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DERIVING BELIEF OPERATORS FROM PREFERENCES

GEIR B. ASHEIM

Abstract. A belief operator derived from preferences is presented. It

generalizes ‘belief with probability 1’ to incomplete preferences and sat-

isfies minimal requirements for belief operators under weak conditions.

JEL Classification no: D81.

Keywords: Decision theory, incomplete preferences, belief operators.

1. Introduction

Morris [6] shows in an interesting contribution how belief operators can
be derived from preferences. In particular, he introduces operators called
‘Savage-belief’ and ‘strong belief’ and shows that these under given assump-
tions correspond to KD systems in the sense that

• events which are necessarily true are always believed to be true,
• events which are necessarily false are never believed to be true,
• E is believed and F is believed if and only if E ∩ F is believed.

In the case of ‘strong belief’ one assumption is that utilities are unbounded
both below and above (cf. Prop. 4 below). When preferences are complete
and can thus be presented by a lexicographic probability system (being a hi-
erarchy of subjective probability distributions over states; Blume et al. [5]),
then ‘strong belief’ corresponds to ‘belief with probability 1’. However, the
‘strong belief’ operator can be used also when preferences are not complete.

The purpose of this note is to argue that there is a belief operator (here
called simply ‘belief’) that

• also is applicable for incomplete preferences while corresponding to
‘belief with probability 1’ when preferences are complete (Prop. 1),

• is in general stronger than ‘strong belief’ (Props. 2 & 3), and
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2 GEIR B. ASHEIM

• corresponds to a KD system even when utilities are not unbounded
above and below in constrast to ‘strong belief’ (Prop. 5). As argued in
a concluding remark, the case where utilities are bounded both above
and below is of particular interest.

The ‘belief’ operator is used to provide epistemic characterizations of for-
ward and backward induction in Asheim & Dufwenberg [3] and Asheim [2],
respectively. In these game-theoretic applications it is of importance to be
able to handle preferences that are not complete.

2. Preliminaries

Consider a decision maker under uncertainty. Let Ω be a finite set of
states, where the decision maker is uncertain about what state in Ω will be
realized. The decision maker has preferences over the set of functions that
assign a utility value to any state. Any such function x : Ω → U , where
U ⊆ R is a closed and convex set, is called an act on Ω. The set U can
be bounded above, bounded below, or equal to R. If the true state is ω,
then the preferences of the decision maker is a binary relation �ω over the
set of acts, with �ω and ∼ω denoting the asymmetric and symmetric parts,
respectively. For any ω ∈ Ω, �ω is assumed to be

• reflexive and transitive, but not necessarily complete.
• nontrivial in the sense that there exist x and y such that x �ω y.

If E ⊆ Ω, let xE denote the restriction of x to E. Define the conditional
binary relation �ω

E by x �ω
E y if, for any z, (xE , z−E) �ω (yE , z−E), where

−E denotes Ω\E. Say that the state ω′ ∈ Ω is Savage-null given ω if
x ∼ω

{ω′} y for all acts x and y on Ω. Let κω denote the set of states that are
not Savage-null given ω. Since �ω is nontrivial, κω �= ∅. Assume that, for
any ω ∈ Ω and ω′ ∈ κω, x �ω

{ω′} y if and only if x(ω′) ≥ y(ω′).1

1If acts – following Anscombe & Aumann [1] – are defined as functions from states to

objective randomizations on a finite set of consequences, this assumption is satisfied if the

binary relation over the set of such acts, in addition to reflexity, transitivity and nontriv-

iality, satisfies objective independence, conditional completeness, conditional continuity

and non-null state independence (cf. [5], Sect. 2, as well as the appendix of [2]). Because

then there will, given ω, exist a von Neumann Morgenstern utility function that for any

ω′ ∈ κω represents complete preferences over the set of objective randomization on the set

of consequences and thus represents the binary relation conditional on ω′. In the proof of

Prop. 1 it is explicitly assumed that utilities are derived in this manner.
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Definition 1. A belief system consists of (a) a finite state space Ω and (b)
for each ω ∈ Ω, a binary relation �ω over the set of acts (where each act is a
function x : Ω → U and U ⊆ R is a closed and convex set), being reflexive,
transitive and non-trivial, and satisfying for each non-Savage-null state ω′

that x �ω
{ω′} y if and only if x(ω′) ≥ y(ω′).

Say that xE strongly dominates yE if, ∀ω′ ∈ E, xE(ω′) > yE(ω′). Say
that �ω respects strong dominance on E if E is non-empty and x �ω y
whenever xE strongly dominates yE . Say that xE weakly dominates yE if,
∀ω′ ∈ E, xE(ω′) ≥ yE(ω′), with strict inequality for some ω′′ ∈ E. Say that
�ω respects weak dominance on E if E is non-empty and x �ω y whenever
xE weakly dominates yE .

Say that ω′ is deemed infinitely more likely than ω′′ given ω (ω′ �ω

ω′′) if ω′ is not Savage-null and x �ω
{ω′} y implies (x−{ω′′},x′

{ω′′}) �ω
{ω′,ω′′}

(y−{ω′′},y′
{ω′′}) for all x′, y′. According to this definition, ω′′ may, but need

not, be Savage-null if ω′ �ω ω′′.

3. Savage-Belief and Belief

Say that an event E ⊆ Ω is Savage-believed given ω if κω ⊆ E. Hence,
the event that E is Savage-believed, KE, is given by

KE := {ω ∈ Ω|κω ⊆ E} .

This definition corresponds to the one given by Morris [6] and means that
there is Savage-belief of an event if the complement is Savage-null.

Say that an event E ⊆ Ω is believed given ω if there exists β ⊆ E such
that �ω respects weak dominance on β. If �ω respects weak dominance on
β, then any ω′ ∈ β is deemed infinitely more likely than any ω′′ ∈ Ω\β.
Since ω′ being infinitely more likely than ω′′ implies that ω′′ is not infinitely
more likely than ω′, it follows that β′ ⊆ β′′ or β′ ⊇ β′′ whenever �ω respects
weak dominance on both β′ and β′′. Since, in addition, �ω respects weak
dominance on κω, there exists a unique smallest (w.r.t. set inclusion) non-
empty set on which �ω respects preferences; let this set be denoted βω:

�ω resp. weak dom. on βω, and β ⊇ βω if �ω resp. weak dom. on β .

This means that an event E ⊆ Ω is believed given ω if and only if βω ⊆ E.
Hence, the event that E is believed, BE, is given by

BE := {ω ∈ Ω|βω ⊆ E} .
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It follows that KE ⊆ BE since �ω respects weak dominance on κω; i.e.
βω ⊆ κω. If βω �= κω, then �ω is not continuous. In addition to KE ⊆ BE,
it is straightforward to establish that the operators K and B satisfy

KΩ = Ω B∅ = ∅
KE ∩ KF = K(E ∩ F ) BE ∩ BF = B(E ∩ F ) .

Since KE ⊆ BE implies that K∅ = ∅ and BΩ = Ω, both operators K and
B correspond to KD systems. Since an event can be Savage-believed given
ω even though the true state ω is an element of the complement of the event
(i.e. ω ∈ Ω\E ⊆ Ω\κω), it follows that neither operator satisfies the truth
axiom (i.e. KE ⊆ E and BE ⊆ E need not hold).

4. Morris’ [6] Notion of Strong Belief

In Morris [6], an event E ⊆ Ω is said to be strongly believed given ω if
�ω respects strong dominance on E. Hence, the event that E is strongly
believed, B∗E, is given by2

B∗E := {ω ∈ Ω| �ω respects strong dominance on E} .

The first result states that ‘belief’ coincides with ‘strong belief’ for any
belief system with complete preferences.

Proposition 1. For any belief system having the property that the binary
relation �ω is complete for each ω ∈ Ω and any event E ⊆ Ω, BE = B∗E.

Proof. Consider any ω ∈ Ω. Since �ω is complete (and assuming that utili-
ties are derived as explained in footnote 1), it follows from Blume et al. ([5],
Thm. 2.1) that there exists a primary subjective probability distribution µω

1

with support equal to βω such that
∑

ω′∈Ω µω
1 (ω′)x(ω′) >

∑
ω′∈Ω µω

1 (ω′)y(ω′)
implies that x �ω y. This means that �ω respects strong dominance on E

if and only if E ⊇ βω. Hence, ω ∈ B∗E if and only if ω ∈ BE.

It follows from the proof of Prop. 1 that both ‘belief’ and ‘strong belief’
correspond to ‘belief with probability 1’ when preferences are complete.

The second result states that ‘belief’ is in general as strong as ‘strong
belief’.

2This definition is equivalent to Morris’ [6] Def. 2 when, ∀ω ∈ Ω, �ω is non-trivial.

Note that Battigalli & Siniscalchi [4] also use the term ‘strong belief’, but for a different

belief operator that will not be discussed here.
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Proposition 2. For any belief system and any event E ⊆ Ω, BE ⊆ B∗E.

Proof. Assume that ω ∈ BE; i.e., �ω respects weak dominance on some
β ⊆ E. Since strong dominance on E implies weak dominance on any
subset of E, it follows that �ω respects strong dominance on E, which in
turn implies that ω ∈ B∗E.

Furthermore, there exist belief systems for which ‘belief’ is strictly stronger
than ‘strong belief’.

Proposition 3. There exist a belief system and an event E ⊆ Ω such that
BE �= B∗E.

Proof. Let Ω = {ω1, ω2, ω3} and E = {ω1, ω2}. Assume that �ω1 is deter-
mined by x ∼ω1 y if and only if x = y, and x �ω1 y if and only if x strongly
dominates y on E or x weakly dominates y on Ω. Then ω1 ∈ B∗E, while
ω1 ∈ Ω\BE.

In addition to KE ⊆ BE ⊆ B∗E, it is straightforward to establish that
the operator B∗ satisfies

B∗Ω = Ω B∗∅ = ∅
B∗E ∩ B∗F ⊇ B∗(E ∩ F ) .

However, to show that B∗E ∩ B∗F ⊆ B∗(E ∩ F ) one need to assume that
the range of acts, U , is unbounded; i.e. U = R.

Proposition 4. For any belief system having the property that U = R and
any events E, F ⊆ Ω, B∗E ∩ B∗F ⊆ B∗(E ∩ F ).

Proof. See Morris ([6], Thm. 4(iii)).

Proposition 5. There exist a belief system and events E, F ⊆ Ω such that
B∗E ∩ B∗F �= B∗(E ∩ F ) whenever the closed and convex set U is bounded
above or below.

Proof. Let Ω = {ω1, ω2, ω3}, E = {ω1, ω2}, and F = {ω1, ω3}. Assume
that �ω1 is determined by x ∼ω1 y if and only if x = y, and x �ω1 y if
and only if (a) x strongly dominates y on E or (b) x strongly dominates
y on F or (c) x weakly dominates y on Ω or (d) combining (a) and (b)
through the use of transitivity. Then ω1 ∈ B∗E and ω1 ∈ B∗F , while we
need to show that ω1 ∈ Ω\B∗{ω1} whenever U is bounded above or below.
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Suppose that the closed and convex set U is bounded above and let w.l.o.g.
1 be the maximal element of U . Consider x = (1, 0, 0) and y = (0, 1, 1). If
ω1 ∈ B∗{ω1}, then x �ω1 y. However, z �ω1 y only if z = (u, 1, 1) with
u > 0, implying that x �ω1 y does not hold. Likewise, suppose that the
closed and convex set U is bounded below and let w.l.o.g. 0 be the minimal
element of U . Consider again x = (1, 0, 0) and y = (0, 1, 1). If ω1 ∈ B∗{ω1},
then x �ω1 y. However, x �ω1 z only if z = (u, 0, 0) with u < 1, implying
that x �ω1 y does not hold.

5. Concluding Remark

If – as will be the case under the assumptions mentioned in footnote
1 – the utilities arise from a von Neumann Morgenstern utility function
representing complete preferences over the set of objective randomizations
on a set of consequences and, in addition, this set of consequences is finite,
then the set U will be closed and convex and bounded both above and below.
Since this case often applies (e.g. in the analysis of games with a finite
outcome space), it seems of particular interest to consider belief operators
derived from preferences that correspond to KD systems also when utilities
are bounded above and below. The ‘belief’ operator presented here has this
property, while Morris’ [6] notion of ‘strong belief’ has not.
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