z,p,w’) > 0}, or &' = {(t,z,p) € Q*(w?) :
¢i(t, z, p,w’) < 0}, (the direction of the inequality sign may depend on ).
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B. (Existence of characteristic quadruples, and assumptions placed upon
them)

Assume that a collection of sets D%(w?) C [r;,Ty) x R", relatively open in
[7j, To) xR™, and a collection of solutions z(¢; s, y,w?), p(t; s, y, w?), 2(t; s, y, w?),
with corresponding stopping times T'(s,y,w’) € (max{s,T;},Ts] have been
found, satisfying as functions of ¢ in (s, T'(s, y,w’)), the equations

= f(t,z,a(t,z,p,w’),w’),

p=—pf(t,x, 0(t, 2, p,w?), w?) + A(t, w)p — A(t, w?) M, (t, z,w7),

2= Mt w)z — M\t,w ) M(t, z,w7),

2(T(s,y,w?);s,y,w?) = ho(T(s,y,w?), 2(T(s,y,w’); s,y,w’)), z(t; s, y,w’) start-
ing at (s,y,w’), for any j, any w’, for any (s,y) € D°w’). The sets
D(w?) are assumed to satisfy the conditions that for any admissible z(.,w),
(s,z(s,w?)) € D°%w’) for all s < T, and that, for all (s,y) € D°w’),
T(s,y,w’) = sup{t' : (t,z(t;s,y,w?)) € D°(w?) for all t € [s,t']} > s, (i.e.
the set is nonempty.)

It is assumed, for (s,y) € D°w?), that z(t;s,y,w?), p(t;s,y,w’) satis-
fies the terminal conditions [73] and the transversality condition [86*] for T
replaced by T'(s,y,w’) and with A;(k,s,y,w’), i =n'+1,...,n” continuous.

Assume, furthermore, the consistency condition [86**] (for t < T'(s,y,w’), (s,y) €
D%w?)). Assume that (s,y) — (z(t;s,y,w?),p(t; s,y,w?), T(s,y,w’)) satis-
fies the following differentiability conditions. Assume that for any given w’,
for any (s,y) € D(w’), if

le (SaT(Svvaj)) and Qbk(tvx(t; Savaj)ap(t; Sayawj)ij) = 0, then
(bkt + ¢kx(a/at>x(tiv $,Y, w]> + ¢kp(a/at>p(tiv S, Y, w]> 7& 07 [107]7

the partial derivatives ¢, dr. and ¢y, being evaluated at (¢, z(¢; s, y,w’),
p(t; s,y,w?),w?). (The expression on the left side of the "nonequality" in
[107] is assumed to be either > 0, for both the right and left limit, or
< 0 for both limits.) Assume that (¢,z(t;s,y,w’), p(t;s,y,w’)) belongs to
Q*(w9), for all t € (s,T(s,y,w?)), all (s,y) € D°%w’). Let DY(w’) :=
{(s;y) € D°(W’) + ¢u(s,y,p(s:8,y),w’) = 0 for some k = 1,...k; + 2},
Dgywi = {t € (s,T(s,y,w”)) : ¢p(t, z(t;s5,y,07),p(t; s,y,w’),w’) = 0 for
some k= 1,..., k5 + 2}, and D?*(w7) :=

{(s,9) € D°(w’) : @u(T(s,y,07), 2(T (s, y,w’); 5,9, 07), p(T(s,y,07); 8, y, w’), w’) =
0 for some k = 1,..,k} + 2} and assume that for any (s,y) € D%w’) \
(DY w?) U D*(w?)),s > 7j, for any ¢t ¢ Dy, i, s <t < T(s,y,w?), (s,y) —
(x(t; 8",y w?), p(t; 8,y w?), T(s',y,w?)) is C! for all (s',9') in a neighbor-
hood Ny, i of (s,7).
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C. (The crossing of "fault lines" by the admissible solutions)

Define @ ,; := {(s,y) € D°(w’) : ¢p(s,y,p(s;s,y),w’) = 0}, and assume
that @411, contains 9{(s,y) € D°(w’) : T(s,y,w’) > T1}, and that
Ppryo0 contains 0{(s,y) € D°(w’) : T(s,y,w’) < Tp}. By assumption,
¢r:41 and @pe 42 are independent of p. Define @pe iy i = {(s,y) € Q(w’) :
(T (s,y,w?), 2(T(s,y,w?); s, y,w?), p(T(s,y,w7); s,y,w’),w’) = 0}. Assume
that for any admissible pair z(.,w), T(w), for any k = 1, ..., 2k* + 2, for any
s <T(w),s > 7j such that (s, z(s,w’)) belongs to @y, there exists a num-
ber € > 0, (s, z(s',w’)) ¢ Py i for &' € (s, s+ €). Finally, assume that [105]
is satisfied for D(w’) := D%(w’) N Q(w?).

D. (Assumptions on the value functions J)

Assume that the following condition is satisfied. The inequality J(s,y,w) :=
2(s;8,y,w) > ho(s,y) holds for all (s,y) € D(w’),s > T;. Assume also
that [101] and [104]| hold. Assume, for each admissible z(.,w),T(w), that
|J(t, z(t, W), w| < ay + kylz(t,w?)|,t € (15, T(w)] N {t: (¢, x(t)) € D°(w)},
and that ¢ — J(¢,z(t,w’),w?) is Lipschitz continuous in (7;, T'(w)) N (s', s”),
with rank #;(14k,)?, for any interval (s', s”) for which (s, z(s,w’)) € D°(w?)
when s € (¢, 5"), oy, ks, iy perhaps dependent on x(.,w), T(w). Assume that
M(s,y,w?) := Elsup, J(s,y + g(s,y, V,w,w?),w?, s,V)|s,w] is C* x C? in
D%w?) \ (DY(w?) U D*(w’)), and that for any (s,y) € D°%w?) \ (D'(w’) U
D*(w?)), M(s,y,w’) has a C° x C?-extension to an open set around the set
{(t,z(t; 5,y,w?)) : t € [a,b]}, for any interval [a,b] C [0,T(s,y,w?)) for which
(a,0)NDyy i = 0. Assume also that SUP i 75 wip)\@ i |M(t, z(t; s,y,w?), w?)|,
SUDte[s, 75,50 )\Q, i | M, (t, z(t; s, y,w’), w?)| and

SUDsefs 75,0 )\Q, | s | M. (t, z(t; 5, y,w?), w?)| are locally bounded on D°(w?)\
(D'(w/) UDX(w)).

S,

Theorem 16 (Sufficient condition for characteristic quadruples )

Assume that A.~D. above are satisfied. Assume, furthermore, that (¢, z, v, w?)
gives maximum of J(¢t,z + g(t, z,v, w,w?),w?, t,v) for (t,x) € D°(w?). As-
sume, moreover, that n*(T(s, y,w’),w’) = 0if T'(s, y,w’) € (max{s,T1},T3), (s,y) €
D%(w?), where n*(T,w?) := n(T,x(T; s,y,w?), p(T; s,y,w?),w?), n(T, z,p,w’) :=

H(T, z,p,w)+hor(T, 2)+XT, w){ Elsup,, J(T, x+g(T, z,V,w,w), !, T, V)|T,wi]—
ho(T, l’)} .

Define T'(s,y,w’) = sif (s,y) € Q(w?)\D(w’) and define x(t,w) = x(t,0, 2%, "),
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for t € [0,71] N [0,T(0,2° w%)], and by induction, generally,

z(t,w) = z(t, 7, (1, w0) + g(7h, (71, W), W(Th, T(Th, W), Vg, W), W), for

te (Tka TkJrl]ﬂ[O? T(Tka x(Tka w)+g(Tk7 x(Tka CU), w(Tka x(Tka w)? Uk, wk71)7 wkil))]'

Assume, finally, that @(t,v,w’) := (¢, x(t;w),v,w’) satisfies the standard
requirements on such controls described above. Define a(t,w?) = a(t, z(t; w), p(t; w), w’),
T(t,w) := T(t,z(t,w),w’) if t € (7;,7;11]. Then a(t,w), d(t,v,w), T(t,w) is

an optimal triple. O

Proof of Theorem 16: For simplicity, in the proof, a problem is con-
sidered in which the control w does not appear. Let (s,y) € Dy(w’) =
D(w’) \ (DY(w’) U D*(w’)). Choose a t close to T'(s,y,w’), such that
[t,T(s,y,w’)) C EDsyw Recall that, for Y = Z = (s,y), 2(t; s,y,w’) =

W(t, 2.Y) = [ Mp,w)els NN (p, (Y, w7), w7 )dp +

ho(T(Z,w?), 2(T(Z,u),Y, wj))efﬂz Aew)de Differentiating with respect to
Z yields ¥z(t, Z,Y) =

MT(Z,69),w ) M(T(Z,09), 2(T(Z, ), Y, w9), wi))erczn Newdos

+ hot(T(Z,w), 2(T(Z,09), Y, w9)) e rizan oo

hoo(T(Z,09), (T (Z,w), Y, 09))i(T(Z,w), Y, wi) )/ rizun e doqr _
MNT(Z,07), 0 ho(T(Z, %), 2(T(Z, ), Y, w))elrezen Ne<Ddomt (Note that the
local boundedness of M, M, and M, yields that x(t; s, y, w?) and z,(¢; s, y, w’)
are locally bounded, that ¥ (¢, Z,Y") and that the derivatives with respect to
7/ — and later on with respect to Y — can be calculated in the manner done.

(Formally when, say Y, changes, the interval of definition [t,T(Z,w’)) also
changes, as Y = 7).)

Now, (¢"(T(Z,w), z(T(Z,w?),w?)); = &; for Nj(k, Z,w7) > 0, i = n' +

1,...,n”, and also for i < n’. Thus, similar to what was obtained in the proof

of Lemma 3, the equality in fact holds also for all Z’ close to Z, so , (still for

(s,9)=2=Y), | |

p(T(Z,w), Z,w)(d/dZ)x(T(Z,u), Z,u?) =

hoo(T(Z,07), 2(T(Z,w?), Y, w))d/dZ)x(T(Z,w’), Z,w), i.e

T(Z,0), 2, (T (Z,09), Y, wi)T" + oy (T(Z,9), Y, )] =

hoo(T(Z,w7), 2(T(Z,w?), Y, w ) |2(T(Z,w?), YwJ)T’+xy(T(Z,wj),Y,wj)]. For
= T(Z,w?), replacing ho,&T" in the expression for ¢ by piT’+pxy —ho, Ty,

(we here use a shorthand notation), yields ¢, = pxry +n*T" — ho,zy. Hence,

for t = T(Z,w?), Yz(T(Z,07), Z,Y) =

p(T(Z,w?), Z,w)xy (T(Z,w7),Y, w?) —

how(T(Z,w?), 2(T(Z,w?),Y,w?))xy (T(Z,w?),Y,w?) at points (s, y) for which
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T(s,y,w’) € (Ty,Ty), by the C'-property of T'(s, y,w?) and the fact that then
n* = 0. The equality (0 =) z(T(Z,w?),Z,Y) =

p(T(Z,w?), Z,w)xy (T(Z,w7),Y, w?) —

how(2(T(Z,w?),Y,w))zy (T(Z,w?), Yw?) evidently holds at points (s,y) for
which there exist a ball around (s,y) in which T'(s,y,w?) is constant equal
to Ty or Ty, since then 7" = 0. All points (s,y) in Dy(w’) exhibits one
of these two types of behaviour. Since ¥y (T(Z,w),Z,Y) = hg,zy, then
[(d/dY)z(t;Y, W) ier(zwi) = Vz+0y = p(; Y, w!)ay (6 Y, W) i1 (7,w5). Then,
as in the proofs of Lemma 3, Lemma 7, using the transformation in the proof
of Lemma 5, w; = 0,w; = 0, where ,

w(t, 5,9) = [2y(t; 5,5, 07) = plt; 5,y,07 )2, (15 5, y, w)]elr —Neet)dr,

(t) = [2(t; 5,y,w7) — p(ts s,y,w))2,(t; 5, y, wh)]elr o) T = (Z,w9),
(Z fixed), so w(t,s,y) = 0,w(t,s,y) = 0. In fact, J(s,y,w’) = 2(s;s,y,w’)
is C! and satisfies the HJB-equation in D°(w’) \ (D'(w?) U D?*(w?)). Then,
evidently Theorem 16 follows from Theorem 15, (see also Lemma 8).

Appendix

[A]. The probability of one or more jumps in (¢,t 4+ At) is

1-— exp(ftHAt (s, wF)ds) = \(t+,wF)At. Given that one jump 744, has oc-
curred in (¢, t+At), the probability for further jumps is 1—exp(f:;?t (s, wFtds).
The expected value of ¢ resulting from these jumps, given that one or more

of them occur, is bounded. This follows from [54], [53] in Seierstad (2001)

and the existence of the constants oy, k4. Altogether, the case of two or more
jumps leads to a second order term.

[B] By [53],54] in Seierstad (2001), for some K’ independent of i, |p(7;, z(75, w), w)| <
W)t Fa( ) K (14 Ky)" < R(1+ k)", where & = ay( )+ ky(,)K'. Given any
interval [s, §'], then, for some K,
Pr[one or more jumps in [s, §']|7; < s, Tj41 > 8] < K|’ — s,
due to the assumptions on A(.). Given that 7;.q,..., 7, belongs to (s,s'),
05", 2(5',0), ) — 95, 25, ), )| < gty (1+Hig P75 — 8] + 3o oy (1 +
kig)! | Tirr—Te) [ ia() (L g) I8 =T 30 i [0(T3, 2(77 W), w) = (3, 2(777, w), w)| <
28,0, )(1 + ko)*T + 2R, (1 + Kg)* = Ap. Now, Y, Pr[rji1, ..., 7 belongs
to (s,s)|1; <'s, 71 > s|Ay =1 £ < oco. Moreover, E|¢(s, z(s',w),w) —
o(s,x(s,w),w)||T; < s,Tj+1 > s| < Prfone or more jumps in [s,s']|7; <
$,Tjp1 = S8+ Pr[mn € [s,8]lm5 < 5,700 2 slha (14 Kg)[s" — s| <
K(5' = )6+ Ruy (1 7]’ s

Note that the Lipschitz condition on ¢ follows from the following condi-
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tions: ¢1(s, z(s,w),w) < ™) 4 x70) |25, W), da(s, 7(s,w),w) < &), (Use
[53],[54] in Seierstad (2001), (d/ds)¢ = ¢1 + ¢, and [19].)

Lemma 10. Let ¢;(t,v),7 = 1,...,i*, be C' . Let ', := {(¢,v) : ¢4(¢,v) > 0},
let ®° := {(t,v) : ¢:i(t,v) < 0}. Let A be the collection of sets A :=
®' N d2... N ", where each ' is &) or &, (whether a minus sign or a
plus sign occurs, may depend on 7). Assume that for any point (¢,v), for at
most one i, ¢;(t,v) = 0. Assume that h(¢,v) is a given function such that,
for each A in A, h(t,v)|4 has an extension h“4(t,v) to clA that is C° x C™.
Assume that, for all A in A, if ¢;(t,v) = 0, then ¢ + @i, h* (¢, v) > 0 for both
A= (N;xuP) NP and A = (N;4P7) N D", or the opposite strict inequality
holds for these two sets A .

Write z = (s, w) and consider the equation
0= h(t,v),v(s) = w. [108]

Then the following conclusions hold: Assume that, for any point z = 2 =
(8,w) belonging to some A in A, the solution v(t, 2) exists on [$,T]. Then for
z = (s,w) close to Z, the solution v(¢, z) of [108] exists on [$,T], and, for ¢ ¢
{t: ¢i(t,v(t,2)) =0, for some i}, ¢t > 3, near 2z, z — v(t, z) is continuously dif-
ferentiable. For such t, (0/0w)v(t, §,w) is invertible. If the equation in [108|
satisfies standard global growth conditions, say |h(t,0)|, |h,(t,v)| < a(t),
(wherever h, exists), a(t) continuous, then for any initial point z = (s, w), a
solution v(t, z) exists on any given interval [s, T'. O

Proof Let Z = ($,w) be a given point in some set A in 4. We shall con-
sider only the case of one single function ¢, and only one "crossing point"
t = t(2) in (8,7T), where ¢(t,v(t,2)) = 0, the general case being a trivial
extension. Thus, assume that Z = (3,w) belongs to one of the sets A in
A ={(t,y) : o(t,y) < 0}, {(t,y) : ¢(t,y) > 0}}. Then (¢",v(t", 2)) belongs
to the other set A" € A for t” > t(2), by the non-tangentiallity condition.
Let h” be a C° x C'-extension of h|4 to an open set larger that clA. Let
v4(t, z) be the solution of ¥ = h?(t,v),v(s) = w, for z close to 2. It can be
assumed that v (¢, 2) is defined on some interval [a,b],a < 3,b > t(2), and
the solution depends continuously on (s,w) near Z, s € [a,b]. For z near Z,
let t(2) be the first time v*(¢, 2) hits the surface S = {(t,z); #(t,z) = 0}. By
the non-tangential approach of v(¢, 2) to the surface S, #(z) is close to t(2),
and vA(t(z), 2) is close to v(¢(2), 2). In fact, by the nontangentiallity condi-
tions, t(z) is C" for z close to 2. Now, (t,v(t, 2)) belongs to A’ for t > ¢(2).
Let h"" be a C% x C'-extension of h|4 to an open set larger that clA’. Let
v (t,2') be the unique solution of v = A (t,v),v(s") = w', for 2’ = (s',w’)
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close to Z = (t(2),v(t(2), 2). (For such z, the solution does exist on an in-
terval [a’,¥],a’ < t(2),0' > T.) Moreover, v (t,2') is continuous in z’' near
. In particular, v¥' (¢, 2') exists for 2/ = 2/(2) = (t(2),v2(t(2), 2)), 2 close
to 2, and by the non-tangential departure from S, (¢,v% (¢, 2 (z)) belongs
to A/, for t > t(z), t close to t(z). In fact, for z close to 2, (t,v*(t,2'(2))
belongs to A’ for all t € (¢(z),T], and v*'(t,2/(2)) is C" in z near 2 for such ¢.
Define v(t, 2) = vA(t, 2), for t € (a,t(2)],v(t,2) = v (t,1(2), v (t(2), 2)), for
t > t(z), which is a unique solution of [108], (due to the extension property),
C' in z near 2. Reversing time, for any ¢ > t(2), there is a unique solu-
tion o(t'; 2"), 2" = (t,w), 2" near zZ = (t,v(t; 2)), defined for ¢’ in an interval
[a” V"], a" < 5,b" > t, being C! in 2” near z. Now, w = v(t,t,v(t, (t,w)),
which means that I = v3vs, i.e. the derivative vs is invertible for (¢, w) close
to 2.

Exercises

Exercise 1 Add the possibility of a second jump in Example 1, both for
scrap value ax(T) and axz(T)?/2. Solve the problems as far as possible.
(Hint: Now z(t;s,y, 1), z(t; s, y,0) becomes z(t; s,y,2), x(t; s,y, 1) etc. Even
in the case of az(T)?/2, we have an explicit formula for p(t;s,y,1), as & = p,
and 2(t; s,y, 1) is known. The reader might like to put a = 2.) Does it change
the optimal control in Example 1, if instead of a unit jump, we assume that
the jump is a stochastic variable V', with finite expectation ?

Exercise 2 Consider the piecewise deterministic problem maxF| fOT Vudt +
z(T)], z =2 —u,u € Rand z(r+) — z(7—) = 2(7—). Two jumps can occur
with intensity A. Solve the problem.

Exercise 3 Consider the piecewise deterministic problem maxFE| fOT —(u?/2)dt+
x(T)], subject to & = u, z(0) = 0, v € R, and z(7+) — x(7—) = —(z(7-))*.

A single jump can occur with intensity A. Solve the problem. (Hint: To
find z(t; s,y,0) for (s,y) = (0,0), construct a second order equation for this
function).

Exercise 4 Solve the piecewise deterministic problem
maXE'{fO1 Inudt +x(1)} dx/dt = —u, € u € (0,00) , Ty = 2,

where z(t) can jump upwards at most N times, all the times with the same
intensity A. At the jump times 7, the state changes according to

81



z(t+) — x(1—) = x(1—).
a. Find the optimal controls u(t; s,y, j) for j = NN — 1, N — 2.

b. Try to find (a description of) the optimal controls wu(t;s,y, N — k) for
general k =1,2, ...

Solution Generally, u(t,j) = 1/p(t, j). (Neither p nor u depend on the start-
ing point (¢,z)). Now, p(t,N) = 1. Consider p(t, N — 1) := \p — A2.
Evidently, p(t) = 2 — =V (recall p(1) = 1). Next, p(t, N — 2) =
Ap — A2(—eMY 1 2) 50, p(t, N — 2) = 4 — 31 — 22D (¢ — 1), Writing
p(t, N —k) = ap+apoe? Y + M Vay  (t—1)+...erVay (¢ — 1)1, one
easily calculates p(t, N—(k+1)), and hence the difference equations for the co-
efficients. In fact, ag1 = 2ax, aro = 1 —2ay, and for i > 0, ag41,; = 2ak,;-1/1.

Exercise 5 Consider the problem max fOT wdt+ax(T), & = de—u, z(0) = c,
0 <~ < 1. With intensity A, x may experience a single upwards jump of size
b. Find x(¢; s,y, 1) and try to derive a second order equation determining the
solution z(¢;0,¢,0). (Interpretation: x is wealth, which gives interest earn-
ings dx, u is consumption, we search for, and may find, an oil field increasing
our wealth by b.) Drop the term ax(7") and instead require z(7") > 0, and
do the same in this case.)

Exercise 6 max f02 xdt, & = u € [—1,1], z(0) = 0, (2) < 1, where = can
have a single upward jump of one unit, with intensity A. Hint: As long as
no jump has occurred, we have to operate with the constraint z(2) < 0, oth-
erwise £(2) < 1 may be violated, as a jump can occur arbitrary close to t = 2.

Solution If we start in (s,y), the after-a-jump-adjoint function p(t;s,y,1) =
B+s—y)/2—t, (u=—11in (¢/,2), where 0’ =3+ s — y)). Before a jump,
we only seek the solution x(t) = x(¢;0,0,0). Now, p(t) = p(¢;0,0,0) satisfies
p(t) = =1 = Ap(t,t,z(t) + L,1)+ dp=—-1-=AB—xz(t) —1—1t)/2+ Ap, so
p(t) = heM + 1/x — M [P he™[(3 — 2(2) — 1 — 2)/2]dz, where h a constant
such that < he?? + 1/X = p(2) < 0, (so h < 0). Now, z(2) < 2 — 2, (z(2)
cannot come above a line through (0,2) with slope —1, given by 2—z). Hence,
B—z(2)—1-2)/2>(3—(2—2)—1—2)/2=0. As p(2) <0, the differential
equation for p gives that p(t) stays nonpositive when going backwards, and
in fact p(t) stays negative. As p(t) is strictly decreasing, u = 1 for t < p,
u = —1 for t > p. Using z(0) = 0, z(2) = 0 we must have p = 1. The
solution is reasonably enough independent of .
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Exercise 7 Solve

200 = w)dt + (2(1/2))2/2) & = u € [0,1], 2(0) = 1/4, 2(1/2) free,

where a single unit upwards jump in the state x may occur with intensity
A = 2. (Hint: Note that a switch point for u before the jump will be given
by an unsolvable equation.)

Exercise 8 Solve the optimal stopping problem
max E[fOT(x —t)dt],z = 0,z(1) = 1,T € [0,2], when z can have one unit
jump upwards with intensity .
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