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Abstract

Counterfactual analysis of the impact of COVID-19 can be based on a solution of a macroe-
conomic model for the scenario without the corona virus interfering with the macroeconomic
system. Two measures of impact are defined and put to use: (I) The difference between the
counterfactual and a baseline model solution. (II) The difference between the counterfactual
and the actual development of the economy. In order to analyse the impact on GDP we use
two model categories. First, empirical final form model equations, which were purpose-built
with the aid of a machine learning algorithm. Second, an existing multiple equation model of
the Norwegian macroeconomic system. Empirically we find significant impact of COVID-19
on GDP Mainland Norway in 2020. For some of the estimator/model combinations, the
impacts are also significant in the two first quarters of 2021. Using the multiple-equation
model, the assessment is extended to the impact of COVID-19 on value added in four Main-
land Norway industries, on imports and exports, and on final consumption expenditure and
gross capital formation.

1 Introduction
There is an emerging literature on the impacts and effects of COVID-19. A survey by Padhan
and Prabheesh (2021) showed that the list of topics analysed has already become broad and
varied. However, it appears that the impacts on GDP and other variables in the national
accounts system have not been a main focus of the academic literature. Hence, there is a
gap between the awareness shown by governments, businesses and the general public during
the pandemic about its consequences for income generation, and the few assessments that
hitherto have emerged in the literature.
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In particular, analyses using larger empirical macroeconometric models are rare. The
hitherto low profile of explanatory models of variables in the national accounts in the COVID-
19 literature can be a reflection of the long lasting scepticism towards this class of models
among academic economists, Bårdsen et al. (2005, Ch. 1). However, modern empirical
macroeconometric models are dynamic equation systems and have common features with
models that are standard in research and in teaching of dynamic econometrics, for example
VARs. Such models are also of interest because they include a number of behavioural
relationships from different sectors of the economy. Hence the multiple equation models can
be used for efficient analysis of the wider impact of COVID-19 on the national economy.

The analysis of the impact of COVID-19 builds on the idea about a hypothetical counter-
factual development without a pandemic that interfered with the macroeconomic system. A
feasible counterfactual is represented by a solution of a model of the macroeconomic system
obtained in practice by dynamic simulation. The impact and dynamic effects of COVID-
19 can then be estimated by the differences between the counterfactual and the “baseline”,
which can be a solution of the model with the estimated impact of COVID-19 included or,
more directly, the actual development of the economy over the pandemic period.

The concepts are made precise in section 2 by the use of a small model which has a
closed form algebraic solution. What makes the illustrative model relevant is that is has an
an important feature in common with the models that we will use in the empirical assessment
of COVID-19. The feature we have in mind is that the trends in macroeconomic variables
are typically modelled as stochastic trends. Hence, a unit-root of +1 is implied, and that
root is known to be a dominant feature of the solutions of models (small and large).

As a consequence of the low-frequency unit-root, impacts of COVID-19 that are cap-
tured by impulse indicator variables become transformed to permanent shifts in the levels
of endogenous variables. In the illustrative model, the implication is that any catch-up in
the levels of the variables after the initial impact depend on counteracting impacts later in
the pandemic period, which of course may happen. For more multiple equation econometric
models, the dependency on counteracting shock for recovery after the impact is more of an
empirical question, and it can in practice be studied by simulation.

The rest of the paper is organized as follows. In section 2, the measures of COVID-19
impact are defined and illustrated by the use of the theoretical model mentioned above. Two
measures are defined. One is formally like a forecast error from a dynamic macroeconometric
model. The other is the difference between a counterfactual solution of the model, which is
like a forecast, and a baseline solution of model. The baseline include the estimated impact
of COVID-19 by the use of impulse indicator variables.

In section 3, the impact on COVID-19 on Norwegian GDP is analysed by the use of the
two measures defined in section 2. Two categories of models are used. First, empirical final
form equations which are empirical counterparts to the final form equations derived for the
illustrative model in section 2. They have been purpose-built with the use of a machine
learning algorithm. Hence, the final form equations are transparent and are simple to use in
practice. The second model is a dynamic multiple-equation empirical model of the Norwegian
economy called Norwegian Aggregate Model, NAM.1 The model is an all-purpose model and
it is therefore subject to the critique of being a “black box”. On the other hand, NAM is

1https://normetrics.no/nam/
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efficient to use to study the wider impact of COVID-19 on the economy, as there is no need to
specify separate final model equations for each variable of interest. Since the model includes
the main national account identities, internal logical consistency is also secured, for example
between the impacts on aggregate demand and on aggregate supply.

The evaluation period in section 3 are the nine quarters from 2020(1) to 2022(1). We
find empirically the same qualitative impact of COVID-19 and the responses to it, as in the
illustrative model. Negative COVID-19 shocks early in the pandemic resulted in relatively
persistent differences between counterfactual and baseline solutions paths. The is true for
both the final equation model and for NAM, and for both types of measures of COVID-19
impact.

Quantitatively, the impact was largest in the second quarter of 2020. Two years later,
the simulated effect had become much smaller in magnitude. The reduction in the gap
between counterfactual and baseline can partly be due to counteracting shocks later in the
simulation period. The catch-up variables can be rationalized by fiscal policies that were
introduced, and by temporary return to “almost business as ususal” in the periods when
non-pharmaceutical measures were lifted.

In addition to the comparison of the results for the two models used in this offering,
section 3 compares the findings with the assessment made in work commissioned by the
government’s Coronavirus commission.2 In sum, we find that the loss in income generation
due to the impact of COVID-19 has been substantial in Norway and that it may have been
larger than reported in the studies made for the government’s commission.

Section 4 is a summary of result of the analysis, and a brief discussion of areas for
further research related to model based counterfactuals in the analysis of big shocks to the
economy. One question that can be addressed empirically as more data becomes available,
is the relative invariance of the parameters in the model that determines how the impact of
COVID-19 becomes propagated into medium term effects. Another, related area of research,
is the development of models with non-linear propagation mechanisms.

2 Model based counterfactual analysis
In order to define the counterfactual, the general notation for a dynamic macro model is
given first in this section. Thereafter the difference-from-counterfactual measures of the
impact of COVID-19 are defined and illustrated with the aid of a model that has a closed
form algebraic solution.

2.1 Models of the macroeconomy

A dynamic model can be expressed compactly as:

yt = fy(yt−1, ..., yt−p, xt, ..., xt−p, Dyt, εyt) where fy(·) denotes a function.. (1)

where yt denotes a vector with n endogenous variables in period t while xt has the m
exogenous variables as elements.

2https://www.regjeringen.no/en/dokumenter/nou-2022-5/id2910055/
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Dyt represents deterministic terms which are constants, trends, seasonals and dummy
variables for interventions or shocks. εyt represents random error-terms that are unpre-
dictable by conditioning on the other arguments in the function.3

The model equations must capture the normal economic behaviour of firms and house-
holds (and rule based policy responses) if the model’s solution is to mirror reality in a
reasonable degree, and generate many of the properties of the actual data, see Granger
(1992), Visco (2005), Spanos (2021), among others.

An operational definition of a large shock is that it can be found as a significant impulse
indicator variable, by the use of statistical tests and conventional significance levels. In
practice this means that the shock can be “picked up” by a (zero-one) indicator variable which
is an element in Dyt. A shock can be large in this meaning of the term without necessarily
leading to further structural changes in the equations of the model which describes normal
economic behaviour, although that can clearly happen as well. Investigation of the degree
of invariance of the deeper parameters of the model is of great importance for the continued
relevance of any operational model after a large shock has hit the economy. Meanwhile,
methods like impulse indicator saturation (IIS) estimation which use below can give robust
estimation with respect to shocks within the sample period, Johansen and Nielsen (2009).

A large shock can affect the data generation of all the economic variables of the model, not
just the endogenous ones. Hence, in order to quantify the effects of shocks on the economy
it is unsatisfactory to use (1) alone. The analysis becomes more relevant if the model is
completed by module that endogenizes the variables in the xt vector:

xt = fx(xt−1, ..., xt−p, Dxt, εxt). (2)

We refer to (1) and (2) as the extended model, and will show an specific example below
where we use an extended version of the NAM model to analyse the impact of COVID-19.

The extended model can be written compactly by stacking yt and xt in the m+ n vector
yt, the two error-terms in εt and the deterministic terms in Dt:

yt = f(yt−1, ...,yt−p,Dt, εt). (3)

2.2 Difference-from-counterfactual

Mathematically, the extended model is a system of difference equations, with general func-
tional form. The solution of yt that we use in the following is function of initial conditions
(y0, y−1,....,y−p+1, errors εt,...,ε1 and deterministic terms Dt,...,D1. It is custom to refer
to it as a causal solution, as apart from the “forward” solutions that does not condition on
initial conditions, see eg., Nymoen (2019, Ch. 3).

We let T0 − 1 denote the end of the pre-pandemic sample. The COVID-19 sample is
therefore: t = T0, T0 + 1, ..., T0 +H where H is the evaluation horizon.

The ordered sequence of random variables yt; t = T0, T0 + 1, ..., T0 +H generated by the
model is in particular function of the sequence of deterministic terms DT0+h, h = 0, 1, ..., H.

Let ID denote the information set that the solution is based on. For ease of exposition,
we distinguish between two main cases:

3Equal lag length (p) for the two variables is to save notation, it is without loss of generality.
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1. All the dummies in I are zero in all time periods, denoted by ID=0.

2. At least one dummy is set to 1 in at least one period, denoted by ID=1.

In the following, we refer to a solution based on ID=1 as a baseline solution and denote it
by yb

t . A solution based on ID=0 is a counterfactual solution, denoted by yc
t .

The impact and dynamic effects of a large shock to the system can be estimated as the
difference between the conditional expectations of the respective solutions:

DiffIyt = E(yc
t | ID=0)− E(yb

t | ID=1); t = T0, T0 + 1, ..., T0 +H. (4)

DiffIyt is the difference between two deterministic functions of time. Hence, the null hypothe-
ses that the difference DiffIyt is significantly different from zero cannot be tested directly.
However, inference can build on the statistical testing of the significance of the intervention
dummies in Dt.

Assume for example that we observe DiffIyT0
< 0. Under the assumption that the other

parameters of model are invariant to the (pandemic) intervention, the difference is:

DiffIyT0
= −γDT0

, (5)

where γDT0
denotes the coefficient of the DT0 indicator variable. Hence the null hypothesis

of DiffIyT0
= 0 is equivalent to testing H0: γDT0

.
More generally we have:

DiffIyT0+h =
h∑

j=0

−γw
DT0+j

, h = 0, 1, 2, ..., H. (6)

where each γw
DT0+j

denotes a weighted indicator variable coefficient (as implied by the solu-
tion). Testing the joint significance of the whole indicator set seems to be relevant. Another
possibility is to test the significance of two groups of indicator variable coefficients that have
opposite signs.

However, another measure to consider is the difference between the counterfactual and
the actual yt:

DiffIIyt = E(yc
t | ID=0)− yt; t = T0, T0 + 1, ..., T0 +H, (7)

which is similar to the estimator proposed by Pesaran and Smith (2016) to analysis of effects
of economic policy changes.

Formally, (7) is like a time series of forecast errors. The significance of the impact of
COVID-19 can therefore be tested by using tests of forecast failure. Hence, a t-value of the
forecast error for period T0+h which is statistically significant can be interpreted as evidence
of a significant impact.

However care must be taken: If, during the evaluation period, the economy changes in
other ways than those that are captured by a indicator variable set, a significant forecast
error can be due to those other changes, at least in part. Note that this is somewhat
different from the assumption made in connection with DiffI , which was about invariance
of the coefficients in the model of the economy. In order to have a clear cut interpretation
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of DiffII the invariance assumption applies to the economy itself, rather than to “just” our
model of the economy.

The relationship between the two impact measures can be expressed as:

DiffIIyt = DiffIyt − eb
t ; t = T0, T0 + 1, ..., T0 +H. (8)

where eb
t denotes the forecast errors associated with the baseline solution:

eb
t = E(yb

t | ID=0)− yt; t = T0, T0 + 1, ..., T0 +H. (9)

In general therefore, the two measures will not be equal since there will be non-zero forecast
errors associated with the baseline simulation.

2.3 An algebraic example

As an illustration of the properties of the DiffIyt function we can use an algebraically
tractable example with two time series variables, Xt and Yt, and first order dynamics.

In the case where one of the variables is exogenous, say Xt, we speak of an open system.
In that case we can think of f(·) in (3) as a function that incorporates the exogeneity
restrictions implied by (1) and (2). In the closed system interpretation, f(·) in (3) is a
function that allows the mutual temporal dependencies between the two variables.

As noted, macro econometric models have over time become adapted to be consistent
with the idea that trend non-stationarity is a typical feature of many macroeconomic time
series. Hence we specify the example model so that the variables become integrated of order
one. In a common notation this assumption is written as Xt ∼ I(1), ∆Xt ∼ I(0), and the
same applies for Yt. A special case of (3) which is consistent with this is:

∆Yt = c̃10 + c̃11∆Xt + c̃1dDt + α̃11(Yt−1 + β12Xt−1) + ε̃1t (10)
∆Xt = c20 + c2dDt + α21(Yt−1 + β12Xt−1) + ε2t (11)

where β12 denotes the cointegration parameter. In one interpretation, (10) is a conditional
model equation and (11) is a marginal model equation, and then the error-terms are un-
correlated. Another interpretation is that the model is a semi-reduced form with (10) as a
structural equation in a simultaneous equation model (SEM), while (10) is the reduced form
equation for Xt from that SEM (then the error terms are correlated).

The reduced form (or VAR) is obtained by eliminating ∆Xt from (10). For completeness
we can write the reduced form as:

Yt = Yt−1 + c10 + c1dDt + α11(Yt−1 + β12Xt−1) + ε1t (12)
Xt = Xt−1 + c20 + c2dDt + α21(Yt−1 + β12Xt−1) + ε2t (13)

where it is understood that c10 = c̃10 + c̃11c20, and similarly for c1d, α11 and ε1t, as result of
the substitution.
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The closed system final equations

Assume that there is equilibrium correction in both equations of the model, hence α11 < 0
and α21 > 0. The properties of the solutions for Xt and Yt can be studied through the
final form equations, Wallis (1977). As a consequence of cointegration, the two final form
equations for ∆Yt and ∆Xt become:

∆Yt = γ10 + λ2∆Yt−1 + c1dDt + [α11β12c2d − (α21β12 + 1)c1d)]Dt−1 + ϵ1t, (14)
∆Xt = γ20 + λ2∆Xt−1 + c2dDt + [α21c2d − (1 + α11)c2d]Dt−1 + ϵ2t, (15)

where λ2 is the second of two characteristic roots. The first root is λ1 = 1, while λ2 is given
by:

λ2 = 1 + α11 + α21β12, (16)

where α11 + α22β12 < 0 for consistency with the assumed stationarity of ∆Xt and ∆Yt.
The error terms of (14) and (15) are linear combinations of the two reduced form error-

terms ε1t and ε2t, and the first lag of those two variables.4
Let Dt denote a single impulse indicator. Hence, Dt takes the value 1 in a period when a

shock hits the economic system, and zero in all other time periods. As the equations show,
Dt and Dt−1 shift the two constant terms in the final form equations. Therefore, a shock
will have permanent effects on the solutions of the two level variables given by the identities
Yt = ∆Yt + Yt−1 and Xt = ∆Xt +Xt−1.

In line with the definitions above, and if the impact period is set to t = T0, the counter-
factual solution is the conditional expectation: E(Y c

T0+h | ID=0), and the baseline solution is
E(Y b

T0+h | ID=1), hence DiffIYT0+h = E(Y c
T0+h | ID=0)− E(Y b

T0+h | ID=1) .
We let Dt = 0 in all time periods of the counterfactual solution, while in the baseline

solution:
Dt =

{
1 , if T0

0 , for all other t. (17)

The difference between the counterfactual and basis for the change ∆YT0+h is denoted
DiffI∆YT0+h. It is a stationary first order process, so:

DiffI∆YT0 = −c1d, (18)
DiffI∆YT0+1 = −α11c1d − α11β12c2d, (19)
DiffI∆YT0+1+h = λh

2DiffI∆YT0+1, h = 1, 2, ...H, | λ2 |< 1 (20)

while DiffIYT0+h follows the updating formula:

DiffIYT0+h = DiffI∆YT0+h + DiffIYT0−1+h, h = 0, 1, 2, ..., H, (21)

with the remark that DiffIYT0−1+h = 0 initially (for h = 0).
The values of function DiffIYt0+h are non-zero for all h, even if the impact lasted for only

one period. This is an implication of the unit-root of +1, and it is typical of integrated
series.

4ϵ1t = ε1t − ε1t−1(1 + α11β12) + ε2t−1α11β21 and ϵ2t = ε2t − ε2t−1(1 + α11) + ε1t−1α21.
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However, although both Y and X are permanently affected by a the impact of a single
one-period shock, the long-run relationship between the variables is not disrupted. Let Zt

denote the disequilibrium variable Zt = Yt + β12Xt which is I(0). DiffIZT0 and DiffIZT0+1

will be directly influenced by DT0 and DT0+1, but DiffIZT0+2 and later differences are given
by:

DiffIZT0+1+h = λh
2DiffI∆ZT0+1, h = 1, 2, ...H, | λ2 |< 1,

which is another consequence of the correspondence between the counterfactual and a fore-
cast: Cointegration between variables is preserved in forecasts, Engle and Yoo (1987).

Under the assumption that there are no parameter changes other than the shift in the
intercept captured by Dt, the second measure DiffIIYT0+h can be expressed as:

DiffIIYT0+h = DiffIYT0+h −
h∑

j=0

ξjϵ1T0+j, h = 0, 1, 2, .. (22)

which is a special case of (8), with eb
T0+h =

∑h
j=0 ξjϵ1T0+j.

In (22), ξj (h=0,1,...) does not represent a well-behaved linear filter, Nymoen (2019,
p 167 ). Therefore, the stationarity of the error-term process ϵ1T0+j, j = 0, 1, ..., h is not
preserved in the second term of (22). Hence, the conditional variance V ar(DiffIIYT0+h | YT0)
is strictly increasing in h.

The open system

In the case of α21 = 0, Xt is an exogenous variable. Under this restriction on (10)-(11),
the model equation for Yt, ie., (10) is an example of a macro-econometric model of the open
type, and the Xt-equation takes the role of the completing equation in the extended model.

The open-system version of (12)-(13) is:

Yt = c10 + Yt−1 + c1dDt + α̃11(Yt−1 + β12Xt−1) + ε1t, (23)
Xt = c20 +Xt−1 + c2dDt + ε2t (24)

with the remark that the equilibrium correction coefficient in the final form equation for Yt

is the same as in the conditional model equation.
In this case, the solution for Xt can be found first and can be taken as given in the

solution for Yt.
The qualitative effects of single period shocks are the same as for the closed system.

However, if we more generally include separate impulse indicators in (23) and (24), say DY t

and DXt, it is only DXt that affects the level of both Xt and Yt. If the shock is “limited
to” Yt so that it is captured by DY t, the solution for the level of Yt will not be permanently
affected, because the level of Yt is linked to the level of Xt in this case.

Generalization

If the macroeconomic model has several endogenous variables and higher order dynamics, the
implied final forms equations are completely general ARMA model equations. However in
practice, such ARMA processes are approximated by high order AR processes, Yt ∼ AR(p).
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Hence, more generally we can think of the final equation of Yt as an AR(p) model equation.
Under the assumption that the largest root of the associated characteristic equation is +1,
it follows that Yt ∼ I(1) and ∆Yt is AR(p − 1) with p − 1 characteristic roots that are less
than one in magnitude. Hence ∆Yt ∼ I(0).

In the illustrative model there were one stable root and one unit root. The generality
stems from the famous result known as the typical spectral shape of economic time series,
Granger (1966),Granger and Newbold (1986, Ch. 2.7). The theorem states that if there is
a large number of stable roots, a single root equal to +1 at the zero-frequency implies that
the time series properties become dominated by a random-walk component, Nymoen (2019,
Ch. 9.3). Hence, because the random-walk component is a common feature of both simple
and complex models, the results obtained for DiffI and DiffII may be more general than
first thought. At least, they can be useful to keep in mind when interpreting the simulation
results from models with multiple equations and higher order dynamics.

3 Impact of COVID-19 using models of the Norwegian
economy

We now turn to the results of the impact of COVID-19 on the macroeconomic system of
Norway. We focus on GDP Mainland-Norway, which is the income variable followed most
closely in the discussion of fiscal policy and the interest rate path decided by Norges Bank
[Central Bank of Norway].

In section 3.1, I use a single equation approach to estimate and simulate an empirical
final form equation for (log of) GDP Mainland-Norway.

In section 3.2 I present results for the multiple-equation model Norwegian Aggregate
Model NAM. It is a complete model of the economy. Each of the behavioural equations are
investigated for significant impulse indicator variables in the period 2020(1) − 2022(1), but
apart from that there are no changes made in the the model structure.

Dynamic simulation of the complete NAM model is a feasible way of obtaining the solu-
tions that define counterfactual and the baseline solutions, Hence, the solutions of the two
models give rise to different estimates of the same phenomenon, namely impact and dynamic
effects of COVID-19.

Using the complete model is in many ways efficient as it gives relevant information about
where in the system the impact comes first, and how the effects are propagated by the
dynamics of the multivariate system. The multiple equation model is also suited to study
the wider impact of COVID-19 on the economy, as we show in section 3.4.

On the other hand, the results are conditional on the many decisions that have been made
in the construction of the larger model (“black box” critique). The single equation approach
has the advantage of being transparent and easy to replicate and update. In addition, since
the counterfactual is a forecast, using a parsimonious single equation model of for example
GDP may produce more reliable results than a larger model which may be mis-specified in
ways that bias the forecast, Pesaran and Smith (2016).
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3.1 Results from empirical final form equations

As noted above, a system of I(1)-variables implies final form equations for each variable in
differenced form. Equation (14) and (15) are particular special cases. All final form equations
obtained from a closed system have identical autoregressive structures (the homogeneous
parts of the difference equations are identical). But they also contain moving average errors,
which are not the same for all variables, and impulse indicators will in general also enter
differently in the equations (ie., they belong to the inhomogenous parts of the difference
equations).

In general, each final form equation is therefore an ARMA(p,q) model, augmented by
impulse indicators. However, as noted, an ARMA model can be approximated by an AR
with p′ > p. The machine learning algorithm Autometrics was used to decide the lag-
specification and which indicator variables to include, Doornik (2009), Hendry and Doornik
(2014), Doornik and Hendry (2018a). Autometrics-IIS extends the general unrestricted
model (GUM) by one indicator variable for each observation, and retain only a small number
of them in the model delivered by the search algorithm, Castle et al. (2012).

The estimators of retained economic variables have been shown to have an interpreta-
tion as robust estimators statistically speaking, Hendry et al. (2008), Johansen and Nielsen
(2009).

We analyse the impact on GDP Mainland-Norway, the term used by Statistics Norway
to refer to GDP without valued added in oil and gas extraction, pipeline transportation
and ocean transport.5 As noted above, GDP Mainland-Norway is the preferred variable
for analysis of economic activity and of income generation in Norway. The time series is
quarterly and from the National accounts.6

Letting Yt denote GDP Mainland-Norway, the relative changes in GDP is given by the
differenced series ∆log(Yt). A general unrestricted model (GUM) with twelve autoregres-
sive terms, constant and three seasonal dummies was found to be not mis-specified when
evaluated by a standard test-battery.

Variable selection algorithms involve repeated testing, which can lead to inflated Type-I
error probability levels. In Autometrics, the overall significance level depends on the user-
set Target size. As a rule-of-thumb, Target size = kirr/kGUM where kirr denotes how many
irrelevant variables one can accept on average in the final model, and kGUM denotes the
number of regressors in the GUM. Hence, with 15 regressors in the GUM, and accepting the
retention of 0.15 irrelevant variable on average, the target level can be set to 1 %. Increasing
it to 5 % implies 0.75 irrelevant variable retained in the model equation delivered by the
algorithm.

In order to obtain the forecast that gives us the DiffIIYt measure, the only search is over
the pre-pandemic period, so it is convenient to first present the model used to obtain that
measure.

Using Target size = 0.01, Autometrics retained ∆log(Y )t−1, ∆log(Y )t−2, ∆log(Y )t−12,
the constant term, three seasonals and nine impulse indicators, denoted by Dyear(quarter).The

5https://www.ssb.no/en/nasjonalregnskap-og-konjunkturer/nasjonalregnskap/statistikk/nasjonalregnskap
6https://www.ssb.no/en/statbank/ltable/09190/. The unit is million NOK, constant 2019 prices. The

valuation is marked values, and the series is not seasonally adjusted.
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model is shown in equation (25).

∆log(Y )t = − 0.608
(0.0652)

∆log(Y )t−1 − 0.2764
(0.0651)

∆log(Y )t−2 + 0.1468
(0.0545)

∆log(Y )t−12

+ 0.00857
(0.00148)

− 0.04032
(0.00701)

CSt − 0.06038
(0.00631)

CSt−1

− 0.06526
(0.00543)

CSt−2 + 0.04329
(0.0149)

D1984(1) + 0.06846
(0.015)

D1985(1)

+ 0.05462
(0.0149)

D1986(2) − 0.0348
(0.015)

D1988(3) + 0.04121
(0.015)

D1996(1)

+ 0.05826
(0.015)

D1997(2) + 0.03583
(0.0149)

D2001(1) + 0.0421
(0.015)

D2005(2)

− 0.04317
(0.015)

D2009(1)

(25)

OLS Sample: 1981(2) - 2019(4) Number of obs.: = 155
σ̂100 = 1.46 R2 = 0.89
AR1−5 : F(5,124) = 1.208[0.31]
ARCH1−4 : F(4,147) = 0.40[0.81]
Normality : χ2(2) = 0.68[0.71]

On the right hand side of the equation, CSt, denotes the centered seasonal dummy variable
for the first quarter of the year.7 Estimated standard errors are in round brackets below the
coefficients. Four of the indicators are from the 1980s, a decade which started with high and
volatile economic growth, and which ended with a crash in housing prices in 1988 and later
a banking crisis and, by post WW-II standards, very high unemployment, Nymoen (2017).
The two indicators from the second half of the 1990s can be connected with the recovery
form that crises. The first decade of the new millennium was marked by growth, and very
high growth in some individual quarters. However, the international financial crisis had a
significant negative impact, which is picked by the indicator variable D2002(1).

R2 and the residual percentage standard deviation (σ̂100) indicate quite good fit. The
residual mis-specification tests AR1−5, ARCH1−4 and Normality are reported with their re-
spective p-values. The tests of no autoregressive autocorrelation and of ARCH are clearly
insignificant, see Harvey (1981), Engle (1982), as is the test of departures from the assump-
tion about normality, Jarque and Bera (1980).

In order to measure the difference between the counterfactual and a baseline simulation,
Autometrics was used a second time to select an empirical final equation of ∆log(Y ) with
the pandemic period included in the sample. The model specification became the same as in
equation (25), but with D2020(2) and D2021(4) included as two COVID-19 impulse indicators.
The estimated coefficient of D2020(2) was −0.08 (t-value -5.7). For D2021(4) the estimate was
+0.03 (t-value of 2.4). This equation was used to simulate the baseline solution needed to
calculate DiffIY. As noted, equation (25) was used to generate the forecast used to obtain
DiffIIY.

‘t-values” for DiffIIY can be used to test the null hypothesis of zero difference between
counterfactual and actual in a given quarter. Simulated forecast error standard deviations

7Each centered seasonal sum to zero over the year.
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Table 1: GDP Mainland-Norway. Results using empirical final form equation.
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Horizon Actual C-factual Baseline DiffIY DiffIY DiffIIY t-value DiffIIY
(3)-(4) Percent (3)-(2) Percent

2020(1) 762903 774610 774610 0 0 11707 1.0 1.5
2020(2) 701430 765681 706114 59567 7.8 64251 5.7 8.4
2020(3) 732876 766497 741599 24898 3.2 33621 2.6 4.4
2020(4) 794793 816347 786287 30060 3.7 21554 1.4 2.6
2021(1) 754553 788096 750397 37699 4.8 33543 2.2 4.3
2021(2) 754712 784506 753082 31424 4.0 29794 1.8 3.8
2021(3) 769877 780345 748024 32321 4.1 10468 0.6 1.3
2021(4) 835909 833809 824849 8960 1.1 -2100 -0.1 -.3
2022(1) 798592 806328 783249 23079 2.7 7736 0.5 1.0
Notes:
(2)-(5) and (7): numbers are in million 2019 kroner. (6) and (9) are percents of (3). (8) is t-value of (7)

were used for comparability with the result in the next section, where simulation was the
only feasible method. For the single equation dynamic forecasts errors in Table 1 exact
variance formulas exist, see Clements and Hendry (1998), and for all practical purposes they
were identical.8

Because Autometrics-IIS did not keep the indicator for 2020(1) in the model equation,
DiffIY gives zero impact of COVID-19 in that quarter. As the actual value in 2022(1) was
lower than the forecast. DiffIIY (column (7)) on the other hand shows a negative impact, as
the actual value in 2022(1) was lower than the forecasted. In percent, the estimated impact
was a 1.5 reduction compared to the counterfactual without the coronavirus pandemic, which
is however not significant when the t-value in column (8) is compared to a standard critical
value.

Table 1 column (8) shows that DiffIIY is significantly different from zero in 2020(2),
the quarter with the largest numerical and percentage difference over the period as a whole.
The DiffIIY estimated impact of 7.8 percent is also significant as it is due to Autometrics-IIS
keeping the indicator for 2020(2).

For 2020(3) and 2021(1) the t-values are also larger than 2, indicating significant impact
of COVID-19 and the responses to it. As the forecast error variances are increasing with the
horizon, a given numerical difference between the counterfactual and the actual will be more
significant early in the period than it is in a later quarter.

When we compare the numbers in column (6) and (9) we see that the DiffIIY estimates
are largest early in the pandemic. From 2020(4) and onward it is DiffIY that gives the higher
estimates of COVID-19 impact. The reduction in the impact that occurs in 2021(4) is due
to the positive indicator variable for that quarter.

8The simulated standard errors were obtained by using Eviews 12 and were checked against the analytical
versions by using Oxmetrics 8.0-PcGive 15, Doornik and Hendry (2018b).
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3.2 Impact of COVID-19 using a multiple-equation model

Norwegian aggregate model (NAM) is an multiple-equation econometric model that can be
used to study the impact of COVID-19 on the Norwegian economy.

As a multivariate dynamic model, NAM has in common with the simple model above that
the solution of the endogenous variables are in principle given by final form equations and
their associated characteristic roots. Another common feature is that cointegration has been
an important modelling concept, hence shocks and short-lived impulses integrates into shifts
in level of variables, without necessarily disrupting relationships between those variables.

NAM originated from the econometric assessment of wage-and price formation in Ny-
moen(1989a,1989b,1991), further developed in Bårdsen et al. (1998), Bårdsen and Fisher
(1999), Bårdsen and Nymoen (2003), and the monetary transmission model of Bårdsen and
Klovland (2000). An early version of the model was presented in Bårdsen et al. (2003), while
a more complete version was documented in Bårdsen and Nymoen (2009). The methodolog-
ical orientation of the model is also represented by the book on macroeconometric modelling
by Bårdsen et al. (2005).

NAM is an operational empirical econometric model. Regular updates of the model is
synchronized with the releases of the Quarterly National Accounts.9 The documentation of
the latest version of the model is always on the internet, Bårdsen and Nymoen (2022).10

The standard version of NAM contains 120 estimated equations. There are several non-
modelled (exogenous) time series in the model, meaning that model forecasts are conditional
on projections for those variable made by the user. Examples of variables that are exogenous
in the standard version of the model are: An indicator of growth in export markets, the
foreign short term interest rate, and other variables from financial and product markets
abroad (the foreign sector of the model).

Table 2: Number of NAM equations where COVID-19 impulse indicators are included
Quarter Impulse Indicator Model version

Standard (120 eqs) Extended (133 eqs)
2020(1) DCovid,t 12 23
2020(2) DCovid,t−1 26 38
2020(3) DCovid,t−2 15 26
2020(4) DCovid,t−3 13 23
2021(1) DCovid,t−4 11 21
2021(2) DCovid,t−5 12 20
2021(3) DCovid,t−6 11 28
2021(4) DCovid,t−7 7 9
2022(1) DCovid,t−8 9 12

As the pandemic is global, several of these variables are likely to be affected. Hence I have
extended the operational model version (dubbed Standard in Table 2) by empirical equations

9However, updates are also made to accommodate model users’ needs for model analysis, and after new
and improved results from modelling results. NAM users include Financial Supervisory Authority of Norway,
NHO (Confederation of Norwegian Enterprise) and LO (Norwegian Confederation of Trade Unions).

10https://normetrics.no/nam/
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Table 3: GDP Mainland-Norway. Result using NAM.
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Horizon Actual C-factual Baseline DiffIY DiffIY DiffIIY t-value DiffIIY
(3)-(4) Percent (3)-(2) Percent

2020(1) 762903 788681 768642 20039 2.5 25778 3.1 3.3
2020(2) 701430 765517 699166 66351 8.7 64087 6.9 8.4
2020(3) 732876 774523 736418 38105 4.9 41647 4.2 5.4
2020(4) 794793 825542 793334 32208 3.9 30749 2.6 3.7
2021(1) 754553 807422 747399 60023 7.4 52869 4.0 6.5
2021(2) 754712 799402 739884 59518 7.4 44690 3.2 5.6
2021(3) 769877 799843 752628 47215 5.9 29966 2.0 3.7
2021(4) 835909 852706 809452 43254 5.0 16797 1.0 2.0
2022(1) 798592 819091 770610 48481 5.9 20499 1.1 2.5
Notes:
(2)-(5) and (7): numbers are in million 2019 kroner. (6) and (9) are percents of (3). (8) is t-value of (7)

for this category of variables. As a result, the extended model version contains 13 additional
equations. In addition to equations for variables for the foreign sector, they include model
equations for public consumption expenditure (policy) and for capital formation in the public
sector (general government).

It is the extended version of the model which is used in the results reported below.
Indicator variables for the nine COVID-19 quarters from 2020(1) to 2022(1) were added to
all the econometric equations of the model, and retained in the model if t-values were found
to be significant at the 5 % level.

Table 2 shows the number of equations each COVID-19 indicator variable has been in-
cluded in. The indicator variable for 2020(2) was included most frequently, in 38 of the
equations. The third quarter of 2020 had the second highest number if inclusions. We note
also that the indicator variable for 2020q1 was included in as many as 23 equations. The
automatic variable selection used above did not include that first COVID-19 quarter, so this
is one factor that will contribute to difference between the results of the two analyses.

Table 2 shows that the indicators from 2020(4) to 2021(3) have a little more than 20
entries each. There is a marked drop in the inclusion numbers for 2021(4) and 2022(1).
There may even be caveats about the choice of including 2022(1) in the analysis. In Norway,
there were some non-pharmaceutical measures still in place at the start of the year. However,
the society opened up in February 2022 when the Norwegian government concluded that the
damaging effects of the measures had become more serious than the effects of the spread of
the virus in the population. Later in February, Russia invaded Ukraine and several global
markets, energy markets in particular, were immediately affected by that war. Hence, in
2022(1) the economy was influenced by two shocks, and care must therefore be taken when
interpreting the results for that quarter in particular.

A final thing to note is that several of the affected equations in the Extended-column
represent the foreign sector, indicating that a substantial part of the total effects may come
from international trade and financial markets.

Table 3 gives the result in the same format as for the final equation model above. One
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notable difference from Table 1 is that, when NAM is used, also the DiffIIY measure indicates
that COVID-19 had an impact on GDP already in 2020(1). This is due to the 23 indicators
mentioned above.

Closer inspection shows that one of the relationships where there was an early impact
was the equation for (private) service activities, which includes retail trade, accommodation
and food service activities. Although the first full lockdown occurred quite late in the first
quarter of 2020, on 12 March, it is not unreasonable that value added in service activities
became reduced compared with a scenario without COVID-19.

Other equations that include the 2020(1) dummy include the consumption function and
the equation for the growth in Norwegian export markets. In NAM, both of these impacts
have indirect effects on value added, not only in retail and private service production but
also in other industries, like manufacturing.

Both Table 1 and Table 3 show that the largest impact of COVID-19 came in 2020(2). The
estimates are a little higher in Table 3 and that remark also applies for the later quarters
in the period. In particular, the DiffIY measure in the NAM table indicates the largest
and most persistent effects of the impact and responses to COVID-19. That said, as the
standard deviation of the differences are increasing with the horizon, the t-values of DiffIY
become insignificant towards the end of the evaluation period. It is a reminder of the large
uncertainties involved in this type of assessments.

3.3 Comparison with other studies

There are existing studies of national and regional COVID-19 effects in Norway, commis-
sioned by the government and done for the Norwegian corona commission, cf. Bjertnæs et al.
(2021) and von Brasch et al. (2022).

The two reports for the commission used a forecast prepared by Statistics Norway late in
2019 as the counterfactual while the baselines were constructed by combination of available
actual national account data with forecasts for the remaining quarters of the period (ie.,
until 2023(4)). Hence the numerical assessment of the impact of COVID-19 in the two
corona commission reports appear to have combined DiffIyt and DiffIIyt in order to be able
to give results for the whole period from 2020 to 2023.

Table 4 shows the simulated differences in annual numbers. The simulated income reduc-
tion for 2020 amounts to 157 billion kroner, 5.2 % of the baseline GDP of Mainland-Norway.
Interestingly, and as seen from the the table, this is somewhat larger than the percentage
reduction reported in the two estimates made for the corona virus commission.

The table also shows that after 2020, the simulated losses in income generation using
NAM are systematically larger than in the two other assessments. The percentage numbers
in von Brasch et al. (2022) for 2021,2022 and 2023 give the smallest loss in income generation.

For the period 2020-2023 as a whole, von Brasch et al. (2022) sets the discounted reduc-
tion in GDP Mainland-Norway to 270 billion kroner in fixed 2019-prices. When the same
discounting factor is used (4%), for the NAM results, the reductions amount to 578 billion.
Clearly, both calculations must be interpreted with care because of the many uncertain-
ties. That said, taken together the studies indicate huge income losses over the period of
the pandemic, amounting to 9 percent (von Brasch et al. (2022)) and 18 percent of 2019
Mainland-Norway GDP (NAM).
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Table 4: GDP Mainland-Norway. Difference between counterfactual (no COVID-19) and
baseline/actual in percent of counterfactual.

2020 2021 2022 2023
DiffIYF
Final equation 3.7 3.5 2.6 2.8
NAM 5.0 6.4 4.8 3.1
DiffIIYF
Final equation 4.2 2.5
NAM 5.1 4.4
Corona commision:
Bjertnæs et al. (2021) 4.7 3.8 2.2 0.5
von Brasch et al. (2022) 4.6 2.4 2.1 -0.9

In addition to methodological differences, one reason for the larger effects using NAM
may be that they build on updated macroeconomic time series which covers more of the
pandemic period. A similar remark applies to the result reported in Rungcharoenkitkul
(2021), of a 3 percent reduction in Norwegian GDP in 2020.

3.4 The wider impact of COVID-19

A multiple equation model like NAM is efficient to use in the analysis of the wider impact of
COVID-19 and the responses to it, as the endogenous variables of the model covers several
sectors and markets in the economy.

As one example, Table 5 shows effects in percent of the no-covid solutions for GDP
(total), GDP Mainland-Norway and four sectors of Mainland Norway. In order to get a
clearer picture of how the effects decline with the horizon, the simulation was extended
through 2023 and we give annual numbers.

For GDP total and GDP Mainland-Norway the reductions are monotonous after 2021.
The smaller estimates for GDP total comes from the fact that the petroleum industry is
quite large, and that it was estimated to be practically unaffected by the pandemic.

The rows that show estimated impact by industries show that COVID-19 and the re-
sponses to it had a wide impact. The numbers for value added in service activities (which
includes eg., travel and accommodation as mentioned above) are largest. But the impacts on
manufacturing and other production (which includes construction) are also estimated to be
of numerical significance. The large reduction in value added in service activities, compared
to 2019 (so not a counterfactual) is also found for Denmark and Sweden, Blytt et al. (2022).

According to the results in Table 5, the government sector was the least affected by
COVID-19.

The line for imports in table 5 shows a huge impact. In the model, imports are driven
by components of aggregate demand and by the real exchange rate. Hence it is not surpris-
ing to find several huge estimated impacts of COVID-19 for the “demand components” in
the bottom half of the table. Public consumption is an exception, and more interestingly,
also capital formation in residential housing. Housing prices grew in real terms during the
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Table 5: Difference between counterfactual (no COVID-19) and baseline/actual in percent
of counterfactual. DiffIyt results using NAM.

2020 2021 2022 2023
GDP 3.4 4.3 2.6 1.1
GDP Mainland-Norway 5.0 6.4 4.8 3.1
Value added, manufacturing 6.1 4.9 2.7 1.48
Value added, other products 3.4 5.1 3.9 2.5
Value added, service activities 8.1 9.7 7.5 5.0
Value added, general government 1.1 .6 .1 -.3
Imports 13.4 14.8 8.7 4.8
Exports 4.2 2.6 -.5 -.8
- Mainland-Norway 10.7 9.3 6.6 4.5
Private consumption 9.4 8.6 2.8 1.7
Public consumption .6 -.3 -.4 -.4
Gross capital formation 6.1 10.5 7.4 3.4
- Mainland-Norway private business 12.1 19 12 3.2
- Housing .3 2.1 .5 -1.2

pandemic, which in the model is one of the main explanatory variables of real investments
in housing.

4 Summary
Counterfactual analysis is required to estimate the economic impact of COVID-19. In this
offering, macroeconometric models are used to simulate counterfactual developments of GDP
Mainland Norway, and of a selection of other variables in the Norwegian national accounts.
Two operational definitions of the difference between the counterfactual (without COVID-
10) and the baseline (or “actual”) were defined. They were illustrated with the aid of a model
which, despite its simplicity, incorporates the double feature of low frequency unit- root and
cointegration, which has also become common features of empirical models.

There is no logical inconsistency between using both “small” and “large” models to elu-
cidate COVID-19 impacts on the economy. Dynamic econometric modelling can be used to
specify a model equation which can be interpreted as an approximation to the unknown final
equation of for example GDP. For an existing operational model, dynamic simulation gives
the solution path of the final equation implied by the model structure.

Empirically we found, by simulating NAM (“large model”) and empirical final equations
(“small model”), that the differences between the counterfactual and the baseline/actual for
GDP Mainland Norway were large and statistically significant in 2020 and in the first half
of 2021. Towards the end of the evaluation period the differences were no longer significant.
This was due to both smaller differences and to the increased standard deviation associated
with the counterfactual, which is typical for dynamic forecasts of integrated time series.

The simulated impact of COVID-19 on Mainland-GDP in our study can be said to
confirm the results in studies made for the government’s coronavirus commission, specifically
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for 2020. For 2021, 2022 and 2023 the tendency was that our simulations indicated larger
impacts. As both data and models used for the counterfactual simulations were different,
exact correspondence was not to be expected, and as noted, the uncertainties are large and
they increase with the length of the horizon.

In addition to GDP Mainland-Norway, we reported the wider impact of COVID-19 and
the response to it for a range of main national accounts variables that are endogenous in
NAM. This demonstrates the efficiency of using an multivariate empirical model of the
macroeconomy, if it available and operational.

As the counterfactual is like a dynamic forecast, many of the challenges to interpretation
and validation are the same for the two model usages. Ideally, any model which is used to
measure the impact of COVID-19 should characterize the normal behaviour of the economy
as accurately in the pandemic (forecast) period as it did over the estimation sample. Hence,
although model intercepts must necessarily change significantly to capture the impact of
COVID-19, the other model parameters should be invariant with respect to this shock. This
is a strong requirement and seems unlikely to be met for all behavioural equations of an
empirical macroeconomic model.

However, invariance is a relative concept and a property that can hold partly if not
completely. The more practical requirement may be that although the other parameters
than the intercepts may not remain completely constant after the COVID-19 shock, they
do not change so much that the model-based counterfactual becomes uncorrelated with the
true counterfactual. It was beyond the scope of this study to do formal testing of parameter
invariance, but as more data becomes available research will no doubt shed light on this
important issue.

More generally, the experience from modelling the economy during the pandemic can be
used in a progressive way to improve on existing models. One area for research is dynamic
models with non-linear cointegration, Johansen (2004). In such models, equilibrium coeffi-
cients may change change while cointegration parameters are still assumed to be invariant
to the shock.

The values of the function DiffI(yt) will be different with linear and non-linear equilibrium
correction. As illustrated in the example above, the reason is that the medium-term difference
between the counterfactual and the baseline depends on the adjustment coefficients, and not
only on the cointegration parameters. A deeper form of structural breaks would be changes
in the equilibrium relationships in the model of the economy that existed before the shock,
ie., in the cointegration parameters.

However, cointegration is a rare phenomenon and can be said to represent deep struc-
tural relationships that do not break down easily. However, the possibility of breaks in
cointegration coefficients deserves to be given particular attention in model maintenance. It
would represent an impact of COVID-19 with consequence for model building, maybe in the
direction suggested by Vines and Wills (2020) for rebuilding macroeconomic theory with the
use of models with multiple equilibria.
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