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IXTRODUCTION. 

THE OBJECT OP CO~FLUE~C.E .\!\ALYSIS. THE DA.J.~CER OF IN· 
LUDING '1'OO MANY VARU TES D I A REGRESSION : I. N,\LYSI 

In a paper "CorIlelation a.nd Scatter , .." in "Nordic Statisti· 
eal J oumal" 1928 I drew attention to the fact that in statistical 
regression analysis there exists a. great danger of obt.aining 
nonsensical results whenever one includes in one and t.he same 
regression equation a set. of varia tes that coniain two, or more, 
Gubsets which are already - taken by themselves - highly 
intercorI1elated. Suppose, for instance, that we have throe. sta· 
tistical yari ates :1'1' X :!, ;1';; (measured fro m t heir means) .. and that 
we know for apriori reasons tilat there exist not only one but 
t l/1 0 independent linear equations between them (since the vari ­

tes are measured from their means, we may assume the equa­
tions to be homogeneous). Purther, suppose tha t. a. great Dumber 
of observations are made, each observation giving the values 
of tho three val'iates and being represented as a. point in the 
three dimellsional (Xl ' ;1'2' X~) space. All these observation points 
would then lie on a straight line through ol'igine in (.TI , x 2• • 1::\) 
space. From the distribution of thes e points it would be absurd 
to try t.o det€r mine the co-cfficicnts of any of the hvo equations 
that we know apriori should exist between the variates. Indeed, 
a set of points lying in a line does not contain enough informa· 
tion to determine a plane. More precisely the coeffic ients of 
this plane would contain a one dirr,ensional indeterminateness. 
n this situation arty attempt at deter mining from the available 

data a regr€ ssion equation invo~ving th ree n rhltes would be 
sheer nonsense. 

If nevertheJess such an attempt was made, the r e.gression 
coefficien ts \votud - if enough decimal p laces wero carried in 

the compu ta tion - turn out to be of the indeterminate %form. 

it enol'S of observation are present, the regression coefficients 

would not be exactly of the form %, but \Youlu now appear in 

the form of an error of observation divided by another error of 
obser vation. On the face of it the r esult of the oomputat.ion 
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would thus be doterminate but it would still have no meaning 
as an expression for a regression coefficient. We would have 

.' ctitiotts determinateness created by Hlndom errors, 
" Then several variates are included in the analysis, the. situa­

tion becomes of course. much m{)l'e comple-x. We may here 
encounter a whole hierarchy where some of the va,riates may 
form a set where a regression equation has a meaning, and 
others forming sets where such equations have no meaning, 
The study of this hierarchy is what I call conjlue,zce analysis. 
It is an important part of statistical a.nalysis, particularly in 
the social sciences. Indeed, the data will frequently obey 
many more l'€lations than those which the sta tistician happens 
to think of when he makes a particular regression study . If 
the sta tistician does not dispose of an adequate technique for 
the st ..."ltistical study of the coniluence hierarchy, he will run the 
risk of adding more and more variates in the study until he 
gets a set that is in fact multiple collinear and where his 
attempt to determine a regreSSion equation is therefore absurd. 

In practice these cases are apt to arrive much more fre­
quently than is usually recognised. As a matter of fact I 
believe that a subst..'lntial part of the regression a,nd correlation 
analyses which have been made on economic data in recent 
years is nonsense for this very reason. 

The sampling theory as we know it today does not furnjsh 
criteria that can distinguish between these var ious cases. 
Indeed, the standa.l'd errors on the regression coefficients, and 
most or t.he other parameters used in sampling th eory become 
themselves indeterminate in those cases which it is here wanted 
to analyse, or more precisely expressed they get fictitious 
determinat>8llCSS create d by random errors. I indicated this 
theoretically in the abo ve mentioned paper in Nordic Statistical 
Joumal of 1928, and the example discussed in Section 33 of the 
present paper will illustrate clearly how inadequate the tools of 
snmpliIJ g theory are for the study of t.he problems whic1l we 
encounter in confluence analySis. 

Of course, this contains no reflection on the value of sampling 
theory in general. In problems of tile kind encountered when 
the data are the result of experiments which the ulYcsligator can 
control, the sampling theory may render very valuable ser ­
vices. Winless the eminent works of R. A. Fisher and Wish,wt 
on problems of agricultural experimenta tion. 
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In the 1928 paper "Oorrelation and Scatter ... " I mad~ a 
first a ttempt at developing statistical criteria. for the various 
cases of cOllfluence hierarchy. The crit,aria wem based on a 
study of the smallness of the correlation determinants in tIl e 
various subsets. '1'he square roots of these determinants I 
termed scatter coefficients. In practice one will most frequently 
work with the determinant values themselves, which ma.y 
perhaps be called scatterances 1. 

The weak point in the method I suggested in 1928 was that 
no criteria were developed for judging the significance of the 
scatteranoes deviation from zero. In the subsequent years I 
reverted to the question on an d orr, on va-rious occasion..'), 
attempting to push the analysis Iurther. The line of approach 
which suggests itself from the view-point of sampling theOl' ,\­
is to attempt to find the sampling distr ibution of the BeaUel' , 
ances. I did not concentrate much on this aspect of 1..ho 
problem, primarily because I felt that - a t least when the data 
are of an economic sort - this would not be the most fruitful 
way of approach. Indeed, if the sampling aspect of the pro­
blem should be studied from a sufficiently general set of 
assumptions, I found that it would lead to such complicated 
mathematics that I doubted whether anything useful would 
come out of it. And, on the other l1and, if the sampling aspect 
should be studied under simple assumptions, for instance, of not 
collinear and normally distributed basic variates, the essence of 
the confluence· problem would not be laid bare. One would then 
again g-et back t.o such a situation where those higher parar 
meters (st.andard errors, etc.), by which the first set of para.­
meters (scatterances, ,etc.) are to be judged, themselves become 
indeterminate in just those cases that interest us from the con­
fluency view-point. One would have to consider standard 
errors of the standard errors, and standard errors of these 
higher standard '8rrors again, and so on, up to such a high level 
of the st.andard error hierarchy, that the utility of tIns whole 
appa,ratus would become very dubious. 

I decided therefore first to att.ack the problem more from the 
experimental side, working out numerically - on actual econo­
mic data as well as on constructed examples - various other 

1 This tel:JU was suggested by Mr. Maurice H . Belz, Locturer at the Uru­
varsity of Melbourne, who stullied methods of confluence analysis at the 
University I nstitute of Economics and in my Slatislical Seminar in Oslo 1933. 
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types of criteria which :intuitively and heuristically may 
suggest themselves. 'rhese experiments converged towards a 
definite method which, after applica,tions to various kinds of 
data, was foune: to give satisfactory and plausible results . The 
present paper gives an account of this work. 

Part I describes some of the procedures of confluence 
analysis with which I experimented befom reaching the more 
satisfactory method. While these tentative procedures describ­
ed in Part I do not, taken by themselves, give final, conclusive 
criteria of confluency and linear significance, they are not 
wholly without interest because they exhibit the nature of the 
difficulties involved, and may - when used wIth care - help 
making a rough preliminary analysis of the data. 

Part II gives the theoretical background of the furt.hel' 
analysis. It discusses t.he distinction between systema,tic varia­
tions and disturbanees and from this draws certain conclusions 
regard:ing the "true" regression. In particular, there are point­
ed out certain facts regarding the connection between the 
"true" r'egression and the empirical results obtained by lea.:; t 
square minimalisa,tion in differ-ent directions. These facts give 
the leading ideas of the subsequent method. In this connection 
is also outlined a genera,l scheme of interpretat.ion for the 
various principles of determining linear regressions whieh are 
in C01111110n use or may suggest themselves as plausible. 

Part III develops t.he, method which I am now recommending 
as the most conclusive and which I feel gives a rather satisfac­
tory solution of the main problems of linea,r confluence analysis. 
The computing technique to be used in this connection is 
described in Section 15 and . the essence of the pr inciples of 
interpretation are developed in Sect.ions 16- 18. Those who 
are primarily interested in results will probaNy find these four 
sections the most impor tant in the present work. 

Part I V gives numerical examples illustrating in detail the 
application of the technique proposed. One. of these examples 
is based on constructed <lata, in order to give a means of check­
ing how the i€sts proposed work in practice. This example 
also shows how utterly inadequate the usual sampling error 
analysis is as a means of testing Significance when the data are 
linearly confluent. The other examples are drawn from actual 
data, particularly American consumption and sales statistics. 
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As a by -pI'oduct in the study of these latter examples is 
obtained - by means of two different reference commodities 
(meat and butter) - a determination of the money flexibility 
that may be compared with the results which I found in 1930 
by using U. S. budget data. 

'Hle present study has been undertaken as an indispensable 
preliminary step for certain projects, namely statistical produc­
tivity studies and statistical construct.ion of econometric func­
tions (demand and supply curve and the like) that are planned 
as part of t.he, research programme of the University Institute 
of Economics, Oslo. It is to be hoped, h()wever. that the re­
sults here pre.sented may be applicable, not only to our special 
problems, but more generally to various kinds of problems 
where the statistical confluency of the data is an important 
feature to take. into consideration. 

The amount of numerical work involved in the present study 
has been extraordinarily great. It would have been entirely 
impossible to carry it through if I had not had at my disposal 
the trained staff of computers now working at the University 
Institute of Economics. This Institute was established through 
generous grants from the Rockefeller Institution, New York 
and A /S Norsk Varekrig, Oslo. As directors of the Institute my 
colleague, Professor 'Vedervang, and I take this opportunity 
of extending our sincere thanks to these Institutions fo r the 
support received. 



P ART I : OONFLUENOE ANALYSI S BY MEANS OF TEST­
PARAMETERS. 

1. CORRELATION COEFFICIENTS AND SCATTERANCES. 

Most of the work in linear regression analysis can be based 
on cross moments and correlation coefficients. If Xl .. . x " are 
the observational variates measw'ed from their means, and the 
Gaussian symbol [] denotes a summation o,ver all the observa­
tions, the moments are 

1. 1) m,'j = [X l Xj ] 

and the ordinary (gross) correlation coefficients are 

rIli;i 
r = - ­(1. 2) 

ij mfl m jjV 

The standard deviations of the variates are 

(1. 3) Imii
a;=" N 

where N is the number of observations. The standardised variates 
are 

t: _ X i 
(1. 4) ~ 'i- -

O . • 

The standardised variates have unit standard deviation. If the 
variates are normalised in such a way that thei r 8'/J1I1l.~qnare 

over all the observations (not their standard deviation) is unity, 
we get a set of variates whose cross moments are the same as 
their correlation coefficients. Of course the difference between 
the variates normalised in this way and the standardised 
variates only lies in the factor YN. 

I am hepe taking the correlation coefficients (1. 2) simply as 
a set of computational parameters without making any a.ttempt 
at interpreting them as a measure of the strength of the rela­
tion between the variates. 
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In practical work it will be found more cOllvenient to handle 
the correlation coefficients than the moments, particula,rly 
because the former are reduced to a common order of magni­
tude with the same meaning of the decimal places in all the 
magnitudes treated.. 

In the computation of moments and cOITelation coeffieients 
we have at the Oslo Institute developed. certain checks w hicll 
we have found very useful, but which are not, as far as I 
know, commoul y practised. It may therefore be wor th while 
to mention them In the present connectiou. We introduce 
as in the usual checking teclmique - the sum variate 

(1. tIl .:co= ,rl + ' . -+ Xw 

But inste ad of computing all the crOBsmoments miD an d veri­
fy ing for each -i t.hat 

(1. G) 1n(O = mil + . , . + mfn 

we simply take the sumsquare m,oo and verify that 

(1. 7) moo = mu + ' .. + Hl n ti + 2 L m(j 
( <j 

where the summation 2: means the sum of all the mcross­
i < j 

moments that express interconnections between different vari­
a tes. 

If it is wanted to apply a check that can locate an error to 
a smaller section of the- work , we rather prefer to spiit the 
seri es of observations into ranges, say of 10 or 20 observations 
in each range, and then apply (1. 7) to each range. 

Generally we form these range-moments b2for,e Teducing the 
variates to measurement from their means. The only thing we 
do to the raw data before computing the moments is to add 
z-eros to some 01 the vari ates in order to make all of them, 
roughly speakblg, of the same order of magnitude, and some­
t imes to subtract a provisoric moa.n in round num'beTs if the 
figures are such that this can be done very quickly. From 
these modified variates we form the sum var iate (1. 5), a.nd 
compute its sum over all the observat ions. This sum is 80 

checked against the sums of the individual variates . (If8 i 

necessa-xy this checking may also be split into ranges.) A 
lisEag adding machble is convenient for this purpose. 

The or igine moments of the variates modified by the above 
procedures may be denoted 

(l. 8) 1.11ij' 

rrhese are the crossmoments that are fo rmed and checked for 
each range by (1. 7). The total moments derived from the range 
moments are also checked by (1. 7). This being done, all the 
rest of the work is only c01lCerned with total r esults, not with 
range results. 

The "multiplied" mean moments 

(1 . 9) Sij = ]V . M~j - 8; 8j 

are formed (each quantity sij being computed bl one operation 
on the machine.). The results are checked by computing the 
row sums 

(1. 10) Si~ = Sil + ... + S i ll 

and verifying that the sum of these row sums is equa.! to Si~ 

computed directly by (1. 9). 'l'his check is equivalent to apply­
ing (1. 7) ; of course (1. 7) also holds for the si)­

It will be noticed that (1. 7) involves much less extra multi­
plication than (1. 6), and (1. 7) is just as safe, with one excep­
tion, namely that (1. 7) does not register a mistake in inter­
changing two (or more) of the moments. Pa.rticular attention 
should therefore be given to the correct location of the figures 
in the tables. A gooel safeguard against mistakes of this sort 
is to compute each crossmoment, for instance 3:[12' through for 
all ranges before a new crossmument is taken. This means that 
all checking by (1. 7) is left to the end of the moment work, 
and then all range-moments recomputed that does not check 
right away . 

In terms of thE' S ij the correlation coefficients are 

,Q ij 

(1. 11 ) 
r/i= \ I SiiS,i.i 

,{'he dividing out by the factors in th e numerator of (1. 2) 
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or (1. 11) is usually - so far as a systematic check is concern· 
ed - a weak point in correlation computations. We check this 
part of the work as follows. First the numbers V8 i , and 1/ Y;;; 
(i= 1,2 .. . n) are computed and checked individually by squaring 
and multiplication. Then the correlation coefficients :lre com· 
puted by (1. 11) and th~ row sums 

(1. 12) ' ''0 = 1'i1 + ' , . + r iil 

are formed. By means of these it is checked that 

1 
r- ~ - 'S 'u (1. 13) LtV 8 u . 1'10= L.,i ,r;;. , 

where SiD are the row sums (1. 10) previously computed, 
If (1. 13) does not check right away, each row in the con'e' 

lation matrix may be checked separately by 

1 
'\' --, sij­(1. 14) \ ' Si ; . riO = L.,j ~ 

'The checks (1. 13) and (1. 14) contau1 of course also a verifica· 
tion of the l'ootsquariDg or t lle Sa and on tho divisions 
1/ 0 ' so that actually all steps are clICcked by tbis metbod, In 
pr actical work with seve ral variates this checking technique 
has been f-ound very helpful. 

In all the matrices 11ere considered J.lIij , BU' "/j etc, only the 
diagonal and one of the triangles need to be filled in, since the 
matrices are symmetric . As a rule we use the north-east 
triangle. Taking a. row sum (or a column sum) in such a 
rna trix mea,ns taking the sum of the elements in a broken line 
reflected under 45° on the. principal diagonal. 

The correlation determinants, i. e. the scatterances, we denote 

II I ).
11 /'12 . , , r 

1'1.. .. . . .. .
(1. 15) U = 

"- 0..1 r 11.2 ••• '·1111 

In the subset (1:j , . . k) we use the notation 

15 

'"ii 'i' ij' ., ' i k 

r j i rj j , , • r H (1. 16 " .. k­U'j . . . 

r l: i r I<J • , • 1'u 

These determinants in all possible subsets are computed most 
easily by the tilling technique described in Section 15. 

The diagonal elements in (1. 15) and (1. 16) are all equal to 
unity . If these diagonal elements are replaced by zeros, we get 
the "hollow" correlation determinants. 

o ?'12'" r 111 

( 1. 17) r= and similarly ru I:' 

r 'll r,,~ . , . 0 

'rhese hollow determinants aTe convenient for cer tain comput.a· 
tion purposes. 

For very large n an approximation to the scatterance 6. 
may be computed by retaining only the' first terms in the ex­
panSion (2.9) and computing by the following formulae the first 
of the hollow determinats r f rom which the B's (mentioned 
in section 2) are built up : 

If we write the expressions for rout explic- itely we find that 
the first few even·rowed determinants .of this type can be ex· 
pressed by means of the following two sets of magnitudes which 
themselves can be computed recurrently, We first define 

(1. 18) ?'dkl, = L ?'"p r re 
(t <{J 

where the summation runs through combu1ation without repe· 
tition of the two affixes a, f3 selected amongst the four affixes 
(ij7ch) , rr~m means the correlation coefficient that has the two 
affixes which remain when a and f3 are taken away from the 
set (ijkh) , Writing (1. 18) out in full for (1 234) we get for instance 

(1. 19) " 1234 = r12 • r S1 +r13 , r21 + 1'23' ru +"I! ' ?'~B + r2, , r13 + r34 'r12 , 

that is 

(1. 20) rl~3! = 2 . (1'12 ' r 54 + r 13 ' "u + r 23 . r u )' 

Sin1ilar ly we define 
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(1. 21) rljUlm -- ')~ ra{3 ' " "-nl-/our 
t <{3 

where "rem-four is the quantity l' with the four affixes that remain 
when (a, fJ) are taken away £rom the set (ijkhlm) . In this way 
we may continue und def ine l' with any even number of sub­
scripts. 

A similar system may be built on the ["s . Here we need 
however a more elaborate classification, namely one that in­
dicates the various ways in which the affixes on r may be 
divided into SUbgl·OUpS. Tbe number of affixes in each sub­
group we shall indicate by superscriptB. For the hollow deter ­
mina.nts themselves we WTite 

~) - rete(1 22) r~) =r· · ri
(
lk - IJk .LJ (.1' 

Then we define 

(~ • 2) _ 'I;' r (2i • r (2) (1. 23) 	 Ijkl. - L. lLf3 rem 
rt <p 

(a, fJ) running as before through combinations without repeti­
tion in the set (ijkh). Writing out r gil in full we ge t a 101'­

mula similar to (1. 20), only wi th r instead of r. Further we 

define 

r (2 . 2 . 2) - '\' r (2) r(2'~)1. 24) ijkhlm - L.. "f3 rt1l/ 

(t <.3 


which is analogous to (1. 21). On the other han d 

1, \2 . 4) - 'I;' r (2) r (4) (1. 26) 	 i jkhlm - f.., ,,(1 !'em 
a<{J 

1 ",,8 ' 8) - '\' r (l)) (3) etc.( 1. 21j) 'jkhlm L. rem - afJ 
« < 8 <;t 

are new types of combinations not represented in the r's. In 
(1. 25) we would or course have obtained the same expressklll 
by extending the summation to combinations \vithout repet ition 
of the 4 affixes (aPr6) and letting the remaining affixes be onl 
two 	in number. 

By means of the above symbols the first few evemowed rs 
may be expressed. as follows 

_ 0 

(1. 27) 	 ij - - rij' 

1'7 

_ _ ,2 . 2) (1. \ ~ 
(1. 28) 	 1 iJ/;./, - l i jt l. - ~ ! 1 ij"/i 

,~ .. 11 1., .. , ,." ',' ") (1 )2 
(1. 29) T /jM/1II = 2T!j/;.':11ll +"2 I /jthl", - rij~hil;' - - Ii'rijU,lm 

In order to express the un-even-rowed T's we need thE' magni­
tuues riJl:i.;:l etc. defined similarly to (1.25) a,ud (1.26), a nd 
further 111ese m~lYJl itudes defined for an incomp7ete 8l1mmation, 

that is by lett.ing the. summa tion run over all a ff ixes ex-ept some 
specificecl affix p. This leaJs to deriDing 

r ~ .3) - ),1)1/ r (2) r (::) 1. 30) 
)1 . ij~M - - ~ ltfJ rw 

a < 

where the summation I'W1 S over combinations without repetition 
of th e two affixes a/l picked amongst the set of four affixes 
btuiuecl by lea,ing p out of the set (t'.1kltl). Similarly we define 

the incomplete ,. 

L 31 P ' ijl:I,t = 2//)\ "pJrem-/rw 

a 


where Ct runs tl'l'ough (ijkhl) exept p; p may be called the 
"skew affL"'\:" ir.. (1. 30) and (1. 31). As an example we may take 

1. 32) 1"' 1 23j~ = 1'12 ' 1"1 8J u + 1'13 . 1'1 2.1.1 + 1'11 . 1'I ~S 5 + 1'", . i'12H' 

III terms of tile aWHltities (1. 30) and (1. 31) we havo 

1. 33) 	 r; jt = 2 . 1'tJ . "':k . 1),; 

_ .,....(2 · :1) + r 2 . 3) + 1 . . •(1. 34) r t i!;hl - 1.. ijkhl f . iJ"'-: 4' ' i . i )l:11/ 1j/; /'!' 

The formula (1. 34) is developed with -£ as the "skew" Hffix, but 
we may just as well use any of the other affixes for this 
purpose. 

The above formulae have little interest. when it is wanted to 
compute all possible scatterances in a set of r easonably large 
dimensionality. In tha t case one will use the tilling technique 
r Section 15. But the above explicita r -formulae m ay serve 

to 	dete rmine successive approximations to a given scatterance 
of very high order. Indeed the successive terms Bo, B I , B~ ctc. 
oi the formula (2. 9) of the next Section may be locked upon as 
successivo t.erms in a Taylor series for 6. Bo is equal to 1, Bl 
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equal to zero, B~ the sum of all two-rowed r in the big set for which 
the scatterance is to be computed, etc. By letting W) jn (1. 27), 
(ijk) in (1. 33) etc. run through all possible combinations in the 
big set we thus obtain the first terms of the scatterance in 
question. 

As an example of tile nature of the approximation obtained 
by these successive terms we take the following scaltcmnce 
in the potato data, of Section 31. 

TABLE (1 . 35) , POTATO DATA. SlJCCESSIVE TERlYfS I N ~ lms61e.. 

First term B tl 	 1.000000 

Second ter m B 	 = - 1 .793000 -
Third term Bs 	 1.448480 

Fourth term BJ 	
.392(i33 

F ii'th term B5 .01034 

Sixth torm B6 .010648 

Seventh term E, 	 .001132 
.000006E i.ght term Bs 

Total t--,. (in. eigh t set) = ~; B/ 	 .282701 

How can the scatt.erances be interpreted as indicators of 
linear conflucncy ? 

In the first plaoo we note 1Jlat the general tendency of the 
_ -s will be to be all t.he smaller, the better tho l inear connec­
tion in the set considered. (For a geometric interpretation of 
the scatteranoes from this view-point see Sect.ion. 2 in Part II 
of "Correlation and Scatter .. .") . But we are not only coneem­
ed willi finding a· set about which it ca.n 	 be said fuat its 
variates aro linearly connected. From tile 	confluency v iew­
po int it is just. as import.ant to ascertain that the set considered 
is simply eoll inC!ul', which means that not all its first subsets 
are collinear . (The first subsets are the 	sets obt.ained by 
leaving out one of the variates at a, time). Therefore some 
comparison must be made between the scatterance in the- set 
considerod and the scatterances in the various firs t subsets. 
These lattm' we shall call tile /lUvstatferani'I'S _ 

The general tendency which we must first 	of <til look f OT 

when wo compare subscatter:mces and the scatterance in (,ho 
bigger se t is whether there. is a sharp deel-ine when we puss 
from the former to the latter. We are particularly interested 
in s.ooing whether t.he scatterance in the bigger set is much 

smaller than the 8111allIMt of the subscatterances. If this is not 
so, tho new variate tha.t is a-dded as we pass to the bigger se t 
cannot be looked upon as important. But on 	the other hand it 
does not do any great harm. It is rather a neutral varia te. For 
the moment we shall not go in to any more detailed discussion 
of the nature of the variate in this case. '1.'he complete analysis 
in this ca.se cannot be given only on the basis of the scatter­
ances, and must therefore be postponed till later (see in parti· 
cular SecLion 17). 

Only if there is a substantial drop in the scatterances do we 
have a situation where the passage to the bigger se t may con­
stitute a significant progress in the analYSis. But here we must 
be careful: the.l1e are two possibilities. A sharp drop in the 
observed scatterances will be procluced, not only if there exists 
in the bigger seth one linear connect,ion betwe.en the variates 
which are so much more perfootly fulfille d than a linca.r con­
nee-tion in the subsets, but a sharp decline may be produced 
also if all the subsets u:e>'e al1wtd,y systematically connected, Indeed, 
in this case ihe erratic element wiII get a much smaller chance 
of keeping the sca.ttcrance in the bigger set up from zero. This 
is plausible already intuit ively, and can also be deduced from 
ille theoretical consider ations of Section 8 and the numerical 
examples in Part I V. Thus a sharp decl ine as we pa..ss from 
the subscatoorances to t.he scatterance in the bigger set may 
be either a warning signal tilat we get into a multiply collinear 
set where a regression equation has no meaning, or i t may be 
a criterion tilat we get a set where the r~OTession equation is 
more exact than before. 

InCidentally this shows how absurd it is to use the multiple 
correlation coeJficient in the way in which it is usuaDy employ . 
ed. The multiple correla tion coefficient is indeed essentially 
deter mined by the rat io between a scatterance and a. sub ­
scattera.nce. (The reader may for instance compute the mul­
tiple correlation coefficient of 4 on (123) in the meaningless set 
(1234) in Section 23. It turns out O.n9. Tho scatterances need­
ed for this computation are to be found in the tilling tables of 
Section 23) . 

Which one of tJle above two al ternatiyes we are confronting 
depend on whether the deviations from zero of the subscatter ­
ances "Were systematic or accident.al. Is there any feature in the 
ai,~b'ilmtion of the subsca,tterances that can roveal anything 

http:accident.al
http:betwe.en
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about this? If we are to reckon with all conceivable possi­
bilites, then virtually any observed distr ibution of the scaL­
terances can be interpreted just as well as due to erratic in ­
fluences as due to systomatic ones. But practically speaking 
it seems probable that there is all the more chance for obtain­
ing au even distt'ibution of the subscatterances the more ex­
clusively they aro determined by random en·ors. Therefore, 
if one or more of the subscatterances deviate considerably from 
the U1inimum subsca.trerance, it seems plausible to conclude ~ 

that 1.ve do not have 77mitilJle tolliJlea,rit,lI in the bi,qgcr b·et. But when 
all the subsca,t terances are more or less equal we must be pre­
pared for such a possibility. Of courS-2 it may conceivably 
happen that the subscatterances turn out approximately equal 
even 	if their deviat.ion from zer,o are essentially systematic, but 
so long as we base our confluency conclusions only on scatter ­
ances 	we have no means of r ecognising this case. If we want 
to play safely we ought therefore to refuse to pass on to the 
bjgger set whenever the subscatterances are 11oo.rly equal aud 
of such a size that it i s no t obvious that they aT'S systemati ­
cally different fr om 7Jero. 'rhe method of Part ill will furnish 
a more refined criterion that permits a more definite conclusion 
even 	in the case which we must thus leave in susptmse when 
we use only scatterances. 

To resume wo may formulate the rule for the Interpretation 
of scat terances as follows: 

Let on 	 yariates be observed. If it is contemplated to deter­I. 
mine a r egression equation containing 11 of tlwse variates, 
all possible l'-dimensional sets which can be formed in 
the big n-dimensional set should b e iu\('stigated and that 
one, or those v-dimens.ioll fll sPts which ha,e tJ1C smallest 
scatt-erance should be selected l or a fu rther scrutiny. 
In each sucb J'-dimenl"ional s' t selected fol' Jurtller scru­n. 
tiny an the subscatterances should be considered. U the 
scatlertlncc in the l'-dime.ll8 iolltl l set is n ot npprocial)ly 
smaller than tile smallest subscat.lerance contained in it, 
there is neith er any great harm nor any great use in con ­
sidering the 11-dime llsional set in question We could just 
as well be satisfied with thai (" - l )-dimeru:ional set which 
has the smallest subscatterance. 
If there is a s11arp decline as we -pass from the subscatter-Ill. 
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ances to the scatterance in !.he l/-cli rnens ionul set, two 
possibilities are prese,nt. Either this decline means that 
it is a significant progress t,o form a regression equa tion 
in th is v-dimensional set, or it means that i t is parti ­
cularly dangerous. If at least one of the subscatterances 
are great " it is probably safe to pass on to the bigger set. 
Even if all the subscaUerances at'e small it may be 
ad visable to accept the bigger set, pI'ovided thai there 
is a considerable spread in the subscatterances, for instan­
ce if there is one subscatterance that is decidedly smaller 
than the other subscatterances or i1' there is at least one 
subscatterance that is definitely larger than the others. 

IV. 	 But if all the subscatteranccs are about equal, a.n.d rather 
small, then the bigger set must be refused even though 
its scatterance is much less tha.n the subscatterances. 
Conceivlluly it might even in this case have been correct 
to accept the bigger set, but the scatterances do not give 
a means of finding out whether this is permitted or not. 

V. 	 If by the above criteria there arc more tban one II-']imen 
sional set which it seems plausible to accept, oue should 
proceed to scrutin ising all the (1' + I)-dimensional sets ac­
cording to the criteria (I) - (IV), omittilq hQ/Cl?;uer all~ 

set that cOl~/ains a $1.!l)Spt 1I"t1~h by (IV) has alread11 bee"), 
recogm'sf'{l as dmI9Pl·ou-s. 

2. THE ELLIPSOID METIIOD AND THE ClIARAOTERISTlC 
POLYNOMIAL. 

When I started the experimental work of t rying to find other 
criteria that may replace or supplement the scatterances as 
tests of confluency, the first idea followed up was to study tho 
characteristic roots of the correlation determinants. The 
clwractel"istic ruot" )'1' " ). , oJ tile determinant (1. 15) are 
defined as the zeros of the characteristic polynomial 

1'11 -)- 1"'12 ' • . 1\" 

(2. 1) P().) = I ~'~1 1'23 - J, - .• "2 

il L 	 r 'J2 ' . . r ,w.- A 

] For illstance, Dol very far rnnn being of the same order C)I magnilude 
as lllilt which would be cxpC'Cted in a scaHerancc for tbe !'.ll.ITIe DlIIDber of 
random. variates. Some informati on about this ordeT of magnitude may be 
obtained fr om (he tables of Section 30. 
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The expansion of th is polynomial is 

(2. 2) pP.)=.A,,-A"_JA + .i'l/l_ ~)? + ... + (-) ".4.01." 

whm'e AI: is the sum of a ll the (n k·ro\ved priucipal minors in 
{l. 15). By convention Ao = 1. Obvi ously All is noth ing but th e 
determinant (1. ] 5) itself. lntroducing 1- ).=;, the expansion 
takes on the fOl'ln 

(2.3) P (J.) = QC~)=B,,+B"_l t + ... + Bot1
' 

where tbe B's are the corresponding sums of principal minors 
in the I.lOllow determinant. 

In the Bxpansion (2. 3) the second highest pmver of t is lacking 
because the one-rowed principal minors in the hollow deter­
minant (1. 17) consist only of zeros. 

The value of the characteristic. polynomial fol' a given value 
of A. (or of ~) may be computed dir.ectly by inserting th e value 
of ). (or ~) in (2. ] ) and evaluating the det,erminant as it stands. 
Or the computation may be made from (2. 2) or (2. 3) by first 
evaluating the coefficients A or B . The latter method is to be 
preferred when many ordinates are wanted. 

Since all the characteristic roots are real, there is in general 
no particular difficulty iu determining them by one of the usual 
approximation methods. In a thre-e dimensional set they are 
easily determined in explic.it form from Q(;) since the second 
highest power of ~ is here lacki ng. 

The individual terms of the coefficients A - that is the 
scatteranees themselves - are determined most easily by the 
tilling technique of Section 15. If it is wanted to determine the 
coeffic ien ts A jn all subsets (a, ,6 .. ,r) they may be built up from 
the scattera:nces by the l'ecurrence formula 

(2. -l) ( ~, - k).J.I:(o,p . . '\ A ,·, " '~ := ~ k{ ((, (3 .. .,l~. . / 1 

. i = I',I: .;' 

Where (a , (J . • • r) is any I,·dimensional se t, and .Atla , {J . . rJ lhe 
)oeilicient 0[ (- )f in tllis set. Tl18 inverted parenthesis deIlotes 

.4 " l ' {" • l~ 0 1' . f' l' = 1,e - <) <)- ( l!!:51) = .4 exc USlOn 0 ' Ins auce t 'or i •. LJ. ~-to, .t:I.2(12:1) + 
+-i~tm ) + A:!(l a4) + ..4~(~:Hl ' As a con,ollient check on (2. 4) we 
have th e. fact that the magnitude determined as the sum of 
the elements in the r ight member of (2.4) shall be divisible by 
(11- k). 

'The recurrent computation of the A's by (2. 4) can be checked 
for each 1'-le'\el by the formula 

(.2.5) . ~'\' " A k(<t;1 .. ?) = (11II-- kk) . A li !]:.! . . ,,) . 
a<{l < .. / 

rphe sum in the left member of this for mula is simply the sum 
of all the A" in all possible v·sets contained in the big set 
( l SI \ 

~ . .. tlJ. 

The formula (2.5) is obtaine d by the following consideration. 
l "'b.e S \illl in the left member of (2.5) obviously contain all 
possible k-rowed 6. contained in the big set, eacb such k-rowed 6. 
being involved a certain number of times. In other words the 
left member of (2.5) must be equoJ to Atd2 . .. nj multiplied by a 
certain integer. This integer is determined simply by comp ar­
ing the total number of terms in the left member of (2,5) Witll 
the total number of terms in .A1:(1 ~ . . . 11) ' 'The former num ber 

is equal to the number of terms in each A"(ap . . Yl namely ('k) 
times the nmuber of AI:(" p ... )') entering into the snmmation in 

the left member of (2. 5). namely (~). And the number of terms 

in .A1:11~ .. 71) is (~;) The integer in question is consequently 

equal to 

(II) (p)!(n')= (n- k) . 
II k ,k I, - k 

A similar formula obviously holds good for the B t u/I . . /') or 
more generally for any set of magnitudes that are built up in 
a similar ,yay as a sum of clements defined lor each (ct fJ •.. r) 
combination. 

In practice the che.ck will take the fOl'm tha t on eaeh v-level, 
all the n umbers in the left member of (2. 4) arc computed. '11be 
'1'(12. ~) nre fo rmed directly, and it is verified that (2. 5) holds 
good . 

Fl'om the A 's we may pass to the B's or vice versa by the 
formula 

k 
. " +1 (11_h' 

(2. G) 
'\:'

B Ii" e, p . . YJ = L., (- ) k- h) A·Ma . 

h=D 

and 
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~ §i = Kc; wljere K is n fu(: to1' of proportionality. Determining 
(2. 7) " ("/I-h) K so as to get intersection with the ellipsoid wc find ..dk(a f3". YJ = L k- h B" .:/, . /J" }'). 

' = 0 K2 = O/2./j ri j Ci cJ.:. The square uistnnc-e from origine to this point 
is conseqnentlv t.. ,t::. = K 2 2. ,(p =;.e whel'• t~1 , "F or Ie = .' (2. li ) gives in p~nticular in the big set, i. e. l or 

v=n 
fI (2.11) I. = 2. iCYL,J"UClljj' 

(2. 8) r = L(- )" ·" A, •. 
,,=0 Since a main axis of the ellipSOid is defined as a stra.ight line ~
F rom (2. 7) we Similarly get 

(2. 0) 6. = )' B J,....., 
'I=- O 

As a final check on all the quantities A. the "Lollow" deler­
mrnant B" = r in the big set may be computed both by (2.8) 
and by evaluating tile determinant directly. The formula e (2. 4) 
to (2. 7) ma.y a lso be utilized for various other checking pur ­
pO!les; for inslanc:e if the B's in the big set have been comput­
ed, but not the A 's, and if one proceeds to computing the A'fl , 
in all whsets, th en on each v-level (2. n) may be used as a 
check by inserting in its r ig11t member the expression for the 
big Bet A's in terms of Ute big set }j·s. 

When the coeffieients A. or B aI'£' determined, the values of 
the polynomial P(J.) or - which amounts to the same - or 
Q(;) are most easily computed by ordering the terms according 
to the principle of "Chinese boxes", as follo ws: 

(2. 10) Q(~) = III ~~ + B21 ~+ B3 k+ Bl I~ + B~+ dc. 

If a, computing machine is available, wh ic.h has an arrange­
ment for transferring m echanically the figure standing in the 
"I'esult", to the key-board, tJ18 computations by (2.10) can be 
done very quickly. 

It is a. classical fact that the characteristic r oots are propor­
tional to the square lengths of the main axes of the normal re­
gression e llipsoids fitted to the observed scatter. This is easily 
soon as follows. The regression ellipsoids are definerl by 
Ljj ;ij §j §j = 0 where tbe ~I::i are the scatter diagram coordina tes. 
r/ j the elements of the reciprocal of the corre lation matrix, an 
a a parameter whi('h is constant al ong a given ellipsoio in the 
fam ily. L et . • c" be the di reetion numbers for a given straightc1 • 

line trough origin. The equation of this hue may be written 

from origin in a clirection that makes Hs length measured from 
origin to ilie ellipsoid a minimum (for the short axes) or 
maximum (for the long axes), the problem is to seek the ex­
tremum of I.. By partial de l'iHttion in tl la usual way th is leaus to 

the equation L:J(rIJ,-J.cj)cJ=O for tbe (;)" wheree'J,= .(Ol Wbj eTI ~*J:.
-' ~ Wlen t = 7 

In order that t:lt is "ydt~m shall ha:ve a solution (othol' than the 
trh-iul c, = 0) it is nec:('s:::ru:y and sufficien t that A is a zero of the 
polynomia l P(i..) defined by (2. 1) Hence t l1e charactel'istic roots 
of the malrix (rtj) must he proportional to the sc)uare lengths of 
the maUl axes of the regression ellipsoids. 

It therefore seems plausible to conclude that the observed 
sCflttel' is systematically z -fol<l collineHI' when 1( of Ule dwl'­
acteristic roots are "very small". This method may for short­
ness be called the ellip~'oirl method. 

The main a..~es of the rogression ellipsoid a lso have - as is 
well known - an immediate connection with the reduction of 
the variates to an uncorrelated form. Indeed, it is a lwa.ys 
possible to find a homogeneous non-si.ngular linear !.ransforma­
tion, 

(2. 12) ?!: = LJ Ckj ;j 

such 1bat the variates z~ becomo uncorrela ted. The moments 
of the new variates will be 

(2,13) [B" !,.z,J = LUr.jChiCtj 

" ;j being the moments of the old variates, which is the same as 
their correlation coefficients, when the .~I are normHliseu in 
such a way that their sumsquares arc unity. The problem is 
thus only to reduce a qu adratic form (ua mely the one buil t over 
-d to a sum of squares, and it is a classic.al f act tha t. th is is 
ahvays possible. It is even possible to do it in an infinity 0 
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ways (one method 'Of carrying the computations thr ough by a 
recurrence formula was indica ted in Section 4 of my :i928 paper 
"Correla,tion and Scat.ter . . . "). But if we impose the supp­
lementary oondition that the t ransformation shall be orthogona l 
then i t is uniquely deLermine.d (when the 'Observed correlation 
matrix 1"ij is nonsingular and 1.he characteristic. roots different). 
Indeed, the condition of non· correlation for t.he var iates z. is 
expressed by 

(2. 14) 	 L;j J"iJ c'ti ekJ = }'l:e" t 

44; being certain numbers that it is net necessary to specify for 
the m oment. If we insert in the right member of (2. 14) the 
condition of or ihDgonality , namely 

(2. 16) 	 L,ell J, el,)' = e llkJ .o 

and notice that e~j may be ,nitten LI eU eM. (2 , 14) takes tile form 

(2 . 16) 	 LIj (1',) - A/; e) O'd CJ: j = 0, 

Looking upon this as a system -of equa,tions 'Of tho form 
~j C", Uj = 0 (71, = 1, 2 ... n) where (Chi ) is a non·singular mat.rix, we 
see that we must hav(l, 

(2 . 17) Lj (r l j - I.j; ei ) ckj = 0 (i = I, 2 .. . n). 

T his sho ws that the }'!: are nothing but the characteristic 
numbers of the correlation·matrixand G/: j the direction num· 
bers for the J.;-th main axis of the regression ellipsoid. In other 
words the transformed uncorre lated variates z" Il re nothil1g but 
the coordinates of the scatter points mea-sured along the main 
axes of the distribution e llipsoid. 

By (2, 12) the variates z are expressed in terms of the §. 
Tnw rsely the g are expressed in terms of the z by the fOnnl1.lR 

(2. I S) 	 §i =L.t z/: ek " , 

This follows from the fact that the recipr ocal of an 'Orthogon al 
matrix is simply its tr ansposed. It should be remembered tha t 
the coefficients ~,t j in (2. 18) are by (2. 15) n ormalised in such a 
way that 

r 

(2. 19) Li Cki = 1 (k = 1, 2 . . . n). 

If we accept the above mentioned cI'iterion that the observed 
scutter is sy stem ntically x· fold collinear when x of the chao 
r acteristic roots are "very small" , then we would retain only 
the n -x terms in the righ t member of (2. 18) which correspond 
to the n - x characteristic roots judged to be significantly diff­
erent from zero. For instance, if only 'One. root namely }'1 is 
deemed significantly different fr om ~ero, we would put 

2. 20) 	 § i = Zl ' e l i 

where e l i are the direction numbers determined from (2. 17) 
(f or k = 1), and normalised according to (2. 19). If two r ODts 
)'1 and )' 2 arc significantly different from zero and signifioantly 
different fr'om one a,nother, we would put 

(2. 21) 	 ~ i = Zl ' Cli + z~ , C~ i 

etc. 

1'heoretica lly this method sooms very promising, but in 
practice I have found t hat, a t least so for as the study of the 
unfolding capacity of the se-atter in various kinds o.f economic 
data is conoerne d, it does not lead to any mOl,€; conclusive re­
sults than the scatterance method. In studying the set of cha­
racteristic roots for a given correlation matrix we are indeed 
confronted wit.h just the same kind of difficulty as ill the study 
'Of sc.aUerances . The big question also h ere is: Ape the para­
m eLers considereu s!lstema tically different from zero, or are they 
pushed away from zero just by the disturbance.s of the data 
The u sual sampling errors do not answer thif' question. An d 
in the ellipsoid method we have in addition the question of 
whether the roots considered aJ.'e systematically diJfeTent from 
each otlze1', It will presently appear t.hat this la tt.er question 
may in prad ice be pa,rticular ly troublesome.. 

As an example of the difficulties inhel'ent in the ellipsoid 
method I shall m ent ion a study of an eigbt-variaf.e problem 
which was undert.ake.n join tly by Dr . Frederick V. W augh, of 
the U. S. Department of Agl'icul tm'e, and me during Dr . 
Waugh's work at the Instit.ute in Oslo and in my seminar in 
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1932. I discribed this work in my lectures at the Iustitut 
Henri POulcare in Paris in the Spring of 1!J33. 

'l'he object of the. study was to see how the price obtained 
was influenced by the quality of potatoes in a certain New 
England market. The variates studied were: 

1. 	 Wholesale price. 
2. 	 Percentage of })otatoes having a size between 


1 3/4 " - 2 1f.!". 

3. 	 Percentage of misshapen potatoes. 
4. 	 Index of colour of the skin. 
o. 	 Index of bruises. 
6. 	 CuW. 
7. 	 Scab. 
S. 	 Other features. 

In this problem the questions of conl'Juency is of course of 
paramount importance. 'Ve may for illstn,nce ask: Will th' 
valiate No.5: Bruises repl'csent a.n independent contribution 
towat'ds the determination of the price, or is its influence 
already taken account of through some of (or aU of) th2 other 
variates ? 

The correlation coefficients wer e as indicated in Table (2.22). 
For ilie purpose of the subsequent e~"pcrilllental comput ation 
the correlations ar e here given with six decimal places, but 
only two or at the utmost three places are stat istically sign!i­
ficant. 

TABLE (2. 22) . POT.A3:0 DATA. GnOss COnrlELA'rro~ COEFFICIENTS : 

'"Ij I J=l 2 3 ·1 !J 6 7 I) 
, 

i =1 11.000000 -0.2108D2 - 0.215275 - O.-!.'i2G59 - U.lW J211 -0_198522 - O.228:HO -0.279OfJ4 
1.000000 0.102185 0.0145n5 -0.0;)17B7 0.081614 0131882 0.09-1089 

$ 1.OUUOOO O.26-D[J9 0.269.39 0.:214:237 O.20IiWO 0.309791 
·1 l.OOODOO O.44362~) 0.16362[1 t).:2Jli23 0.30:1490 
5 l. lJI)OOOO 0.07"296 1 0.1 98t;12 !J.29!liHG 
6 1.000000 0.2(51)'14­ 0.407260 
7 1.QooOoo 0.3616.'17 
8 1.000000 

Inste.a.d of computing just the eight values r epresenting 
the character istic roots we studie ll the whoJe shape of thB 

polynominnl P().) defined by F'w 

(2_ 1). T his gives a m uch clearel' . 81I 
yiew of tile situution. rrhe curve 
P().) mllY then be looked upon 
u.s a sort of spectrum i or the 
matrix. (2. 23) summarises the 
values of P().) which were COill­
puted dru-jng the work. ~ -:;-;:;,-;:-':" .1 

Drawn (lU a rel-tsonably large 
scale the cune P (J.) arpears 
as in Figu re 1. FiU_ 1. 

TAJ3LE (2. 23). VALUES OF THE CHARACTERISTIC POLYNOMIAL FOn 

THE P OTATO DATA. 


~- PtA) I. P( /.) 

0.000 0.'28270786 0.902 - 0.00000014­

0.1 0_090~ 5032 LeI - 0.00000547 

0.2 0.02276385 1.01 0.00000690 

0.3 0.OOBS162A 1.1 0.OQ0 1·h1328 

0.,1 0.000273 73 Ll3 O_OOOO3~85 

0.475 0_00000271 l.H.i5 0.OOOOO6:!H 

0.48 0.000001Ot 1.16 - 0.00003312 

0.184 0.0000001\; 1.17 - 0.0001.3244 

0.485 0.00000001 1.2 - 0.QOOG39!lfl 

0.486 - 0.00000012 1.3 - 0.ooiYJ2878 

0.49 - 0.00000045 2.0 - 2.632681:30 

0.5 - 0.00000021 2.3 - 6.H!l!l!l3-J1;2 

0.502 - 0.00000001 2.6 - 4-.~1l!i75881 

OJi03 0_00000007 2.65 - 1.88.189024 

O.f) ;) 0.00000508 2.673 - 0.020011 1 

0.07 O.OOOOOBI 2.675 0.15796210 

0.59 O.UOOOOIG3 2_7 2.6 Hi1 24 60 

O_ l; - O.OOOOOOw 
Q.Gl - 0.00000210 
U.7 - 0.OOOOO9!lS 
U.75 - 0.UIJOOO293 
0.76 - 0.0000016/; 
0.77 - () . 00000068 
lL7S O.OOOOOQQO 

.7!1 0.00000021 

.798 0.00000001 
0.8 - 0.00000001 
U.9 - 0.00002836 
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The zero at B is obviously quite significa.nt. I ts exact value 
is 1'1 = 2.6732264, which giv€s the fo llowing direction numbers 
for the cor.responding rna,in axis 

C"11 = - 0.398108 
12 = - 0.129359 

cta = 0.34f, :~43 

I'll = - 0.42070))
(2. 1l4) 

15 = 0.368630 
= - 0.301462 C1G 

1:17 = 0.344614 
CIS = - 0.427782 

If we only take account of this first zero, the price $1 
(in normal coordinates) would be expressed as 

(2.25) $1 = - 0.42'1 

where Z 1 is some sort of (negative) st.:1nd.ard expression for 
"quality", so defined that a change in this st[l;u dn,rd implies a 
simuUaneollS' cb unge in all the. indiv idual quality indices l ist 
abovo as va.riates Nos. 2- 7. '1'he in tensit.y of the change in 
the individtl,al llldices with a change in Z 1 is defined by tlle 
coeJficients (2.24). For instance, 1 unit incl'ease in the 
(negative) qll ft lity index 2'1 means 0.13 units decrease in the 
variate No. 2 and 0.35 units increase in the variate No.3 etc. 

H w € are not sa,tisfied with this definition of the quality 
standard and want to study the possible independent influence 
on price exerted. by SOlllB of the spe.cia.l quality-fe atures, we 
must look fDr further characterist ic r ODts. And here is wlleTa 
the weakness of the ellipsoid IilGt.hod will become Ilpparent. 

From ll.gure 1 it looks as if there is only Dna other zero than 
B, namely one located at A. From theory we know however 
that thero ought to be e.ight real zeros. The explanat.ion is 
that the point. .A., which on th e scale used in Figura 1 appear's 
only as one zero, contains in reality seven zeros. If the 
vicinity around A is drawn on a larger scale we get the picture 
given in Figure 2. The values of the zero points are given in 
(2. 26). 

" 1 

TABLE (2. 26). 

CRARACTEnISTIC ZEROS. 

(In descending" order of Magnitude. 

). = 2.67322 

1.10519 

1.00443 

0.7983 I 

I 
I 0.78 
~, 0.5990 

I 0 .5024 
r ;;, 0.4851 

Fir} . 2 
l 

I n order to get an impressIon. of how completely the zeros 
around A are mixed - {rom the practical view-point - we 
may notice tJlat if the complete curve is drawn on the scale 
used in Figtll'e 2, the bottom which in F igure 1 is mat'ked 0 
would be. about 4 k ilometres away. 

The same thing may also be recognized as foU()\V8. ­
Roughly speaking we can say that if not more than three de­
cimal places are significant in the values of th e original cor­
relation coefficients, anything beyond the third decimal place 
in t.he values of tho characteristic polynomial is not significant. 
Of course, this rule is not quite exact, buti is sufficient for our 
present purpose.. Now, over the range f rom }, = 0.48 to A= 1.2 
where all the first seven of the characteristic roots are located, 
the ordinate of the characteristic pol.ynom inl P(J.) new 
reaches above + 0.00015 and never below - 0.00003. The situa­

"'... tion is exhlbited in Figure. 3. 
Over the in terval in question 
ilie ordinate of the character­
istic polynomial never rea­
ches out of the thic7me.s8 of 

FfU. 3. 
the heavy line in F igur e. 3 

while the do tted line indicates that level which the ordina.te 
must havo reached if its value should have been significant 
(and even this is interpreting the significance of the original 
correlation coefficient.s rather liberally). 

This means that in practice we cannot speak or certain de­

http:ordina.te
http:thic7me.s8
http:significa.nt
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fi ni te " zeros" of P(i.) at all o'\"er the range from ). = 0.48 to I. = 1.2. 
Over tl tis range tllC function P().) has l or a ll pl'Ilcticru purposes 
simply a contin uo us contact wi th tLle }. ·axis. T his being the 
situation, the determination of the main ax'es of the ellipsoid 
- other than the one given by (2. 24) - would be entirely 
meaningless. 

n l is inde terminateness of the main axes may also be studied 
hy mean" of certain suhc/za1'actcl'islic polynomials in the following 
way. The direction numbers ('kl' c!~ ... c;:/I f or the main axes 
correRponll il1g to ihe zero I'k are detel'm ined by (2. 17). This 
means that if we let 

(2,2 G1 (J.) . , . G,,(J.) 

he the polyn ominJs of ), that occur as the elements in any row 
of the adjoint of (2.1) (or in any column, since (2. 1) is sym· 
metric), then th e ?t di.rection numbers corresponding to a given 
zero i.t is obtained simply as the values assumed by the n 
polynomials (2. 27) when .t is put equal to 1'1; ' 

Since (2. 1) is a singular matrix in each of the zeros J.k , 

and hence its adjoint or rank not higher than 1, the absolute 
value of the direction numbers can also be determined by 
putting the squa.res of the di rection numbers proportional to ilie 
polynomials 

(2. 28) Pj(J.) 

P~(J. ) being tbe chamcteristic polynoll1.ial for the (71 -1) ,limen· 
~ional set obtained hy l cu~ng out 'tbe YU riRte no · i, P IP.) may 
be ca11ed the subchaJ'acteristic polynomials for the big matrix. 
Let 

(2 . 29) rjp.) 

be the elements of the adjoint of (2. 1), considered as functions 
fl.. Sinco theBe fnnc t if)!lS are ;'."IDmetric in (i j ), und since the 

adjDint of a singular matrix is of rank not higher than. 1, we 
huyo in any 1)-[ the PQinls }, = )." 

(~ . 30) PtP'k) . Pj (X.) = !f;j (J·,t)f . 

This shows that. in any of the points J. = ).,: all the sl1bcharacter­
istic polynomials defined by (2.28) must have the same sign. 

In the point representing the smallest of the numbers J'in all 
these polynomials must even be nOll·negative (since for values 
of ). Brunller than this (2. 1) is postti t'e ddJnite). The polynomials 
Gt need not satisfy any such sign condition since they are not 
prinCI}Jal (but skew) minors of (2.1). 

A high degree of indeterminateness will be attached to the 
main axes when the direction numbers determined either by 
G j or by Pi are small. By plotting, either the curves Gi or the 
curves P, over the whole range where th e zeros )'1: are located, 
we therefore get a, good impression of the degree to which the 
main axes have any meaning. They will be Significant only 
to the extent that the polynomials in question (G; or Pj) in 
the vicinity of the charactelistic zeros reaches up above the 
ordinates representing one unit of the third decimal place. 
Figure 4 exhibits the poly nomials G, in the potato data, G;(). 
being here conventionally chosen. as the elements in the la.~ 

column of the adjoint of (2.1), in other words as 

2. 31) G;(J,) = 1\S(J·j· 

The values of these po· ·'·'1 
lynomials in the cha rac­

o. o~o~o . 
teristic points 7.;, are 
given in (2.32); and the 
Yalues of the polynomi­

o.occ~ 

als PiP.) in th SUIDe po­
ints are given in (2.23). 
Both these tables show 

l/ 
\ .../ 

''''-At. ~ 

2 3" !I""'2 :),.~""7.. 
~ 'jo~-;t 

:a:::'!:I CI '1 ' 
2 .-.!:It> 'T ' 

"!:Ito;t 
~,4'.'7t 

____ 

\, J}"\'/ \ /~I ~ / .\1 ).:, 
very convincingly that 
it is only in the charac­
teristic point ). = 2.67 
that the ru.ain axes hu­
ye any significance. 

This confirms tile con­ -o.t~o.o 

:;:

clusion tha.t all the se­
ven characteristic roots 

~ 

- o.coO ' !:oat A in Figure 1 must 
f aT aU practical purpo· 
ses be in terpre ted a 

1,1­
00020lying in It cluster, ,,,itb; .0.

• 0 . .5 

ut any possibi lity of Fif} . 4. 

n 
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discriminating between them. Since it is out of the quest.ion to 
assume them all to be significantly dlfferent from zero, the 
conclusion of the ellipso,id anaJysis must be that it is only the 
root at B th at can be looked upon as significantly different 
from z.ero. Consequently the price must by this method be 
looke d upon as c-apahle of being expressed in terms of one 
S'ingle quality illde::c as ind icated in (2. 25). 

This result is however in contradiction both With the concrete 
knowledge we have ()f the data and with the impression on,e 
gets by a detailed cross classUir:ation on tile individual observa­
tions. The general knowledge of the data as well as the cross 
classification incliCc1. tes that there is more than one significant 
degree of freedom. Some fur ther support for this conclusion 
will also be fOUlld by the analysis of Section 31 based on the 
"bunch" technique. Th e bunch analysis will also give some 
indication of which one of the ()bservational variates are the 
most importan~ to include. 

In view of this negative conclusion regarding the usefulness 
of the ellipsoid method I decided to postpone publication of my 
work on the ellipsoid method until I had a better method to 
offer by which the ellipsoid method could be compared 1. 

3. M]NIMAL ).-ROOTS AND MAXIMAL ~ ·ROOTS. 

If the characteristic roots are to be used at all as criteria of 
confluency, it seems better to compute only one of them, namely 
tb e minimal root, but then do this for all possible subsets. By 
doing this one dodge.s at leas t that difficulty which consists in 
judging wheiher the roots are significantly different from one 
another. The computation I()f the minrrnal roots gives an alter­
native set of pa.rameters to study in stea.d of the sca tter-aIlces, 
each scatterance is simply replaced by its minima,l root. For 
the systema t.ic computation of t.hese r oots ill an possible subsets 
I have worked out the following technique which has been 
found convenient and has be,en used in 80,11 the numerical work 
done along this line at the Oslo Institute. 

1 On other h 'pes of data the I'llipsoid meth od may perhaps be used with 
a dYa.n.lage. Profe..~sor Harold Hotelling ill hi ~ highly interesting pa por ~Ana. 
l;-sis of a Com plex of Statis ti cal Varia.bl os into Prin cipal Compononts~, Th e 
Journal of Educational P s)'cb01e>g,!", 1933, has appJj e(} it to p5ychological dD la . 
In this paper he abo gives a method of 5ll 0C€ ss iv6 approximation to the 
characteristi c r oots which wiIl work well , it $"E'01$ , wben.c\'cr Lhe r oots illC' 

signjjican tly distinct. I wonder whether his method wi ll W(',rk equaJl y well 
when tlle roots lie close t ogether as in the a bove eight variate pr oblem. 

http:systemat.ic
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Instea-d Qf considering the minimal I.-roots, it is for tha 
practical computatiDns more convenient iD consider the corres­
ponding maxi mal ~- roots. 'We shall therefore consider the 
polynomial Q(~) defined by (2.3) instead of the polynomial 
P{I.) defined by (2. 1). 

Let ~ and ~, be the maximal roots of Q(~) and Q,( s) respev­
tiYely, Q'(~) being the sllbcharacteristic polynomial obtained by 
leaving out the variate NO '1:. 

The shape of the functions Q(s) and Q,(s) in the first range 
to the left of unity must be as indicated by the curves A an c1 
B respectively in Figure 5. (The 

C'... O ~ curve A in Figure 5 is construc­
ted by the formula Q(~) = 0.25 
+ 0. 37 S-1.53 ,2 + s\ the curve 

C2 

B by the formula Ql (' J = -0.15 
- 0.59 ~+ S3. The numerical con­

0 1 stants here refer to an actual 
example). We are in par ticular 
interested in the relative loca­ ..tion of the 7.&ros. "" --;r-. 

In order to study this we first 
notice that (2. 1) is a positive 
defini te determinant for S= 1 Fia. 5. 

and all the minors continuous 
in S, therefore as s deereases from 1, Q(t;) , when written as de ­
terminant, must, to begin with. remain positiye de.finite. As we 
move from S= 1 towaxds the left, none of the polynomials QI can 
therefore vanish beJore Q. In othe r words: The maximal Toots in a set 
of variates £s never less than the 'l'naximal root in an.!J of its subsets. 

As we move towacrds the left, there win come a point where 
for the first time one of the polynomia.ls Qj yanish. Let ~ = ~o 
be the point where this happens. pifferentiating the determi­
nant (2. 1) we get 

lQ (<- )
(3. 1) Q' (~) = c d~~ = Ql (~) + . . . + QIl(~) ' 

TIlis shows that, up to> the point ~o . Q must certainly be 
monotonically decreasing with decreasing ~. Consequently: 
If S is the maximal root in a certain set, and ~o th e maximal 
root in that one of its subsets which has the larg€ st maximall 
root, we h ave 

(3. 2) ~< ~ -<i. 

Furthermore: In the r ange (3. 2) the polyn omial Q(~) has e;cactly one 
zero. This gives a very convenien t method of successively 
appl'oximating to the maxima.l r oots in all pDssible subsets of a 
given big set. First the maximal roots in the three dimeu­
sional sets are computed directly by the usual formula for the 
solution of a third degree equation . This is easy since the 
second power of S is laeking in the. equation. For higher sets 
one then proceeds as follows , Since Q is non-negative in 
the point ~ = 1 and non-positive in S= i;U and has exactly one 
zero in this range, we can by linear intierp(}lation take 

°-1
(3 . 3) , _ "'0 " Q(>"O)

~ - ~ - /'\ 1 .... . . \ A t l \ S 

as a firs t a pproximation t,o the minimal root in the bigger set. 
Of course Q(l) is no thing but b.. A second approx imation 
will be 

'_If ~~ -so ' j

(3. 4) ; = ?;' - ' r.t~, Q(~)r. 1 ~,

etc. 
The comput.ations are ordered in a difference scheme as in­

dicated in (3 .5). 

Table (3.5). DIFFERENCE SCHEME FOR THE COMP UTATION OF 

MAXIMAL ROOTS. 


Divided du-
Diffe rence Difference ference of CC Q of C of Q with respect 

t o Q 

1.000 !:, 
~- l.OOO 

1'0 Q(~O) sO-1.000 Q(~O) _ ~ Q{~O) - b," 
r' ~o Q(r) - Q(SO)Q(S' ) r - ;" etc . r __QiS") J S"- "___QK") - Q(r) ..-

The computation of the values needed of the polynomial 
Q(~ ) in Table (3. 5) are done most convenien tly by the for mula 
(2. 10). 1 

The scat terances and minimal roots have been computed at 
the Institute for a large series of da ta, primarily American con­

http:polynomia.ls
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sumption statistics, which were collected and brought in shape 
for this analysis by Dr. Waugh. 

If the scatteranoes and minimal roots shall ha:ve any use as 
tests of linear confluency, the conclusions reached by using 
these two different sets of criteria ought to be essentially the 
same. Although no exact correspondence was found, yet in 
most cases, the discrepancy was n ot very great. In general 
there was a definite tendency 
for the maximal ~ root to be ~ 
lar ge when Ute seatt-crance 

to 

C~"""fc..OoC ~A T '" ~ ... " 

was small an d vic~ versa. The . u't , •• • I .... ~ . 

kind of lllformation yielded by 
these two sets of parameters 
may therefore be looked upon 
as roughly the same. 

The graph in Figure 6 in­

~ 

...• 

dicate the connection between 
scatuwances and maximal 
roots in a set of the above 
ID€ ntioned American consump­
tion data. (Butter 1919­ 31). 

o ! 
o ~~ 

Fig. 6. 

· A 
~ 

4. 	 LEMMAS ON CERTAI N PROPERTIES OF DETERMINANTS. THE 
HEAD COEFFICIENTS. 

In the following analysis we shall have to ma,ke use of a 
fow proper ties of determinants which it will be convenient to 
indicate here,l. 

(2. 1) with the expansion (2. 2) is the character istic p olynomial 
for the matrix '·w The adjoint of 1·i , nameJy the matrix 

(4. 1) 	 p., 
• A 

also has a. characteristic polynomial. L et it be P O.), and le t, A be 
its coefficien ts. Then it is a classical fact in matrix algebr a 
(contained as a special case in F robenius theorem) that 

1 A more complete summary of the clas.siea.l facts in quadrati c forms and 
matr jx. algclJra lha t oarc of particular interest from t.he mew point of aplllicu ­
tion. to economics and statis tic:s . wBr e given in mT ColloquiuID Lectures at the 
mee Ung of the Econ ometric Sooiety in Ley.den 1933. A mimeographed aCCollnt 
of these lectures biUled on my own notes and of notus taken by Mr . M. H. Bel! 
during the l ecture~, is a vailable and mal' be ord.orOO through the E conomic 
Inst.itute, Osl o. (price X I'. 4.0f). ) 

;1 H 

(4. 2) P(),) = 	(_ )" J:: p ( ~/I ). 

In other w ords we have 

,j A A ,, -1: - 1(4.3) 	 .....'"i./l _ k == ..l:Lt '(I • 

As an example of (4. 2) we m ay t.ak.e the case n = 2. TIere 
the characteristic polynomial is 

)_1 rll - i. 1-' (.. ) a1"1 2PtA. - .-~12- 111 + r22 }· + ).. 
t"~1 1 22 - }· 

And the adjoint characteristic polynomial is 

P(J.) = IJ"22- )' - '1'12 I 
1" _} = ,6,n -(Y11 + ,.•~) ), + l.~ . 

11 • 	 - ­- '·21 

In other words fo r n = 2, t he characterist.ic polynomial and the 
adjoint char acteristic polynomial eoincide, which cheks with 
(4_2), 

In the case n= 3 the adjoint characteristic polynomial is 

[("22 r83-rS 27·~3)-)·J - (1·121·Sg- 1·B2rd (7·1 2t·23-?·~~r18) 
p (A.)= 1--{r211·ss-ra11·zs) [(1'11'1"33- r8 1'·18)- )') - (r11 1"23 - 1" 211""13) 

(r21 r S2- 1·S1'l"H ) - ('·l1 r32- 1'31r12) [ (rlll·~2 -1·2 11·12) - t.] 

Writing this d€ terminant out and collecting the terms we find 
th at the expression reduces to 

p(A.) = 6 2128 - .6.('1"11 + r~ ~ + ~'33)}' + (.6.J ~ + 61~ + .6z3)F- J.3 

'which als o checks with (4.2). 
F or various purposes the tlll'ee first coefficients of the 

ch aracteristic polynomial are of speciaJ interest; wa shall call 
them the head c o~ffi&ie/lts and designate them by special letters 

A n = ~ 

(,1. 4) 	 A"_l = (j) 
A,I_2= lJI 

T hus l::!,. is the determinant (1. 15) itsel f, (II the sum of aU ita 
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n (n-l) rowed principal minorE , and lJ' the sum of all its m(11 - 2) 
rowed principal Jllil1ors. In a giyen subset (a, (i, ... )') we may 
use t JIO notation !'In 13. .. r etc. And in the set obtained from 
a give n set by leaving out, say the subscr ipt, a, we may W38 

the notation t 'l iQ. etc. 
This being so, let us consider a ny set of v aI.fixes (a, fJ • .. 7) 

and let us form the adjoint correlation matrix I\} (" , fl . . . n the 
adjunction being taken within the set Ca, ,8 . '. y). Fot shor tness 
let us denote this JI·rowed matrix 

(4.5) 	 So) = f ij(", j3 . .. n 

Consider the characteristic polynomial for the, v·rowed matrix 
.<:, let 6.(') anJ uF' be its first two head coefficients. Fur ther, 
let !'l\~( and q) ;~\ be the head coefficients in the v-I rowed 
matrix obtained from s by leaving ont the row No. p and the 
column No. p. \Ve shall study the J iffel'cnce (/)'.) !'l~~J( - t..(.) (/)\;1(. 

'1.'0 evaluate this expression we need Sylvester's formula on 
\9.0 the minors in an adjoint. This form ula may be written 

~\)\\'V yr 1
(4.6) IaIIlk ... ! '11\' .. '" = £, ,1 a bll'" _. ,~ . H I(·I alm

­~ ""-...- ~ 
77l 11, 

- \.f 	 I'. being the signfador (- 1) h + k + ... + I + u + v + . , . .,- w, Ia-I is a 

~. . , ""r giVen. n-rowed determinant, tbe express'on in the left member of 
t vi> (4.6) stands fo r the tn· rowed determinant consisting of the rows 

~ ~'>l if Nos. ]i, ,'~ . . ' .l and the ~olumlls. Nos. u, v . . . t~ fl.'om the acljoillt ~'. . \. 01'. o. lhe h rst factor m the n ght member mdlCates the U - 1n 
~ ~ 	 .rowed determinant which is obtained wben the rows u, v . . . If 

and the coluIUlls h, k .. . l are omitted from Ia I itself ; the second 
factor in the righ t member is simply the (m-l)th power of the H'... I 

n-rowed determinant Ia I. 
~I This being so eonsider 6j~~ . It may be looked upon as 
.~ obtained in 	 the following wa y. We take as a starting poin t the 
~ 	 v-rowed mtltrix or the origi nal correlation coefficients Tij in the 

set Ca, fJ ... r). Of th is matrix we take the adjoint, the adjunction 
being made wjUlin the set (a, /1 ... y). In th is jI·rowed adjoint we 
consider the (v-I)-rowed minor obtained by leaving out the 
row and the column p . 

By Sylvester's formula this min or is equal to r pp t..,'- 2. F urthel', 

-!-1 

by (4.3) we have UP) = 6 ,--2Lx 1')(X (x running through a , fJ . . . y) . 
On the other hand we have CDJ(~=L% j"· llPy. ,p)«( ' \Thich by Sylvester's 

formula is 	 equal to Lx 1~J1p 1» :0:1· 6"- :>· F inally by Sylvesters's 
1:o: p ':0:)1 


formula 6(~) = ,6" - \ so that 


(/):S) t.. ~;;'( - t:, (6) (/)\~( = to. 2>'-1[rP1J~rxx - LArP),,?"xx - r~z)l = 
(4. 7) 

6.~"-~L:i(r~x . 

No\\" let us take the adjoint of the l/· rowed mat rix sij' Apart from 
a factor of proportionality this brings us back again to the 
original mat rix 1'ij; more precisely we ha:ve 

(4. 8) 	 Sij = rlJ . !'l,.- ~ . 

Inserting t.his in the right member of (4.7) this member takes 
on the form LxS;x' 'rne for mula thus obta.ined holds good for any 
matrix s, it consequently also holds good for the original matrix 
1' , hence 

4. 9) 	 Lx l~~z = (/) 6 )p( - !'l ({J)p ( 

where the head coefficients 6 nnd (]J are now taken in the set 
a, fJ • •• Y of the original correla tion matrix; x in (4. 9) mns 
through fl , (J •. •r· 

As an example consider a three.-rowed correlation matri:s:. 
'1.'he element.s in the first row of the adjoint are here 

1"11 = 1 - 113) f12 = - (r12 -1'131'23)' 1"13 = (r12 r 23 - rl~) 

'rho sum of th e squar e of these three quantities is 

1 - 2T~u + r~a + ri2 - 2r12 1'13 r2;) + 1'13 t'~8 + t~2 r~:l - 21'121'13 r23 +ri;\ 

On the other hand the right member of (4. 9) is in this case 

(I - r i2 + 1- r~:J + l- r1a) , (I-1'~3 ) -2 [ 1 + 2r12 rl;jrn - (1';~ +ri3 +r~;l) 1-

It is easily seen that these two expressions are equal. 
By taking the sum of (4.9) over p and noticing that 

fLp 6.)p( = (j)
(4. 10) 

1L.o (/J,l'( = 2lJ' 
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we get 

(-l.11) Ltj ti} = (Ii' - 2_ 'P D 

In the sum mation in (J. 11) i and ,j run independently of each 
othor through all the subscr ipts (a, fi, ., 1') in the set in which 
the adjunct ion ?' is taken; and the head coefficients in the right 
member refer to the same set (Cl, fi., , y). (4, 11) may be useu 
as a convoenient check on the computation of the sum squares 
in the individual rows computed accor ding t o (4.9). 

5. REGRESSION SPREADS. 

The minimising 01' the sumsquares of the deviation from the 
regression plane rna.y be done in differ-ent directions, for in­
etance in the direction of the X l axis, in that of the x~ axis, etc. 
1'hcse regressions we shall ca ll the e lemental'y regressions . The 
coefficients of these regressions (w11en the variates n.re taken 
in the normalised form) are nothing but the elements fjj of the 
adjoint correlation matrix. The e lements in the first row of 
this matr ix are the coefficien ts of the first elementary regres­
sion, those of the second row the coefficients of the second 
elementary regreSSion, etc. 

1"118 fact that these various sets of coefficients are neady 
proportional (in other words that all the elementary regression 
planes nearly coincide) one would intuitively take as a. sign 
that the regression plane determined in this set of variates is 
significant. I shall later discuss this idea more closely; for the 
moment let us adopt it heuristically. 

A first condition that would have to be fulfilled in order that 
these n sets of coefiicient,s are p roportional is obviollilly that 
these sets, when considered. as defining n points in an n-di­
mensional scatter diagram, lie in a plane through origin of this 
space , Tll€~ idea therefore· suggests itself to measure the degree 
of conformity between the n element-ary regreSSion planes by 
computing the scatterance of the regresSion coefficienffi con ­
siclered as statistica.l observations. These "observations" should 
h owever not be reduced to their mean values bef01>e computing 
the scatterance, since the "regreSSion" plane in these "observa­
t.ions" Ol(g7lt to go tbrough origin. 

This leads to computing the e xpression 

~'' " J 

E ll . . . BItI 

(5. 1) 
Rn1 • •• RJln 

R. . Ji.,., , . . R II " 

where 

(5. 2) Rjj = Lt,i'ik'fkj • 

The accent.-.. on the magnitudes R in the above formula liay 
be interpreted as ulle adjunction symbols. Indeed, by virtue of 
the formula for symbolic matrix multiplicat ion we may define 
(Rij) as tile square of the matrix 'rij , in other words 

(5. 3) R,j = l.k?'lk rkj, . 
Rij is then the adjoint of R i j • 

Similarly we may compute the COITcsponding coefficient (5. 1) 
for any subset (a, (J . . . r ) in the big sot 12 .. . n . In this latter 
case til e adjunction sign .-.. will or course haye to b e interpreted 
as adjunction within the subset (ex , ,8 ... r). 

By the formulae of the preeeding Section the expression (5. 1) 
may be considerably reduced. As a matter of fact it may be 
expressed very simply by lhe head-coefficients of the character­
istic polynomial. We first no tice that the numerator of (5. 1), 

namely the determinant I ill by Syh'ester's fo rmula is IRi"- I, 
but the matrix R was the symbolic square of r, so t.hat 

(n. 4) 1.81= .6,2(,'-1'. 

Further , each factor in the denomina.tor of (5.1) is by (4.9) 
equal to 

r5. 5) RplI = rp .,s ~\p( - ~ . ([))p \ 

The ·expression (5. 4) shows that, in order to get a co-efficient 
comparable to thl} scatterance, we ought to take the 2(n - l)th 
root of (5.1). We thus fillally get 

~ 
(5. 6) :.!l"- tJ I "'''' A 

\ RHE2~ ... Rrlll 

where the R"p are gi ven by (0.5). 
The coefficient defined by (5. 6) may be called the ·regression 

spread. It may be looked upon as a sort of corrected sca.tter ­
ance, the denominator of (5. 6) being the correction factor. 
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An important property of the coefficient (5.6) is that it is 
capable of increasing if m ore variates are included. In this 
r{lspect it differs from the scatterance. 

If the regression spread increases as a new variate is includ­
ed, it may be ta,ken as a. warn ing signa,l that the inclusion of 
the new varia te is not warranted. rphis eriterion is not, 
however, final. The behavior of the regression spreads must 
be scrutinized 	by principles similar to those used in the study 
of the scatterances (soo Section 1). 

6. LlNE COEFFICIENTS. 

'1.'he regression spread defined in Section 5 gives an expres­
sion for the closeness with which the adjoint of a giv en cor­
re!ation matrix comes to being singular, but il we arc looking 
for a unique regression plane it would in fact be more. plausible 
to construct a cri ter ion for the adjoint correlation matrix being 
of rank not higher than 1 (i. e. all t he r ows proportional) . 

If the adjoint correlation matrix - so fal' as the systematic 
variations are concerned - is of r ank 1, all the two rowed de­
terminants t' ij f'.u - 1';) ought to be smal l. '1.'hereiore, i1 the 
average values of these de terminants taken over all the subsets 
(ij) are small as compared with the a verage value of their 
leading terms f" f j j' we~ may take it as an indication that the 
matrix (f ij ) is close to being of rank not higher t.han 1. The 
averages here conSidered only consist of non-negative e lements 
(since (Tij ) is positive definite), so that there is no danger of 
the aver age becoming small because positive and negative 
terms cancel out. The sum of the two-rowed determinants con­

sidered is nothing but 1 2 = A,, _ ~ A" = lJf 6. And the sum of 
the leading terms is 

'" , 1 ['" '" ,- '" .-2 JL til 1jj = -2- L j Lj 1' ;i r jj - L z rzz 
I: <j 

which re.duces t,o 

1 [('" )2 '" 2 1 Y Li 6 )u - L j 6)j\J 

Hence the smallness of the expression 

2 IF 6 
(6 1) ~~I\~

If) - - L , W )i( 

.) 

may b£ taken as a criterion fo r the adjoint correlation matrL,{ 
being of rank 1. The expression (6. 1) may be called the h!l(3 

oefficiellt, because it expressed the clo~eness with which the 
normals of the various elementary regression planes come to 
lying in a common line. rrhe componen ts of these normals are 
of course nothing but the e lements in the various rows of the 
adjoint correlation matrix. 

By (4. 11) the expression for th e line coerricient may also be 
written 

([)2 - L_1./';:1__•(6. 2) 	 --", ., 
([)2 - Lj fli 

Since 1J1 and 6 are non-negati.e and the denominator of (G. 1) was 
originally written as a double sum <of the produkt f u . fj jl which 
is non-negative, it is seen tha t. (6.1) is larger than O. On the 
other hand (6.2) shows that it must be not larger than unity 
since the term that is subtracted in the numerator is not less 
than the one that is subtracted in the denominator. In other 
words, the coefficient considel'ed must lie between zero and 
unity. 

If it is wanted to compute the line coefficients in a ll possible 
subsets, the work can most conveniently be arranged a.s 
follows. 'rhe 6 i ll all subsets are supposed to be computed (for 
instanoo by the tilling technique of Section 15). The second 
head coefficient (/) is then comp-uted in all subsets by the re ­
currence formula 

(6. 3) ([) ., y = L 6",3 ... )1( , • . ), 
at..} . . . i = u ,1 . . . ?$ 

a, {3 •.. y being a given v-set . Th is formula is only a special 
case of (2. 4). F or each l'-level the sum of all lhe (J) thus computed, 
are checked by 

L (/) )' = (n-v+ 1)....1 .'-J (1 2 . .. 11)J 	 = ((. /.1 , . .. 

,,<{3< . . <Y 

(6. 4) 	 , ,- -1 ( h ) 
= (n-v+ 1) L v~h-1 B " (12 . "l ' 

"=0 

To apply this check, either the A 's or the B's in the total set 
must be comput~d directly; this is a simple matter when the 
6's are already listed in a systematic way, fol' instance if they 
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are computed by the tilling technique as dec.ribed in Section 
15, they can then quickly be copied on a listing adding 
machine directly from the tilling tables, (G. 4) is only a special 
case of (2.5), the last membel' in (G. ·1) is obtained by using (2. 7) . 

1'he recmrrence computations (6.3) are most easily arranged 
by keeping the {:;,'s written in tables with ;uniform spacing a.nd 
in the exnct concentric order defined in Section 15. If a list. 
ing adding machine. is used for the -determina tion of the A's in 
the big set, such a lists of the 6 are already available. On thes 
Hs ts no indication of which scatterance the various figures refer 
to should be given, but one should rely on the lmiform spacing 
and the exact order defined by the concentric numbering. In 
oreler to pick out the correct figures to go into the recurrent 
computation (G. 3) we use "combination strips", that is strips 
f paper or cardboar d with check marks in positions that in­

dicate the figures to be· used for any given sub13e t (a , fJ . . • r ). A 
set of such combination str ips is very useful also for other re. 
currence computation of a similar kind. (See for inst.ance (6.5) 
etc. below). We hl1ve found it both safer and quicker to rely 
on t.he uniform spacing and the combination strips than t{) write 
down on the l ists of the 6's tJ)e subset to which eacL 6. belong. 

When the (J) in all subsets are computed and checked, the 
quantities 2I]J are computNl recurrently by 

(6 . 5) 2lj1ap )' =L ([)"{3)i(. 
i == ap . , . i' 


and checked by 


L 21J! '=2('i -V+ 2).A n o = , (t,q ... / 2 ,·-. l . ... p) 
a. <,..1 , .. < y(6.6) 

9 (n-v+2) "~~ ( n - h )
= - 2 ~ v - h - 2 B h(12 ... n)' 

" - 0 . 

'l'his check is obtained by putting k = II - 2 in (2. b). T.be 
:heck on 11' is, of course, done for each v-level in the same way 
as fo r f/). 

6 2Fill·ther the squares and (JJ~ are· computed in all subsets. 
and the sumsquares 

(6. 7) 	 ~DIl•J . =2 UfJ · · · )!( · 
i=<t,8. 

are computed and checked in each subset. This is done in 
precisely t.he same wa.y as t.he m were built up from the 6 

{ ­

[compare (6.3) with (6.7)1. The checking formula written out 
will now be 

(G. 8) 2 D"fJ ;,= (n- ,,+ l)2 6fr - l).ro ..,,,il · 
«<ri ... < Y 

Tho Slim in the left momber of (6 . 8) denotes the sum of all the 
D's computed ou the level v by means of (6.7), and the sum in 

the right member is the sum of all the (y~ 1) squares of the 

(v- 1)-rowed {:;,' s contained in the total set. This latter sum must 
be computed directly in order to apply the check. All the work 
(6.5) 	and (6. 7) is done by the combination strips. 

By means of the above quantities the line coefficients in a ll 
sets are easily cOlllputecl by (6. 1) . '1'he dilierence (lP - D which 
is in the denominator of (6. 1), may {)f course be verified by !1 

simple checksum utilizing the sum of (j)~ and the SU ll1 of D . 
The practical use of the line coefficients is similar to thaI; of 

the regreSSion spread a.nd the scatterances. 

In a sense the use of the line coefficients and the regress ion 
spreads is a. little safer than t hat of th e scatterances becanse 
they will actually increase when we get. into multiple collinear 
sets, while the scatterances will always decrease. On the other 
hand t.he situat.ion may be such t.hat we must accept a set of 
variates e ven though it shows some increase in the r egression 
spread or line coefficient. Whether or not a slight increase in 
any of these parameters should be accepted cannot be definitely 
decided unless by the more elaborate method of Part m. We 
shall later discuss numerical examples which will illust.rat, 
both the advantages and the limit.ations of the line coefficients . 

PART II. SOJ..TTER FUNOT IOXS AND »TRUE " REGRE SSIONS. 

7. INSIDE AND OUTSIDE INFLUE~CES. SYSTEMATIC OOMPONENTS 
AND DISTURBANCES. THE NOTION OF DISTURBING INTENSITY. 

Although the various empirical test·parameters considered, 
scatterances, characteristic roots, beam coeffic ients, etc. throw 
some light on the question of confluency, they do not in a.ll 
cases furnish a oonclusive criterion. 

To advance any fur ther in the mattcr it seems that we need 
a more systema.tic analysiS based on certain definite assump· 
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tions about the natw'e of the variates. The present P art II is 
concerned with this type of ,analysis. It leads up to a. cer tain 
statistical technique : the bunch analysis which will be discussed 
in the two following parts. 

L€t us assume that each of the obser ved yariates X l ' •.. X"' 
depends on cer tain other "basic" variates 'lit ... Y ;\f 'which are 
not observed, but which have actually been present and have 
determined each of the observed results. If the connection is 
linear, the dependency can be written in the form 

(7. 1) X.= 2..KlJiKYK 

where the PiK are constants. The 11 rowed and JJI columned 
matrix 

~J.l~ : : .. ~~l:'ro I(7. 2) IlpiK l1 = 
P!ll ... P" JI I 

char acterises the way in which the observational variates are 
built up from the basic variates. 

For the moment we do not specify any fmther the concrete 
nature of the causa.l relations between the y's and the x 's, we 
just take (7. 1) as a conceptual pattern which niay serve as a 
starting point for the analysis. 

In many cases it seems plaUSible to, formulat.e the conception 
of the basic variates in such a way that they become 'llIl CO},­

1-elated. In this c·as e any amount of correlation that has been 
observed between the x 's will be due simply to the fad that 
one or more of the y' s occur in more than one x. However, 
in practic.e - for instance if one actually tries to proolwe a 
numerical example illustrating a connection of the form (7. 1) 
- it is not plausible to assume e;.ract non-correlation between 
the basic var iates_ In many cases it will be necessary to work 
with the more or less vague assumption that. the correlation 
between these variates shall be "small" , or that it shall be 
determined only by "random" fluctuations. 

We assume the .x 's as well as the y's to be nwtlsured f rom 
their means. F urthermore, it does not restrict generally if we 
assume all the basic varia tes to have unit sumsquare. This only 
involves a corresponding interpretation of the coefficients P iK' 

In other words we assume that 

~ 

7.3) lii-J = 1 (X = 1,2 . . . 11) 

where [] denotes a sUDImation over all ti1e observations. When 
the assumption (7. 3) is malle, the cMJ'fi cicllts P K express the 
relative imp0I'U:nwe of the various basic va,riates in the deter ­
mination of a given observed variate. 

11 (7. 3) is fuliilled, tile cross moment of tJlC variates !J f1 nUtI 
!Ib: is the same as the correlation coefficient. between thelIJ , 
llatncly 

. -t) 

Th~ c t'ossmomeliL between the observed variates ;i;: and :c· 
will be 

(7. fI Iti) = l.cj..tJ = 'iHKi:iJJKPiJll~!.-

H null J( running independent.ly of each othel' through all the 
numbers' J, 2 . .. M I n othe r W01'(l:; tJ le cro"s momcu t mij is 
nothing but tlj(} value assumed by the bilinear form built over 
the matrix l~lIIi' wbcn tIle v ar iaLes in lhis f OI'm are pu t equal to 
t he i ~ til ano j - tit row in (7.2) rel:lped in ·ly. 

If the basic va.riat.es are. assume.d exacUy noncorl"elatecl, (7.5) 
reduces to 

(7,6) 172 i j = 2.. J,; PiI, Pj h.... 

II we further assume that the units of measurement are 
chosen so that the observational var iates satisfy a l'€lation 
nalogous to (7. 3), (7. G) will at the same time be t.he cOfl'ela tion 

coefficient betwC€ll the observa.tional variates X; fin d rej ' 1£ we 
finally assume tbll. t M < n, we get the special hypothesis regard­
ing t.he correlation coeffiCients on which Speal'man's two factor 
lheOI'~' and 'J.'hurstolles mul tifactoL' theory are built. Here we 
shaH not fo llow up th is line of a,pproach.. 

In general we shall assume that .M may be a number lnrger 
tLau 1l . A great number of different cases must then be en­
yisagetl according to h oI/' an int ercon nection bet ween t he x's 
b)(t~· he 11roJlll'ed tlU'ollgh the .11' " 

Consider firs t two observational varia tes Xi fmel x". 'fhe 
husir ,nrintes tJ may then be cla.ssified in three groups accord­

4 
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ing as they ocelli' in bOUl variates '~ ~ i Hnu :r , ill only one Ill' 
them, or in none or them, '1'hose basic variates that occur in 
both oIJs(>l'Yat ional varia tes X i and. ;r; (with H coeWciellt p d if­
ferent frOIn zero) will be said to constitute all hz..~ide or .~,!Jfitematit 
influence on the observed interconn ection Letw eell i£j and :lj . 
while those bll$ic variates that occur in one of the two obser ­
vational vuriate., bu t not in the oilier, will be said to cons titute 
an outside iniluem;C', or an accidental dis turbance on t11e varia­
t.ion of ilie observational vt.U'ia1..e in question , Those basic 
variates that do not occur in either of the two observational 
variates are of no interest in this connection. 

II there is at least one basic variate tha,t thus occurs in both 
the observational variates considered, we shall say that tbere 
oxists an inside or systematic c.onnection between these two 
observational variates, otherwise they will be said to be 
systematically unconnected. The connection h ere considered 
may be called inside or systematic ill th e restricted sellse t 
dist.ingulsh from another sort of inside influence to be consider-

d presently. 

Next, consider 11 8et or I' (l b~('rnltiollal variates, SU)' 

(7, 7) "1\"05 . f! ,!, Ifj . .. I"r' . 

.A given basic yaIiaie may now be classified in one of three 
groups according as it oc~urs in more than one of the observa­
tional variates in th is set, or in just one, or in none. In the 
first case the variate in ql.lestioll will be said to exert an ill ­
fluenee that is inside the set ((t. fi ' . . {') ur it:; systematic with 
respect to this set; in the second case the basic varia te will as 
before be said to represen t a disturbance, The third case has 
no int.erest ill connection with the se.t (ct,:3 . , . 

Thus, as wo enJarge the set of observational variates, the 
largeT will he the porlion of t.heir determining fnc101's that must 
be considered as "inside" or "systematic", and. the smallel' will 
be the part that is sUll left ill the category of "disturbances" , 
Furthermore, if we i.nclude in tile st.atisticD.l analysis some new 
observational variate in order t.o explain some of the lack of 
fit which we h ad in the original set, we mus t not forget that in 
practice this always means that we intrOllucC' n l J(~ '" romplr;l', 
of which perhaps only a small part is syst ematically connected 
with those observational variates we or iginally co11Sidere.rl. It 

.'1 1 


is just. this facL th at creates the 1'c-<11 problems of confluence 
analysis. 

rrllere are many reasons which provent us fr-om ever reaching 
a situation where all possible fluctua.tions are exactly taken 
account of by t.hose variates we have included in the analysis. 
.A. smaner or larger par t of the fluctuut ions must always be left 
in the in discriminated categol'Y of "disturbances". In each 
particular problel1l nature has drawn a more or less distU1ct 
line or demarcation between those fluctuations which we may 
hope to explain by studying simullaneously certain specif ied 
observational v aria tes and the inexplicable rest. This jus tifies 
spea.king oC "systematic variation" and "raJldom disturbances" 
in a semi-alJsolute sense, the set of ,-ariates within which the 
expressions shall be understood being defined in a more or less 
precise w ay by the very nature of the problem considered. As 
a rule when we use th e terms "systematic variates" and "di­
sturbances" without further specification, we take them j n thi..'! 
semi- absolute selLSC'. 

If in some way or another a distinction h as been drawn 
between those basic variates which create th e inside and those 
that crea.te tIle outside influence, we may write each obser ­
y ationu l varia te .r/ I1S tl :c ;:lUlU of two con'ponents 

, ) ;rj = ;~I I -t-
. 

,1'/ 

.c; being the systematic })art ()r X, - th at j" the part that ie 
systematicall y connected with the other val'iatoo considered _ 
Ill1'l x; i t ~ "disturban ce". 

Let t = J, 2. " _IV be llumbeling of the observations, and let, 
as before, the Gaussian symbol [ ] denote a summation over all 
the observa.tions .. Since we assume all the variates to be 
measured from their means, we have [,('Il = [.r :] = !,T;] = o. 

The oh~erYed cross m omen t m'j = r:rj '~jl is erlual t() 

(7,9) -'"J !' 'I ' ·"1 I711 i.i = nl ij + lx, ;rj + ,1.',..rJ + 1;1"i ~:i 

where 17Ilj IS the c-rn t'S moment of the systematic part.s of the 
variates i and .i. 

For i = j (7, ~J ) reduces to 

'j .10) mil = rni i , + 'm•ji + 2 [',1';:l'; 'J 
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The decomposition (7. 8) and the ensuing formulae (7. 9) and 
(7.10) have here been derived from the notion of basic variates 
and the f ormula (7.1) . But there is obviously nothing that pre­
veni-.s us from taking the decomposition (7.8) independently 
as the starting point of tile. aJlalysis. 

Tllere are throe assumptions which may suggest themselves 
regarding the nature of the correlation between the varia tes in­
volved in (7.9) and (7.10). 

I. Thero is no correlation between the accidental par ts of 
two different observational variates. 

II. There is no correlation bet.ween th8 accidental part or one 
observational varia te and the systematic part of another. 

m. 'Ihere is no correla tion between the accidental a.nd sys ­
tematic parts of a given observational var iate. 

If the assumptions (1) and (II) are ma.de we get 

(7 . 11) lI,j = m;j lo r i =l= j 

aud it' the assumption (ill) is made we get 

(1. 12) (1 - )'j) mu = m;i 

whero . 

). ._?n j j 

(7 . 13) ., ­
rIl jj 

).1 may be called the distlt'l"uill.q intensity of the yariate Xi; it is 
the ratio between HIe sumsquare of the disturbance of Xi and 
the sumsquare Ol the obse rved X I itt,clf. 

The two formulae (7.11) and (7. 12) can be expressed in the 
single formula 

(7.14) m;j =mij (1- )' i elj) 

By Lhe definition (7.13) ).1 mll~t be a Don-l1egn liye quuntity, 
that is 

(7. ][») <: I ' j ' 

he obsel'vcu Ycll'iance mii must therefore be larger than Lhe 
systematic variance if assumption (III) is satisfied. T.b.e same 

~ .., 

,)-.) 

would however be true even on a less rigorotls assumption. We 
only need to assume: 

(III') There is not such a h igller i1wersc correlaUon between 
the 8ccidentc'll part of Xi and XI itself tlwt t.he thiru term in 
(7.10) outweighs the second. 

If this is the case, wo still have the equation (7. 12) and tIle 
inequality (7. 15), the oul:y iliJ[erence is that 1, will now br 
defin ed by 

. m;, +2 [x;jx;il
(7. 113) ).1= - - ­

?1l ,j 

In the following we shall as a rule assume (ill') instead of 
(III). 

Assumptions of the kind we have expressed in (I) - (Ill) 
must of course be interpreted cum gl'ano salis. In practice we 
must reckon with the possibility tllat they are not exactly. but 
only approximately fulfilled. 

It Dlay be noted tha t the assumption (III) does not exclude 
the possibility of the .,-ize of the disturbance changing system­
a tically with the size of the variate itself. III only involves 
!bat there is such a mixture oC positive and negative distur­
bances that in ilie total result no correlation appears between 
.'Vj and i ts (listurbanoe . 

Let us normalise the variates by dividing each variate by 
its observed sumsfJuare. The systematic and accidental parts 
of each variate must consequently also be conceived of a.s 
divided by this magnitude. The moments of t.he sysiemat.ic 
variates thus normalised will be r i ;(1-l;e,) which may also be 
written 

7. 17) '·Ij - I. j elj = moments of systemaLic parts of 

empirically normalised variates. 


In other words the "trtle" moment matrix of the normalised 
variH,tes will be 

1 - i'l r l :!· .. "111 ) 

(7. 18) ~·:.'l..1~ ~~ ...... .~2:'. : . 

( 

rill ? t1~ .• - 1 - I., 

wllcre ).1' ,,~ . .. are the disturbing intensitic.,:> d~fined by (7. 16). 
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Since the true cOJ'l-elation coefficients are obtained by 
normalising the true moment matrix, wa can also write 

(7 . 19) t"lj = V(1- )_1)(1 - }.) \:\~ U=i= j ) 

where eu nrc lhe t rue correlation (;oefficients und "j the 
obsE'l'ved. 'fills equation follows of course also direcUy from 
(7.11) and (7.12), If we insert the expression (7.19) for rj j 

in (7. 17) or (7, 18), we see tllaf. the "true" moments of the 
(empirically) nOJ'Illalised variates may also be written 

(1 . 20) 	 ~Ii \,(1- i·t)(l- ;'Jl 

IIere the true moments of the (empirically) nOl'malised vnriate~ 
are expressed exclusively in terms of the true correlations and 
tho clist.urbances . 

8. 	 THE SCATTER FO'NC1'IONS .AJ.'ID TIIEm TAYLOR EXPAN­
,ION, TJIE cusmON E FFECT, 

The discussion of the last Section suggest that the function of 
i'1 . •• J." obtained by taking ilie determinant of (7. 18), awl also 
the similar fUDctions for any given subset Uj . . . k) "ill play all 
important role in any analysis of cOllfluency of regression equa­
tions. These funct ions we shall call the scalter functiolls . Tbey 
will be denoted FP.l ... )' /1) for Ule big set aDd E jJ t(Aj, J..j • , . A,,) 
for tI le sullset (i ) ... k) , so that 

1 - }.t 1'lj • • , " , . 

(8. 1) Fij ... 1.'(1,;, )'j ' ., Ak1 = Irji 1-1j . . , r jk 

I"1; i r l.» " . 1-)'1: 

1 Qij " . e it 

Oji 1 .... [}jk= (l- I-il . (1 - )<jl . .. (1- l.,.) 

(b:dh) . . . 1 

Ii the i.. 's are put equal to the (so far unknown) disturbing in­
tensities of the variates, the functions F,j ... 1.: simplJ become 
the "t.rue" scatterances. The second e}"-pression in (8. 1) is 
obtained by inserting in the middle expression of (8. 1) the 
xpressioll fo r 1'iJ take n from (7 . 1n). 

v v 

COl1Sider tlle ,,.Jil1lem;ional suusel (I), .. k). aml let 1" }.; . . ' }.L 
be any set of given "alues of the arguments X. The 1'ny l llr 
expansion of (8, 1) is easily found to bo 

(8 . 2) FI) .. .d11. )'j •• . I'k) = P ij . " k - "it/(An-I.n)l'~j .. ),,: I: + 

+L (A.tl - 1!.) p, ~ - \,) EiJ . , , Ja 
tn < {J _ _ _ 

- . .. + l-)"P., - ).()(i-j-i) .. . (i. :- I·d· 

here CL ill 2
f
, runs through all the /' ttffixcti i.j . .. k . ({tt1J ill L rllilS 

" < ;1 
tit 'oug lJ combinations without repetition of lhe two affjx~ a :tllll;1 
picked.in tho set iJ ... /,', etc. P j ] _ , .< denotes the ,'uine or Fu .. ,: 
'when the I. '::; aJ'(> pul eq ual to tlIeTs; ti..lIJ the i.m crted pal'cill!lcBe3 
denote "exclusion oC", 

Putting all tho l' = 0 we get the. expansion of the "truEr" 
scatterances in terms of the observed, nameiy 

(8. 3) F 'j .. . 1: = 6.IJ . • . ': - L,t J'1t 6.1} ., .'1,( .. k + 2: )'(1, )'/J 6.1j . .•1(ciJ; 
(' < ,i 

, ( )' 1)' . 
- ... T - Ai 'j . . . I.,. 

anrl putting A. = 0 replacing I: by i" we get the expansion of LLe 
Observed sc.atterances in terms of the " true", namely 

(8. -1) 6;) ... k = Fi) . .. I: + ~I< I." F I; . . '''c. _.I; +I I'lt )'/lFf,I . . ' )«I~\' .. (. ,,<f1 
+ . , . +J./ ):; . . ,),1:' 

From (8. 3) we obta in, of course, immediately the formula 
(2.2) for t.he characteristic polynomial by put.ting aU the ): 8 

equal. 
Since al l the )_ a rt' non-negative, and the true scat.teJ'ances 

are positive definite determinants, (8.4) shows immediately that 
an observed scatterance must al ways (when the conditi ons 
I- ill of Section 7 hold good) be larger 1han the corresponding 
"true" scatterance. In other words, even though the true 
scnttera llce F'j .. k is r igorously z.er o, any amount of accidental 
disturbance w ill immediately act as a sort 01 a "cHsIlion" that 
prevents the observed scatterancc from falling down to zero, 
The thickness of the cush ion depends on the intensity of the 
disturbances. To a first approximation, when only linear terms 
in the disturbinl:!' intensit ies are 1' € (a ined, the cushion· effect is by 
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(8.3) proportional to the weighted sum of the intensities, the 
weights being the observed scatler ,Ulces in the first subsets. 

A similar Temark applies to the characteristic roots. Any 
sort of random disturbances will fo r instance immediately pro­
duce a systematic bias in the direction of iuel"ea,illf} tIl 
minjmal ).·root. Inded, if all the Ai: are rcplueou by }. and all 
the 1): by }.,; +}. in (So2) we get 

(R.5) P(J.) = F().) +La)·UF,«((J.)+L)." ).pF)A',~\(X) + . .. + }'l).j · .• ). 
a < .1 

where P(A} is the observed and F(l) tlle "tl'ue" charac teristic 
polynomial in tho set (ij .. . k), F )a: p.) the true characteristic 
polynom ial in the subset where a is lefL out, etc. J.a etc. in 
(8.5) are the disturbing intensities. Since the true ch aracter · 
istic polynomial, when written in determinant form, is positive 
deLini tu fo r all values of J. not larger than the true minim.a.l 
root, the development (8.5) sh-ows that as long as we are in the 
interval between zero and the smallest of the " true" character · 
istic roots (!.he latter limit included) we mast ]lave P(},, ) > F(i. ), 
unless all the dis turbing intensities are zero, in which case 
P().) = FI).). Consequently the observed minimal roo t must be 
larger than the true, whenever disturbances are present. 

More generally the whole appearance of the observed seatter 
will be influcnced by the cushion effect. The shape of the scatter 
is inuee.J prolluce <l j ointl!l by two different sets of fact.ors. It 
depends, not on ly on the "Lrue" relal.ions that exist between 
the systematic variates , but it is systematically biassed by the 
disturbanc0s. This is just why it is so difficult to apply 
scatterances 01' ch~racterislic roots as criteria of linear con­
fluency. And this is also the rea-son why the shl\pe of the re­
greSSion ellipsoid (the direction and length of its axes) is not a 
good illllicatvr of tbose tra its or Ole distl'ibullon wllich we try to 
lay bare when we study linear conflnency. The things which 
we take as our landma rks when we study the main axes of 
the ellipsoid are indeed produced just as much - or perhaps 
even more - by the cushion effect as by tlle systematic con­
nection between ihc variates. This applies particularly to those 
cases where there is multiple colline:.1rity between fue systema­
tic YLlriaies, and where consequently Q, confluence analysis is 
particularly needed. In this case the direction and length of 
some of the axes of the regression ellipsoid will depend 
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primarily on tho rolat ive size of t.he disturbing intensities i_I ' . . All 
and not on th-e ]lature of the "true" relations that exist between 
the variates. 

n. THE .TRUE. REGRESSIONS. 

Suppose that we have a. set. of variates, sety N os. (ij . . . k) Rnd 
that. we actually kllo/I' tJJe disturbing intensities in t.he set. 
Suppose that these intensities a.re such that they actually make 
the scn.tter func tion Fi i .. t vanish, but leaving at least one of 
its first. principal minors diU-crcnt fro m zero, and of course mak­
ing it a po.sitive definite matrix, otherwise it could not be the 
moment matrix for the "t,'uo" variates. The systematic parts 
of tlle obser ved var iates would then be connected by a linear 
relation, and we could actually determine t.his linear relation 
exactly. I n deod, if the "true" regress ion is written in the form 

(9. 0) (/1 ;£1 + ... + a"x" = 0 

or in nor mal coordinates 

(9.1) 11 1 § l + .. . + a".c.= 0 

where ~i stallll for the empirically normalised variates 

{g. 2) ti= 
:C, 

ii = V';//iI ..\ 1 
ai 

a i being the observed sla.ndard dcviation of the variale'So . i. 
- tll ' l1 tJ le coefrk~ i enli' Ct, would simply be 1118 solution of the 
homogeneous system 

1= . I ') .(9.3) LI(r,~ - J.ieii:lCtk = O. ( . , _ . .. 11) 

In otllel' words HIB a's euultl simply be put pl'(tportion.ll to lhe 
elements ill 3,,1'0'\- of the adjoint. of tho c1dcrrninnut 1 Z.~j~ l . 
.All these rows would- lJe propo rtional ~ilH:C' IFi,i .. kl=O. And 
at least one of thc rows w ould not consist exclusiyely of zeros 
(since we have assumed at lcast one oJ its first minors to be 
different from zero). Incidentally the absolute values of the reo 
gression coeffi cients could also be determined by the square 
values or the diagonal olernenis in the adjoint (whic.h are a.ll 
non-negative according to our assumptions). 
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If the distur bing int.ensities are n ot known e xactly, but It is 
l )lansible to ll cisu me certain ilZt&rvals in which they must lie, 
we cun d etonrune certain limits for the " true" regression 
coefficients. 

Let 11S take the case II, = 2 as an example. We assumo th at 
ilia observed correlallon matrix is given . I n the case 11 = 2, 
all the infvrmation contained in this matrix is simply ~he value 
of the correlation cocliicient T12 between t l lc two ynriates X I 

and x;;). A.1l'eadJ the fact 1J.lat we have given the value of "l ~ ' 

imposes n. restriction on the possible llypotheses l'egarding the 
sizo of the disturbing illtOIlBiHes ' ;'1 lind ' '''1 ' InC! C'a, Dol all such 
hypotheses are. compatible with the observed value of "J;!' 

Which hypotheses are so compatible'? Olniously those, and 
0111y thoso, that make the "true" moment mlliri.."{, which would 
esult from the hypothesis, a positive definite mat.rL"{. 'I'his 

means that we have 

(9, 1) ;\ < 1 )'2 < 1 

(9 5 (1 -1'1)(1 - /'2) :> ~·L. 

Graphic-nily t.Jlese condi tions may>·' 

be exlribited by saying tbnt tbe ••· . 1-1- - - --------, 


point (J.J J must lie in the aIea 

Ain l!'igW'e 7 lJelow nnd to lite : ­

~~ 
right of t il e two straight lines d e­
fi ueo by (9 . .+), a nd at the same 
t,ime below the equilateral hyper­
boln defiued by (9. 5) (In F i· 
gme 7 I'ij = 0.40). Obviously L\
the latter conuition is sharper 

than the former, so w e Dlay ..... 6 

J 

>. ,"

, 

. 
 J\, 

disregard (9. 4) and only con· 
}'jg, 7.

siuer (9. 6). 
Of more interest thml (9, -1) are tIle conditions 

(9.6) 0 <:' )'1 0<'1'2 

that gi\'c lowel' limits for the intensities. This condition is 
essen tially connected with tlle assumption (III) or (fiT) or 
Section 7; (H . 6) together wi th (9.5) defin e tIle shaLled area in 

.jtl 

F igure 7, as the pOS~<riblHty ,·egion for (J.l ). ~ ) , The larger the square 
correlation 112 the smaller this shaded area . ,\.$ 1~~ approaches 
lmity the ar ea reduces to a poin t., namely origin, wl1iclt means 
tha t in the case of perfect obs~rved correbtion, there is only 
one hypothesis possible, namely that no dis tu rbance is pl"esent. 
On th e olher 1111nd if 1·I2 approaches zero, the p ossibility r egion 
will at the liInit !ill the whole square of Figure :. 

rrhe conditi011 (9.5) in. conjunction with (9.6) enta ils 

(9.7) J'I '<1- rI2 }~ < l-?·i~ 

rl'hese latLer inequalities express tl.ll 'independent upper limit for 
each disturbing intensity in terms of ohservecl pararuelers, buL 
of course thi.s limIt is in general not so sh:lfp LtS the joint lim.it 
(9.5). 

If we Buppleffil:mt the information contained in t.he observell 
1'12 wiOl !.he assumpLion thut the syst.:m1atic variaiion of til e 
two val'jute s a.re linearly dependent, the possibil ity region is of 
course further limited. In this case \VB must have 

1 - A1 "J! 1= 0(\J. ~ ,. 1- ).~1 n 

so LIJ!tt the poinl (}' l )'·2) must n ow lie 011 Lhe limiting hyperbola 
itself ; in other words there Is now only a one dimensional free­
dom in our choice of hypotheses about (to l }' 2)· This imtaih de· 
till1te limit~, fo r the "true" regressloll coe/Mietlts. Iu eled , if i' l and A~ 
nJ.'U so chosen t.hat (9 , 8) is fulfilled, t.he, regr~ssion coefficients 
are given by all] of the rows of the adjoint of (9.8), that is by 
any row in 

1-22 -1"1219. 9) 
- I - Ai1 1'2J 

We ma.y for inst.ance put 

r12 (9. 10) 
I 

£ 2 
. ~

L 

1 I- }.~ 

where §l £2 are tIle normaliseu obs8rreu nniates, Wl1ut fire the 
l' 

limits of varia tion for tlJe I~cgression coefficient 1!, when 
1 - 1' 2 

the poin t PI )'2) yaTies on the possibility hyperbola of Figure I ? 
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7 and which brings forth another set of parameters characteris­
sma.llest in absolute value in the po ints A. HD( l B respectively. 
Obviously this regression coefficient becomes the largest or 

ing the nature of the disturbances. 
Iu these two (lxtremunt points we li aye 1 - )-2 = r;'2 and 1- )-2= 1. li tile observed variates consist of two po.rts as indicated .in 
Hence : The "true" regression coefficient between the normalised (7.8), and if the there exist a linear rel::t.tion between the 

systematic parts of the variates, we must have 
variates 51 and §'!. must Jie betwecll "12 and ~. III othol' words: 

12 
(t! . 13) 	 a1 Xl + . . . + a,. X Il = 11

(9. 11) 	 The "true" linear regression betll'een two 1:llrudes mWlt lie 
between the tlCO elementary "eg1"eS81 0118. where the Uk are constants (the "Lrue" Tegression coeUicicnts), 

Xk the observed varia t,,::;, and 14- a yarillte t.Lat may be looked This result is deduced on the assumption lhat there actually 
U pOll as a shift of the regression plane. In terms of theexist a l inear relation between tho s;l}I'fleIlUTti c par ts of the ffiO 

d islul'Lanc('s :r;' of the inclh' idual val'iates the shift u may be variates and further that ([), (TI) and (I II') of Section 7 are 
fulfilled. expressed as 


'rhis suggests that similar limits ma.y be obtained by study­

(9. 14) 	 II = (1 1 .x·~ + .. .+ a" x:..ing in several varia.les the condition that the scatter functions 

(8. 1) shall be positive definite. The analogue of (9. 7) is for For a moment let us disregard the comp"sirion of u u.s deiincd 
instance found to be by (9. 14) and let us just consider it as a variate defining the 

shift of the equation (9. 13). Multiplying (9. 13) by ;('[ and 6 ii .. 1;(9. 12) 
performlng a summation over all the observations, we get )" '<~' :' "WIJ ... .• 

tl. 15) Lk mil; OJ. = [u xd· 
the l1arnJ\ver ~lte more inclusive tb e set (ij . .. k). 
where (ij . . . k) j " any set contnining (t . 'r.be limit (9. 12) is all 

1'01' lhe coefficients (t of the normalised regression equation 
So fru' a.s tho regression coefficients themselves are concern­ (tJw.t is of (9. 1» ,,~e have

ed, the situation becomes h owever much mOie complex in 
several variates, particularly because it may now be possible t.o (H. 16) Uk = ak Ok G/;= Vmkl;/S
find points ("subtest points") where, not only tho highest order 
scatter function vanish es, but also a ll those of next lower order. consequently 
At IIle Institute considerable work, both theol'et ical and numeri­ .­(9. 17) J: "j}: eI" = e . f! i 
case of n vuriates, bUI tho results arc not yet in such a shape 
cal, has been devoted to clearing up th is matter in tho genernl 

where 
as to justify publication. I shall tllerefore here confine myself 
to the above example in two variates. This example will be (9. 18) 	 s = \ ' [UIII!J.Y
sufficient to suggest heuristically one of the leading ideas w.hich 
will be utilised in Part Ill. is the standard deviation of the shift, and 

It. was expla ined above how the "true" regression in any 
number or variates can bo dctel'mined, when tho conditions of (9. Hl)
Scction 7 hold good and the disturbing intensities a1'e assumeJ 
given. The regreSSion coofficjell t.s Me then simply proportional 
to the elements in the adjoin t of the scatter function. The tho correlation coefficient betweell tlle observed val'iat.e X, aud 
detennination of the "true" regression can also be Ihrown into ilie shi ft. 
another form which is independent of the conditions of Section The equation (9. 17) is peI'fect1y general, and so far does not 

\ 
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depend on any assumption about the shift. If the rlistur bance 
correla tions f.? i are glrcl1, then (9.17) ptlrmits a. unique deter­
mination of the regression coefficients . I ndeed - the deter­
minant of the system OJ. 17) is the actually observed correlation 
malrix (r,) whicL will never be zer o in practice . The fact that 
the stanflard Jev iation E of the shift OCCUTS in the righ t member 
of (9. 17) is unimpoJ'tant.; indeed, in the solution t Ills param~ter 
wil l only appear as a. common multiplier for all tIle l' ll.l'1'o;osio n 

coe fficients , and the regression equa,tion is independent of such 
a factor. We ma.y therefore write the sol ution of (9.17) in !,he 
form 

(9. 20) (,Ii = constnnt 2:.. Fi k Uk 

'TIlliS, what the obseryaiionn,l da.ta at hand gives inIormatioll 
about is in reality not the true regression coefficients them­
selves bul only the 7a/v of /inear traJl" jor IIICttion Ichich pen/zits 
to pm;.>' from the cli8turban('e correlations {!; to the regJ'essiol 
coefficients a. or vice vcr,w/. This exhibits in a striking fashion 
the limits of the informaLion which are contained in a. table 0 

c.orrelaLion coefficients. Fl'onl snch a. table we call deduce 
sorno clefi.Dite statistical regression only by a. process wh ich is 
e quivalent to making cerLain hypotheses about tlle disturbance 
correlations. We shall la.Ler interpret sorne of the usual statist.i­
cal re gressions in th is light . 

The hypothe.sis tllat the shift is uncorrelated willi all the ob ­
"ervetl v nria t('s i · e . el = ...= [!" = 0, can in practice not be admitted 
Indeed, this would - if we disregard the trivial case where all 
the true regression coefficients ar€ zero - entail the vanishing 
of the observed correlation determ inant. This follows immedia.­
tely lrom the bct that (rl)) is the ma.trix of the linear system 
(9. 17). 

The determination of the "true" regression codficients 
obtained by means of a given set of assumptions regarding tho 
9 must of course be identical with thc determination by means 
of an nssnmption about the ).'s of Sect.ion 7. Suppose for Rimpli­
city that we admit the three condit.ions (1), (11), (III) of Sec­
tion 7. Tho moment [" xtl is then equal to 

(n. 21) [1~:tLl = Lk (II: !.J.'; Xi] = at At "'ii' 

The equation (9. 15) therefore takes on t.he fo rm 

0:3 

(9.22) II: (ml~ - )'j IiL Ii eit ) (J t == II 

which is equivalent to (9. 3). 
I n non-normaliserl form the "true" regression defined by the 

coefficients (9. 20) may be written 

(n _23 I lj IJ 1 /111) ":j = 0 

were .'Ii is the (listn r blll1C'l; lJlo1l1ent 

(0 . 2-!) .111 = [II ;t..]. 

In determinan t form this "true" r egression may be written 

o Xl ... · ~1;" 

.111 mil ... mini = O.(9 . 25) 

" ~;I " ;l -'I ~ '.'.' .' ~,; ,:,: I 
This regression is - as one would e xpect - inwriaJlt fot' it 

~Deral linear transfor mation of the observational variates . 
Indeed, making the transformation 

(9. 26) ;:1 = II: c·/: ;?:.'­

where (ci.t) is a l1un-sing ul llr matrix, we get a new observa.tio­
nal moment matrix 

(n. 27) nit= L ht CU: tit", Cit} wllere ')"j = Cjll 

(Compare for mula (1. 5) in " Correlation and Scatter . . . "). The 
adjoint ot (9.27) is 

(9. 28) 1~ ij-= L/" ~i/r tllil i ' (:tj 

G bein g the ad joint or c. and c the adjoint or I;. 

h I each observation the shift u will be UllcLauged by tho 
linear transformation ; the transformation represents indeed 
only anoth~r way of ananging the terms in the sum to- the left 
in (9 . 13), and th is purely formal operation c.annot influence the 
value which "nature" has given this sum. The new disturbance 
moment will consequently be 

(9. 29) /t(= [ux; ] = 2: ,~ CEiI I I, ' 
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In other WOl'ds II, is cogredieut with Xi' whioh is the essentio.l. 
fact !,hat will ensure th e invariunoo of the regression. The new 

regression equation will now be I ") ; j ~l'j Xj = 0, and insertin tJ 

hen' from (9.26), (9.28) and (9.29) we get 

I ij II" I nti' ,/Ill. Gil' ~iI' t;;,,1: ~k.l Cjp :7:/1 =0 

which reduces to 

9(.30) Ie 12 . I I' p l it< Tn" ~ :L',~ = O. 

Since th e delermiLlunt Ie 12 is different from zero, equations 
(9.30) and (9. 23) are the same. 

In (9. 11) we deduced limits for the "true" r€gression coeffi­
cient in two variates by discussing the range of variation of the 
};s. Will a similar study of the range of variation of the I;/S 
in (9.20) als 'J furnish limits for the "true" regression coelli­
ciants ? For simplicity let us again take the case n = 2. By 
(9. 20) the r egression equa.tion in normalised coordinates wiD 
now be 

(y, 31) §l = fJ· £2 

where 

fJ = (J(Z) = 1-z'1'(9. 32) r = J'12'
'/'-;; , 

(i:! , 33) z = ~l/~t. 

rrhe function /,J(z) , whose derivative is (J ' (e) = /-1';. will have r - z ­
one branch that star ts at fJ = l ' fOT 2 = - =, increasing llJonotoni­
cally to + = for z = j ' - 0 , Hnd appearilJg again at - O~ for z = r + 0, 
frOID where jt increases m onoton i<:ally to r. '''hen we follow 
lhesa b ranch es, we see thnt {J lies between l' and 1/1' whell mil; 

ollly when z ha.'l the opposite sign of y. Consequently: If the 
ulsturbing conclationc (!l and (12 hln·c the same f' ign when the 
observeu l' is negative flnd if they IHI,e di.tl~re}d signs whel1 )' 
is positive, th en, and only the.n, will the " true" regress10n li 
between t.he two elementary regl'essiolls. If this condi tion is 
not fulfill~d, the " true" regression will fall outside of Ute secLor 
between the elemen tnry regr-ession. III th is latter case there 
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is noth ing to prevent the "true" regression slope t.o J..Ssume any 
val ue between - wa11a + :D. This is another expression for the 
fact that the limita.tion (9. 11) is essentially connected with the 
special assumptions (I), (II) and (III') of Section 7. 

10. TITE I NTE RPRETATION OF THE EMPIRICAL R EGRESSIONS: 
E LEMENTAR Y, ORTHOGONAL, DUO-ORTHOGONAL AND DIAGONAL 

nl~GRESSlONS. 

By the formulae Df the pl'eoeding Section we may now study 
the nature of the var ious empirica.l regressions. Each of th e 
usual kinds of regressions dete rmined statistically is connected 
with a uefin ite k ind of assump tion about the disturbing inten­
sities J. or the dis turbing correlations e. 

Let us first take the elementa.r y r egressions. If we a.dopt the 
p tlL elementary regression as an expression for the systema,tic 

onnection between the variates, we assume that thecoofficients 
of the " true" regression (9. 23) are proportional to those of the 
p.th line in the adjoint of the observ~d moment matrix; in oHler 
words, we assume that 

(10.1) IiPI m'j = Cp til1'j (j = 1, 2 . . . 1t) 

where 01' it; some constant independent o f .j. 
From (10. 1) follows immediately - provided that the 

observed moment matrix is non-singular - that 

_ _10 (i =l=p) 
u - C e· -)(10.2) . , l' I.p ,C U= p) 

p 

In other words, adopting the p ·th elementary rcgrcSS10n JIl­

volves necessarily the assumption that there is some corr ela­
t ion between the shift 1t and the observed variate x,,, but no 
con'elation w b ats06 \'t' l' between u and any of the other observed 
varia tes . 

Kext consider the orth ogonal regression. It is defined as the 
regreSSion obtained by minimising the SUl1lsquare of the devia.­
t ions measured ~rpelldicularly to the regression plane. If this 
is don€ befo re the. variates are normalised, we obtain a regres­
sion that is no t e ven invariant for a cha.nge in units of 
measurement. If the or tllOgOllul l'egression is to be used at all 
in a case wh e!"1} the units of measurements aloe conventional, 
it should tJlerefore be a.pplied to the n{)TIllal ised variates. If 

5 
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this is done, the regression coefficients a are nothing but the 
solution of (9 3) when a ll the l s are put equal, and equal L 
the smallest characterist.ic root, i. e. the smallest zero of P (l) 
defined by (2. 2). I n other words we may look upon the 
normalised orthogonal regression as obt:'l.ined by first iissuming 
that the disturbing intensity is the same for all the variat es, 
and then determine t his common magnitude of the disturb ing 
intensity as the smallest number compatible WiUl the assump· 
tion that the .yy....temat£c par ts of the varia t.es are rigorousl 
linearly dependent.. 

This suggests the generalisation of estima h ng ._- thr ough some 
more or less plausible considerations of the concrete na.ture of 
the variates - 11 set of proportionality numbers ).; . . . l~ whic11 
can roughly eXl)l'~Ss tile !'ompa.mti ue amount of u.i,..tul'bance on 
he \7ari fttes ; and then determine a common f ucto r " by the 

characteris tic equflti lll1 F(}I).~ ... /,I. ~) = o. Tile development of this 
e quation is easily obtained irom ilie formulae of the, preceding 
Sections. 

When we are pr imarily interested in the regreSSion coeffi­
cient between two special variates xp nllu X" (the others beiJjg 
taken into th e r egression only to elimin ate infl uences that it is 
not wanted to s tudy) , we may for instance use the above 
met hod by putting all the J: equal to zero except ).~ and l~r 
which we may - if no further information is available - put 
equal. The regression th us obtained may be ca ned the dUll­

lwgonol. The explicit formul a for its computation is 

(10.3) 

dun) 
'L f::, - ..1 

) -- P\ / - .. ) '1(.Y -£ "'~ ­<.0 - ­11(<<, 

?6."p. ) p\ . ; , -A 


,,, here c is a sign factor determined from the general appe­
arance of the adjoint corre.lation matrix. and 

(10.4 a) 
) 

6crfi . }ptJ( . . " 

, . 
, f)t .. ·r 

(10.4 b) U = (6.)p( + D.)Q(? - 4 . f::, . 6.)pt}( 

The last member in (10.3) is most convenient for the nmnerical 
computation. 

1) 7 

Also the elementary I1egressions can be interpreted in terms 
of the J:s. Indeed suppose that there is no dis turbance at all 

n the valiates except on xp. The true scatterance in the given 
set will then be the value of (8.1) when all the ;.'s are j ust 
equal to zero except ).,p- The yalue which Ap must have if the 
systematic variates in the set shall be linearly dependent, that 
is l; ~j . .. k = O, will consequently be 

1\ .. t
D'J •(10. 5) 

j,p = 1\. . )p( . i;
U;.I . . 

Any r ow in the adjoint of the scatter functian with the value 
(10. 5) illserteu f or AjJ will then give the regression coefficients. 
rl'he elements in the p·th row of the adjoint thus obtained will 
just turn out tv be the coeffic ients of tbe p-th olcrnentul'Y re­
gression. 

T he diagonal legression . is the one obtained by deLermining 
ilie signs of the regression coefficients from an inspection of 
h e sign.s of the elements in the adjoint correlation matr ix , and 
then putting the absolute value of the coefficients equal to the 
square root of the dia.gonal elements in the adjoint.. Obviously 
this l'egr ession is the 011e obtained by assuming tha.t the dis­
tW'bing intensit.ies a.re such that !.he "cushion" effect (1. e. the 
effec t that prevents the observed scutter:lnc.os in the ( ~/ - J) 

dimensional subsets from coming down to the value of the 
·' true" scat.terances) is the same in all subsets. In other words, 
the observed sca.tteJ'ances ill these subsets are assumed pro ­
portional to the true. 

The diagonal regression may be computed by the formula 

V10 
(fJ /16. P '( ..'I(10.6) B :t1l81;.) _ "'I a ... "_. \ « .. " 1 . " 

P'1: a . fI . y) - E l' -E . 
PI' (((I~ .. Yl A.p .. )1' ( 

where: [;. is the sign factor indicat ed. 
In the above ana.lysis the regressions are not determined by 

any least square minimalisation procedure, but simply by 
specify ing (;c rtain assu mptions about the disturbing intensities 
or the disturbing cOlTelations and then solving the equations 
that must exist exad7y if the ass umpt ions in question hold good. 
It seems that t.h is is a more logical procedure than just to least 
square mininlise certain deviations defined in a. more or less 
empirical manner. If a least square process is to be taken as 

~~.~ 
J

f /b'''!' 

B '~ 
A I 

-- ::tJ.. 

"'Pr 

~/.k ­

~ 

http:scutter:lnc.os
http:variat.es
http:characterist.ic


G8 

the basis for the determination of the f8narcssion coefficients, 
it should at least be formulated in more general terms than 
those usually employed. It. should be formulated so that the 
nature of the specinJisal,ion adopted in ea.ch particular case is 
clear ly exhibited. The fo llowing is a suggestion for such a. 
treatment of the problem. 

Let (9.0) be the empirical regression plane. Suppose that the 
(t ' 8 are to be c1eternlincd by minimising the sumsqua.res of the 
deviations from the plane measured in a dit-ection whose direc· 
tion numbers Me c1 .. • e,. . Tl'hese direction numbers may be a. 
set of given constants, or more generally they may be given 
fUllctions of the (I"~'. rrhe nature of these functions are just 
characteristic for the nature of th e minimalisation process con­
sidered. We shall treat the problem on the assumption that the 
minimalisation is made in the originaJ (non-normalise.d) val" 
ia tes. The corresponding solution obtained in the n ormalised 
variates is obtained simply by assuming all t.he observed 
standard deviations (01' sumsquares) to be unity. 

Let Xj be the coordinates or a given observation point and 
Vj the coordinates of the point of intersection between the 
regression plane and the straight line through XI with direction 
Ci . We then have 

L.. a,t xl; . 
,. OJ(10. 7) Vi -.X; = - LI; ak c : 

I 

so that the square distance is 

(10.8) Lt(vk-xd = (Ltak·'l:t f . Ll:c~/(Lkakckf 

Taking the sum of this over all observations, we get 

Lke~ ~ 
(10. 9) ·~--)2 . L. j j mij al el'j'(L.k at Ok 

Equating the partial derivaties of ), WiUl respect to the a's 

to zero we get 

(10.10) LI; 71I j t ak = }'J I[Ci + L!:a"cu - ,IL L~OtCkiJ 

wher~ 

(10.11) ,Il = LI; {t .:cjLJ:.if:, 

Ii!) 

U ~I:
(10. 12) 

li - Da, 

It does not restrict generality if we assume the Ct to be such 
functio ns of tbe a" that 

2 <) .(10.13) c1 + . .. + 0;, = 1 

for all values of the at. 
n tIlis iB the case, (10. 10) reduces to 

(10.14). Lk 771/.t al;= J..,u(c; + 2I;arA:;) (i = 1,2 . .. n) . 

In this system the OJ and C•. 1 must be supposed to be given 
functi ons of the ak I n general the system (10. 14) will therefore 
f llrnish a determi natio ll of the at. 

If we assume that the minimaJisation is done in a c1irection 
that is independent of the inclination of the regress ion. plane, 
(10.14) red uces further to, 

(10. 15) 2."mi!: ak = I.J.LC; 

where now J. l t may be looked upon as an arbitrary parameter, 
which only defines the length of tllC Tector a~. Tbe regression 
equation is of course independent of this length . 

If all the Co in (10. 15) are put equal to zero, except one, we 
get the corresponding elementary regression. 

Putting in (10. 14) 

ai 
(10. 16) c, = V2ta~ 

means that we consider the orthogonal regression. In this 
case we get 

a. a. ) /
(10.17) eijcij = ( - L~a~. I VLka~ 
Also in this case we therefore have 

(10. 18) Ltallcki= O. (i = 1, 2 ... n) 

80 tha t we get back to equation (10. 15). 
F urther, we now have ,u Ci = ai' so that (10. 15) reduces to 

http:t.:cjLJ:.if
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(10.19) Lk(mij;- ),ei.)a" = 0 

which is the previously encountered equation for determining 
the coefficients of the orthogonal regression. 

Any number of other regressions may be defined by specify· 
ing the nature of tbe functions I: j • A rather extensive and inter­
esting class is obtained by considering all functions of a] ... a" 

for which (10. 18) is fulfil1ed. 
For all func tions of this class the problem will be reduced 

to a system of the form (10. 15). If further the functions 'c ~ are 
of the form 

(10.20) c;. = Stlt, (j) 

where € , is a given constant depending on .£ but independent of 
41 .. . (t,. and (/J a function of al ••• all and cI • •. Cn , but independent 
of i, then the problem reduces to the solution of a regular 
characteristic equation of the form 

(10.21) • !m; j - ...l f'i eijl = 0 

being the unknovn. Indeed, in this case (10.15) reduces to 
the system 

(10.22) Lk(mik-Al'jelt}at = 0, whereA = ).,u(j) 

The system (10.22) has a non-trivial solution only when A 
satisfies (10.21). 

An example of a regression that comes under the above class 
is the one obtained by constructing through each observation 
point a plane P perpendieular to a certain set of the coor dinate 
axes and then minimising the sumsquare of the deviations 
measured within P and perpendicularly to the manifold of in­
tersection he tween P and the regression plane. This !"egression 
may perhaps be called the subset· orthogonal. The duo-orthogo­
nal mentioned above is a special ~ase. 

Many other more or less plausible procedure may be derived 
by other specialisations of the functions Ci' However, i1 a logi­
cal interpretation of all these val'ious procedures is wanted it 
seems that we must bring the problem back to a discussion of 
the effects of the parameters ), and [! along t.lls 1il).8s indicated 
in the beginning of this Section. 

11. THE AMOUNT OF INDETERMINATENESS I N REGRESSION SLOPES 
IN MULTICOLLINEAR VARIATES. THE PERSISTENCY EFFECT PHO­
DUCED W R EN A GIVEN INTER-COEFFICIENT HAS THE SAME SIZE 

IN ALL SUBSETS. 

UtiliSing the results of the preceding Section we shall now 
study more closely the amount of indet.erminateness in regres­
sion slopes in multicollinear variates. 

Suppose first that we have a set of n variates Xl' " x" 
between which there exist the two independent and exact linear 
relations 

(11. 1) UI X + . .. + a ),~c,! = U 

(11.2) hi X l + ... + b"xlI = O. 

Let p and q be two arbitrary multipliers and let us take the 
sum of (11.1) and (11. 2) multiplied by p and q respectivel)'; 
this gives the Ilew equation 

(11. 3) C1XI + ... + Cn Xn = 0 

where 

(11.4) Ck = p all + qb,~ . 

Since p and q are arbitrary, the coefficients of the new equation 
contain also an element of arbitrariness. The extent of this 
arbitrariness is such that in the new equation we may make tlle 
.regression coefficient between any given set of two. val'iates, 
say between Xi and x) equal to any number we like, provided 
only that 

(11. 5) I ;; ~ I=F O. 

The above rule is immediately verified if we write (11. 3) in the 
form 

(11. 6) :J;i = P:lj + .. . 

The coefficient ,3 of this equation will then be 

paj + qbj
(11. 7) ,8= 

pa, + qb, 
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By a suitable choice of p and q the express ion (11 . 7) may under 
the assump tion (11. 5) be ma.de equ al to any preassigned 
quan tity. 

Of course, if the multipliers P an d q are chosf' n so as to rnake 
fJ equal to a given numher, t he othf>}" regression coei ficien ts will 
be determined_ In other words, if there ex ist t lCO inuepcnucn.t 
equations of tho form (11. 1) and (11. 2), we are only a t liberty 
to choose olle of tho regre ssion coefficien t.s in the d.erived 
equation (11. 6), that is to say U1C r egression co·efficients in the 
deri " ed equation have a O1I~-dil.l1en s ional a.rbitrarin ess. 

More generally, suppose th a t ther e exist.s z r< 11.) independent 
equa ti ons of the form 

L;aK ;): ; = 0 
(11. 8) 

(K = I , 2 _ .. z) 

The condition that th ese equations shall be independent is equi­
valent to the condition that the z rowed a ll d n-coluniued matrix 

all ... al it 

(11.9) 
a·o . . . azn 

shall be of ral)k ;c. If this condition fulfill ed, the z equations 
considered are always compatible when z < n. Further, suppose 
that the x-rowt d and two-columne.! matrix 

a·li a1) 

Q2jG2i(11.10) 

. . a Xi Q..;; . 

is of rank two, which means thnt the z numbers a li' .. a ,d are not 
proportional to the x numbers aU' .. aZ j ' at least one pair l alls 
out of proportion . Then the regression coefficients between x. 
and X j in the general equation, that now exists between the 
variates , may be chosen qui te arbit rarily. Indeed, from the 
equations (11.8) we may now deJuce a n equation of the form 
(11.3), where 

(11. 11) Ci = L.KP A· UK ; 

PK being a set of arbitrary multipliers . The regression coeffi­
cient of XI on X j in this new equation is 

- :J 

_ /o,.p".a Kj 
11. 12) ,8 = - L KP /C(J.Ki 

and if the condition specified under (10.10) is fulfilled, we may 
by a su itaLle choice of the PK make (11. 12) equ al to any 
n umber w e please. 

Still more genera]ly, if (ij ... k) is a v-d imensional subset, 
l ' < y. < 11, and the x-rowed and v-columned m atrix 

ali a l j ... GH 

(11 . 13) 

.'(i ClZj · "uXl: li 

is of rank 1" then all the I' coefficients Ci l ~i .. . c~ in th e general 
eq uation between the varia tes may be chosen arb itrarily. This 
is seen by considering 

(11. 14) I](P KaK(! = ca (a = i ,j . . k) 

(t S a system of v equations in the P K' Retaining only such a 
set of I' magnit lldes PK as will m ake the coeffi cient matrix of 
(11. 14) non-si ngul a r, (and putt ing aU the other 1'K equal to zero) 
we see that a solu tion in the PK is possible f or an y sel ection of 
the Ci . If we nre only interested in the propot-tion.'< between the 
regress ion coeff icients, we m l\y now therefore say that the 
coefficients have a (v-I)-dimensional arbitrariness. ( 10.10) 
represents the case v= 2, and at the other extrem e we have the 
case )1 = n; in this case tb e only possible vnlues oE the variates 
a re Xl = .. . = x,. = 0, so that all the Tegl"ession coefiic'ients, inde­
pendently of each other , may now be put equal to any values 
we please. 

Of course, in none of the sit.uations discussed above (when 
y. > 1) has it a sense to spenk of th e regrpssion egua60n conn ec­
ting th e v ariates, since no such deter minate. equation exists. 

I r z > I, some sort or side conditions may be considered whlch 
will m ake the regreSSion coefficients determinate. Consider, 
for instanoo, the case wh ere we have four variates Xl "· x 4 

satisfy ing two in dependent r elations. Any set of three variates 
\vill then for m a linearly depende ni set. If (11.5) is fulfilled for 
i = 1, j = 2, it will now have no meaning to s peak of th e re gres­
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810n coefficient 1)etween X l and in the big set (1234). ButX 2 

it will have a meaning to speak of this regression coefficient 
in any of the t.hree dimensional subsets containing (12), that 
is in the sets (123) and (124). We can express this in the usual 
regression coefficient notation by saying that bas nob1234 

meaning, while blz :'! al d b12~ have meanings. The latter two 
coefficients can be looked upon as those obtained from (11. 12), 
by imposing in one case th e side condition 04 = 0, and in the other 
the condition C:J = 0, the c's being the coeHicients in the general 
equation (U. 3) (whicb ncrw contains the foUl' variates X l .. ..1:4) , 

The one important exception to the above is when (11.5) is 
not fulfilled. In this Mse it 'will have a meaning to speak of 
the ' regression coefficient between Xl and ~ without specify ing 
the subset considm'ed, or giving any other kind of side con­
dition. As an example consider the case where X2 is lacking 
in both equations, that is, we have (f2 = b2 = O. Now it will 
have a meaning to speak of the regression coefficient of Xl on 
X2 even in the big multiply collinear set containing all the four 
variates. Indeed, whatever multipliers we use to obtain the 
new general equation, the regression coefficient of X l on ~ 
would in this new equation be zero. More generally this re­
grossion coefficient 01 Xl on Xz would be independent of the 
mul tipliers, even if X"2 was not lacking in both original equa­
tions, provided only that the regression coefficient between 'XL 

and X2 was the same in both these equations, in other words 

provided only that I~: ~~ I= O. In this case it is indifferent 

for the definition of the regressi011 coefficient which one of the 
various derived equations we consider. In particula.r the coef­
ficient considered is the same no matter which one of the 
various subsets we consider. We shall r€fer to this fact by 
saying that the regression coefficient in question no'w shows a 
persistency effect even in the multicollinear set. 

In the above example we only had two .equations (z = 2). In 
the genCI'al c.ase, there will be produced a persistency effect for 
the regression coefficient between the two special variates .x, 
llnd ,Xj whenever the, matrix (11. 10) is of rank one. And if the 
matrix (11. 13) is of rank one, there will be produced a per­
Sistency effe ct for the regression coefficien t between an!! pair 
of variates in the set (ij . .. k). 

So much for the situations that a rise when the variates fulfil 
exa.ctly certain linear relations. Now suppose that each of the 
n var iates Xl ... X" is the sum of a systematiC component and a 
disturbance as explained in Section 7. Suppose tha.t there exist 
two or more independent linear relations between the systema.tic 
parts of these variates, but that we are not aware of this multi­
collinearity and proceed to determine an empir ical regression 
equation between a ll the variates. 

If the empirical regression equation is taken in the diagonal 
form (10.6) the squares of the regression coefficients - when 
normalised variates are used - are simply the correlation de­
terminants 6 (. It is therefore to be e xpected that the deter­
mination of the regression coefficients in the present case will 
be particularly strongly influenced by a cushion effect similar 
to the one we studied in Section 8 for scatterances, minimal 
roots etc. Let us see what form this will take in t.he present 
case. By (8.4) the determinant b.) i ( is equal to 

6)1 ( = F)i( + La Aa F ) i(! ( + L }'a '),fJF) ia{J ( + 
«<fJ(11. 15) 

+ . . . + }.] }, 2 .•. ))'i( ... }'n ' 

where F H (. F )i(t(' etc. are the " true" scatterances in the 
various subsets. 

Let us first suppose that the systematic parts of the u 
variates, that form the ig set, are linearly dependent but that 
there is some (n-I)·dimensional subset whose systematic parts 
are not linearly dependent. This means that at lea-'3t for some 1: 
will F ) i ( be different from zero. It now has a meaning to 
speak of the regression equation between the systematic parts 
of the variates, and F)l( is the squa,re of the "true" regression 
coefficient that occurs in front of X i when the "true" regression 
is wr itten in homogeneous form. Further, let us suppose that, 
not only is, (for some z:), F )i( in the right member of (11. 15) 
different from zero, but that the disturbing intensities ), are 
small enough to make this F if the principal t.erm in the right 
member of (11. 15). In this case it has a mea.ning to take the 
obstl'I"Vt'd 6 ) 1( as an approximation to the square of the "true" 
regression coeffic ient. 

But if there exists exactly two independen equations between 
the systematic parts of the variates, then all the F),< will be 
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zero but not all the F)Ij(. H ence, all the first terms in the right 
member of (11. 15) will vanish, and the principal terms in the 
empirically determined diagonal l'egression coofficients will now 
depend essentiany on the disturbing intensities. Any other type 
of empirical regression (elementary, orthogonal etc.) would 
show a similar effect. 

A similar consideration applies if the systematic pa.r ts of the 
variates are corulected by a certain number z of indepeude.nt 
equations. 1'he only difference is tha.t now all the first (z - 1) 
terms in the right member of (11. 15) will vanish. 

To illustrate the a.bove general tendency let us consider three 
observational variates x l • .11!, x~, find let us suppose that there 
exist a structural relation of the form . 

11. 16) Xl = fl12 X 2 + {JlaX3 + y 

where fl12 and PIS are "true regression coeffic ients and y a 
dis turbance. :\Iult.iplying (11. 16) by x, (i = 2,3) and extending 
a sumrnationover all the observations, we get 

(11. 17) 	 1111; = (Jl Z?n2i + fl l 3tnS( + [x,y]. 

The m's are the observed moments llnd [xiy] the unobserved 
disturbance moments. If on the basis of the observations of 
Xl' ~, X3 we de.termine the elementary regression of X l on :1'''] and 
X 3 we get 

(m21m33 - 11131m'23)
(11. 18) bl"3= " 

• . ( ~1113.3 - 1n§3) 

and similarly r01' °13.2' Inserting into (11 . 18) the expression for 
m12 and m13 taken from (11. 17) we obtain 

22
111 , nl

2s l· (liZ + I[X2 Y] 11I~ 3 1 
(11.19) b 

12.3 
1 mat mU3 . [X3yJ tIlss = 

If oX..! a.nd x;l 1\re not exad ly collinear, (11. ~9) may be written 
in the fo rm 

(11. 20), 


where 623 is the scatteruncc in the Fct (23) and [h the correIa 
tion between the disturbance varia.te and the observed Xi ' 

'This illus trates that the en-or term - that is the second term 
In (11 . 20) - becomes all the more important the more perfect 
the correlation. between [md Xl ' '1'he errol' term is i l1 versely JX 2 

proportional to the scatleranee in the set (23) so that as tllis 
scaiterance decreases towards zero, the errol' term will increase 
beyond any limit, and lllay therefore easily become rlomi llatillfl 
besides the "true" te rm 1'112 , 

Apart from the trivlal coincidence when the determinant to 
the right in (11. 20) vanishes, it is only when there is no distur­
bance, i. e, when .1/ = 0, that the result is independent of the 
amount of correlation that exist betwoon x~ and X 3' In th1s case 
the elementary regression coeffic ient 0123 will by (11. 20) 
always be exactly equal to the "true" coefficient. f112' provided 
only that ~ and X3 are not e."Cact7y linearl.\' connected . in wh ich 

case (11. 19) shows that lJ12 . ~ becomo of the form ~. 

12. 	 THE STABILITY OF A REGRESSION COEFFICIENT UNDER THE 

INCLUSION OF AN EXTRANEOUS VARI ATE. 


'The fictitious determinateness studied at the ond of the last 
Section is even such that it may exhibit a certain measure of 
s tability as we go from one set of varia.tes to another. As an 
example suppose that we have three variates Xl' X2' ;VJ between 
whose systematic parts there exists two iudependent relations, 
so that F ) l ( = Fz'3 = 0 F) 2 ( = En = 0, F )!,l( = Fl2 = O. For tlJe 
lower order true scatter aDCCS we have by (8. 1) F)12 ( = F3 = 1- ).~ 

etc., so that by (11. 15) 

[-' ) l ( = D,23 = )'2 + 13 - ).2).S 

(12. 1), 	 6)2 ( = [-, 13 = )'1 + )'3 -- ).1 ).3 

6 ' 3( = D,12 = )'1 + ).~ - J'1 ),2 

'The square of the regression coefficient of XL OU :1:'2 as "de ter­
mined" by the diagonal regression in the set (123) will cOlfi­
sequently be a ra.tio between err atic elements, namely 
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(B ldiO ~»)~- l'.)2( J' l + },o - )· I).Q(12.2) 12.3 -~ = .. " 
) l l }'2 + }'3 - l·t I.B 

We would have fomld a similar result for the elementary 1'6 · 

gression coefficien t (that is for the coefficients obtained by 
minimising' in the direction of the axes of one of the variates). 
Now suppose that we add a variate :1).; which has nothi ng at all 
to do with the other variates. The -easiest way to express th is 
in our formulae is to say that r1'~ has no random part, 
i. e. l.,! = 0, and that its systema tic p art is uncorrelated. with 
all the other variates. Let us first make use only of the latter 
property but temporarily, for the symmetry of the for mulae, 
preserve the lett er 1'4' We now ha\'e F l23 = Fl'U = F1"Sj = F \!3j= 0, 

'12 =FI3 = ]i'zl =O and by (8.1), since now Qij= O when i=l= ,i, 
F II = (1- )'1)(1- ).~) , F'24 = (1 - )..2)(1- )'.;), 1'3:.; = (1- 1.3)( 1 - l,~) ; 
consequently 

) 1( = l'.23 1 = )'2(1 - ).~ )( 1 - I..l! + 1.9(1 - ).2X1-}..l) 
+ J'4(1 - I"'2 X l - ).8) + ).21..3(1 - J.~) 
+ 1..2 I..t(1 - As) + J· 3A!(1-J· 2) 

+ 1..)·3A-i 

Collecting the terms of this e xpression we find that it reduces to 

(12. 3) {\ 28 1 = (l -).. J · ~ 28 + l'l ' 

Therefore if ),,1 = 0, we get l'.28 1 = 6 28, And sirnilllTly for 
l'.) 2( = l'.m, etc. In oU ler words: T he {listurba11ces will tend to giv 
t!L8 same spw'ious va lue to .6. 2 a~ as to .6. 23' TLe same would arrly 
to the scatterances in other subsets. This means that the 
diagonal regression is Virtually unchanged by the inclusion of 
the extrnr.eous variate. And. the same applies to the elementary 
r€gression. 

This effect appears in its purest [nrm when the new v!U'ia te is 
completely uncorrelated with the systematic parts of the old 
varia tes. B ut the tendenc!I will be the same even if ther e should 
be some correlation betwe.en the new and old systematic 
variates. 

A regression coefficient wi ll of course also be relatively 
s table under the inclusion of an extraneous when the regression 
slope in q nestion express a .,lgnfir-ont connection betw(>en lhe 
varia tes (when the original set was not mul tiplt> collinear), but 
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in this case the stability is less interesting from the con fluency 
view·point. 

13. THE DEGRADATION EFFECT. 

WIlen we have included so maJlY variates in the regression 
analysis that a situa.tion is reached where the systematic pa.rts 
of the variates are m ultiline.al'ly connected., the empirical 
regression coefficien t will, as we have seen, depend essentially 
on the disturbances; they will for ins tance not reveal the true 
magnitudes which the r egression coefficients ha.ve in tile lower 
sets that were exactly and simply collinear. Can anything be 
said in general about 'what values the regression coefficients 
in the multilinear sets tend to assume ? 

I believe that some such general rules may be formulated, 
a lthough I have not at the moment any exact proof of it. It 
seems that there exists a degradation effect or regression 
caefficients in the sense that w hen too ma.ny variates are in· 
eluded. so that we get a multiply collinear set, the coefficients 
tend back to the gross value they ha·d in the lowest sets with 
the poorest fit, that is to say the coefficients tend. back to the 
val ues they llad before the sys.tematic influence connected WitJl 
the other relevant vaI'iates was eliminated. 

Suppose, for instance, that lhere are four observa tiona.l 
variates, and that there exist good liuettr relations in all the 
three·sets, while there is only very little correlation in the 
two·seets. The elementary regression coefficient of Xl on ;l:..! 
determined in tha set (12) - we denote it biZ - will then , to 
a large extent, be determined by exterior in fluences. Adding 
the variate 3 we get a regression coefficient of Xl on Xz 

namely bJ ~23 ' th at mny be entil'el,v different from bIZ; b12 rna: 
for instance indicate a positive connection betwee n J.~1 aDd x 2 · 

while 1;123 m ol y indicate a negative connection. On our as­
sumptions the fit in tho three-set (123) is sood, aml (;123 would 
actually be a Significant expression for the connection between 
Xl and ,T 2 , bll t 71.) 2 would not. express any systematic eonnection 
between :Tot and ;r~. 

Now suppose that we add still anothcr Yil r inte :r~ . On the 
assumption that not only (123) but also one, or which amounts 
to the same, all of the other three·sets are linea.rly connected, 
the deg)'adlltion of tlle coefficient considered would now take 
place: There would be a tendency for "1234 to come back tl ' 
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the yalue b
1
'2' Instead of improving t he r esult by adding ·1':4 

we come back to Lhe poorest of all the results obtained so lar. 
What happens is very much the same as what happened to 

the man who climbed up a ladder, and insisted on taking still 
another step after he had r eached the top of the ladder. 

The above rule can be illustrat.ed and its general validity 
rendered plausible by the following considerations. Suppose 
that we have 4 observational variates XI which al'e made up as 
linear combinations of the 6 basic variates YJ{ in the following 

way 

Xl =Yl + 0.1 Y3 

x 2 = y! + 0.1 y.! 
(13. 1) 

x3= !h + Y2 + 0.1 Y5 

X.I =YI-Y~ + 0.1 '!Iv 

In other words YI and Y2 constitute that part of the basic 
variates that produce the systematic connection within the 
observational set (1 234), and 	Y3' '!h, !If> and '!Io constitute distur­
bances. 

If the variates y are determined by independent random 
drawings, the observed x will show certain linear connections. 
The systematic parts x; of the .1'i will indeed be 

x; =Yl . 
x2 =Y'1. 

(13.2) 
x~ =!h + Y2 

, 
X 4 =Yl - Y2 

And eliminating the basic variates !h and !lz from these equa­
tions we see that any three-set of the systematic parts of the 
observational variates will satisfy a linear equation. Taking the 
coefficients of these equations as the "true" regression coeff­
icients we see that the "true" r egression equations will be: 

In the set not containing No. 1 2x, - Xs + X . =0 
~ 2 2Xl -x~ - x, = 0 

(13.3) 	 3 Xl - x, - x. = 0 

4 Xi + X2 - Xa = 0 


Of these four equations it is, of course, only two that am 
linearly)iependen t. 
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By (7. 5) the observed crOSSllloments will be 

11112 = 8 t 2 + 0_ 1 (814 + 8n ) + 0.01 . Sat 

tIl13 = 1 + S12 + 0. 1 (S10 + SI B + 828 ) + 0.01 835 

m23 = 1 + 8 12 + 0.1 (S 25 + 8u + 8 21) + 0.01 8'5 

l1u = 1 - 8 12 + 0.1 (S16 + .<'J3 - 823) + 0.01 SS6 

(1 3.4) m2~ =-1 + 81 2 + 0. 1 (8 2G + ''''u - SH) + 0.01 846 

mSl = + 0.1 (816 + 826 + S15 - 8 2;) + 0.01 856 

1.01 + 0.2 

'mn = 1.01 + 0.2 8 2,1 


mas = 2.01 + 2812 + 0.2 (815 + S2~ ) 


1Jlll = 8 18 

m.u = 2.01 - 2812 + 0.2 (SIC - 8 26 ) 

If we can assume tllat the basic variates are exactly Ullcor­
related, (13. 4) reduces to 

1n:z=O 
m13= 1 
~= 1 

mH= l 
m,!~ =- 1

(13.5) 
i31 =O 

mIl = 1.01 
1I~2 = 1.01 

33 = 2.01 
m'4 = 2.01 

Determining in au actual ca.se the values of the basic variates 
y by random drawings we would, of course, not get exact non 
correlation between them, but some small accidental inter­
correlations. These illt.ercorrelations between the basic variates 
w ould not, however, have a very great effect on the regres­
sions computed. For the three ·sets this is seen by comparing 
(13. 6) with (13. 7). (For t.he 8 were used the values obtained 
in the experiment which is discussed in more detail in Sect ion' 
23). It is seen tJlat (13. 6) and (13. 7) give essentially the same 
result. And this result is also very close to the "true" regres ­
sion coofficients given by (13. 3). In order to make the com­
parison with (13 . 3) easy the coefficients in (13.6) and (13. 7) 
are reduced so as to give the same absolute row sums as 
in (13.3). 

6 
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TABLE (13.6). 

Diagonal regression coe!l!cients computt'd on the bns is uf the complete 
moment . (1 3.4) . In set not 

contalnln~ the 
\'!trlate No. 

X-"J 	 z, .r."I I I I 
- 1.021 01 + 1.985 + 0.9fJ4 

0 - 0.9912 - 0.998+ 2.011 
- 0.985 0 - 0.987 :3 + 1.028 

4 - O.9!13 0+ 0.999+ 1.008 

TABLE (13.7). 

-, Dla~o n. 1 regression coefficients computed on the basis 01 the ablJ rs\'!nt e 
I n set not 	 moments (1 3.;;) . 

cont nlnJn J the 
"arlale No. 

;.(1 X 'J XI X I 

1 
2 
3 
4 

0 + 1.990 -1.005 + 1.005 
+ 1.990 0 -1.G05 - 1.005 

+ 1.002 - 1.002 0 - 0.996 
+ 1.002 + 1.002 - 0.996 0 

When we consider the four-set (1234) we find some, although 
not a very great discrepancy oetween the r esult obtained by 
using the complete moments (13.4) and the abbreviated mo­
ments (13.5). This is seen by comparing (13.8) with (13.9). 

TABLE (13. 8). ADJOINT MOMENT :MATRIX COMP UTED ON THE 
BASIS OF THE COMPLETE :MOMENTS 03. 4) . 

rhij j=l 2 ~ 

i= 1 
2 
0 
4 

0.013 7 0 .007 
0.066 

-
-

0.03G 
0.0;)7 
0.0:17 

-

-

0.029 
0.029 
0.001 
0.029 

TABLE (13. 9). ADJOI NT M01[ENT MATRIX COMPUTED ON THE 

BASIS OF THE ABBREVIATED MOMEKTS (13. 5). 


.i =l 2 

0.061 0.000 - 0.030 - 0.030i= 1 
2 0.061 - 0.030 0.030 

0.030 0.0003 
0.0304 

0 ' 

Of course neither (13. 8) nor (13. 9) can be compared with any 
"true" table of coefficients, since it has no meaning to speak 
of a regl'ession equation in the fo ur·set (123..1:). 

If the degradation effect manifests itseU in the way suggested 
above, we would expect t.hat the empirical regression coeffi. 
cients determined in the set (1234), in other words, in the set 
tha t is too large to give it meaning to the coefficients (because 
the set is multicollinear), should be more or less equal t{) the 
coefficients det.ermined in the sets that are too t>mall to give the 
correct 11et coeLficients (because the sets do not include aU 
Significant variates). That this is actually so, will appear, for 
instance, by a compru'ison between the elementary l'egl'ession 
coefficient of '');1 on X 2 : in the sets (12), (124) and (1 234) respec. 
tively. Using the complete moments (13.4) we find 

bIZ ~ - 0.120

t 
 (13.10) 
 b12~ = + 0.!Jl9 
li12.J:J = - 0. 112 

'l'he coefficient determined in the fOUl'-set is here virtually 
equal t.o the corresponding gross r egression coefficients deter­
mined in the two·set. And both these regression coefficients, 
both that in the two-set.. and that in the four · se t, are entirely 
different from the " true" coefficients existing in the three-set 
and being equal to + 1. 

In the more complete discussion of this numerica.l example 
in Sections 23 and 24 we shall see that. this degradation effect 
is prBsent all over. 

PAR T ill. BUNOII ANALYSIS. 

14. 	 REGRESSION STABILITY UNIlER A CHANGE IN THE 
MINIMALISATION DIRECTION. 

Let us sum up the main conclussions of the analysis of the 
last Seci.ions. Each observational varia.te is considered as mane 
up of a systematic part and a disturbance. The first is that part 
Wllich we may hope to "explain" by considering simultaneously 
the variations of several observat.ional variates, the "explana­
tion" taking statistically the form of one or more regreS.sion 
equations between the variates. The other part is that which 
we cannot hope to "explain" in such a way. J udging the 
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significance of a coefficient in such a regression involves 
therefore two questions, one regar ding the syslematic varia­
tions, the oUler regarding disturbances: (I) Does the coefficient 
repres~nt a net relation between the two variates which it 
connects? In other words, are all other sy~stematic influences 
eliminated? (II) What is th.e precision of the determination,? 
That is t.o say, how much discrepancy must we be prepared to 
reckon with between the actually computed value of t.he 
coeffieient and that value which would have emerged if no 

distl.ll'bance had been present? 
This dis tinction between syst.ematic varia.Lions and dis­

turbances beillg adopted, the purpose of any attempt at statisti­
cal determination of regression coefficients may be formulated 
thus: We want to compute a coefficient of which it can be said 
in the first place that it represents a net rein.tion, and in the 
second plaee that it is very improbable that it is wideLy 
different b'om that result that would have emerged if no dis­

turbance h ad been present . 
U we have reason to believe. that an ompil1cally determined 

intercoefficient in a regression equation does not represent a 
net relation in the a.bove sense, we may try to include in the 
regression equation one or more new variates and then de­
.ermine the intercoefficient as it appears in the new equation. 

But by so doing we must however be very careful There are 
at least four different things to take account of in this connec­

tion. 
(1) In the first place the new variate may contain a 

component that is systemati cally connected with the other 
variates, it is just because of this component tha t the idea 
presents itself to include the new var iate as an element in the 
analysiS. But the presence of some such systematic component 
in the new varia,te is in i t SBlf not a sufficient ground to include 

this variate in the analysis. 
(2) AccOlmt must also be taken of the fact lhat a disturb­

ing element is always introduced as a part of the new variate. 
This disturbing element will lessen the precision of the total 
result obtained; and the loss on this account may be 1argc11 
than the gain produced by the introduction of the systematio 

part of the new variate. 
(3) The situation may further be such that not only is a 

new disturbing element introduced by the new variate, but the 

inclusion of this variate may create a situation where the 
disturbing elements contained in all the variates is given a 
la·rger 0pp Ol·tanify of i9tfllltJlcing the ,'estill than hefore. TI le wbole 
regression technique,built on moment determinants , etc, become 
indeed all the weaker and aU the more sensitive to random 
disturbances the larger the number of variates included. This 
increase in the sensitivity ~ to random disturbances is particul­
arly great if in the new set of variates there are two (or more) 
subsets whose systematiC parts al'e fairly well linear ly con­
nected, In th is case the new set will be near to a multiply 
collinear set; and the regression coefficients consequently 
depend essentially on the r andom disturbances. We get a 
degradation effect as discussed in Section 13. 

(4) The tendency towards nonsense result mentioned in (3 
will be lessened so far as a, eerta,in intercoefficient is concern­
ed, if the structural l'elaLions between the variates are of a 
special sort, namely such that the intercoefficient in question 
is nearly the same in all the subsets in that big set which 
comes near to being mult iply collinear. This is the persistency 
effect studied in Section 11. 

The kind of chango we shall get when we include the new 
yariate will depend on the Telative strellghts of all these four 
tendencies. 

Both the size and the l)l'ccision of 11 given intercoefficient 
may change. The precision may for instanoe be so much 
weakened that we would have been better off by not including 
the new variate. It might have be.en beLter deliberately to 
leave ~ome of the 8.11stematic bias in the coeifieient in order t 

be better protected against the random disturbances. This is 
quite conceivab le if tho object of the statistical investigation is 
- as we formulated it above - to get a regression coefficient 
of which it can be said that it is very improbabJe that it is 
widely different fro m the "true" regression. To use an illustra.­
tion. In target shooting the result depends, not only on the 
correct aiming but just as much on the steadiness with which 
one pulls the trigger . If for some particular reason it is 
impossible to pull the t rigger steadily when one aims e.ractly 
a t the target, i t is quite conceivable that it would be better 
deliberately to aim a, little on the side of the target. And so in 
statistical analysis it may be found safer deliberately to 
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leave some bias in the regression coefficients by n ot including 

a certain variate in the aDalysis. 
Does there exist any empirical criterion which can tell us 

whether _ when. all these various factors are tak cn into 
account _ a certain varia te oug7zt to be included or not"? 

Let us for a moment revert to the two-variates example 
discussed in Section 9. We found tilat under the assump tions 
(I), (II) and (III') of Section 7 the " tr uo" re.gression slope must 
lie between the regression slope obtained by minimising in the 
Xl direction and that obtained by mini mising in the X2 direc· 
t.ion. These t wo slopes fo rm limd s between wllich the true slope 
must lie whenev.er the assumptions specified hold good. But 
there is nothing in the observ ed correlation ma,trix (here 
consisting only of the correlation Icoeffic ient 1"1~ amI the lli1it. 
elements in the diagonal) whieh permits to choose between the 
above two limits, or to fix a,ny number internl!cdiate between 
them. Thus it is when, and only when, there is a good 
agreement between results obtained by the two minimalisat ions, 
that the application of the assumptions (I) , (II) and (III') 
permit to draw any definite conclusions about the "true" re­

gression slopes. 
Even Witl10Ut carrying a similar analySiS through exactly in 

the gPl1eral case of 1l varia.tes there is one conclusion which we 
can draw immediately. If the random intensi ties are compara­
tively small and the systematic variates in the set. considered 
are linearly connected, then there must necessarily he a smaJl 
disagreement b-et\\T-een the r esults obtained by minimalisation in 
the various directions. In other words, a good a.greement in 
this sellse is a. neees.9w·y condition for a situation where we 
are allowcd to conclude tha,t t he shape of the scatte r reveals 
anything definite about the "true" linear connection between 
the variat.es. In t1:l.e case of many v ali a tes this condition may 
not be rigorously sufficient. More precisely expressed: if se­
ver al. determinations of a. given regr ession slope - for instance 
the one between Xl und {l''l. - is made by minima lisa tions in 
different directions in the b ig set, it is conceiYable tha. 
although the big set is multiply collinear so that each of th e­
resuIts obtained is influenced primarily by the disturbing inten­
sities (that is each result ha-s fictitious determinateness), it may 
still happen that a number of them coinciue more or less by 
pure chance. The disturbing intensities J1lll.y be so dis tributed 

s-; 

tha.t some agreement in the result is obtained. In practice such 
a situation will how-ever be very improbable-. It will be all the 
more improbable the greater the number of different determina­
tions that coincide and the more perfec.t multicollinearity that 
exists in the big set. The regressi-ou coefficients will then 
almost certainly change violent ly with the direction of the 
minimalisation. 

On the other hand, each determination of a given regression 
slope ma,y be looked upon as answering one particular question 
which we have put to the, data. If ti1E~ data continues to give 
consistent answers when asked in different ways, it seems 
plausible to accept this as a criterion that there is something 
significant in these answers. 

Therefore, if we study a given regression coefficient, say 
t.he one between Xl and X 2• and include more and more variates 
into the analysis, we should expec.t that the cluster of the 
1'6sults obtained by minimalisation in the various directions 
will become tighter and tighter as new a,nd really relevant 
variates are included, but we should also expect that the 
cluster will suddenly "explode" when some variate is introduc­
ed which makes the set multiply collinear. This is the first 
main idea of the confluence technique which we are now 
going to discuss. 

An essential point in this connection is that earh 1·e.Qre.~sion 

slope is trpat"d s"pamtel:'1 in all fn" .~ uhs"ts and 1m' fill possibZp 

minimrdis"tioll dit·ect iol'l,s. Alrea,dy in Sections 5 and 6 we have 
made some use of the idea of regression stability under a 
change in the minimalisation direction , but there we condensed 
all the information in one single testparameter for each selec­
tion of the varia,tes. Now we are to study the disp"rs,:on of the 
individual results. The various minimalisation directions are, 
so to speak, considered as elements in a "sam ple" , [Iud from 
the organisation or lack of organisation in this sample we are 
going to judge the significance of the result. Th is will pmve 
to bo a powerful tool of analysiS. 

The second ma,in idea is tilat t118 8pread. of the results obtained 
by the minimalisation in different dir€ctions is all the way 
through compared witl1 the average VI/l ite of these results. rn 
other words, we combine the study of net slopes with the study 
or preciSion. This combination is one of the essential features 
which make the present method superior to those described in 
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Part I, where the criter ia used did not involve the slopes. The 
present procedure may perhaps be caJled bunch analysis on 
account of the particular graphical form in which it is natural 
to express the resul~ for analysis. This graphical form is ex­

plained in Section 16. 
It is on purpose tha t I have not attempted to give any formal 

and r igorous definition of the "prolJabili ty" for a specified 
result obtained by the different millimal isations. Such a, formal 
definition may indeed be obt.a ined by starting from many dijfe1'­
e,d t.ypes of abstract schemes. Each scheme will lead to aJ 
particular definition of t.he probability in question . By focuss ing 
too much attention on the e xact definition of the probabllity 
the.re is some risk that one will forget t.he very relat ive anUi 
limited meaning which must always a tt.ach to such a numeri­
cal computation of a "probability". It is indeed only in a very 
special meaning that any such probability can be said to 
measure the "significance" of the results. At least, to sta,rt 
with, I believe it will be a better application of time and energy 
to work experimentally wit.h the method and rely on one's in­
tuiti.ve judgement of whether a gi ven spread in the various 
determinations of a given regression coefficient is reasonable 

or not. 

15. THE TILLING TECHNIQUE. CONCENTRIC NUMBERING. 

The carrying through of the analysis whosel main idea,s aa-e 
indicat.ed in the last Section necessitates the computa tion of all 
the elementary regressions in all possible subsets. In practice 
this is done most con veniently in normal coordinates, that is to 
say the. correlation matrix (T.) is taken as the point of depart­
ure instead of the moment ma trix (mfJ)' 

The problem in thus to compute all the adjoint elements 
-·ij l". Ii _.. Yl in all possible subsets. I n other words, if there are 
'£ variates in the big set., we n-eed to compute the adjohlt matrix 
of the t. rowed correlation m atrix in tne bia; set (12 ... n), 
further we need the ad joints of all the n (n - l)-rowel1 matrices 
obtained by leaving out one variate at a time, further we need 

the adjoints of all the (~ ) (1'1 -2)-1'owel1 matrices ob Lained by 

leaving out two variates at a time, and so o-n. 
On the face of it this work seems to be prohibitive, but a. 

systematic way of doing it can be found tha.t mak.es it a r ela­

tively simp1e job. The method which I ha.ve developed for 
this purpose is now used extensively at the Institute in Oslo. 
We refer to this work as "total tilling" or shorter "tilling" of 
the correlation matrix. 

A practical tool used in tilling - and also for many other 
purposes - is what lllay be caJled concentric 1?l1mbering. It is 

a systematic way of numbering the (;) combinations that may 

be formed by selecting in all possible ways p elements out of n. 

For brevity the biomial coeffic ient (; ) is used to indicate , not 

only the number of such combinations, but also symbolically 
to denote the operation of numbering. 

The concentric numbering is built up in such a way that if 
a new element is added, that is if I';re go from 11 to n + I , the list 
of combinations is sim pl y elongated, without iusert,ing any new 
numbers between those already written . This is a, practical 
advantage in stat.istical work, where it w-Hl frequently be found 
necessary to include new variates in the course of the in­
vestigation. 

The concentric n.umbering is define-d by recurrence. First 
concen t.ric numb"ring of the I~ elements 1, 2 ... fl, one at a time, 
that is for p = 1, 18 simply defined as the natural sequence of 

these 1I numbers, thus the concentriC' numbering G) consist of 

the n ordinals I , 2 . . . n. Oil the other hand there is only one 
omplex which can be formed of the 'Y/ elements 1, 2 ... 1~ taken 

91 at a time. rrhus in the concentric numbel'ing (11.) there is onl \" 
~ \n • 

1 ordinal, and it is wl"itten 12 ... n. 

-'These definitions of the concentric numbel~blgs mand (::) 

being laid down, we define concentric numberi.ng (;) as obtained 

by first writing the list of ordinals occurring in the concentr ic 

numbering (YI;1) and then elongating the list by writing the 

ordinals of concentric numbering G~ =i) , adding to each of the 
latter ordinals t,he leiter n. For six elements this gives for 
instance: 
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HO 

(7) (~) (~) (~ ) (~) (~) 

1 12 123 1234 12345 123456 

2 13 124 1235 12346 

3 23 134 1245 12356 

4 H 234 1345 12456 

5 24 125 2345 13456 

G 34 135 1236 23406 

15 235 1246 
'>~..,0 145 13i 6 
35 245 2346 
45 345 1256 
16 126 1356 
26 136 2356 
36 236 1456 
46 146 2456 
56 246 3456 

346 
156 
256 
356 
456 

In order to carry the tilling technique through we firs t 

prepare 2"- n-l adjunction tables, nam ely (~) 2-l'owed table ~, 

(3) 3-rowed tables, e tc. Each such table corresponds to a. 
given combination in the concentric number ing of the subsets, 
and the cells of such a table shall receive the l'esults of thE) 
adjunction within this subset.. I n other words , oach such table 
is going to be a table of an ad:joint correlation matrix. Each 
row aJld column in such a table is numbered according t,o the 
place which the elements in question hold in the big set. Thus 
the 4 three rowed tables in a four-variate problem \y iIl be 

1 2 41 2 3 
II 

2'1--­2 

43 

1) 1 

1 :"l ! 2 3 4 

:1 21 

:1 :1 

The elements in, say, the second of these tables are defined as 
those obtained by firs t forming the three-rowed correlation 
matrix consisting of the r ows 124 a-nu the columns 124 from the 
original four-rowed corre lation. matrix, and then taking the 
adjoint of this three-rowed matrix. The last element in the 
second row of the a,c]j oint considered will for insta.ncE} be 

(15.1) f2~ :m) = - ( r~2 - r"1 rd, 

These tables may for brevity be called tl18 fining tables 
Their elements ma,y be cal1ed the t illing elements. The tilling 
tables arB symmetric because 

15. 2) f ij(Cl , (J . . . Y.' = rj i« t 'I~' . . Y)· 

As an e xtra bottom r ow in each tilling table we provide 
space for the numbers obtained by taking the product sum of 
the elements in each column of the tilling table with the corres ­
ponding elements in the original correlation table. Of course 
this product sum will be nothing but the value of the determin­
ant /",.~ .. y wbere (ap .. . ~, ) is the su bset eoosicie red, (i. e. the 
ooncen tric number on the tilling table in question). The 
numbers entered in the bottom row of a given tilling table 
()ught tilerefore all to he equal (apart from inaccuracies due to 
the fact that the computat.ions are carried through with a 
limited number of decimal places). This is taken a,s a check 
on tht; comput.ation ; and at the same t ime it serves to compute 
the scatiel'ance in the. set (ap ... y) to which the table refers. 

The check in question can also be performed in the following 
way : In an extra column to the right in each tilling table we 
put clown the sum of the elements in the various rows of tlW 
corresponding correlation matrix itself, that is, in the t illing 
table (a, /1, . . y) we put down tile sums 

(15.3) r)lO,«, f3 . • . " ) = r'l.a + t ·z{1 + ... + r z " (x = a,(1···r )· 
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Then we take the product sum of each column in this tilling 
table with the column C011sisting of the numbers r" o(a. {J • . • }'). 

'·,so. a, (3 " . 'Yl . •• rYo;" p" ')")' This product sum ought also to be 
equal to 6 ",3 . .. )1' And this applies no matter which one of the 
columns of the tilling table we are multiplying with . Indeed, 
by the product summation in que.stioD the result arising from 
any term in the right member of (15.3) will be zero, except 
the r esult from one specia.l of the terms, namely the one COT­

r esponding to the tilling table column with which we are 
multiplying ; and th is latter result will be ~(LfJ y . This Gheck 
is very reliable because it really amounts to testing each 
column in the tilling table by all the columns in the Ol'iginal 
matrix. But it involves a little extra. work, namely the forma.­
tion of the sums (15. 3). In most cases we, on ly use the check 
based on the elementary columns of the given correlation 
matrix. 

Since the tilling tables ar·e symmetric, only the diagonal and 
one of the two trian gles aro filled in; as a rule we use the 
north-east tria11gle. A "row" or a "column" must then he in ­
terpret.ed as a broken line reflected under 45° on the diagonal. 

The elements in the tilling tables may be built up system­
atically starting with the two-rowed tables, by means of these 
one computes the three-rowed tables, etc. The teclmique is as 
iiol1ows. 

When the t.illing tables of a certain level (for instance the 
three-rowed tables) are computed and checked, all tile diagonal 
elements in the tables of the next higher level are first filled 
in. All these are scatterances (pr incipal minors of the original 
correlation matrix) , and are therefore already computed. They 
are found in the bottom rows of the tables of the lower level. 
The problem is tllel'Cfore only to compute elements of t.he form 
f {j«l.fJ . . . ?') where i =l= j . Let v be the number of affixes in the 
set (afJ .. .y). F urther, le t i stand as the p . th number in the 
sequence (a. fJ . .. ,,), and j as the q . tho For instance if (a, fJ . .• y) 
ill the set (12567) hence )1 = 5, and if i = 2, j = 5. we have 
p = 2 q = 3. The numbers p and q being thus defined, the ele­
ment i', j (a , ~ " . Yl is equal to (- )P + '1 times the determinant: 
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a } .. . )j( ... r 

Ct 

fJ(15. 4) 

) i ( 

r 
~Phe symbol (15. 4) denotes the determinant formed by the 

(v-I ) rows Ct , {J , .. )i( ... r and the (v- I ) columns a,{J . .. )j( . . . '}' 
of the origina.l conelat-ion determinant ; the inverted parenthesis 
) ( meaning "exclusion of". 

Since i =l= j, we know that the row j and the column i actuallr 
occur in (16. 4). If i < j we may therefore write (15, 4) more 
explicitly in the form 

Ct (J . .. i ... )j( .. . y 

al 
(I 

(15.5), )i( 

r 
Let us develop the (v-I)-rowed determinant (15.5) according 

to the row j. SU1ce j was the q-th number in the sequence 
Ct, /1 .. . ii, 1t will be the (q-1 )th llumberin the sequence a, (J .•. ).i ( •..r 
(when i < ;). The first term of t.he expansion of (15. 5) will there­
fore be TaJ times (- J(q - 1]+ 1 hmes the determinant 

)a( ,8 .•. i . .. )j( . . .j' 

Ct 

(J 

(15.6) )i( 

)j( 

j' 
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The next term will be 1'/JJ times (- )('/- 1)+ 2 times the determinant 
obtained from (15,6) when in the bead line )a({J . . , is replaced 
by a ),8( . . .. And so on. Apal't from the sign th e '\"urions de­
terminants occurring in this development is to be f ound in one of 
the tzllw.q ta/,les oj the next I OiCe ;' level. 'l' he determmant (15. 6) 
for instance is nothing but 

(15. 7) (-)P.,- I f"t.(CtS . _»)' ../') (wben i < j ) 

(15.5) is consequently equal to 

_~ (-)P ~ q+l 2 p.. . , - I' .(10. 8) ,;( (t< ,, ~ .. -),1 ( .• - , ;() 
Y. = It , fl .. . ) j ( . . r 

and therefore 

J'---( '" r = -2 r· . R j'( x,i (i=\=j)(15.9) .J a , t' - •. ) ':I. \a , t-' . - - ) _ . • 
y. = re . fJ -. ,i j (. - -r 

This formula was developed on the ass ltlnption that £ < j , bnl 
it obviously holds good also if i > j, the only diffelencc in tlJis 
latter case is that the sign factor oC (15. 6) Willll0W be (- )q-r 1 

instead of (- )'1, and that of (15. 7) wlll be (-)1' ins lead of (_ )P+ l, 
so that the sign factor of (15.8) and hence of (15. 9) is un­
changed. Since ail the tilling tables are symmotric by virtue 
of their definition we see that we may interchange -i and -; in 
the right member of (15. 9). 

The formula (15.9) is carable of a vcr~r mechanical and easy 
application. As an example, suppose that it is wanted to 
compute 1'25.12507)' In the tilling table ( t 27>67) the row 2 an d 
the column 5 are covered with cardboard 01' metal strips. '1'his 
leaves the four figures 1567 to be read in the left margin_ We 
look up the already comput€d tilling table fo;1' ihis set (1567) . 
Here we consider the column .5 (i . c. that column which was 
covered in the table (12567» . We take the product sum of this 
column with the column 2 in the original matri.",,-, the result 
- with the sign changed - is the element sought, namely 

1'25;12.'>67)' 

For this work it is convenient. to keep each of the columns 
in the original correlat.ion matrix \\Tri tten (or better type­
written) 'on a separate strip of paper or cardboard. The pai ring 
of the columns which are to be product-summed is then all 
easy matter. It is a particular adyantage that there is no fuss 
,,,ith tile signs in the formula, (15. 9). One simply takes the 
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product sum of numbers that are already written in the tilling 
tables or in the original correlation matrix, and then a,la:ays 
cha,nge the sign of the final result. 

When a.ll the elements of the tables of the )/-rowed level are 
thus computed, the tables are checked as explained above and 
one proceeds to the tables of the next higher level, etc. In 
S-ection 23 is given a complete example of these computations. 

It will be noticed that all the tilling work is perfectly 
mecha.nised. It can indeed be done pract ica lly without any 
thinking. This is a big element in eliminating errors. Further, 
it ,,,ill be noticed that in the course of the work not a single 
number is wr itten that is not itself a finished result. And 
a ll the numbers are written immediately in just the place where 
they belong when the result is to be tabulated in a form conve­
nient for systematic analysis of the various possible regression 
equations. 

Our experience is that a complete tilling takes less t.ime than 
the prepaJ'atory work of computing moments and correlation 
coeffiCients, which are indispensable for linear regression 
analysis according to any method. Once time and money have 
been invested in working out these basic parameters it is wcll 
worth taking the comparatively little extra trouble needed to 
make a complete tilling. 

It is strongly to be recommended to, do the complete tilling 
at ollce. No at-tempt should he made to pick out a few sets 
which the investigator for one reason or another believes are 
the most importa,nt. The essentiaJ point ill the present method 
is just that all the sets are' discussed without any preconceived 
ideas. All my practical experience with the method indicates 
that the complete tilling frequently brings out things which 
were not suspected at the outset. Furthermore, as the com­
parison of the various sets goes on, one will frequently want to 
skip back and forth looking now at one set, now at ~mother. In 
the course of such an analYSis it is a. nuisance to be s t-Opped 
because some of the sets are not computed. The work involved 
in the computation will of course also run much quick{)r and 
smoother when all of it is done systema.tically a t once. illstead 
of being done piecemeal. 

As an example of the. smoothness and steadiness with which 
the tilling work goes on I may mention that if six decimal places 
a.re carrie d, young assist.ants at the Institute will , when they 
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have become familiar with the method usually make something 
between 3 and 7 wrOllg multiplicat.ions in the course of all the 
tilling work in a six variate problem (which, as will be seen 
from (15. 13) involves 1386 multiplications). And, of course, 
such mistakes are so immedia.tely localised by the above 
mentioned checks that hardly any time is lost COI'l'ecting them. 
The total tilling Jar a six variate problem carrying six decimaJ 
places usually takes about 13 hours, all checks and c.orrections 
included. 

for any number of variat es the time needed can beestima.ted 
on the basis of the l1Umbel' of mulLiplications involved, and this 
estimate 'Ivill as a rule be a very close one beca.use the work 
consist nearly exclusively of mechanical product summations. 

The number of multiplications is as follows: There are 

(~) k-rowed sets. Each of these contain (~ ) elements that need 

to be compuied , and eac.h such computation inv olves (7c -1 
mul tiplications. The to ta.l number of multiplica tions necessary 
in order to compute the elements are cons.equently 

n 

(15.10) L (~) (~H7c -1)=n (~) 2,,-3 
k-= 2 

k2The checks ob a k-rowed table involves multiplication which 
gives a total of 

2(15. 11), L 
n 

(Z) k2 = n (n + 1) 2n
- - n 

k =2 

so that the grand total will be, 

(15. 12) '{(2)2n
-

B+ (n + 1)2n 
-

2_1] 

For n = 6 we get for instance. 720 multiplications Cor the direct 
computations a,nd 6GG for the checks giving a grand total of 
1386. On the average we reckon about 100 multiplications ot 
six decimal places per hour - checks, corrections and occas­
ional rests included. The. number 1386 therefore checks exactly 
with the abo ve mentioned exper ience of the six-variate pro­
blem. The values or (15. 12) for n = ], 2 . .. are given in Table 
(15. 13), 

H7 

TABLE (15.13). NUl.mER OF MULTIPLICATIONS INVOLVED IN COM­
PLETE TILLING (ALL CHECKS INCLUDED). 

~ullJbcr oj ~11mLer of multiplil'a{i Ul1 ~ 
Turlnt cs ii aC'col tling to (J5 , 12). 

2 [) 

3 30 
4 124 
5 435 
(i 138G 
7 413t 
8 11768 
9 32247 

10 85750 
11 222453 
12 565236 

16. THE BUNCH :MAP. SECTIO:\TAL AND cmrPLETE BUNCH MAPS. 

1Vhen the tilling is done, the result should be exhibited 
graphically, otherwise it is difficult to· get an ordered impres­
sion of the mass of information which is made availa,b~e. 

Oonsider a given y-uimeu:;iol1al subset (a,8 .. . y\ and let £< J 
be two affixes in this set. If a regreSSion equation is assume.d 
to exist in the set, and if the equation is ordered in such a way 
that the variate No· i is expressed in terms of tll e yariate .::~ 0 . j, 
the equation will be of the form 

(16. 1) J:-B :::+
~i- ij (aj'i ... r ) :, j ... 

where .';i and ~::j are the variates (assumed normalised) and 
B i j(a(J . .. y ) a eo nstant. This consta.nt will assume different 
values according to 'which pa,l'ticular regression metho d we use. 
We consider speciaUy the I' values obtained for B by taking 
successively the v elementa.ry regressions. The material for 
determining any such coefficient is pl'esent in the til1ing tables; 
indeed, the coefficient B determ ined b~' tJJP 7.:-t1l elementary 
regression (the regression obtained by minimiSing in the dircc­
tiol) of the ~::I; axis) is simply equal to 

B lk ) __ l'J: j (ftp .~ 
,j«((i~ .. n - ~' .(16.2) 

1,, (rtfJ· .. 

(k = Ct, ,8 . . . 1') 

7 

http:elementa.ry
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The numerator and denominator of (16. 2) are ro be found in the 
tillin g tables. 

For a moment let us dlsl'e.gal'd the supplementary terms in 
(16.1) and think on ly 01 t.he connection between ; i and §j. 

This connection may be represented by a straight line through 

(l rj ~ ; n in (; ,. ; ) c ()ol'llilla tes al-' I, 


j]lJlica ted in }I'igure 8. 

F or such n rcgre::sioll slope 

,i; e ge t by (1l). 2) J! differeut 
de term i n a t i ons namely f OT 

k = a, (J ... ,' . It is theTe[ore [J 

natural idea to dTaw on one 
and tIle sa nte cllart all t.hese v /
slopes, and see if t l, ey coincide " 
fa irly well. 

It is however not only tJ)(' " 
8111pm; that in terest ns; i t may b" I:c::::::--________ '• ) ! j 

lJ ..,e1'u l to l10te also iha abso- c. 
F1g. 8.

hlte 	 size ox. the l1111neraior amI 
dc·nom inator in t.he fraction (16. 2) which defines the slope. We 
shaH later be cOllce.rned with various C<lnc1usions drawn on the 
basis of the. absoluLe size. of the numerator and denominator. 
We therefore IJlot the poin t J1[ whose abscissa G and ordinate H 
are 	detc,r mUlod by the denominator and numerat or respectively 
in (16.2). 

It 'will help fur ther to give a clea.r picture of the si tuation 
if conventionally all the lines indieatiug the slopes are drawn 
from O1'igin to one and the same side, say to the " £ght (upw1\.TCls 
or dOWl1 wards as the case may be) . This is also It simplifica­
tion 	in the plottUlg work. The rule for tJ:Le plotting will th en 
simply be : :Move towards the. "ight OD th e horizontal axis a 
distance corresponding to the. absolute value (regardless of 
sign) ()f the tining ele.meJlts that r epresents tile denomina tor in: 
(lG . 2), then move downwards if the two clements to the right 
in (16. 2) h ave tlw same sign and 1I1HNmu if t11ey have opposite 
signs, th€ i distance. to 1)8 m oved vertically being equlll t o the 
absolute value of the tilling elemen t in the numerator in (16.2). 
By convention we shall always let the varia te Xo · i be measured 
a long the vertical axis and t he variate N o · j in the horiz ontal 
nxis 	when i < j . 

F or 	 eHch set (ex . /1 ... 7), and for each pair of the affixes (ij ) 

~ ]I 

in th is set. a bUl1ah of slope lines ma.y th us be constructed. If 
the set (a, {J •• • r ) consists or " ,aria tes, th e bUllch will contain 
v beams, one for each var iate. Ea.ch beam l'epr·esents the result 
obtained by minimisulg in the direction of tha t particular va­
r iate. In the bunch representing the intarco€ fiicien t be t.ween 
th e variates N o · i and No . j , the two beams N os·i and jan' 
of particular interest. They will be.. called the lead ing beams of 
the bunch. 

The chart exhibiting all possible bu..Tlches in the big set 
(12 .. . n) we call the bunrJh.map or m ore eXl'licitly the complete 
b u nch map for the set (12 . .. H). 'r ile m ost convenient way to 
arrange it, if economy of space is not impor ta nt, is to let a ll 
the i ndividual bunches for a given set of variates be collected 
in a row, the picture of the various bunches being disp la,ye.d as 
cells in this row. 

If we do not find i t necessary 1.0 investiga te the slopes in all 
possible pa,lrs of two vru'iates, hut. are only inJ.erested in one 
particular such .slope, f-or instance, the one between the variate.s 
Nos · 1 and 2, we may limit the map to these part iculaJ" bunches . 
Such 11 map we may perhaps call a 8errti on al bunch map. F or 
such a. map it i.s prn.ctical to use a somewhat different arrange· 
ment of the cells. F igures 13 and 14 01 Section 2G is [tn example 
in 7 var iates. 

17. 	THE TESTI NG OF A GI VE :>T INTERCOEF F IClE NT. USEFUL, SUPER­
F LUOUS AND DE TR Th1ENTAL VAlUAT ES. THE STAR MAP. 

When 8 new variate is tenta.t.ively added to a previously 
con sidered set, there. are th ree fundamental poss ibilities to be 
considcl'cd. The varia te may be useful, super/l ll ous or detrimental 
for the purpose of the analysis as it was f01'nlulat2 d in tIle 
beginnin g 01" Section 14. Tbis cl u.ssifica tion may be n.ppliu d 
either with regard to the effect, of a certain var iate on a given 
i.:n tercoeff icie.nt, for instan ce t.he regression coefficient. between 
the variates Nos. 1 and 2, or it may be applied with r egard to 
th e effect 'of the varia te, in question on 1he regTession equa.tion 
as a whole. In the. present Section we shall discuss the notions 
useful, super fluous and detr imental from the view-point of a 
given intercoefficien t. In the. ne.:A"t Section we shall consider 
a given regression. equa.tion ag a wIlole. 

A syst.ematic study of the b1IDCh map, and particularly of 
th e chall ~e th a t. takes p lace in a given blmeh \"1,"hen we P~qg 
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from one set of variates to a more inclusive set, will furnish 
criteria that go a long way towards determining whether the 
various variates are useful, superfluous or detrimental. 

We first formuhte the convention that the precision of a 
given intercoefficien t will be measured roughly by tbe sprawling 
of the various beams in the bmlch that represent the inter­
coefficient in question. We may imagine that we construct the 
smallest sector that coni-ains the most important of these beams. 
It is not always cerk'tin that all the beams of the bunch ought 
to be included in the sector measuring the precision; in 
certain cases one or mope of the beams may by t.heir excep­
tional behaviour indicate facts which make it plausible not to 
let them influence the sector in question. The sector would 
then be determined by the general behaviour of the other 
beams. The two l€ading beams ill a. bunch must of course 
always l)c ilwluded in that set of beams which define the 
precision sector. 

This graphical defini tion of the precision of a bunch being 
adopted, one proceeds to the analySiS of the bunch map, f irst 
going through aU the cells representing the (12) coefficient, 
then all the ce lls r.epl'esenting the (13) coefficients, e tc. Dnder 
this survey each bunch is compared with the corresponding 
bunch in the first subsets of tho set considered. 1J.11lis gives rise 
to the folloving chara.cterisation of the variat.e a,clded. 

A. A useful var£ate. If the bunch is tightened by the inclusion 
of the new variate and if the beam representing the new 
variate falls inside of the sector of the other beams, and further 
if the general direction of the bunch is cha,nged, we conclude 
that the varia.te added is deCidedly relevant. There is no doubt 
that it must be considel'ed as useful for the determination of the 
slope in question. The beha.viour of the (12) coefficient under 
the passage from the set (12) to (124) in Figure 11 of Section 24 
has this property. 

The variate would still have to be considered useful. even if 
the general slope did not change, but if the tightness was 
sharply improved and the beam of the new variate falls inside 
as for instance in the case of the (12) coefficient going from (12) 
to (123). (Fig. 11. Section 24). Both in this case and the prece.ding 
one has the new variate contributed essential1y t.o the im­
provement of the fit. The only difference is that the net. regrt'!s­
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sion in the lat.t.er case happened to t.urn out. about. the same as 
the gross slope. 

Even if the beam of the new va.r iate should fall more or less 
outside the sector cont.aining the other bea.ms, the new varia.t.e 
w{)uld have to be considered as useful provided the, bunch in 
general is definit.ely tightened, or its slape definitely cha.nged. 
Theexall1ples later to be discussed will just show that. if t.he 
inclusion of the new variate does change the slope markedly, 
there is a chanco that the new beam will fall outside, parti­
cularly if it. is not a long beam. 

The new var iate may be useful although the bunch becomes 
somewhat more open, namely if the genera.} slope. of the sectDr 
changes so definitely that., even taking account of the poorer 
precision, one gets a clear impression that the new slope is 
significantly different from the old. P Ol' instance, if it is a 
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question of determining the intereoefficient between the 
variates Nos. 1 and 2, and we have a. situation as in Figure 
9, tbere can be no doubt that the set. (II) must. be pl'eferred to 
the set (I), 

If we have a situation as exhibited in Figure D, ,ye can say 
that it is regrettable t.hat we need to consider a set (II) wh€l'e 
the precision is so much poorer, as in (I), but if we a.re looking 
£01' the 'let intercoefiicient between the variates Nos. 1 and 2, 
we ha,\7le to run the risk that is connectecl with using the 
unprecise result i..'l tJle set (II). This is just an example of a 
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situation where the scatlerances or regression spreads or the 
line oO€fficient.s are n ot conclusive. For instance, if a number 
of tll() bUllches for the other intercoefficients in the regression. 
equation behave in a similar way, the regression spread and 
the line cOf'tficient would 1:ncrease when w e go hOHl the set 
(I) to the set (II). 

B . A supet:{luolls variate. The criteria of a supernuous variate 
are: (1) The bunch does not tighten by the inclusion of the 
new variate, (2) the general slope of the bunch does not change 
distinctly (or more specifically each of the beams in the bunch 
;rema.in unohangc.d), (3) the bea;m of the new variate falls. 
outside the sector of th e other beams, (4) the beam of the new 
variate is much shorter than the other beams in the new bunch, 
(5) the. beams of the other variates are not appreciably shorten· 
ed o y the inclusion of the new variate. 

If all these criteria are simultaneously fuUilled, the nrria,te 
in question is decidedly superfluous. The variate must however 
be considered as superfluous even if only some of the above 
criteria are fulfilled, partkular importance must then be 
attached to t.he criteria (1) - (3). 

As a !ille there will in practice be a fairly good agreement 
between the above criteria, the only important except ion being 
that by pure chance the beam of a superfluous variate may fall 
inside the general sector of the other variates. 

If a vruiate is found superlluous by the above criteria, the 
conclusion should be check ed by considering also the zero slope 
criterion. By this I mBan the following: Let (i.il be tbe bullt~h 
considered (that is we considered the regression slope between 
the "ariates Nos. i and j) . Let (ap . .. I') be th e old set anr 
(afJ . . . yk) the ncw, that is, the variate added is No. le. To 
check the conclusioll of tLe superfluity of N o . k we look at th 
general slope of the bunches (ik ) and Uk) (and possible ot.h er 
intercoeilloient.s im·olving k) in ilie set (afJ O' .. yk). If these are 
degenerate , thn t is to say near t.o zero when k if' the h orizon La) 
axis, or near jufinity j f k is the v ertical Ilx i", theu this is 31l 
additional indicat ion of the superfluity of the ,ariate No. k . A 
still fur ther confirmation of tbis conclu"ion will it be if Ule 
"·beam in the (i k) and Uk) buncLes (and possibly in other blIDches 
in the set (a/i . . . ,),k)) full outside the seotor of tllC othol' benm.; . 

The reasons for the criteria (1) - (3) are obvious, and tlle 
criteria (4) and (5) regarding the lenghts of the beams are 

w; 

derived by the following considerations . In any given element· 
ary regreSSion e quation (in normalised variates) o'ne of the 
coefficients - namely the coefficient of that variate in whose 
direction the minimalisation is done - w ill be a scatterance 
(when the equl1t.ion is written in the homogeneous form and its 
coefficients determined by the elements of ilie adjoint correIa· 
tion matr ix). The size of this regression coefficient will 
determine the general level of the other coefficients in the 
equation. A given beam in a bunch in thc slope map will, 
therefore, in general, be all the shorLer the more p~rrectly the 
rest of the variates in the set is linearly depml dent. A glclllce 
a t a given bunch will consequently immedia tely give an 
impression of the r elative importance (for the intercoefficie11t 
considered) of the several variates in the set. They can be ar· 
ranged in a descending order of magnitude. according to the lenghts 
of the beams in the bunch. Those variates which 1J8.\'0 the longest 
beams are the more important. The fnet that a variate has :l 

beam that is very short as compared with tile other beams in 
the set is therefore an additional criLerion of the superfluity 
of this varia.te. (As an example seB the bunch (123456) in 
Figure 1 of Section 26 and the comments attached to this 
bunch). 

Fur ther , the shortening of a beam as wa pass from a. given 
sct to a more inclusive one will be all the sharper the more 
perfectly the t'est of the variates in the nel(! set are linearly 
connected, and the poorer collineari ty there is in the rest of the 
v ,Ll'iates in the old set. 

his consideratiun of the lengths of tLe bealJJs is essentially 
an an aJysis of the same type as the study of scattcrn,nces and 
minimal roots. Both analyses im·olve [tbout the same· sort of 
information. 'l'he length of the beams is, however, only one 
aspect of the bunch analysis. Indeed, here we combine the 
study of the length of the beams with a study of their direc· 
tions and with a stlldy of the tigh tness of the bunch. 

O. A detrimental variate. Finally, jf tIle bunch explodes by the 
inclusion of the llew variate, that is to say, if it becomes much 
less tight than before, the new variate must be considered as 
detriment.al. .As typical e xamples we ma.y consider the be­
haviour of the (12) , (13) and (23) bunches when we pass from 
the set (123) to (1234) in Figure 1 of Section 24. 

The new variate must be considered as detrimental even 
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though there is, stl'ictly speaking, no explosion, but only such 
a distinct deerea-se in t he tightness and so little change in the 
general slope of the bunch that we cannot s ~y definitely 
whether the l1ew slope is different from the old or not. 

When one gets accustomed to working with the bunch map 
so that one really understands "the langna,ge it speaks", one 
will discover that it :is a veritable gold mine of inIormation and 
a most powerful tool of analysis. 

This classification .of the variates as useful, superfluous and 
detrimental ma.y be done for each intercoefficient and for 1.he 
passage from any variate sets to its supel'sets. In order t o keep 
track of t11e larg e number of cases that thus arise it is COill­

venient to cDJldense the COllclusions in some sort of graphical 
repI'esentation. I have found the "star" map exhibited in th e 
example of Section 24 very convenient. Here an asterisk 
indicat.es a useful variate, an empty circle indic.ates a, super­
fluous varia.te and a blackba.ll a detrimenta.} variate. POl' in­
stance, the asterisk on the third line in the horiz.ontal section 
(234) and in the column (24) indicates that when the purpoM 
is to determine the net. intercoefficient between the variates 
Nos. 2 a,nd 4 then it is correct to add the varia,te ~o. 3 to the 
set (24). 

The above discussion l'efers to a. comparison between a 
given set and its supersets, or behyeen a given set and its sub­
sets. It is howe\'er also of interest to oompare sets on the same 
dimensionality level. Such a comparison ma-y be made with 
regard to the behavior of the bunch of aJ1Y given inter ­
ooefficient. A fe,Y examples will illustra te the situations which 
may here arise. 

Suppose that we consider the bunch of the (12) intercoeffic­
ient, this bunch b eing ",ery tight in the set (123) a.nd also very 
tight in the set (124). Fur ther suppose that the general slope of 
the (12) c01111ection is mark,edly different in these two sets. This 
would be a strong indication that ther'0 exists good linear re­
lations in both the three-sets considered, and further that this 
i;.: not the same l'elation. In other words, none of the two 
measurements are biassed by our failUl'0 to take aCColUlt of 
some variate. The difference is simply due to the fact that \'ire 

are measuring two, different things when we determine the 
general Blope of the (12) bunch in the set (123) and in the set 
(124). In this case I shall say that the chango in the gen eral 

lO~ 

slope of the (12) bunch as \.-e pass from one to the other of the 
two sets (123) and (124) is a l1l ult ilinear ejfect. Obviously in 
this case the big set that conta,ins both the th ree-sets con· 
sidered, namely (1234), is multiply c()llinear, a,nd a regr ession 
equation in (1234) would therefore ha.vo no rne,aning. 

On the other hand it may happen that the change in slope as 
we pass from (123) to (124) is clue to t.he fact that both these: 
slopes are biassed, the one in (123) because 4 is not taken 
account of, and t.he one in (124) because 3 is not taken a,ccollnt 
of. In this case I shall say that the change in slope is a gross 
slope eifern. This is just the case where the correct solution is 

,0 unite the sets to a bigger set, namely (1234) a-nd consider 
the regression here. 

Which one of the two alt.ernatives we have will be expl'ess­
ed by the behavior 01 the (12) bunch in the big set. If it ex­
plodes, we ma,y take it as a sign that we haNe a multilinea.!' 
effect, but if it tight,ens still more, we ma,y conclude that we 
have a gross slope effect. 

There are a,lso other cas-es. Suppose for instance that there 
exist.'S a, good structural rela,tion in (12345) and another in 
(12346). It would then have a meaning to consider a regress· 
ion in the set (12345), and it would also have. a mea.ning ta 
onsider one in the set (12346), but it would have no meaning 

to consider one in (123456). Suppose now that we consider 
st,atistically the two sets (123) and (124) aJld find tha.t the (12) 
slope changes markedly as we pass from one to the other of 
these three-sets. This is of course in a sense a gross slope 
effect since in one case we have failed to take account of 3 and 
in the other we have failed to take account of 4, and both these 
variates are necessa.ry to ohtain a. good regression equation. 
But which "true" coefficient is it of which the two observed re­
sults can be said to represent biassed measurements? In point 
of principle the question has no definite a.ns wer, because we 
lUay conceive of it either as the (12) slope in (12345) or m 
(12341.::). Both (123) and (124) are indeed contajned in both 
these n ve-sets. In aetual fact the (12) coefficient in (123) ImLY 
be nearest to the "true" (12) coefficient in (12345) wllile 
that in (124) may be l1ea.rest to the "true" coefficient in (12346), 
or the (12) coefficient observoo. in both throo-sets may be 
nearest to the "true" coefficient in (12345) etc. Which alternative 
'\\e shall ha,ve, will depencl on the amount of mtercorrelation 
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that happened to be present between the various variat€s in the 
data a t hand. We may r efer to this as the mix'ea ca$e. 

If we got the idea of introducing also 5 and 6 amongst the 
variates tested, we would by the bunch technique, in all pro· 
bability be guided towards the right c.onclusion, namely that 
(12345) and (12346) form two independent collinear sets. 

18. 	 THE TESTING OF THE VARIATE-SETS. CLOSED SETS AND 
ADMISSIBL~ REGRESSIONS. 

The star -map is in a sense the "difference" map of the bunch 
map. It expresses what happens each time we add a variate, 
while the bunch map expresses the situation that exists after 
tho variate is added. By c.ombining the c.riteria c.ontailled in 
these two maps we shall now disc.uss the significance of the 
various regressions - each r egression taken as a whole - ­
and thereby try to get an idea of the confluence hierarcy tllat 
exists in the variates. To a large extent this will consist in 
checking wether there is agreement betwe.en the conclusions 
roached by studying the individual interco-e11icients. 

It is not necessary - nor indeed possible - here to give ~ 

complete account of all possible cases that may arise. It will 
be sufficient to indica.te the most important cases and the 
principles by which Utey are classified. One who wants to 
apply the method, wlll then no doubt himself be able to, work 
out tne detailed interpret.ation of the cases which he encounters. 

I. A closed set. If we have a set, as, for instance, (234) in 
the example of Sections 23 and 24, where the st.ar-map displays 
on1y asterisks, and where the slope ma,p indicat~s a high degree 
of tightness all the way through, then we may conclude that 
all the variates belong in thl) set, and when these variates are 
t.aken together, they give a good fit t.o a linear relat.ionship . 
All the coefficients in the r'egression equa.tion in this set may 
be considered significant. Such a set will be called closed and 
the regression equation in this set an admissz7!le l'egl'csFllon 
equation. If there. ca.n be found t wo ('Or more sets) that appear 
as closed according to this criterion, and i1 the bigger sel 
obtained by uniting these two seLs show rJ:rlJlogio lls ill the 
various coefficients, in other words, if this bigger set has the 
features mentioned under IV belo,Y, then we may consider this 
as a check on the conclusion that the lowor sots considered 
were closed. 

lU ~ 

I I. A promising but not complete sel . II we lJaye it set where 
the star map shows asterisks throughout but whero the bunch 
map does not yet indicaoo sufficient. tightness in the various 
bunches, we conclude that all the variates included so far are 
significant, and should sta.y in, but we should continue to seal'ch 
for some new variate that may be able to improvo the fit. 

III. A promi-sing $et but with Bome extraneol(1) variate(·~) . If there 
are some eircles in the set, and particularly i1 several of these 
consist in pointing out t he same varia.te as superfluous, and still 
mor e if this indication is checked by the additiona.l zero slope 
criterium mentioned in Section 17, then the variate (or variates); 
in question may be left out. Some caution ought however 
to be taken, because it is conceivable that, by including some 
entirely new variate (or variates) not yet considered, the 
situation may be Changed in such a way that t.he variate that 
first appeared as superfluous now proves to be somewhat 
useful. To be more prec.ise: 'rhe inc lusion of the. entirely new 
va.riate (or vaJ'iates) may so clar ify the situation that. it becomes 
possible to look fo r fin er t raits of the regression equations. And 
these fin€r traits may indicate that the variate that was first 
"circled" e~erts, after all, SOHre influence. We may then 
interpret the circle first put 011 this variate to mean that it was 
superfluous as compa"ed u}ith one. (or more) other variates which 
it was more impor tant to take into account. 

IT'. An i'nadmissible set with closed subsets . If we baye fl se t. 
as for instance (1234) in the example of Section 24, which in 
the star map is repI'esented exelush' e]y by b laekballs, the set 
must be interpl'etcd as multiply eoHineal'. This conclusion is 
supported if we not only ha,ve a sta.r map that indicates black­
balls, but if the tightness in the total set - as shown by the 
bunch map - is actually very poor. 'l1J1is is the. case in the 
example considered. The beams in the various bunches in the 
set (1234) are indeed sprawling excessively. .And the conclus· 
ion is still more definite. if the bUllchas in the subsets were 
actually quite tight so that we h:l.ve clear cut explosiolls for all 
the bU1lChes as we pa-ss from the subsets to the total set. TIns 
is actl.lally so in the example considered. 

Of course, if we find a set that shows such a definite black ­
ball picture, we need not interpl'Bt this as a deplorable result. 
If the t ightness of the bunches in Ule subsets of the black· 
ball-set are fairly good, the blackball-situation found may be 
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interpreted as indicating that the investigat ion is now carried to 
completion. It means that the la.\\' of variation in the subsB\ts 
furnishes already all the information that can be, got out of the 
observed product moments. In otllel' words the cycles wer e 
already closed before we put all the variates together into one 
total set. 

V. An ?'nadmissible set with w~tinished subsets. If the tightness 
in the bunches of the subsets is not satisfactory, the blackball­
situation found in the total set indicates that the thing needed 
in order to obtain a better fi t is not to take account of the fact 
that all the varia,tes considered ma,y change simultan eously and 
independently, but to Zook for some entirely 1l(, U' L"(I1·iate. And this 
new variate must again in turn be judged by the as terisk, circle 
and blac kball crit,eriull1. 

The application of these principles iyill be illustrat.ed by tile 
examples in Sections 23-2D. 

19. 	 11£A;\' Y.,LUES AXD BOU~DAHY YALUES OF liEGB ESSIOX CO E F'­
F IClENTS. THE SIGNIFICANCE F ACTOR G. 

When we ha,ve set.1Jed the question of which one (or ones) of 
the regression e.quations are to be considered as admissible , we 
Kant tl' indicate limits of significance for the regression coeffic­
ients \yithin each such equation. On the basis of the discussion 
in Sections 14 and 17 we adopt heuristically the two opposite 
elementary regression slopes as proba.ble /J ormdar£es fur 1he 
regression coefficient in question. This means that if the 
r'egression equation is written in the form (16.1) v.'e 11dopt as 
boundfll'ie" for B U(" "" .,;,) the number:" 

Pi} (a,~ . I i and iJ}(ap , . , y )
(19. 1) 

rU(afl ' . r) f j ;( a/3 . )') 

These boundaries are invariant for a permutation of the two 
vuria tes. This is se·en simply by noticing tllat if we interchange 
i and) in (19. 1), each limit becomes equal to the r eciproca.l of 
"hat the other limit was originally. That is to sa.y if we write 
the regression equa,tioll in the form 

(19.2), t J = B ) t..( f3 , Y" ~,~. + .'"_ · a J 

the bOlJnual'ieb for Bji(( /3 . I') \\-ill be the reciprocals o£the boundaries 

for B j'l<fi 	 YJ' 

10~1 

This suggests tha t it is more natmal to indicate the signifi­
cance of the l'e.gression coefficients by a f adm' of ullcertainty 
than by an addit.ive. term (as we do when we indicate in the. 
usual wa.y the standard error of the regression coefficients). 
In view of this fact, it seems natural to adopt as the mean re­
gression coefficient the geometric a'i'.e rage between the absolute 
vaJues of the two bounda,ries, and then determine the sign by 
means of 1\,«,3 .. ;' ,. rrllis gives 

.(19. 3). B (d lag) 
.. )') 

= - (Sgll. f .. , 'j . 
,,) ,/ fJJ«Ct , ]'1

ij (u ,1 	 I),.", 

as the mean regression coefficient, and 

j (((,9;'1(19.4) 6ij( (3 ")= + V-,.-.--:, 
i1

v, fjj(Ull
I" i t~ar-' _ . I J ) ') 

as the factor of signiricclnce. 
The coefficient (1~). 3) is of course nothing but the d~'ogonctl 

mean I'egression coefficien t between the variates Nos. i and j. 
Furthermore, the factor 6 is nothing but the absolute va.lue of 
t.he familiar partial correlation coefficient. The use that is here 
made of it, namely as the significance factor (the "multiplica· 
tive standaJ'd 81'1'01' '') of a diagonal r,egression c.ocfficient is 
however not usual. Since (oj is the absolute value of it correla,­
tion coefficient, it must of course lie between 0 and 1. 

It should be noticed that t.he significance limit e only applie-s 
to regression coefficients in equations that have been recognised 
s admissible by the whole bunch map and star map technique ; e 

should not be taken as a criterion tha.t is sufficient in itself. 
In numer ical work we shall add the significance fa.ctor in 

the same way as one usually adds the standard errors, putting, 
however, the sign I between the two figures instead of ± , so 
as to indicate that it is here a question of "multiplication or 
division", not a question of "addition Of' subtraction". The dots 
in .;' may mnemotechnically be interpreted as the multiplication 
sign, and the fractional bar as the division sign. I n the 
numerical examples of Sections 23-2;) th is nota.tion is used, 

In any given admissible subset (a (3 ... }') tbe intel'coefIicieut 
between any pair of two variates is defined by (19. 3). If the 
equation as such in this sct shall have a meaning, the var-ious 
int.ercoefficients ought t.o be compatible, for instance B3~ 

http:illustrat.ed


III 11U 

ought Lo be equaJ to minu s Bl~ divjded by BJ'J ' etc. Qu ite 
generally we ought to have 

(19, 5), 	 B'j = -Bkj/B/:i ' 

This condition is fulfilled if t.he illtercoeJfic.ients are defined by 
(19. 3) , provided only that the slg/ls of Il le row:; Qf t he adjoint 
correla-tion matrix are compatible. If the signs are not 
compatible, an inspection of the buneh map will in any ease tell 
whieh sign to use. If there is such a h igh degl'ee of di${)rgani­
sation that t11e sign is not distinctly defined by the blIDCh map, 
we have a set of varia tes that ought 110t to 11 ft f8 pflsfl l?d 
through the sev-ere tests of the bmlch map a.nd the star-map 
analysis. 

Of course I haYe here made no a.ttempt to specify exactly 
what the probabiUty is that the "true" l'egression coefficient 
shall fall outside t11e significance limits inJitaied by e. For 
the reasons previously indicated I prefer to r ely on the 
purposely vague statement t.hat it is "\Tery improbable" that 
t.he "true" coefficient will fall outside of these limits. 

20. 	 SOME TEST-PARAlffiTERS THAT MAY BE USED AS SP-CONDARY 
CRITERU. 

The complete anaJysis by the bunch map and star map is the 
ultimate test by which to judge ernpirica.lly the hierarchy of 
linear conl'Juency. If ever there is a confliet between the con­
clusion indicated by the maps and by some other empirical cri­
teria, for instance some of the test parameters discussed in Part 
I , the result reached by the complete map study is to be 
considered as the final word. 

This does not. p revent cen.aill test -parameters to be of some 
use as secondar y criteria. 'Vo haye nll'f'ady seen that when the 
slope map and star map anaJysis have decided about the 
admissiblE< regressions. the part ial correlation coe.fficieuts may 
be used to illdica.tlO significance limits for the coefficients. If 
these limits are computed for aU possible intercoei'ficients anu 
tabulated. for all p ossilJle subsets in t.ables of the same ::u;'ange ­
ments as tho t illing tables, we even get an appl'Ox:im.<1tie idei."4 
of one feature of the hunches , namely the angle between the 
two leading beams in each hUllch ; obviously tlle partial correla ­
tion coefficient is an expression for this angle. This is, however , 
only ont:' of nle many featul'es that are actually taken account 

of in the complete bmlLh map and star map analysis, so thn.t no 
discussion of pal'tial correlation eoefficients, eyen if made in 
this exhaus tivo way , CaJl r eplace. th e map a nalysis. There is 
a.lso the praetical cOIL.<;ideration that it takes at least as much 
time t o compute the complete system -of partical correlation 
coefficients (on tho basis ()£ the t illing result) as to plot the 
bUllch map. In practice one will t.her~rore hardly ever find it 
worth while to compute the complete system of partial cor­
relations. The only paramoter system which it is always 
eonvenient to eomputJ8 completely in pract ice is that involved 
in Ule tilling tables. 

While the partial corre lation coefficients - or which in 
practice amount..s to the same, the facto rs Q uefined by (1 9 -! .) 
- express the sprawling between the two leading beams in a 
bunch, the corresponding coefficients formed by the Irs of 
Section 5, namely 

flAil 
(20. 1) fl; j(afi . ,= + -A-;;­

. Bit Rjj 

is a composite expression for the sprawling of all the be8 1llS in 
the bunch considered. In doubtful cases w'hen it is difficul t to 
decide by the visl1al inspection of the slope map whether a 
certain var ia te is useful or sup er fluous, or whether an equation 
should be taken as admissible or not, it may be found worth 
while to computo the parameter D ,IS a supplemenb'u)' indication. 

A coefficient that is influenceU by a still laJ'ger numher of 
bunch chru'acteristics is the line coefficien t defined by (6. 1); 
it expresses the sprawling of all the bunch es in a given set of 
variates. 

While the partia7 correlation coefficients - or which amounts 
the same, the factoT e - as suggestoo above, may be of some 
use in the study of linear confluency, thc nwltiple correlation 
ooefficient is in my opinion of no use, or rather it is very 
misleadb.lg and dangerous parameters. Examples of this are 
mentioned ill Section 1. 

21. COMPATI13ILlTY SMOOTllING OF REGRESSroN COEFFICIENTS 
IN OVERLArPING S1JBSETS, TilE M.ETHOD OF DIAGONAL ZEROS. 

Suppose that the investigation has led up to the conclusion 
that there is a certain set (12 ... 11) w hich is twofold collinear, 
tllllt is to say nny of the 11 subsets obtained by leaving out one 
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variate at a time is a closed set possessing a significant 
regression equation. If this is so, the coe.fficiellts of these Ii 

regessions ought to be compatible in the sense that any of these 
equations is deducible from any two of the other equa tions (by 
eliminating' between them the va.riate that is lacking in the 
equation which it is wanted to deduce). If the regression equa · 
tion within ea.ch of the subsets are determined by the diagonal 
regression method (or by any other .6mpuical method), the 
coefficients in the set of n equations so obtauled may however , 
not have this property exactly. The problem therefore arise~ 
to smootil the coefficients in such a particular way that the 
property ill question is assured. 

A similar but Imore general problem arises if tile imnestiga.­
tion has led to a certaul set (12 ... n) that is thl'cefold collinear 
or more. In this general case w'e may formulate the problem 
thus: There is determined empirically an S rowed and 11 column­
ed matrix of regression coefficients 

r .• Al ll.t:1.n . 
(21. 1) 

1\ Aki II = II_~':-~ : .' .- .- ~ .~. ~, 
This matrix defines N equations of the form 

(21. 2) 	 LiA.j(i §, = O. 

The ooefficients A ' K i shall be smoothed in such a way that the 
matrix (21. 1) becomes of rank z. 

T he fact that (21. 1) is of rank z means that z of the equations 
(21. 2) 	are independent, ,,,-hich in turn means tha t the scatt~l' in 
;1 ' . ' §Il) has lust z dimensions, in other words, the scaLter is 

left with an m1iolding capacity of n-i(. 

The case men tioned in the beginning of this Section is the 
case x = 2, N =n. 1 shall first indicate a rapid method of 
compatibility smoothulg applicable ro this special case, and ill 
tile next Section I shall give a method a.pplicable to ihe 
general case. 

In the ease z = 2, N =:0 1l we choose such a numbering of the 
equations that the equation No. K is the one where the var:iale 
N o . K is lad ling. In other \vords all the diagonal elements in 
(21. 1) are zero. 

Let us f irst normalise tIle coefficients so as to make them 

1 ~' 

compa.rable ill size. A rapid and convenient way to do this is 
by means of the absolute-value norms. 'Phis means that we 
determine the sum of the absolu te values of the elements in 
each row Ul (21. 1), and then divide each element by the 
absolute row sum in tile row to which the element belongs. 
We thus obtain a new matrix 

au .. . aI" 

(21. 3) II aK111 = ••• • • 4 • •• •• 

aXI' . . a," n 

where all the absolute row sums are equal to unity. This 
property is used as a check on the normalisation. For the 
purpose of checks on the otiler computations to be considered it 
is convenient to compute also the natural row sums of (21. 3). 

Consider one particula.r of the mws in (21. 3), sa.y So· K . 
Let Nos. P and (J be two other rows. ~ [111tipJ y il1g the 1'0\\' P 
by some constant C and the row Q by a constant D amI add ing, 
we ought to get a new row, whose elements 

(21. 4) 	 [ 'i + D «Q( 

are proportional to those of the row K, namely an If the 
matrix (21. 3) was exactly of rank 2, there would in geneI'al be. 
one definite ratio lJetween C fi nd D wh ich we \Youl d huye to 
select in order tila t (21. 4) should be proporl ional to aK i. l( the 
matrix (21. 4) is not exactly of rank z, it will in general not be 
possible to choose the r atio between 0 and n so as to obtain 
eX Rct proporti onality; 0 andD can only be chosen so a.s to 
obtau) the "best possible" fit. This means that SOllle more or 
less plausible principle must be a-dop ted for the choice of C and 
D. Tn the present case where all the diagonal elements (L f(K al'e 
zero it seems plausible to choose 0 and D in snch a way thai 
the diagonal zero is maultained. TIlls leads to 

(21.5) 	 '/D=- aOK/ur ' 

Hence the elements of the new row So · K must be proportional lo 

(21. G) 	 aQKap ;- apK aQj 

In practical computation it is convenient to put th e new row 
either equal to plus the eA~ression (21. 6) or equal to minus 
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this expression, the sign to be chosen so that ihe elements in 
the nevi' row gets the same SigllS as the old. Of course we 
assume that the signs of (21. 6) for varying i will be compatible 
with the signs a X i ' otherwise the incompatibility between the 
equations treated would be so great that the attempt at 
reconciling them should be given up and the admissibilit.y 
criteria, for the regressions should be r econsidered. 

F or each given X, the row numbers P and (2 in (21. 6) lllay 

be ehoBen in I, N:2 "1 ) different wa.ys. '1'his means that we obtajn 

(.Y2"I ) different ro ws which call be compared with the row 

No . K . To make the comparison easier we reduce all these ;new 
1'o,,'s to absolute ),ow Slllh unity. In other \yords, we form 

(21. 7) {(j.r:iH,. = w (aQJ: Cl p .:- aPi:. a lJi) 
where (v is a const.ant so chosen that the absolute row sum 
becomes ullity a nd the signs of (:H. 7) coincide with those of 
ax., If the matrix (21. 3) is of rank 2, we shall hav-e exa.ctly 
a<;;Ql = a ](i f OT any set (PQ). The distribution of the values of 
a,£Q) :nound for all possible sets lFQ) is characteristic for thea X j 

degree to which the matI;x a. x , falls slwrt of hasing i11e property 
which it is the purpose of tJle smoothing to es1.a.blish. All the 
values (21. 7) should therefore be tabulated in the way in­
dicateel in the example of Section 25. In works of this kind the 
natural ro w sums of (21.3) and of the derived matrices should 
be used throughout for checking purposes. 

Let 
- _ 1 " (PQ) 

aKi(21. 8) K i - (N21) L. PQ 

be the a;V£l'age of all the coefficients which are to lJe compaJ'ed 
with · l( ax; is not exactly equal to (lKi a (;omprornise m ust a lli 
be made ; (l K i must be somewhat modified on the. basis of the 
infor mation contained in the other regression eCluations. A 
pla.usible solution seems to be to adopt a.s the smoothed c.oeffi­
cient the simple avera,ge between aK~ and aKi' that is , the smoo­
thed ooefficient. is put equa.! to 

a Ki + a'.K; (21. 9) Ki, - 2 

If. the matrix a'xl does not yet come close to ooing of rank 2, 
the whole process may be iterated. Since the matl'ix (iK. 

has a.bsolute row sums equal to unity , and aXi and aJ\J always 
ha,ve the same sign, the matrix {(~'i mnst have absolute row 
sums equa.l to unity, it is thel'efore already in shape to be taken 
as the starting point for a new smoothing. 

The example discussed in Section 25 shows that this proces~ 
converges with an extraorclinary r apidity. Already the second 
smoothing according to this method assured exact compatibility 
in the first 10 decimal places. '1'he discussion of that ~xample 
even seems to indicate tha t the simpl lj! a.rithmetic a v-erage 
chosen in the formula (21. 9) repre.sents in a sense an optimum 
ehoice. It seems t·o be the linear combination between UJ\ i and 
aK i that will produce the most rapid cOlwergency possible. 

22. COMP ATIBILITY S~fOOTHDI G CONTINUED. A GENERAL METHOD. 

The method of compatibility smoothing described in Section 
21 has a natural a,pplica.tion only ill the case % = 2, N = n, 
where the is a squaI~e matrix with zeros in the diagonal. aXi 

Indeed, these zeros just served to define the para rnete rs 0 and D. 
In the general case some other principle must be relied upon. 

If the matrix aX i is or rank exactly % it should be possible 
to express the row So· K as a linear com bination of % other 
rows. in other words we should ha.ve, for aJ) ~' 

(22. 1) aJ:i = Cpa pi + CQa Qi + .. , + 0 ll a m 

where P, Q . . , R is a sct of % different numbcl's chosen ill the 
sequence 1, 2 , .. X, amI the C's are coefficients independent of 1. 

H ow shall the coefficients C be selected in order to as sur6 
the best possible fit? 

A natural idea. seems to be sinlply to determine them as the 
regression coeffit: ients of aJ{ i on a },/ , . , . aNi> -i beir.g the ({iji 

variable pa.rameter tha,t defines the various "observations". 
This leads to the followillg proceduTe. 

Let the matrix (21. 1) now be r educed by the square row 
norms, in other words put 

(22.2) aX i = A. Xi ! ,GIL + ... + At 
so th at 

2 9 ~ 

(22. 3) a.f(! + . .. + Cli;:" = 1 for all K 

Then form the row moments 
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(22.4) 	 Db.- = Lta Iii (t K i, 

(in particular by (22. :3) i-lJU, = 1), and compute (most cOI1Yeniently 
by the tilling tecJrniqu e) the adjoint elements in a ll (x + 1) 
rowed subsets 

(22.5) 	 / .. Kil ( U l' ... JV) 

(U V . .. . TV) being (x + 1) numbers chosen in the sequence 1, 2 . . , :N , 
and the adjunction being made in this set, Wi th this llot.ation 
t.lle coefficient a~:-'iQ ·· · N), whicL is obtained yia tIle equations 
(PQ .. . It) , and is to be compared with ail; , is defined b)' 

(22. 6) 	 ,l.L K K (KJ'Q . .. 11.' . a<t"Q· .. 1'1) = - 2: ( LK H(K PQ. . R) • aHi 
n = 1'.Q . . R 

where H runs through all the x numbers P, Q . . . 1l (but not K ), 

and'; are tbe adjoints taken in the ex+ 1) row ed set (KPQ .. , R). 
There is no need to normalise the rnagllitudes a(j/iQ ··· I: ) de­
termined by (22. 6) since by this formula they ha.ve a lready 
been fitted to il K! both in sign and Ol'der of ma.gnitude. 

F or each Kthere will by (22. G) be obtained (K xl) differen t 

values to compare with aki . In the case of x > 2 it will be a 
little tJ'oublesomC' to tabulate all these values, as we did in the! 
method of Section 21. If it is not particula.rly wanted to soo 
eaeh vallie , t il e tabulation may, howeyer, now be omi tted because 
the present method is such tha,t the a veraging may be- don e in 
the algebra of the formula. In order to do this we firs t make 
the convention that (22. 5) sha ll be interpr.eted lLS zero when­
e.ver one, or both, the affixes (ilK) lack in the se t ( U V . .. W). 
With t.his convention the summation in the right member ot 
(22. 6) may be interpreted to run through all t.he values 1, 2 . , , N 
except K . Tllis is a fOTlllal ~l(lvan tage when we wDnt to per­
:Conn an M"'eraging over all possible sets (PQ ' , . R). 'fhe average 

of the m agni tu des (22. 6) using the ! ' /( K CK PQ . . . H) as weights, 
will now be 

(22.7) 	 aK; = - L II'(K H) and lACK X l 
1T= 1,2 ... :>Il ( ... S 

where 

(22. 8) ' ( KFl) = LpQ . .. R ,I/K71(K PQ ... R) 

Hie sumrn.at ion in (22.8) r unning OWl' combinations willJOllt repeti­
tion of the ;~ a ffixes (PQ . .. R). Th is is ob yiously tl le same as 

"i ,L~Kll ( r.;l""" 11') wh ere the (x+l) affi xes ( U V ... TV) run through 
those spee-iaI combina,tions that co·ntain K . BJ lbe a bove 
conven tion this is how'cver in turn the snmeas if(C Y .. TI' ) 
runs through all possible combinations, no 111a ttel' ,yhether ]I 

is present or not. \Vc> therefore have 

(22,9) ;1(J( f/ ) = l:v 1' .. II" '""[; HcU 1' ... W) 

wh ere (KB) Hr'o any two a ffixes (equal or unequal) in the se t. 
1,2 . .. Nand Lci- . 11' denotes a summati on over combinations 
without r ep etition of t.he V + 11 affixes V r . .. TY picked i ll the 

set I . 2 . .. ~Y. Thus th e Xrowed squa re matl'ix 1'(1,11) i;:: simply 
ormed by adding all the (KH) elements tlwt oeem 1n the (x + 1) 

rowed till ing tables for ,UK II' This matrix may be forme d Oll ce 
for all a.nd applied to all t.he aver'agings (2"2.7) . WhCiJ1 the 

matTix !~( }.. U lt is formed, each of the magnitUdes that is to be 
compared with aKi is formed as a linear compound, namely 
(22. 7) of all tlle (N -1) coefficien ts am where H =t= K ITl or rle l' 
to (,mi t the term H = K in the SlUl1mation (22.7) and get the 
proper sign it will in practice be most cOllv~nient to make a 
complete square table of the matri x - f.1 {K II) (whieL , ill­

cid~ntall:r, is symmetric) divide by ,~ (}; X ) Rud replace all HIe 
diagonal elements by zeros. The quanti ties al ,:, al'e then simpl y 
formed by ta king the ])l'ocluct sum of a column in this m odified 
matrix a nd a column in the original a matrix . 

Since by the computa,tjon of the, accumulated matrix: (22. 9) 
each elemen t in the (x + I)-rowed tilling tables is used once, 
and only once, various forms of ch ecks ma.y be applied. 'Ve 
may for instance ver ify that; 

The sum of the diagonal elements in ~(E1J) is equal 
to the sum of the diagolHll elements in all the (I( + 1) 

(22. 10) f 
, ro~~ed t. illing tables, and similady for t.be north-east 

tr iangle. 

Using the same argUlllent as in Section 21, we put the 
smoothed value of aKi equal to 
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aXi + ax.(22. 11) a~l = 2 

If necessary the yalues a~-i may be taken as the starting 
point for a second smoothing, etc. 

Instead of adopting the simple arithmetic average (22. 11) 
sans far,;on , Olle may go to the following more elaborate pro­
cedure. Let us put 

(22. 12) a~i = a Ki - J,C Xi 

where 

(22.13) CJ{i = aJ{, - a X i 

and A is a, parameter to be determined in such a way that the 
smoothing comes the nearest possible t-o maki.ng the matrix a~i 
01 l'ank x. Since a common factor of proportionality is of no 
avail for the smoothing of the matrix considered, (22. 12) 
repr esents the most general form of linear smoothing t.hat can 
be based on the two elements a J{i and aA'i ' 

The moments ,U~lI of the llew matrix a'~i will be 

I '" I I '" ( . '>l K JI = £.,: a·x ; a. Hi = £.j, a'K i alIi - J. aKic m + (ljJieKi ) + ),,- c XiCll( ' 

Hence 

22. 14) ,U~H= ,U K ll - }.JJKll + J.2 
T K JJ 

where fA'Xl{ is the moment matrix of the origina.l coefficients, 
defined by (22.4), and 

(22. 15) "KH= Li (lKi CHi + aHicKi 

(22.16) rKI'= Li CXiCW 

As It check on (22. 15) and (22. 16) we have 

(22.17) JJoo = 2Li aOi COi 

(22. lS) '" 
"00 = £.,: c')o. 

where aOi and COl al'e column sums and "00 and 1'1)0 gran d totals. 

11 !) 

.W the th ree mat rices ,lI , 1', I' are ob\-ious ly s~-mnlCtri c. 

Since the elements of the new moment matrix are of the 
form (22.14), we are led to consider Ule X-rowed detelminant 

(22, 19), F(}.) = I,ll/(JJ - AV Kli + ;.2 rKII I 

and it, various principal minors. IJet F J': ue the (.X-I )-rowed 
principal m inOl' obtained from (22. 19) by omitting the row and 
column So . K , F J{JI ti le (N-2)-ro\ycrl principal l1'linol' obtained by 
omitting the rows ~os . K aml H and the columns Nos. K nnd H, 
etc. All these determinants ar e obviously positive defillite for 
any real value of ), because they are moment. determinants no 
matter what yalue \Ye put for J.. This sho\\'s that any yalne 01' 
). w-hich makes one of the principal minors of (22. 19) vanish, 
must aho make all those prinCipal minors vanish, which conta in 
the first minor. 

In 'order that the n e w coeffjcient matrix a' shall be of ra n k 
x, it. is necessary an d sufficicnt that the m oment matrix II ' is 
of rank z \,;hieb means that Hie determinant (22. Ifl) and all 
its principa,l minors clown to and including the (x + I )-rowed 
must van ish. In general it will not be possible tD ensure thLs 
just by disposing or th e single para met.er I. , uut in practice if 
the original coefficicnt m atrix a. ,,,as ncar to Loing of ra nk z, 

it may be possible to select a value of ). that ,,~ill realise nry 
closely the vanishing of the pr inciple minors in quest ion. Since 
(22. 19) is positive definite for all values of }. , the sllfll'O of the 
function Ji( }.) and its principal minors will be of the kind 
exhibited in Figure 10. 

None of the Iunctions l ' can 
pass zero; since they are positi,e ~..... ', .. 

' , ' 

',\,\delin ite for all J. , they can n t 

most tOUGh zero. And in a point 
where any of the F K touches 
2I"e1'O, F must also do so. 

Pig. 10.H all the fUDctions F [:I' ... )I' 

of the order (x + 1) yanish in 
poin ts that lie tigh tly together in a group, thon we " QuId obtain 
a good solution by putting}. equal to some central value in the 
group. In Section 25 we shall see a numerical e,xample where 
these points lie extremely close. 

If severa.l such groups should exist, we a re of course inter­

http:paramet.er
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ested only in the one with smallest I. ; we see indeed by (22.12) 
that the correctioll to be applied to aKi is all tile smaller the 
smaller 	L 

Thus from the point of view of numerical c,omputation the 
pro blem is to plot the minors in question F ['v .. . 11' over a 
certain range neal' }, = 0, and loc-ate their zeros in this range , 

In order to do this we lleed to devolop functions of the kind 
(22,19) as polynomials in J... For X = 2 we find 

(22.20) 	 I ll.HK - }.." JI K + 1.2 i'IIK I =/~1l 11'Z'1-' 1112'U21 + 
+ (nHI'21 + )' 12!-l21 - ,Llll1'22-Vll,U2~))· + 
+ (1'l1,un + Vu V2~ + f.lll Y22 - 1'12 ,U.~1 - 1'21 1'12 - /l l2 1'21) P + 
+ (l/1 2 r!H + )'21 rJ? - Ylll'n -1'1l/'2Z) }·3 + 
+ (rll/'n - 1'12 !1 ) ).,'. 

and fOT ,;.V = 3 ,ye get 

I,u lJ K -	 J,l'lTK + ).2r171\ I= S,LL,UU - Sf'''''' . J. + (Sfl "" + S,u,uY) P 

(22 .2 !) - (S,'I)' + S,.,.,,) ),3 + (8"n + S""J') )} 

- S,,)'yA5 + SYY7).~· 

R eTe S ,uY denotes the sum of all the determinants that can 
be formed by taking in all possible ways one column from the 
mntrix ,It, one from v and one from y, 8 f'1'" denotes the similar 
sum when two columns are taken from /1 aud one from 'I', etc: . 
WIlen f.l, J! and yare wr itten as affixes, they may be int,er­
preted to haYe the weights 0, 1 and 2 respectively. rrhe sum 
of the weights in a given term in (22.21) is equal to the 
xponent of :I, and the term consists of all possible S th at have 

subscripts with total weight sum equal to the exponent or I,. 
If the S in (22. 21) are written out explicitly we get 

(22.22) 	 8 Ul' ,' = If' /If' I 
81,.'", = I '<l'" I + 11'- "", 1+ I"f'." I 
8,,,, ,. = 	 I,<vv I -l- IVI'" 1+ 1",·/< 1 
'" ,ll Y= I,u,tt" 1+ Iurl'-I + 11'1" " I 

8">'>'=1 	.... , ) 

8/Hr = I ,uvl' I + 11'->,,,1 + Iv,al' I + 1" y,. 1+ 11'1. ,,1+ 11',,,, 1 
S>,>"' = I v.·rl + 1"1" ,1 + II'VI' I 
S,.rr= l"r,, 1+ Ir ,arl + l"y,,1 

Here l /tpl' I denotes the dOLerminant where the first and second 
colu.n:ms are taken from the matrL~ p., and the third column 
irom the mutric v, and similarly for the other symbols in 
(22.22). The rules indicated above are general and applies to 
any N . 

In practice the computations are not so elaoorate as they 
may appear from this theoretical analysis; indeed, in practice 
the higher terms w ill frequently vanish nearly exactly so that 
we actually need to work only with polynomials of rather low 
order. The example of Section 25 shows this. This example 
also turns Gut to lead nearly exactly to the simple arithmetic 
average which we put up heuristically in formula (22,11). 

PART IV. APPUCATIONS. 

2-3. A CONSTRUCTED CONFLUENCY EXAMPLE IN 5 VARIATES. 

To test the va,rious pr ocedures suggested in the prec.eding 
Sections and compare their relative merits we shall analyse a 
constructed numerical example and some examples drawn from 
actual economic data·. W e begin with the constructed e.xample. 

COllsitlcr four yuriates ,Tl .. . X i whose values in each obse rvation 
point are determined by (13-1) where the '!J' s are ,uriates 
determined by ralldo ll1 drawings. In the example each Vi 
observa Han was detel'll1ined l)y the a.ve.ra.ge of end digits in 100 
consecutive draWings in the Nonyegian State Lottery. All the 
individual observations of a given !I. as well foS all the Yfll' ious 

i wero imlependent in the sonse that drawings tilat were used 
to de term ine a certain obsel"vCl,tion of a pnm Vi' \\"('re not used 
for any othel' purpose, that is neither for other observations of 
this Y. nor for obsen-ations of any of the other '!Ij . 

The Norwegian lottery drawings ar e done without putting the 
numbers drawn back into the urn, The probability for a given 
end digit in the various dr-awings is tllel'efore not exactly con­
stant, but the effect is so slight that it would be without any 
influenco on the calculations in the example. 

As a fifth observational variate. \Va.s introduced X ,,> = '!h, in 
ther w01'(1s x5 was simply itself an erratic variate determuled 

by lottery drawings. 
Since the y's in this !example must. be considered as "in­

depe.ndent causes", the systematic par ts x; of th e observat.ional 

http:a.ve.ra.ge
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variates must be interpreted as that part of the right nljember 
in (13. 1) that cons ist of y's occurring at th e same time in more 
than one x . In other words we have (13. 2), while X s is an 
observa tioll a.l var iate quite e xtraneous to the whole system. 
Eliminating !h and .112 we ge,t the "true" r egression system 
(113.3). We shall now i'vpply the methods cleveloped in the 
preceding Sect ions and see if they a,r,e capable of finding the 
"true" regr essions (13. 3) and of indicating that a regression in 
the big set (1234) has no meaning. 

When the baRic: yariates yare determined by lottery draw­
ings, as exphined above, they will, of cour sel, not become 
rigorously une-o rrelated. This, ho\y ever, only makes our exam ple 
all the more r ealistic. '1'he correlation coefficients as dete r­
mined in a series of 100 observations of the seven va.riates '!h 
tUl'lled out to be as indicated in (23. 1). 

TABLE (23.1). CORRELATION COEFFICIE NTS Tl ETWEEN RAND OAr 
VARIATES Vi 

Sij I j= l ~ 

i=l 1.000000 - 0.132076 - 0.08211 9 0.09Cl41jf' O.1090:Jl 0.1-!1:i380 - O.:!33315 
2 1.00lXlOO 0.02129i'i O.Ol !~ ;; lO 0.024808 0.055105 0.206633 
3 1.000000 - 0.13(1912 - 0.108802 - 0. ()G9751 0.094886 
4 1000000 0.002314 0.187958 0.070017 
5] 1.000000 0.041966 - 0.268182 
Ii 1.000000 0.15G70G 
7 1.000000 

,\Vo shall interpret the va.riates JI til at enter in tbe oefiniton 
(13 . 1) of the x to have unit sllmsquare. The moments In J jo f 

the observational var iat,es are there fore given by (7.0). 
The numerical computation of such bilinear forms is most 

easily carried through by first forming the matrix P;j defined b~' 

N 

(23. 2) P i) = L P ili oS!:} 
k= l 

In other word P ij is tJle product Slllll of a row in the ma k ix P 
and a column (or, since s is symmetric. a row) ill s . The m oment 
mat rix is then eaIculated byIn i j 

.II 

(23.3) ?nij = L P ik P i'; ' 
/; =1 

In other words, m i j is the product sum of a row III P a row 
in P. 

FoOl' checki.ng purposes it is convenient to introduce the 
column sums 

" (23.4) Poj = L Pu 
;=1 

The sums (23.4) are simply handled as an (n + l)th row of 
the matrix P ; in other words, it gives rise to the determination 
of an (n + l)th row Poj of P by the g-eneral formula (23.2). 
Each element in the (n + l )th row of P thus determined shall 
at the same tinle be the sum of the elements in the column in 
which it stands, in other words, we shaH have 

-," 
(23.5) Poj -... Pk j 

k=1 

In the computa.tion of th'e moment matrix the bot.tom J' OWS of P 
and P are handl~xl, just as the other rows: this gives the 
ma,gnitu des 

J[ 

(23.6) mOj =L P OkPj k 
k = 1 

and 
.II 

(23.7) 1»oo =L PVk PO~ 
k=l 

nv.! ought to be at the same t.ime the sum of el,em-e.nts in the 
column j in the moment matrix , and mO(~ the grand total of all 
BI€ments. 

Using this technique one easily determines directly (without 
computing first the individual Xi observations) the following 
x moments : 

TABLE (23.8) MOMENTS IN THE CONSTRUCTED EXAMPLE. 

j = l 

i = 1 
2 
3 
4 
1) 

O.99357ti - 0.121999 
1.013902 

0.8716(i;) 
0.881726 -
i.772G28 

1.135(;75 
1.1 t7290 
0.028997 
2.292407 

- O. ~ 23821; 

0.213635 
- 0.053500 
- 0.424277 

1.000000 
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And from t.his \ye get t he fo llowing correla,tioll coefficients : 


TABU (23.9). CORRELATION COEFFICIENTS IN THE 

CONsmUCTED EXAMPLE. 


TiJ = 1 4 

i = 	1 J. IIO(JOOO - 0.1215Gl 0.65fl809 0.752502 -0.2245 1. 
2 1.000000 O.G57G!l8 -0.732862 0.2121 65 
3 1.000000 0.014385 - 0.0401 ~3 
4 1.000000 - 0.280223 

'" 1.000000 

By the technique of Section 15 this gives the fo llo wing 
t.iJling tables ; 

TAHLE 1. II LLlr\G TABL 8::; . T\\·O·SETS: 

i'O I 1 	 f ij 2 5, r,,[ , ' I 
~ 11.0011000 0.1 215f>l 1 11.00()!)OO - 0.752;)02 2 / l.O()OOOO - 0.212165 
i 1.1)00000 4 1.000000 i) 1.000000 

--: ­= , O.fl H.'i22il n.!J85225 j f::.. = .0.13374 1 O.4!lB i41 b = 0. ~5l!J81; 0. !15498() 

P; j I 3 Pi j 1 2 ~ Pi} I 3 5 

1 I 1.UOOOOO - 0.65GiiOfJ 2 ) 1.000000 0.732S62 ~ 11.000000 0.040183 
1.000000 4 1 000000 f) 1.000000 

.b. = , 0.568602 0.5G8602 .b. = I0.462913 O.4f}291 S f'.. = I0.H!J8385 0.998385 

i;J. :.! 3 Pij I 3 ~ f'J I 4 " 
--11.000000 - 0.657698 3 11.000000 - 0.014385 4 11.000000 Q.280223 

1.000000 4 1.000000 5 1.000000 
6 = 0.567 433 0.567433 6 = I0.U9979R 0.999793 6 = 10.921475 0.921475 

r" I .J 
I!11.000000 0.224i).19 

1.00000 

D. = 10.949578 0.949;-;78 

1Z5 

TABLE 2. TILLIKG TABLES. TlITIEE·SE'l'S: 

Pij , ;.;Yij I 2 3 5 

0.553533 - 0.736753 1 10.998385 - 0.647786 0.198156 1 10.567433 
3 0.949578 - 0.1073032 0.568602 - 0.737534 
5 	 0.5686023 	 0.985225 

6. = I0.5284.18 0.528418 0.5284186 = I0.016245 0.016245 0.016:?44 

Pi) I 1 2 4 

1 0.4629 13 - 0.429929 - 0.6fi3422 
2 0.433741 0.641395 

4 0.985225 

6 = 10.015945 0.015945 0.015915 1 

~j l 2 3 5 

2 10.998385 - 0.666223 - 0.238593 
3 0.954986 0.179723 
5 0.567433 

A = I0.509590 0.509591 O.5095!:J0 

P !) I -! [,Pij I 3 

1 10.999793 - 0.645984 ­
3 0.433741 
4 

6 = 10.016355 0.016356 

i i I 2 3 

2 10.999793 - 0.668240 
3 0.462913 ­
4 [ 

0.74305J 
0.479865 
0.568602 

.016il55 6 

1 
4 
5 

= 

0.921475 - 0.G89578 
0.9J9578 

. ~'.1 2 

0.74.2323 
0.496387 
0.567433 

2 
4 
5 

O.!l21·17i·, 0.1;73408 
0.954986 

-

6. = 10.016273 0.016272 0.016272 6 = I0.426517 0.426517 

P/j I 1 2 Pi j I 3" 
1 10.954986 0.073910 0.198760 I ~3- 1 0.921475 - 0.0031 25 

2 0.949578 - 0.184871 4 0.998385 
5 0.985225 5 

0.0136t)1 
0.111249 
0.433741 

0.399494 

.~ 

0.006800 
0.124735 
0.462913 

6. = 10.901371 0.901371 0.9013'1'0 6 = I0.919977 0.919977 O.919!)77 

0.42651 7 

5 

0.1)361[)2 
0.279645 

0.999793 \ 
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TABLE 3. TILLI~G TABLES. FOUR-SETS : 


f'ij ' 2 3 ~ 


1 0.016273 0.001832 - 0.011 739 
2 0.016355 - 0.012116 
3 0.015945 
4 

- 0.0l0733 
0.010782 

- 0.000275 
0.016245 

{I. = I 0.000263 0.000262 0.000262 0.000263 

1'ij . 2 3 (i 

1 0.509590 0.505360 - 0.667867 
_) I 0.028418 - 0.680509 
~ , 0.901371 

- 0.019629 
- 0.025978 

0.030631 
5 

0.013910 0.013910 0013910~ = I 

2"'0 
1 I 0.426517 - 0.396262 - 0.608766 
.) 0.399494 0.588487 

0.901371 
0 
~ I 

;, 

0.009256 
- 0.008831 
- 0.008970 

0.015945 

{I. = I 0.014507 0.01·1507 0.014507 0.014507 

~" j 1 1 3 5 

- 0.594764 - 0.6864<10 - 0.009676 
3 0.399494 0.443732 0.0068431 :[9977
4 0.528418 0.011 766 
5 0.016355 

{I. = 0.014956 0.01 4951) 0.014957 0.014956 

1\) I 2 3 ~ 5 

2 0.fH9977 - 0.616012 0.674403 
:3 0.426517 - 0.451624 
4 0.509590 
f> 

.'\ ~ 0.014015 0.014015 0.014015 

- 0.030957 
0.021279 

- 0.01 8434 
0.01lj272 

0.014015 

TABLE 4. TIT.T.I~G TXBI.ES. FIVE-SETS: 

Pij 2 3 ~ !j 

1 
:! 
3 
-1 
5 

0.01-1015 0.001986 
0.014956 

-
-

0.0103~JO 

0.0 11298 
O.014;)Oi 

-

-

0.009002 
0.009483 
0.000531 
0.013910 

- 0.000214 
- 0.000524 

0.000491:$ 
-- 0.000151:i 

0.000263 

.6. = I 0.00022:! 0.OOO21 il O.Ol)O:Ul 0.000222 0.000224 

Now let us interpret the results. Oonsider the scatter­
ances first. They aTe conta..ined in the tilling tables. We start 
by considering the two-sets. None of the two-sets shows any 
good linearity. rr'he best aloe (14) with a scatterance 1 of 0.433 
and (24) 'with a scatter ance of 0.462. If any relations worth 
while considering are t.o be found, it is clear that we Dlust a t 
least pa.ss to the. three-sets. Amonhl'i:!t the three-sets all those 
contained in (1234) stand out so dis tinctly that there can be no 
doubt t.hat here is something significant. rrhe scatterances in 
these sets are 

Sets ScaHe.ran~~e 

123 0.0162 
124 0.0159 

(23. 10), 
134 0.0163 
234 0.0162 

And the scatterances in the other three-sets range from about 
0.4 to 0.9. Since none of the two-dimensional sca,ttera.nces are 
small, any of the 4 three-sets in (23. 10) may be ace-epted. 
This being so we ought by (V) of Section 1 to pass on to the 
four-set.s. The four-set with the sma.llest scatterance is (1234); 
the scatterane-e is here 0.00026, while the other four climensiona.l 
scatt erane-es range about 0.014. If we should let. us be guided 
uniquely by the smallness of the scatterance, the· set (1234) 
would seem excellent, pa.rticularly because there is a heavy 
drop fr om the subscatterances. But by (IV) of Section 1, the 
/Set (1234) must be rejected because all its subscatteranccs are 

1 'When in the text 1 give abbreviated figu res whose correct value are to 
be found in another place, I do nDt r a ise the las t digit even if !.he firs t digit 
dropped is 5 or more . It is then easier to r ecognise the correct fi gure in the 
t~ bles if it is wuotetl to look it up. 
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nearly equal, a,s is seen 1"roll1 (23. 10). The criterion indicates 
that (1234) may b e a, very dangerous set. 

'l'ho four set with the second smaUest scatterance is (1235), 
Its subscatterances a.re 

Sell ScatteranC'es 

123 0.016 
125 0.901 

(23.11) 
135 0.528 
235 0.509 

'fhere is here a defin ite difference between the subscattera.nces 
(and all of them cannot by any me.a,n,s be said to bo small 
either), so that ther o is no. danger in accepting the set (1235). 
But by comparing the se-utterance in (1230) , namely 0.0139 wi th 
the sm aUcst suLscatt€rance in (1 235), namely 0.016 we find 
tha.t ther·e is pJ'actically nothing gained by passing fI'om the 
three-set (123) to the four set (1235). A similar analysis app · 
lies to thB other four-sets containing 5. 

Since the five,-set (123.15) contains (1234), which has au'eady 
been r ecognised as dangerDus, \\''0 Call11ot get any fur th€it'. 

The condusions here obtained by using only the scatterances 
may be resumed thus: Each of 1,he 4 t]woE' ·sets c.ontained in 
(1234) is collinear, making it nonsense to speak of a regres· 
sion in (1234) . rrhe variate 5 is extraneous t,o the system. Of 
course, this is just tho corrod conclusion wh ich we ought to 
obtain . 

In Secticm 33 we shall see' what pel'fectly absurd results are 
obtallled by applying to true present case tho usual r egression 
technique and the significance criteria which follow fyom 
sampling theory. 

24. BUNCH ANALYSr S OF THE CONSTRUCTED EX AM PLE. 

No w let us apply the bunch analysis t echnique. This w ill 
lea..d to reSltlts w hich are still more definitc and conclus~ve. 

rhe complete bunch map - exhibi ting graphically th e numbers 
in Table 1-4 in 8ectiOll 23 - is given in Figu l'e 11. 

Let us first follow the beha,viour or the bl111Ch of the. in­
terco-efficient (12) in all possible sets. I n the set (12) this 
bunch is very poor, which simp1y means that the gross 
correlation between the variates Nos. 1 and 2 is smalL But 
if we add the variate No.3, the, bunch of the intercoefficient 

12fJ 

(12) is immediately tight.ened in :1 very conspicuous way. 'fhe 
tig1ltness <I f the (12) bunch in the original (12) set and in t.b.e 
SCt, (1 23) (; cl nnot ue compJ.l'ed a t aH. (Se-e F ig-urc 11 ). F ur· 
thermore , the 3·bcam falls inside the sector of the other beams 
in tile Ilew set, and the a·beam is l onge>' lhnn the oUler beams , 
and finally the other beams in tUe (12) buuch are short.ened b y 
the inclusion of B. All of this points t.o No. 3 being essentially 
releyant. 'I'llere can be no uoubt that it is useful fo1' the. de · 
termination of the (12) intercoeHicient. Adding -± to the set 
12) we get esse.nt ially Cl.' s imilar Tesult: 'I'he (12) bunch is 

tightened, the -± beaUl ra lls inside, tile ·1 beam is longer than 
th e other beams a.nd tlle o(·her beams are sh{)rtened by the 
inclusion of 4. There is nD doubt th at -± is useful. Thus, both 
3 and 4 are essentially useful 101' the de.iennination of the (12) 
coei1iciellt, and wlH~n either of these variates is Helded, the 
result is 1.1, ,-cry good fit (judg iug the fit by the lightness of 
the bunch). 

But the two .~lope<J thus tleLerminetl: LIle (12) s10pe in (123), 
~llId the (12) slope in (124) al'e e$seniia!7y di/l'iJl'CIlt: inlleeu. 
tho fOJ'lJler is negative ami the latter positive. ~~ glance at 
Figure 1, t1..king- acc(}unt of th e tig-hmt'.'ls of hoth buuches amJ. 
of the conspieuol1s (liIIel'ence in the slope, tells us Lha.L what is 
l (>yealed by these t wo bunches is in a ll probalJil ity the. (12) 
s [op(> ill il/'o dl/fcn.mt equal ions. Jt lioes Jlot seem posEible lhn t 

both Wiese Lwo bunches reyeal the (12) slope in olle and (h" 
slfme eljllaliQu. 'fLil'3 would indeed moon that the difference in 
f:lopo Wllich we have- observed is only [l groi's ·slo,pe effect. In 
other WOl'(ls we mannel' in whk ll the VUl'iiltes Xos. 3 ilnd 4 
ha.s happened to V<lL',Y in Ute lllat.al'iu.1 must, then have been s1.wb 
tha t tho e mpirically det.crminerl (12) -eoefCicien t ill lhe sct (123) 
ll Hfi heell liiass"ri by nul' not taking :lC{'onnt. of -j.. and in the se t 
(l2-1) by our not taking- n,ecount of 3. The tigl1 tness or the two 
ob"erved. bunches nTIlI the conspicuous <lifi'el'BllCe in slopes 
makes it, pl'Ohllble t.ha t. no such hias exists. each 01 the two 
,llSel'Ve<1. lnmc1es representing an unbiass<"d roefficien!., hut 

in t"-o cUfIel'ent equations. Th is is all'cac1~' a l'!Llher definite 
i.mlication of the multicoll inear ity ,yhleh - tJ'om the nat;uro of 
the consLl"urt,ed data - we know exists in (he set (1234) . W 
Sl11111 not however, yet accept filially the eonC'lusion of t.he 
111111ticollincarit,y in the sel (1 231) hut eo-aUnue the s;vstemn t.ie 
R(·l1.1tiny of tile 111luch map. 
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A ddblg .j to the S(lL (1:?), we finu that this yuriate is quite 
irl'eley uJIt.. It. Joe!:- no t tig-hlen the bunch (i t rather opens it), 
and t.he is-beam lies outside and is much shorter th::m the other 
beams, and tJles~ other beams are not al)pl'ecialJly shortened hy 
t.he incl usion (Jf 5.. no!' ;l l'e 111eil' dil'ect ions ch a.nged. 

;)YocecdinQ' now to the four-sets, we see Ow! in (1 234) tl1el e 
is H definite explosion of ilio (12) hUJ1(~h. It is p a.r ticularly 
iIlum inat.ing t.o waLch 1he hellaYiour of the (12) bunch UB we 
pass either from the set (123) Of (12-1) tu the bigger set (1231~. 

In the 100'mcr Sf:'ts tile tightness is excpllenl., while in i11e l at.ter 
set there is hal'dly i:t.ny organisa tion a t all left. in the buudl. 
3 i:; deciJedly detrimcntal fOI the. (12) slopc., when added t.o 
the set (12.,1) aJld 4 is Ule same when added to (123; . 

it is also iutel'esting to not.e i.be degradation ejfeet pl'ociu(;eJ 
in 1.lle (12) coefficient in tll~ (123J) set. 'l'h e bCk'Ulls 1 a nd 2 
in this h um:h a.re vidual/il the same as in the on gillal set (l:?). 
Of course the absolute scale is differf:'ut in t11e (1234) set, but 
t.he slopes of the bea lllS are pl'ad.ic<1 Tl :v the same. The scale in 
the sei (1:234.) is 10 l imes as laJ'g'C as in tile other sets consider­
ed so far. Till!'; is a fmOler' hlllieat ion that (12:34» is a multiply 
colliIlear set. Thub Ole cOllsidurat.ion of tho big-gel' set \yhich 
includes bot.h (123) and (124) v.erifics the suspicion we alread~.­
gat by s r.uuying these t,wo sets separa.t.e-ly. 

If we add 5 eit.her to (123) or to (124) the b lIDCh of the (1 :2) 
eoefficimt is Yit tually unch anged; a. glance at the, figUl'6 is 
sufficient. to show that none 01 the beams 1l1-e appr('Ci [tb l ~' 

clJanged. F uriliermol'e, in both eases the 5-beam is yery much 
smallcr : it is ind€'..e d so sw all that, compared with the other 
beams, it only Q,PpCo:'ll'S as a tiny point nec"U' -origin, all of which 
indicate i5 as superfluous in the. detel'lnina.tion of t.h:e (12 
coefficien t 

A similar conclusion is reached by addln g i) to the set. (123-1) 
amI hardly any change is produced in the (12) bUIlC'h. The 
b lUlCh in tlle set. (12345) is just as explode.d as i~ was ill the set 
(1234) , 

Now consider th.e (13) coefIkieJ1t In tho set (13) i lself there 
is no significant. tightness of the (13) bunch . but adding 2 or -1, 
we get irnrnedi.:'ttoly very tight buncbes. In parlicular the (13) 
bunch in the set. (13.1) is so close tlla t , in the sea-Ie used in thf:' 
figure. the three beams falls literally j It one Ii ue. Again we see 
t1wt the two (13) slopes ob tained in the sets (123) and (134) a re 

13. 

quite differen t, whioh means that either they must be10ng to 
two different equations, 01' be very heavily b iassed (i. e. not ) 
determinations). A glance at t.he (13) bunch in the set (123J) 
v erifies that. we must. have the former cas e : (.he bunch in tIl 
(1234) set is iudeed dis tinctly exploded as compa,red with either 
~he (123) or the (134) set. Adding:) we find again tha t it is 
superfluous. 

In a similar way we call disc-uss eaeh of the other inte r­
coc([i<:ients (23), (H), etc. The reSult of the discussion is sum­
marised ill the star map ill Figure 12. HC1'e an a soorisk, a, 
cirele or a blackball means a· useful, superfluous and deiri­
men ta 1 varia te l'especti ve 1;)'. 

On llie bi.ls is of the star lllap unel the bunch map we can now 
iscmss the equatiolls as s llGh from t he view-point of l i l1f'31' 

conf1uency, usillg the criterill of Secl,ion 18. A glam;e at the 
star map tells us immediately tha t IlU three-set.s contained 
in (1234) <U'e promising. 111deed, wha tever va.ri atA:! we ad.. , 
it appears as useful. And f)'om the bunch map we see tha t each 
)f these yaria1es j ::, not only useful but does what is necessary 
to produco a good fit. Indeed, (In the bllllc\les in tbc sel (123) 
ale good, aud so are a ll tht'" bunc:hes ill t.he set. (12{) etc. 'r hey 
nrc so goocl that it. seems diffiClJlt to escape the conclusion that 
any of these sets is a closed, admissible set.. The final test on 
this is g'ive.n by the llol'izont.'l] section (1234) in the sLar ma.p 
(consist.iug' of the four lint!s 1, Z, 3, 4). Each a.nd all of the 
sii,'TIS in this stic(.ion is a, blackball, indica ting that. no matter 
Wl1Ut variate we add in or der i-.o get the set (1234.), it, will 
appear as detrimental. A ml this applies no matter whiclJ one of 
the i:nt.er coefficicnts we consider, And taking a. glance at. the 
bunch map we see thar thi.~ cleuimental effects is yiolent : all 
the bunches in tiw set (1234) are clefiniLely exploded. 

It is a lso ilhwli uating to study - b;v means of ~e star map 
- the four sets obta ined by n.ddiug 5 to any of 1.11e t.hr~-sets 

contained in (1234). 'l'ake, fOT instance, t he set (1235). All the 
yaria te s 1. 2.3 in this set are intlica leJ exclusively by asterisks, 
wh ile 5 is indicat€cl exclusively by circles. Similarlj' in the 
sets (1245), (1345) and (2345). Tllf:' superfluity of :) is als 
checked by the ?,er o slope criterion. Indeed, from the bunch 
map we sec that, the intel'coefficient bet ween n 1l1lU any Olle of 
tho variates 1, 2. 3, 4 is zero i n all the four-sets containing 5. 

Tll(l c·ollclusion is thus definiti,c, Each of the three-seta 
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conk'line d ill (123-.1) is a closeJ set, and hellcc (123-1) it..seli 
multiply collinea.r, ,,·hile 5 is a yari.ate I(.'ntirely ex tra.n00us 1.0 
tho system. This is just the conclusion we ought to find. 

The S'et (12345) is primarily inl.eresting because of the 
dtl.grndation effects a.nd the persist.ency effects that manifest 
themse.lves h€I' € . The leading beams in the (12) coeffic ient in 
this a.ll-illcl usiv-e set; are. just ilie Si~me as they were in 
the original LW o·set (12), alld t he same applies to the inter· 
coefficients (13), (23), (14), (2-1), (34.). rl'hb is the degmda· 
tion efIe.ct. Xone of these bunclles are light.; they aloe all ex· 
ploded. 

But the bunches (1'», (23). (30). (45) are tight, in the set 
(12345) eyen though this set is lliultiply collineal'. ~fore precis· 
ely t.he~!e bunches show a. zero-slope. The -Oxplana,t.ion is that, 
c~n ill the al1 -inclus iY~ set, these inlRl"eoefficien is ,,,ill h nve ;t 

meani:ug. No 1l.lutte1' hall' we derive w llYe ·' -ariate equation 
[rom any of ine closed admissible e quations (123), (l24) .. . 
(123J) .. . e tc. ilie neW" equaTion will have the Ulllle coef ficient 
0 1' t11e Yariato Xo. 0, namE'ly zero. TIlis is the p~l"sistellcy effect 
disellsscd in Sect.ion 11. Incidentall;-' , SillC~ the persist.ency 
efCect here gives zero sloVe (instead of some other well defined 
slope), we can Lake it :lS a n adclitionaJ cl'ite I'iol I of Ule superflu­
ity of yar iate Xo. o. 

2.5. COMPATIBILITY S)'IOOTIIING OF Till REGnESSIO~ COEFFI ­
CTENTS I~ TTIE CO~STn.TICTEn EX ,\:\fPLE. 

SiJw e aU the throe·sets contained in (1231) are admissible, 
'rE' al'e confronted with a problem of compnt ibili.ty smoothing 
of llie regr ession coefCicients ill these -1 sets. For instanr e, if 
the coefficients in (123) are determined empirically as the 
iliagonal regression coeffic ients in this set. and similm ly j Ji 

(124), we can from these J'esults derit" Ille cClc [licients that 
ought to exist i J1 the set (134); and these may not coincide 
exact ly with the dia.gonal regression (;oefficiell is determined 
directly in the sel (134) . 

We shall first see l lO W tile compromise can he made by the 
method of diagonal zeros explained in SecLion 21. The matrix 
Ax- i.n (21. 1) is in the present case determined by forming the 
1V = 4 tl iagOll ul regression eqnntions ill the 4 three-sets wntaiu­
ed in (1234). The ma1erial [oJ' th..is - \,"hen the varieties aloe 
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ta k!cn in the n ormalised fOl m - is of cou rse contained in tlle 
tilliIl::;' t.ablt-s. Performing the rootsf}uaring \ye get 

TABLE (25. 1) REGUESSIO N COEFPIClENTS IN THE CONSrnUCTED 
:XAMPLE. 

R(.I ~\- ~ 1t1U !-.I(l"pper DUln il"r i> 
q the 11" t IJ,rnl f(1W 

....lun . lO \H".r th 
fthsol utc ro\\ ~t.ull\ 

j h ' j i = 1 2 

.000000 . \)U!J8!lG - .(lS0311 .753281 	 1 .072800 
'2.1335[,4 

(2:14) X= 1 

\ 1:34 ) 2 .999896 .ooooou - .6585\10 - .7ii4057 - .-112751 

2 .412543 


(1 24) 31 .G80377 - .6:18;)!lO .000000 - .992585 -.9707 !) 

2 .331552 


(123) 41 .753281 .1540G7 - .992585 .000000 .514,5;) 

2 A999 :! 3 

Reducing by the absohlto row sums we ge t 

·r.\DLF: I~ .-). ~i Br:G H E,C;:-: r o~ ('orn' ICI KNT", H"ED'lI EJ.) Tu \13:-'UL l. ·j f·. 
llOW ':;1.' :'-1 L,\ ITY' . 

nnw R1 llU., 

Ki ,=1 2 1 4 (nn illro l ' In,j 
a,tl:,dltU t-" 

K= l I .000(100 .410879 - .21 9582 .;JOPp3!) .4,l083G 
1.0001./00 

2 .414457 .000000 - .272986 - .:3 12551 - .171081j 
1.0000 

- .4J637;) 
1.000001 

3 . ~fllB13 - .28'H6!l .000000 - .12;-)719 

.aU1Sn .301632 - .39/04(; .000000 .2IJij flO" 
1.000000 

The comp..'1,tibility table defined by (2l. 7) and compu ted 011 

too basis of fhe figures in (25. 2) ttu·ng out. to be 

13 

TABLE (25.3) CG::\1PAnnUITY TABLE. 

Ahsnln te.:..,i= 1 2 rOn- ,.·mril 

I :23 .000000 .41 ;j ill;) - .282;;20 .3022R5 1.000000 


K = l ')4' 000000 .41464.1 - .~72!)80 .•312371 1.000001 
- I 
3li .000000 Al!9 1" - .277665 .3074.20 

13' 	 .4l870S .000000 - .:27:i7Hii - .305507 

2 H! .41.82!l4 .000{)Oo - .2662;-) 7 - .31fr!4g 

3,1, 	 .418i')01 .000000 - .271 0~19 - .;310396 .fl999!lO 

.28f] 743 - .28<»63 .000000 - .429794 1.000000 

it .2916(19 - 2i55!/;; .ooouuo - .429791> 1.000000 ::1 
24 	 .285035 1.tlUOOOO 

12 	 .:2!)(!32G .iW9G34 - .401U3fl . 99999~) 

.3Q.1:304 . 29472,~ - .400::173 1.000000 
4 I ;~

~i' 	 .2!!4177 .30-17 1fi - .4011 05 1.000000 

In tho l.l..chHti work it will be found COllYeniont. to compute 
also an intermediate table g iving the results of (21. 6') (possibly 
,,'ith a. sign fa.ct.or). In this intermediate table both the natuTal 
und the absolute r ow sums are canied , while in (26. 3) only the 
absolute row Sllm is carried. 

A.. horizontal Section of (25.3) cOI'l'csponds to a row in (25. 2), 
and the coefficie nts in th~C1 1. \,"0 tilbIos are directl.\· oomparahIe. 
For illstalll'e [01' i = I , K = 4, the figw'es 0.299, 0.304, 0.29,1 a.Te 
to be compared witlt 0.301. If the Jour re.gl'ession equations 
had been exactly compatible, aJl these .numb ers w ould haTe been 
equal. The (llllOUll t of spread 'T111ch is actuaUy prel'eni in thesE' 
figm'eS) imlicn.te Ull~ degree of TIon-compFttibility which exists 
bel.\\"Cell Ole eqn at ions used. 

According to (~1. 8) we Jlex.t fOl'lll the simple aritl1nwtic 
average of tll~ tbree ligures in each (K1' ) celi of (21) . 3). Tuen 
according to (21. 9) we t.ake the avemg~ between the; abo'n~ 
average am i the origina,l figlU'e in (25.2) . This gives il1e 1'igure 
on th(' rOw" l' = 1 j [j th€ , al'ious cens. of (25. 4) 
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similar talJles for the first and second smooth ing l. In these 
tabl€s are added for (;omparison also the coefficients that serveu 
as the starting point for each smoothing. 'l'hese a.re the. same 
8. S those given in (26. 4) 

TABLE (25. 5) COMP ATIBILITY 'fADtE FOR THE {;NSMO OTIIED 

38 

T..l13IE (25.4) SUCCESSI VE SMOOTllL~G, 

I ")a,,-; I ;=1 

-­-
~ 

----­
3 q 

- 1 Ho,y ~ urn
I(nn111ral unrl 

RhsollJ!" ) 

I" = 01 0.0000110 OA1087~ - 0.279:>82 0.:lO06:39 .440831; 
1.000000 

K =1 1 .000000 .41 ;2f)9~ - .278652 .3t)~;;O .4.J26!Hi 
1.000000 

I 21 .000000 .41 2897 - .278652 .:;084:;1 .4426% 
1.OOOorXI 

1"=01' .414457 .00000(1 - .~72[J8G - .:n 2;,;, i I - .17IOHI; 
1.000000 

:: 1 A 1648() .000000 - .27:20 17 - .Bl1GI)Cl - .1 G14).11 

~ I .411}478 .000000 - .27201 1 - .31150;:' 

1.0000(:1 

- .16701 

- '­ 1 . O~iO(){)/J 

1' =0 .2fl181)J - .2824.139 .000000 - . H.'i 71~) - .41\;3/ ii 

31 .:!!I0S0 1 - .2814·JO .OOQI)IJ() - A2775/ 

J.OI)()UOl 

- .4l83!l:.l 
1.()(II10<11 

:2 .2!lOS05 - .:28 1·1-10 .000000 -.427'j ijii J 
- .41 83;)0 

1.()(){\\)\ J! J 

1"=0 
1 .301S22 .::;0 1632 - .307046 .OOWOO .205!!Oi) 

1 .000000

4! J .3002f!j .3OUGti2 - .39(11113 .000000 .2019H 
l.OOOuOU 

21 . ~002~r. .300662 - .3990·t~ .000000 

rrhese Ligures we now take a...'l a n ew starling point. G'oing 
through exactly the same process once more we find as a 
second smoothing the fig ures on tlle row v= 2 in t.he v l1.dolll:l 

cells of (25. 4). 1'0 give an idea of the exk eme rapidity with 
which the process converges tow-ants a situation where all the 
4 'equations are exactly compatible r give the compatibility 
tables fo r 1( = + computerl with 10 decimal places, amI the 

COEF~"'lCIENTS . 

i= l 2 ~ 

/."= U in (:15.4»: .301B21G807 .a(16)3:WD03 - .3!H0462290 .OOOOfJOOOOO 
12 .2D !13261512 . :l9~'G3-15.061 - .40L03fJ$437 .OtJOO()oor)()O 

K=4 1 13 .30J30:3i139 .2947220753 - .4.00~)7481e8 .0000000000 
23 .2!14I 77f1(;23 .a047Jh~%R - .10110fi1020 .0000000000 

TADLE (25.6) COMPATIBILITY TJJ1LE FOn COEFFJCIE.NTS 
SYOOI TlED ONCE. 

i= l 2 3 

(,, = 1 in (25.4»! .300293311G .3OQt:i6U,312 - .399043I ri7B .0000000000 
• I 12 .3OO29G54.68 .3006626180 - .3990408;J;' 1 .OOOOOO()OOO 

R = 4 13 .aOU2:1l!30M .3006G67tjG - .39901U!J480 .0000000000 
23 .3003009311j .3006ii83501 - .:l9H().1{l71S9 .()()l.XJOO<)(}{1O 

Absolul., 
rtl~\l' SIl W 

1.000000000u 
1. ()(}(J()()()()O) 

1.000000oo0U 
1.0000000001 

(" = 2 ill (2&.4» I . :1UU:!~M)536 .3U06()20:iOfl - .39904J f!!1f)A .OUOOOOOUOIJ 11.0000000001 
.30029;)£'5:1Gll! .0000000000 1 .OOOOooOOIj()

K = :4. 13 .0000000000 11.00000000tll 
23 .QOOOOOOOOO 1.000000000fl 

.\1>5"111'" 
row sllm 

1.0000000001 
.99!'lfJH~.999! 

1.0000000000 
1.0000Q()()()()(J 

TATII.E (25. 7) COMP ATilllLITY TABLE FOR COEFFICIENTS 
SMOOT1lED TWICE . 

.'\ I h,(~hth' 2 
row slim I ! i= l 

For K = 4. i = 1. f(Jl' in$ta.llce. we sue that the difference 
beru-eell tile higlles t and low-cst of the ullsmoo thed c.oefficicnts 
which ought to be compatible is about 0,01. Ah'eady by the 
fir st. smoothing lliis diJfel'€ IlCe i'educes to about 0.000009 and in 
the second smoothing it ,-irtulll1y does not. show up in the teu 
decimal plalles carried. 

1 TIl~ original .N!'g"res~io/l e.oe-ffitient.." wsro computed Wi tJl G decimal 
places : for the purpose o[ the calculation lwre oon'h.lored Lour Z(\fOS W{'l'(! 

a.dded throughout. F or the experimental verification of i be rapidity oI con­
yergency this is jlls! 1\.5 !l,'orld a.s if we ha.d addod any other liP:UTtlG. 
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As aJ1 illustration we sh all also show how tile compatibiliLy 
smoothing by tile gen eral meiJlO li of Section 22 is carr ied out. 

The matrix (25. 1) r,educeci t.o 1'0 \\- sum square unity 1 is given 
in (25.8), 

TAJ1LE (2:i . 8) REGHESSTON COEFT:' IClENTS HEDCCED TO no". 
smr SQUARE UNITY. 

a,ti 	 =- j , > J 110""· sum... .,I 	

" (natu ra1 ,,"'1 
Nqtl ll rt!' rnw 

~1Iln~ ) 

.---­K= l .000000 .1017GG .4 77315 ·528G8::? 	 0. 7;)29.33 
1.0000()1

2 .i06C51 .000000 .·!llo446 - .532!Wi J - O.2!H70'i 
1.00lJOQ2 

.1 .495968 - .4800RG .()OOOOU - . ' :?i3556 j - 0. 707(;74 

l.OtlOOOO
4 .517202 .517185 .IlBl WS .OOCXIOO O.3i'iB42!l 

l.OOOnOlKo llll'(l l 

C'ol nmn SlIm" 
 l.71tJ827 .m941f) - I.R2J411fl - .72. 78.<) o.1OI'!HH 

Tile I'OW lJ.1oments of (25.8) ar 

TABLE (2<l . f)) ROW MOl[E ~\fTS ) . 

IIIlII JJ=l 
~ 	 Xatu n<1.. 

f OW 5"lttth 

](=1 1.000000 - O. O·j~J .j S5 - O. l ioi3fl .6&'H5[;f2 	 O.!lO!)«Bii 
1.000lJ()0 0.73601 2 O.f38~~;89 2.85921i)3 	

1.000000 O.lJ(J7!I;,f; 1.024;5914 
1.000000 2.ii7!l40 

In the Pl 'esE'llt case th€ number or indepml dent regressions 
IE z = 2. We coruegueuUy need to fill tho Inatl'ix (25.9) up to 
and including the tlu'ce I'owed sets. The l'f'suJt is givel1 in 
(20. 10) and (25.11) 

The ""J.b,,• ] aKi in (:2.>. ~ I j , lIot exDt'1: I, . the ~8me Il ~ in 12.J. '2 j hC("'lli c>, 

1J,,' ril l\' n"rll ,·ti ou, ure ]J OI\" Ily ~'1 I1H fP -lI rn ~ w~t ea.l of ah';(Jl ll l., bums. 

u 

TABLE (25. 10) n \'O-HO WED TILLING TABLES. 

~ ~2 Ci 

I J .()OOO{)\l .05948;) :2 1.0{)001)0 - .73(:i0/2 2 11.1,)00000 - .082689 
2 1.()OOOO() il 1.000f)OO 4 . 1.000000 

D = ( JJ33~13( i .5:339366. = .·15blHIl .458198 b. = I .096-.1.62 JJ !I6,lG 2 

i ~ 	 ~-) 

- . OO"i o;~1l1 \ l .OOUOUO .7lH43!J ~ 11.00UOOO 
:i 1.000000 4 

1 11.000(100 
1.OOOOOU 

6 = . J~2mS .-182408 D. = 	 .9 :)~!l3 7 .~(9f~!'l3 7 

TABLE (25 .11 ) l'IffiEE-HOWE D T1lLTXG TABT.ES 

2 	 j 

- .11 70074 	 .675G54 .724D20 - .694.48,1
1. 1 .4581~1 	 1 1.999937 
2 .1824.08 3 .5251111 - .503478 
3 4-	 !t\t 408 

D = .UOOU69 .OOOU6!l .000069 _=1.0 

2 ~ :! 

] .53393G .529680 - .12936rt I 2 1 . !J~) 9937 -- .7<:0630 - .13768.31 
:! .523G11 - .723659 3 .533936 194550 
.~ .996162 ·1 I A!l8198 

= \ .000068 .llOOOfl9 .OOOOG!I l.i = \ .000(1)9 .OOO06H .00001;9 

The cumulat<ed matrix defined by (22. 9) is given in (25, 12) 

TAD LE (20. 12) Ot;M1;LATED ) L-iTRIX. 

tl K ttl If=l !! a 

K= l U lf/2071 .0;)%19 1.4{)O574 -1.4~3853 

2 2.007!t5G - 1.423\115 - 1 .4004tl l 
3 2.0;:'6009 - .OOBH2t.l 

1.931068 ,1 

Sum of diall'onal clem en ts = 7.99illU4. \ 

Sum of elements in n orth el)"t tTian g.el = _ 2.79699,1 I (C'lte ..ked hy (22. l Or 


On the basis of the fig-uI'es in. (25. 8) anti ('2;). 9) the averages 
- I\i defined b} (22. 7) hecomes as in (2-3.13). Th is !.able is 
~hecked by ro"- sums and colunm sums. ('Phe column ellld row 

SlUns are also needed for sllbscquent checks) . 
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TABLE (25.13) . 

1= 1 2 ;l ~1\l lIrn lF.·i 
}" r) W sum 

1( = 	 1 -- .OI)Q] 76 .707593 .473185 .524.6fi3 .7588!)f. 
:2 .7124.1.2 - .()()017S .461l54 - .5287 ~)7 - .2771)87 
3 .491650 - .475802 .000022 - .729221 - .71a3!1!'i
,1 .5131 ~I(; .513624 .6R7515 - .00OOJfj .339286 

~aturul l 
Column RUr rl 1.717 112 .145237 - 1.62187() - .733374 .107 0fl~1 

T Ile matrix C',i o efined by (22. 13) i::; 

'UBLE (25. 14). 

Cjo;i {= 1 ., ;j ~ I· Narur".lJ 

R= ] .0001 76 - .O();)827 - .U0431l0 .OO-WI!I 
2 - 00;)78.'5 .(lOOl /8 - .004292 - .004118 
:J .<>O.J318 - .OOJ28<1 .000022 J.J(J5665 
4 .004OOG .{)().J.111 .OOGOO7 .0000 HI 

ro w SUUl 

- .OO;)!)G2 
- .0l4flt7 

.00572 

.OI41Ja 

~atuml l 
Column " UID _ .()O2715 - .00582:2 - .(KJ2')fJ3 .OO558.'l 1- .(lOO11,-) 

.\.l lU the matrices l ' A"I/ anrl 11\1[ cleune!l by (22.15) and (22. 1G) 
are 

TABLE (25.1 5\ 

1,1 it 11 11 = 1 " :i ~ ~fltnrltl 
row btl.llJ 

I(=l .OU020l) - .OOUOO;:' - .000045 .000052 . OGO~W:'\ 
:2 .000201; .UOOO47 .OUOO5fJ .000;;00 
:1 .OOOWs - .OUlJOOl .OOOJ !.Iff 
-1 

TABLE (2.5. 16). 

,. , Jl= 1 ~ ' j 	 ~.. nlr>t< 
1\ Ii 	 tn,.. ~wn 

K =	 l .O()0069 .OOOO()f) .0000.1,8 
2 .(M)()Uf>!' - . l)OOOJ~ -
3 .(lOO06!l 
4 

-.000W9 
.000018 
.O(){)()(J() 

.000069 --­

e grand totals of (25. 15) and (25. 16) arc checked by (22. 17) 
and (22. 18) respectively. 

The coefficients of the subcharaderistic polynomials Pd).) 
(K = 1, 2, 3, 4), (tha t is the fh'st principal minors in (22.19»), 
can in this case be determined dil'ootly by (22. 22), 8.:'tch deter· 
minan t being computed directly by Banus rule. Al l 11te work 
can be done in one stroke if one 11as a multiplication ma-ehine 
with an eAi;ra an'angement for grand total (besides sub-tota.l)i 
clU11u1ation. Tho same can also be dOlle - although not quite 
(1::; easily - if Lhe operator uses at the same lime all ordiuru'y 
mul tiplication llHlchine and a. listing adding machine. It is 

onvenient to write (or better typ-cwrit<:') the colunms {)f the 
1l1utricefi .(1 , l' and f on IO(lse strips and perUlute them so as to 
oMain the various terms ill (22. 22). It will be. fOlmd thn.t all 
lhf.'! tenus vanish (at least in the fi rst 6 decimal plac€s) excep t 
01000 

(2fl. 17). 
that conta in two afIixes I" These tel'ms tire gi n'n in 

TABLE (25. 17 N EFFlcmNTS OF Sm~CIL\.n:\C
r OLYNOIDALS F"y .) 

T.ER1ST1C 

I r, 
I 

.000<l(j}) ,r.;.~( I'!I 

.0\)0"27,8 .11 ,11 ) 1 

.ono:!7-tS .••,tI)' 

J", F. F . 

.vlJOOl:i!J .000068 .OOOO{)!J 

.000277 .000218 .000-27 1 

.00(}27I. .000283 .Ooo:m 

III view of the fact that the other tcnns S vauish, cadI 
~olumn in (25. 17) gives directly the eocfficinLS of the polynom· 

ia l F F\ ill fflles t ion (with the s ign or t he middle Lcl'm eha11ged , 
C() (22.21». 

The cowputa tio u of these coefficients is lUnch simpler than 
may a.ppeal' rrom the tlescl'iption. As a matter of fact it. is so 
simple thl.1.L there is no uso applYlllg any check durin; the 
\VOl'1\:. But the fin al result must of course he checked and tilis 
is done most com.-euientJ.\' hy computing the ,allles of the foul' 
polynomials F K for some vnlue of).. SHY i. = O. 1. uf'cordi ng to 
the formulae obt:tined, and yerifyil1g that these values are equal 
to those obtained by evaluating the conesponding three·rowed 
determ inants directly a.fter h aving inserted 1J1is value of 1.. In 
thf'o present case this act;ually chec.ked immediately for all the 
fOlll' polynomials. '}'he fo llo\Ying Y1.1 luc.<: were found ; 

http:Narur".lJ
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TABLE (25. 18) 'L tLUES OF TIIE SUBCH.lRACTERISTIC POLYN01tliALS 
for }. = 0.1. 

Compute d I>y Com-puted hy(25. 17) e\'Sluatlon o f the 
deleMll!nll/lt 

F1 O.OOOOH 0.00004.3 
F~ 0.000044 0.0000-15 
I/'a O.OOOQ.l3 0.()()0042 
FI fJ .oo0045 0./)(J(I04-1 

Since h~- tIll' IlrgwlJent in connect ion \rith Figure 10 of Sec:tion 
2~ all tho subchal"'c.l..cteristic polynomials must touch zero, (uo 
pass Ull'ough ~ero). the two l 'OOts of any of the second order 

o]j'llOmials obtained ought t.o coincide. This is actually yori­
fied, the zeros being as indicated in (25. 19). 

TAB LE (25. HI) ZEROS OF SUBCHAHACTE RISTIC POLYNOMIALS : 
(EACH ZERO I S DOUBLE). 

For it'K ). 

K = 1 O.4!I8 
2 0.:;02 
3 O.'l~ l l ..,. 0.506 

The fac t that all the Z~I'OS gi,-en in Hlle :'et:onu columu of 
(25. 19) n eal'1.v coincide sho\\- s that it is possible La ~elcct }. ill 
(22. 12) in such a way that the sIllOoLbed matrix a~i' bas a row 
momen t. matrix (22. H ) w hic1! comes very near to having simul­
ianeoW3ly aU its principa] minors of order % + ] = 3, equal to 
-!.ero . 'L'his i' l1l()othed a '/" ,,-ill then be- v(,l":r near to fulfilling tb ,. 
compatibility condition W'e wlln t to satisfy. 

'.PIle a'n~rage yalue of til~ four zer'os ill (25. 19) is fol' 
practical pnrposes exactlll 0.,). In otheJ' words il le presen t. more 
elaborate analysis leads to adopting ) 114 the sim11lt! kinil 0/ apel '­

ge f(.' li wh I/'IIS RII.'lg'!sted Iwuri....lically In (21. 9). .hlolJting thi~ 
rwera.gc., we get the following 8l1oot.hed values. 

TABLE (25.20) . 
, 


a f,' ; i=l " :3 :-;'n t il rnl 

rllw· ,~ anl 

K =l - .OOOOSl:i .704G79 - .475lJi)O .;dlir' 72 .(:'>5913
2 .709.iMI - .000)1l ~I - .463300 - .:l3085f; - .2846f16
:l . 193009 - .4719·1-J - .0000 11 - 726388 - .'jW;,'}l
-1 .n) ij]:Jfl .,)I iiliff' -.68.J."11 -. OOOOO!l .346il;)8 
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If \ranted, the smoothing can be rcpt'ated, but in the present 
case tllis will hardly be worth while. 

In order to get equations that can be directly compared with 
those found previously we ought to combille the coefl'icients 
(25. 20) in such a way as to reduce the diagonal elements to 
zero. Since the coefficiGnts of (25. 20) ar-e not yet exactly 
compatible, it may have a small effect how the elimination is 
performed. Doing it al teI'nately by the various equations and 
taking the avel'age w e get 

ABLE (23. 2J). 

' =1 Z 3 4 

a =l .000000 .7()'1680 - .475410 .52664 
2 .709538 .000000 - .4633fi9 - .53079 
3 .4.98800 - .477!J52 .000000 - .726388 
4 ':)151 94 515685 - .684.510 .000000 

The results thus obtained we may no w compaJ.~ with the 
coof1'icients obtained by using the "true" regressions (13. 3) by 
\rhich tho data were constructed. Since the empirical regress ­
ion coefficients determined by the preceding methods al'C. 

worked out in n ormalised coordinates, we must either transform 
(13.3) to normalised coordlil ates, or transform the final values 
in (25.4) ([Of )! = 2) and (25.21) to nOll-Ilonnalised coordinates. 
We prefer t.he former. This means thaL the coefficients of 
(13.3) must. be reduced by the square rool.s of tile diagonal 
clements in (13.8). Doing tll is we find that the foUl' "tI'ue" 
regressions in nOl'1llalis€ cl coordinates are 

TABLE (25.22) . 

i = 1 2 3 q Natnrnl 
.r ow :::: nIIl 

K = l .000000 2.013854 -1.3314{)1 1.514070 2.19G52!J 
2 1.998566 .000000 - 1.33].101 - 1.f>14070 - .8.'')1905 
3 .9%783 -1.006927 .000000 -1.514040 - 1.524214 
4 .!l9g7S3 1.(lO6~l27 - 1.331401 .000000 .67nO!l 

Reducing this to absolute row sum and l'OW sum square e qual to 
llllity respectively, we obtain : 

lU 
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T.\BJ,IE (2.) . 23.) "THUE . TIEGnESSlONS llEDl'CED TO Xn~OLUTE 

ROW snr 1. 

nIHv ~ums 
,. = .1 2 3 ~ (11111 11m) and 

absollltel 

K =1 .000000 .414431 - .273989 .311580 .4.52022 
1.000000 

2 .411976 .000000 - .27;)138 - .312887 - .17G049 
V )OOOOI 

3 .283356 - .286239 .000000 - .430405 1- .433288 
1.000000 

4 .298876 .301917 -.399207 .000000 i 20158G 
1.(lOOOOOI 

TABLE (25. 24) . TR UE. I-tEOR ESSlO:NS RED"GGED TO 

ROW SIDI-SQUARE 1. 


Rnw sun,s 
i=l 2 4 (natnral tIDd 

5<)IUm:) 

K =l .000000 .706696 - .4-G7211 .531313 .770798 
1.000000 

.703107 .0OCI{)OO - .469';G9 -.53139D4. -	 .300-156 
1 .000000 

- .735051 
1.000000 

3 .4S06~8 - .485590 .000000 - .780158 

4 .512683 .017900 - .684789 .000000 .345794­
1.000000 

Compar ing fin ally th~ last values (i. e. for I' = 2) in (25 . 4) 
with (25.23) and (25. 21) with (25. 24), we obtain the following 
pBroon~ en-ors : 

TABLE (25. 2..'1) PERCENTAGE DEVI ATION OF EU P IRIOAL TIE RES­
SJON COEFF ICIENTS FROM . TRUE . YALl'E S. 

(Compatibility smoo!.hing by the method of Section 2 t). 

; = 1 :2 :J .. 
P.cl. Pet. Pd . l'ct. 


K =l 
 .00 - .37 1.70 1.00 
2 1.09 .00 - 1.18 .44 
3 2.63 -1.68 .00 .62 
4 .48 - .42 - .04 .00 

TABLE (25.26) PERCENTAGE DEVIATIONS OF E~!PnuCAL R EGRES­

SION COE FFICIENTS FR OM .rnU.E~ VALUES. 


(Compatibili ty b"lll.oolliing .hy tho method of Section 22). 


1= 1 2 43 

·Pet. Pcl. Pct . r et . 

K = l .00 
.91 

- .29 
.00 -

1.75 
1.34 

.89 

.60 

3 2.73 - 1.60 .00 - .52 

4 .49 - .4:3 - .04 .00 

Ii is seen that. the empirically lletermined coefficients come 
very close to the " true" values. On the average the enOl' OTlly 
amounts to a traction of ono per cent. Only in a few cases 
does t.ho errol' run as high as .one or two p e l' C€11t. 

It is IurLher seen thnt the two methods lead essentially to t he 
sanlL resw t. I n pr actice it thel'efore seems advisable to 'Use 
w}unlover possible the simple method of 21. In most cases Olle 

singlo s moothing will probably be sufficient. 1!'urther ruore in 
pt'actice one will as a rule not need to carry as mD.ny decirnaJ 
places as 'we have used - for illustration purpos{,.B - in t his 
and the preeedillg Section . The actual work. will therefore be 

comparatively easy. 

26. 	 AN EX.uIrLE IN 6 V ·\RlATE..s FROM AMERICAN CO:-.l"Smll'IION 
STA'rISTTCS . .llEASURE1,ffiNTS OF TIIE ~ONEY FLEXIBILITY. 

In static economic theory one studies how the individual (the 
family) distributes lis resources uncleI' a given system of prices 
and a given income. By making certa in assumptions about th e 
maImer in "hiclJ. ilie cost o[ living en ters into t his mechanism 
(lno concludes tha.t for a given commodity which is not in 
suhslitution CODllection with other comruodlties, there ought to 
exis t the follow ing equation I : 

w(r) = a . u(x)(26. 1) 

where l' = real (deflated) incom .... 

x = fluantity consumed per uni t of time of the reference 

comm odity. 

~ Soo lor instance tbe present a uthor 's book .New Methods of Measuring 

){a.l'glnal Utili ty. . Tiiliumm 1':)3 1. 
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1-Hl 

(26.2) 
Cl = - = inverted relatiye price of' the reference com. 

JJ modity, p being its absol ute price and P the 
cost of living. 

'rIle function lI'(r) in (26. 1) is the function that exhibits how 
((", tJle marginal utility of the money unit, varies as a iunctiOI 
of tho income, and the function u(x) represent~ how 11, tLe 
marginal utili ty of the commodity unit, varies as a function of 
the quantity consumed. The equation (26. 1) defines a surface 
in( 1', x) coordinates. the so called "surfaco of consumpt,iou".(c , 

If R seL values of (a, 1', x) are obscrwd they ought to lie on 
tb is smface. A statistical (Ct , r, x) scatter shoulJ therefore gj"Ve 
us some information of the actual shape of the surface. 

The money flexibility, n amoly 

• d log 1O {r) d1~ (/,) ,.
(26.3) 	 10 = ---= __ . _ 


d log l' dr 1/' (-' 


can be determined if the. shape of Lhe consumption surface is 
knOW!!. It can e.ven be tleoormined if only a section or the 
surface is known, namely one fol' w]lich X= constant. Such an 
(a, r) curve is called aD lsoqUQnt. From (2(;.1) we see tha t 
he logaritlnuit derivative 0 1 r wiUt respe<.:t to a along [lIlY 

isoqutlllt gives the Ilexibility. This forms the basis of th.e 
flexibility measurements I und()rt ook in lU23 and 1930, and it 
also ser'\Tod as the basis for further w ork clone by Frederick V. 
Waugh, :Maurice H. Belz ruld myself during these genllemeu's 
stay in Oslo. 

This further work was done on Amer ican, Swedish a.nd 
INofwegian data or differellt kinds, household budgets as well 
as time series of national income and consumption. A. complete 
account of the results obt.ained by this comparative analy sis 
will be published separately as another of the Oslo Ins titute's 
pUblications. In ili.e present connection I only select two sets 
of data that may e.xamplify tho use of t·he conIluence techniql1E; 
discussed in the present paper. 

Tho da t.a. in quootion were collected an d prepared for this 
analysis by Dr. Waugh. It contains information which permits 
to compute the tnree variabcs (26. 2) fo r each year for th(> 
United States as a whole. Dr . Waugh wanted to :l"pply the 
method to data. relating to a whole c.ountry. III his mind the 

flexil>ility measurement thus obta ined would be more interes t ­
ing than flex ibilit-y measurements referring to particular groups 
(customers in cooperatiYe cha-in stores as in my study of 1923, 
or working men's fam ilies as in my 1930 study). Dr. Waugh 
also suggested that the rate of change with respect to time of 
" and r may exer t some influence on th e flex ibility, so that the 
year Lo year changes of these two variates ought to be included 
in tJ10 analysis as new var iates. Th is gave. the analysis a m on;) 
dynamic characte.r. Fina l1y , time itself was taken in a.s a caich 
aU for the t r end factors. The lis t of variates being thus enlarged 
some simplifications had to be made in the thooretical schem e. 
In my previous s tudies I had used methods that did not assume 
any particular form of the funct.ions /('(r) and 11{.r ). We DO\\' 

docided tentatively t{) work witll funcLions thai were linear in 
ilie logarithms of the varia tes. This led to considering a l inea.r 
regression between some or all of the following six variatRs. 

X l = log (t 

X 2 = log r 

[Ca = :r 1 = year to yenr change of Xl 

(26.4) 	 X.I = ;1:2 = year to year change of x~ 

"'f, = time (linear trend factor, . 

a:, = In!! :x 	 (.'1:: being quantity consumed per ~'(>-ar. Pro· 
yisoric means "ere used for tLe uume· 
rical work ). 

The intercoefIieiont of tile variate Xo. 1 awl 1he y,U'iot.e X '). 2 
in the regression equation connectlI1g thesE' variates will give 
th~ m01ley flexibility (when the variates (u'e tak en in nOll­
normalised coordinates). 

The period which w ill be treated here lli the post war period 
1!J19-·31, and tho data. will be usod for the two reference com· 
modities meat nnd butter for Ole United States. (In the 
complete work also other periods and commodities "el'e con­
sidered) . The correlation matriees ,yere 
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TABLE (26. 5). CORRELATION COEFFICIENTS IN MF.....tT 
(1919-31. u. S.) . 

r i .1 j ==l 3 4 	 6 

i = 1 1.000000 - 0.549342 0.212052 0.421796 - 0.66·109", 
2 1.000000 - O . 753 ;~43 0.327788 0.6/l0848 
3 1.000000 - 0.5941 76 - 0.378352 - 0.·UJ7311 
4 1.000000 - 0.203932 0.7853 
5 1.000000 - 0.13452:) 
G 1.OOOOfJO 

T. illLE ('2 11. oj . CORREL.ATTON C'OE FIITC IE:-;TS IX lit l"I'f~H 


1 9 1 ~!l 1. U. S.) . 


1',j ) = 1 2 	 4 5 

i = 	1 1.UOOOOO - 0.010i78 0.558808 - 0.217851 0. 548585 0.513617 
2 1.000000 - 0.460509 0.a27788 0.680848 0.775721 
3 1.000000 - 0.70172 1 0.122482 - 0.1 30(110 
4 1.000000 - 0.203920 O.21i5165 
5 1.000000 0.78&-172 
6 1.OOUOOO 

rrhe sUlllsqual'cs the val'iate", 1 and 2 were 

Meat 	 Bu tler 

1'l-t l = 0.016866 ill ll = 0.0253GO(26.7) 
111 22 = 0.020824 111:12 = 0.020SN 

These yalues are nooded in Ol'der to get back from the nor­
malised to tlH.' non-normalised variates. 

From the data in (26.5) and (26. G) a complete tilling was 
done, and the bunch map for the iuicrcoefficient (12) was 
drawn. Only Ole bunch map for this intercoefficienl. ,vas COll­

s irJererJ, since the main object of til e analysis was to investigate 
the money fl exibility. The (12) bunoh maps lor meat and IJutter 
are· g iYCll in Figures 13 and 14. It will he nowd that these maps 
also contain a variat.e Wo. 7. This variate. will be discussed 
later. For the moment we. shall considet' only that part of the 
maps tllll.t refer to the variates Nos. 1-6. 

The btIDchcs in Fig. 13 and 1-1 are drawn 011 scales as indi~at­
ed in the following- tables: 

We shall discuss the meat map first. 

Set 

12 

123 
124 
125 
126 
127 

123-l 
1230 
1246 
1236 
1256 
1237 
12-17 
1257 
121), 

Stl 

I:! 

123 
l:N 
125 
126 
1:l7 

1:23-1 

1241 

ScuJe ot 
eolnrscment 

1 

Set 

1246 

12347 

1234.5 
12346 
12356 
r :24.:j6 
12357 
124.57 
123 67 
124.67 
12567 

SL\LE;,; C:>Iill 1-;\ l'TG . U, DefTER . 

Scnle 01 
:nJarl!oment Set 

125fl 

1231 ­

12ij7 
12li i 

123-15 
]2316 
123;;6 

124..')6 
1235. 
1:!457 
123G'i 
l :!4IH 

&>1\1" ot 
enlarvcmenL 

2 

5 

Scala 01 
enluRClnen~ 

:2 

5 

10 

Sca le 01Sot eD I3tll'ement 

L23467 10 

12;:1<1-56 
123457 
123;')6 

12<1567 

20 

1234567 100 

Set 

] 2;)67 

123466 

12:3.1,'17 
1234.67 

123567 
1;2·11)1)7 

1234567 

Brnle 01 
enlargement 

"0 

50 

100 

500 

Looking at I.Ile lhree­
sets we are immediately struck by the fact that it is the set 
(126) thut hus t.he best tighLnesa. This is already a. first in ­
dication ()r tJle plausibility of the theoretical basis wmch we 
s tarted from, namely that thers exists a structural relation 
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bet ween the variates (126). Oompa~ring the bunch in (126) with 
that in (12), we see ill p,:u-ticular tha t no sta tistica lly significa;Jlt 
information about the in terC{)cfficient in ques tion is obtained 
before we add 6. This is a genem l fea ture which will be noted 
a.lso in all the other se.ts. N() tioe for ins tance 11011- all t11e bun­
ches (12), (123), (124), (125), (1234) .. (1235), (12,15), (12345) are 
tightened when 6 is added. This gives an in teresting empidcal 
cOI"l'<Jboration of the " isoquant" idea (i t will he remembered that 
6 denotes the quantity consumed). The money flexibility as 
computed by th e. diag<mal regressiOll in the set (126) is 1 0.84. 
This fl exibility is found simply by de-normalising the diagonal 
egl.'ession coefficients by means of (26. 7) . The resulting 

flexibilities are indicated in the map. 
Now let us proceed to the four-rowed sets to test Dr. Waugh's 

suggestion that some of the other variates may exert an in­
fluence. A glance a t the map is sufficient to throw out all the 
four-sets that do n ot contain 6. This leaves us with tIle 3 fou r ­
sets (1236), (1246), (1256), in ()llier words, the 3 sots obta ined 
by adding to (126), 3, 4 and 5 respectively. I n al l these sets 
ihere is a relatively good tightness. The fit is perhaps s~ ight1y 
inferior to that in (126), but there is no "explosion". 

I t thus seems to be allowed to a.dd any of the variaies 3, 4 

or 5 to (126). The effect on the. g'eneral slopes of the bUJIChes 

produc.ed by the inclusion of these variates is as follows : 

3 mru(es the sloJW a liLile steeper (flexibil ity 0.!.l2 as against 

0.84). 4 lea;ves it unchanged a.nd 5 ma.kes it a good bit steeper 

(fleXibility 1.03 as a..ga.inst 0.84). The general slopes of the 

bunches, as wen as t.heir tjghtness. are soon most easily from 

tho small vertical bars that indicate the distance between thc 

pl'olonga,tion of the leaJilJg beams ". ThE- sleepening efled 
is quite significant since the (1206) sector lies entirely outs ide 
(011 the lower side) of the (126)-sectol'. This is b.J.tel'esting: it 
means lliat ilie trend conrJCction behn~en the variates has _ 
by being left in the ma.tcl'ial - biassed the ]'('-sult Obscl'veu in 
tile set (126). 

It seems probable that the cli:fferencc in slope, say in the sels 
(1246) and (1256) is n ot due to tJlese being slopei' in two 

1 J n tIlt: foilo\l"ing T ~R~' fo r hrc \·ji.~· thnL the J/('xil,ili ty is tJ.h4 . 1.11 '1, ,-t. . 
T].eaning by thie thAt t he llex.i bi1ity i8 - 0.S1, - 1.0:1. etc.•\11 tbe flcxiLiliij(. " 
('on8i,lered are Dcgath'e; i Udced, a ll tiJl' huur:bcs ('(lnsicl£'l'cd, nre "loI,i~ dowll. 

o The Il'a.ding hcnms Rre m:trk, .d witt! , mall "il'd('s. 
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independent eqllations, b ut due only to the bias produced by 
neglecting to eliminate simultaneously the effeets of the various 
Y[u·iates. ill other words it appear to be a gross slope effect not 
a multilinear effeet. In order to test this we wani to see if 
there is produced an explosion when we go to the higher sets. 

Looking a t the five-set-s we see again tllat there can be 
no question of accepting a set where G is n ot included. This 
lea.ves us wi111 the 3 sels (12346), (12356) and (12456), th at is 
w ith I.he sets obtained by adding (34}J (35) and (45) r espectively 
00 (120). All these sets are still fairly good; (12356) gives the 
steepest slope (flexibility 1.11) 'which was to be expected since 
in the four-sets 1Joth 3 and 5 had a tendency to steeJWn the 
slope. In (123J6) these steepening effec ts will be accumulated. 
Again we find that 4 virt ually does not change the slope. The 
flexib ility is 0.91 in (12346) as against 0.92 in (1236) and 1.06 
in (12456) as against 1.03 in (1256). 

Th() flexibili ty in the 3 five-sets considered are somewhat 
dUforel1t, namely 0.91 , 1.11 and 1.06 respectively, and the 
tightness of t.he slopes are such that these differences appear 
significant. We are thel'efore again in the situation that it is 
desirable to test the h igher sots. Only one such set cxists, 
n amely the one including all the six: variates considered. EVBl1 

in tilis set the LigMness is fair ly good, indicating that t here is 
no danger in considering this set, t1181 tigh tness is even beLi£r 
than in most of the subsets. In this big set the slope- is the 
same as in the five-set tha.t included both !.he st.eepening fa.c ­
tors 3 and 5. In both cases the diag'<mal flexibility is 1.11. This 
is another verification Qf the fact tha t 4 does not influonce the 
result. 

It is very instructi ve to look at the. appearance or the whole 
bunch in (123450). The various beams in this total bunch give 
an €xce llent expression for the importance of the various 
variates and for the sense in which they will bias the (12) slope 
if their influence is not. taken accoun t of by including them in 
the rE'g1'ession equation. In the first place we notice tha t (126) 
are the three- impor tant varia.tes. Theil' beams are much longer 
than the othcr beams in the big set (123-1 ')6). .A nel the relative 

isposition of the three important beams remains practically 
the same in all lowcr bunches clown to the se t (126). The only 
BfIect of the other variates is that the s llb-bunch of (126) is 
swa:ved a Utt.le up or down according tD which supplementary 

http:produc.ed
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variate (-s) we inclutle. We haV'e seen that 4 had practically 
no e ffect a ll the "my through. This is SUUUO(l11Sed by tbe posi­
tion of the 4-berull in the set (1234j6). Intleed, 4 is a very 
sh ort beam: it has a SIDl1ll powel' to "enforce i ts will", And 
furUler l110re its direction coincides with the average g]ope of 
the leading boams: it "wlln ts to go the same ,yay" as the beams 
of tho t wo variates whose intercoefficient we are discussing. 
BOtil these facts make it plausible that 4 does not influence the 
resul t obser ved. On the other hand the varia tes 3 and 0 were 
observed to exert a steepening influence aU the way through, 
the effect from .5 being the strongest. This is also sum rna,r iseci 
in the buncll of the big set (123456) by the position of ilie 
beams 3 and 5. Inrleed, bOUl are steeper fuan tile leading slope 
(lJJey try t.o "pull down"), and 5 is the langel' of the two. 

When all these facts are taken in i;o consideration, we ma,y 
formula te the following conclusion. U no disturbing factor 
outside the set (123456) is taken into account, the money 
flexibility computed by using meat as a reference commodity is 
about 1.1, the tiNt decimal place after the comma. in this 
magnitude is probably significant. At least it seems Lo be 
beyond doubt. that when the effects of the variates indicated are 
eliminated, the flexibili/,y is larger t.han unity. Using thf} 
Significance factor (19. 4) we may express the result in the form 

y (Tin meat)
(26.8) - U' (123.t5(j) = 1.11 -;. 0.94 

This is a figure considerably h igher than tho a.verage of the 
flexib ilities I found in my 1930 study using United Stat.es 
budget dat.a. The difference h as an in teresting cxplanatiOl.l. 
which will sugges t itself when we have sub jccted butter tD a 
similar a,nalysis to that wh ich was just carried through f01~ 
mea.t. 

The bUllCll m 3 }1 for butter is given in F ig-ure 14. nere OIlC 

will immediately be struck by the fad Utat in the 7(lwer se ts 
tho tightness is 1100rer than it, was in meat, a liliough also bulLer 
is Iah']y good even in the lower sets provided 6 is L'lcluded. The 
lle€d [or incluuing 6 is just as marked in butler as it was ill! 
meat , Ilnd tlle reader may himself veI'iIy how Ole inclusion of 
G is every where Ole important thing thaL bring'S order into the 
maLteI·. Tllis :is a furilier corroboration of the "isoquant" ide.a. 

Another striking fea tm'e of t11e map is that the money 
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flexibility measured with butter as a reference commocli ty 
seems to give a substantially higher value Lhan we got when 
111M t was used. Disregarding the changes produced by taking 
in one or the other of the supplementary vad ates, we may say 
roughly that the money flexibility measured via butter lies 
around 1.1 or 1.5, while measured via meat we found it to 
be 1. l. 

Looking 110W at the details of the map we see that, adding 
any of the variates 3, 4 or 5 to (126), we get a ll improvement 
in tjghtness. Therefore, an y of these variates must be con­
sider ed usefu l. 

But the erI'ects of their inclusion al'e not the same, 3 is 
definitely flattening the slope (th e flexibilit.y in (1236) is 1.2,1 
as against 1.5 in (126)), -! is ellsa fl R.tteuJng Ul e slop e. hut not 
so much (flexibility in (1246) 1.38 a.s agains t 1.5 in (126)) , 
while 5 has hardly any eITect on tho slope .: 5 has, ho\vever, 
u. ver.} strong effect Oil the Ughteillng. If we would ouly Hlink 
of illC tightening effect, wo would conclude that it is more 
important to add 5 thUJ.l 3, but, so fa r a.s the correct deter­
mi nation of the net flexibility slope is concerned, it is more 
important to add 3 than 5. This is another example of how 
us el'ul it is to work simllltnnooll,'!ly with slope and tightnesE 

l'ilerja, as we do in the bmlch map anal~·sis (as distinct [rom 
the a.TIilJysis by the test param eters of Pal't II, which only ex­
press tightness). 

TIle differenoo in results thus obtained in the four -sets by 
adding 3, 4: or 5, makes it- necessary to consider tile fi'Ve5ets to 
see whethor the difference in slope observe.d in the fou r -set was 
a gross-slopt' eilect. or a multilinear erIed. 

Amongst the fi v-e-sets, onc, namely (124b6) , stands out. The 
tightness in this bunch is excellent. This is h i!jhly signiIiea.nt. 
Indeed, 4 and 5 were the two yal'iates that produced most 
tigllt.enhlg when added to (126) , The fact t..lJ.R.t the tightenin g 
is ctill better when both 4 and 5 are added, means that the 
difference in the slopes in (1246) and (12.56) was [l g-t'Oss-13Jope 
effect, not a multil inear effect A Similar conclusion is reached 
in the set (12356), while in (12346) the siinat.ion is tloubUul. 
W e need n ot however worr y much nbout (12346) . Already a 
comparison between (12356) aml (1 2r,G) shows that we are 
again confronted with the same question as to whether tile 
difference in slopes in these t wo SE'ts (flexibil ity 1.44 in the 
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fonnel" and 1.50 in the latter) shows gross slope effect or a 
multilinear effect.. We therefore need to consider also the six 
set (12;)456). TMs big set actually show.'? the most pelieal tightness 
f aZl the sets considered . Th is applies not only to the leading 

beams, but also, to the secondary beams. There can therefore 
be no doubt that this is the set to be retained. It gives a 
flexibility ()f 

_ " (via butter) = 1 40 ./ . 0116(26.9l u (123456) . .V 

The whDle appearance of the bunch (123456) verifies again 
the conclusions we reached en route: 3 is flattening and 4 too 
but n()t so much, while 5 is hardly influencing the slope. 

27. SUBSTITUTION POSSIBILITIES I N MEAT AND BUTTER. THE IN­
CLUSION OF THE ABSOLUTE PRICE BESIDES THE RELATIVE PRICE. 

The difference in the !lexibilifiy results (26. 8) ,md (26. 9) is 
big in comparison with the limits of significance. The whole 
bunch-map analysis tells us beyond doubt that the money 
flexibili ty determined via butter is significantly larger than t11at 
determined via meat. But from theory the two clelerminations 
ought to be equal. The conslusion is therefore in escapable that 
there must be some fact,or which theory did n ot take account 
of, but which has been present in the data and distorted the 
resul ts. 

It will be r emembel+ed that the consu mption surface theory 
assumed no substitution possibilities between the reIerenc 
commodity and other conunodities. The following questions 
therefore naturally present themselves : Does meat stand in 
substihltion I'e]ation to other goods? Does butter stand in such 
relation? And ca,n such relations explain the differ'cnce in 
flexiliili ty mf'..asurement obtained? 

Let us see how the COllSllllption surface theory ca·n be 
generalised to take account of substitlltion possibilit.i.es. Let x 
ann '!I be the quantities consumed of two commodities, and let" 
and v be their margin al utilities. If there is no substitution 
possibility between the two commodit.ies, fl would be a function 
only of X, and t> a function only of y. If 1I(:r) and v(!I) denote 
these functions, and p and q are the prices of the two com· 
modities, wo would have in the equilibrium of the market 

161 

II (x) "/.Ii!!) ~1'(1")
(27.1) 	 - =-=­pp q 

LeaYing out the middle term of this equation, we get of course 
(26. ]). In otl ler "ol'ds iJ' II depends only on .r and v only 011 !/, 
we just have the case of two independent reference COin · 

modities which was 1he assumption underlyhl g 1,h0 preceding 
analysis of meat and butter. 

If ther(} exist substitution possibilities, u must be looked upou 
n~ a funct ion botb of x Rll'] y. ~llld b{l must v. T he equ ilibri um 
equa,tion now takes on the form 

u(x, 1/) v{x, y) 1I'(r)
(27. 2) 	 --=--:=- . 

jJ '1 P 

Consider Ior a moment tho firs t of these equations. It defines 
11 as a functi on of:1; and of the pl'iC"c ratio 

}. = ]1(27.3) 
r] 

Let this function be 

(27.4) 	 !I = f(;)', I.J . 

Inserting the expression (27. 4) for;ll in th e first member of 
(27.2) we see that the equation of the cQnsump·tioIl surface 110W 

t.akes tJle form 

(27. 5) 	 1<'(1') = at/ (x, / (x, ).)). 

'The function in the right member of this equation is some 
unction of x !lll d i. which for bl'Cvity we denote 

(27. 6) 	 [,-,~.I.) = I/(x.!(x, ).)). 

W ith th is n ota tion the equation of t.he surface of consumption 
tak€S the fo rm 

(27. 7) 	 '(r) = a ' CW, J.). 

Thus the new element tha t comes in when substitution possi· 
bilities exist is that the [unction in the rigllt member of (26.1) 
must be conceived of as depending not only on x hut also on 
t.he ratio of the price of the reference commodity to that of the 

11 
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other commodity with which it is in substitut ion rela,tion. The 
isoquant principl-e must be generalised into a principle of 
eonstant quantity consumed and constant pri ce ratio to the substitu­
tion com modity, but with this generalisation the plwciplo 
applies_ 

If there are a number of commodities Nos. 1, 2 ... n with 
which the r eference commodity is in substitution relation, v.-e 
Ileed to consider all the equilibrium equa tions 

t4 (X . ,Ill '!J2 . .. ) _ 1 1, (X, Y, '!h ...) 
P 1]1

(27.8) 
v2(x. 'til '!h . ..) to(r) 

pq2 

where Yl Y2' . " gl 112 · . -, vl V2 - .. nre the quanti lies consumou, 
tho prices and the marginal util ities of those com modities 
willi which the re.ference commodity is in substitution re1at ion. 
Combining the various members itt (27.8) with the first. 
member , ,,-e get. a syst.em of equations which ,Te may as"nnu(' 
to be solved in the for m 

(27.9) !fi=Ji(~', 1'1 I.e!" .) (i = J, 2 . . . ) 

where 
. _ 1

(27.10). 1.;- -­
fJ. 

In this general case the equation of the surface of consu mp­
tion would be 

(27. 11) err) = a . U(x. ).j A? ...) 

where 

(27 . 12) [T(~. i' l ), 2 . . . ) = f~[X,fJ ($,}'l}.~' . .)'f~(x, )'1 i.~ . . . ) - . . J 

The formula; (27. 11) is a perf€ctly ge.neral formulation of the 
surfaco of consumption idea, and if the necessar y data, were 
avail able, the money flexib ili t.y could 1)e determined as 

v d log Ct da T
(27. 13) 1(,=--- = -- .

d log ,. d,· a 

along any curve on the empirically determined surface (27.11), 
w))ere $, i.1 }'2 .. , etc. are an consta.nts . Assuming for sim­

plicity the relat,ions t.o be lineal' one may attempt a. linear "-­
gress.ion ana.lysis including the ).'8 as YHl' intes. 

It is probable, however, that if an analysis \\' /1.'3 made acconl­
ing to t he above perfect, general scheme, i t woule! be found that 
llluitiply collinear set. would frequently occur. 

.As au example consider fi rst the extreme case where 11le 
whole s tructure of the market is SUCll tlla.t the priceso£ Ute 
various commodities "'-iUl which t he reference commodity is in 
substihltion relations move (nearly) prop ortiona.lIy to the p rice 
or tho reference commodity. I II thiB case the funct ioll C ill tile 
right l11ember of (27. 11) would (ncc1l'ly) depend onl;.- all "' . Since 
Lhe isoquunt method is independen t of the shape of the function 
II (:I:) (or ~- (x)) we Bee that in this c[I-se the correct money 
flexib ility would be obtained by applying the I('hole isoqua/1t 
ieclwiqtle e3..:actl!l (is ~r (here hafl bee" no substitution l)Os.~i7J/ lihes. 

Thus it is oilly to the extollt that tho priCes of the subStitutioll 
c"rnlfloditit's '- ~ Iry di.<ip,·oporllolW1!y tel lh tlt or the referenc e 
t'ommodit~- .. that the effect. .of Ihe substitution needs to be tak.en 
aCCOUllt of in the isoqua1.1t method of measuring IDOlJey flex­
ibiljiy_ 

But , of course, if 1.he same data. are used t.o determine the 
elasticity of llic retcl-ence cOtD modity iLSelI, one would not get 
tlle correct result hy p roceeding as if no subslituti011 possihil­
it ies exist. I ndeod, the e la.sticity of the functio n (27. 1.2) wU.b 
re::;~)ect so $ , (uncleI' constant ).'s) is llot the same as tlH' partial 
elustici1.Y oJ' u{x, !/ J Yt . . . ) with resp ect to itE first TariHte. 

The case of proportiona l price moveme nts is only a ye,ry 
special case 01 multidimensional connections betwC€1l the V il­

riates in the r ight meInber of (27.11) . Eyell wilbaut assuming 
any such proportionalit y- i t seems pla,usible - and indeed ne­
~essal'Y - to take account of the fac t that some s()rt of St'}JP/.t, 

·relallOll8 exist ior tlJe com modities betwel3U which substitution 
possibilities exist. By taking acC'ount of tlt.is 'le sha.ll n()t. only 
protect ourselves aga.iDst some of the risks of faI1ing into mu lti­
collinear sihwt.ions, but we shall also obtain u !l1eore.t.ieaJ 
Rcheme which is much simpleI' and more a.mendable to statisti­
al analysis. 

Let us assume that fo!' each of the suustitution commodities 
there exists - hesides the -equations (27.9) for this cOll1motlit) 
- some othel' relation that connects quantities and prices. Let 
tb is s~' stem of relations be 
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(27.14) Sf(X,P, III y~ .. . , ql q~ ...) = a (i=1 ,;? . . ) 

From this system and (27. 9), we may imagine thai both the 
.1/' 8 and tile q' $ are oxpressed in terms only (lL x and ]J 

(27.15) !IJ = 9/(X, p) qt = ll"i lx,p) (I = 1 ""') •1 • 

I nserting this into (27.8) we see thnt the equation of the sur­
face of consumption nO I~- takes on the form 

(27.16) 1v (r)= a' ["(x, p) 

wbere a function only of the hvo \"!\l'iutes x awl p, llamcl~ 

(27. 17) U(x,p) = u(x, 9L{X,P), !h(x·P) ···) 

In other words, th e ouly new va.l' iate wllicll 'lye no'w n eect tA:l 
take aCCOWlt of in the righ t memb er of the equa.tion of the 
surface of consumption is the a bsol ut 'price of the referencl3 
:()m modity. The absolute price is, so to spea.k, taken as a 
ateh-all for all the yat'ious possible substi tution effects that 

may concern this commodity in its capncity of reference 
commodity fol' money flexibility measLlrcmellis. We do not go 
ilJ [o any specification of II'hich oth er commodi ties the reference 
comruoility is in substitution connections with. 

'l1J:le assumption (27. 16) w as used on the meat and lJUtte}' 
data. 'rIle r elation was assumed linear in log p, so that the only 
modification in t.he. preceding analysis consisted in including 
the varia te 

.r~l1lURI ) = log p Cml'ut ) - 1.-! 
(27. 18) 

x\LlIrlCr) = log p(hlltler)_ 1.f) 

(1.11 and 1.5 heing proYisoric menus) , 

Since concentric TIllUlb ering o( the subsets ha.d been used. 
tha additional t illing work n~eded could be performed simpJ)T 
by elongating the lists a nd tables previously used. The result 
of ilie comput<1tions are l'epl~nted gra.phicaJly in Figures H1 
and 14 in the preoeding SectiOll. 'Ye shu ll nOI' clinsidcl' Lh-ese 
charts in their eniiI>ety, not. onJy the cells belonging to tho 
firs t six variates. We shall go through th e a.nahrsis anow, this 
time taking into accolmt also those subsets where 7 occur. 

We shall take meat first. The. three-set (126) in meat is s till 

the only one that can be used, and in the foul'-&ets we find as 
befoTe Uw,t. ouly those where G occur h as any orgallisll.t ioIL 
This leaves us with only one new lour-sct. to be consid.ered, 
namely (1.267). Tbis set is quite remarkal.lle. 'l1}1e. organisation 
here is veTY good. Indeed, it is maTk~iJy betler than the or­
ganisation in the Lest fOUl',sets we had before 7 ,'.-as added. 
Alld the change in slope is quite conspicuous. We notice that 
them is a real fight ))et;ween 5 and 7 in the influence on the 
slope. Tlle inclusion of 1) (the trenu factor) had - LLS we 
noticed it in the l)rece.iliug anulysis - a tendenc~T to increase 
the flexibility, while we now see tba.t th-e inclusion of 7 (the. 
snbsllLuli on factor) tends to lower tl le fiex iiJility i. e. to I1~n ten. 
the slope: in the set (126 7) tJ1C (J'Pxibility is 0.75 as against 1.03 
in th6 seL (12;')6). This suggests lJ1al. substitution docs play a 
tole, antl that it must be taken into ac-count in order to get it 
correct measuremen.t of the money flexibility. or course the 
ysriute :1', (price) U(lW oonsillered does no~ represent the ordi 
Ual'Y demand curve connection betwoon pl'ice [md qUllntit.y) 
lliaL is already taken into account by Ole ,ariutE' a; :) ~ relJ1'(~sellts 

a dCl'illtion from the re.gular demand curve, namely a deviation 
caus-ell by substit.utioll. 

The diffe r'ence in the slopes in the various four-sets that 
appe..1.l' sign.iUc3.nt m<lkes it necessary to consiller the five ·sels. 
Amongst tl1e Iiv-e-sets containing 7, (12467) shows an excellont 
t ightness. It is suggestive of the import:mce of G to compare 
(1245'7) Willl (12-167). FU1'ther, we see that Ule fight between 
n and 7 is also quite marked i11 the. fiye-sets , Tn tl1B two 
admissible SE'ls where 5 (and not 7) is present, namoly (12306) 
and (12456) the f]8-xibility is 1.11 and 1.06 l'espectiv€'ly, while 
in the two adl1'li.s.sible seLs v.-here 7 (but no t 5) is pres.ent, na· 
mely (123(;7) and (12467) the flexibili ty is 080 and 0.75 respec­
Lively. If the difference betW'('Bll these slopes is a gross -slope­
effect, it soems probable ihat lhe true llexibility must be some­
where between tllese values, say between 0.90 nnd a.nf,. It is 
lllteresting to compare this ,yith the l'e."Ult in the Elct (12JG7) 
where both 0 and 7 Lll'C present (b.csides (126) which always 
proYO to be necessary for a gootl fit). The tightncss of (123G7) 
is none too good, but it docs show some orgaJ1isaLiol1, a.nd t he 
flexibility measured by the diagonal regression is in the range 
0,90 to O.~5. 

Also in the six ·sets is the fight betw~Jl 1) and 7 the domi­
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I1ting feat lU'e; comparo, for insta nce, (1234.5G) which contains 
- (il'enJ) but not 7 (subs titution ) allCl wh ich gives the flexib ility 

1.11, with (123467) ,rhiclJ. conta.il1s 7 but n ot 5 and giv es the 
flexib ility of 0. 79. If buUl t rend Hnd. Rubstitu tion is takun into 
aCCOI11lt, it scems pl ausible that the flex ibility will turn out t 
1>0 someWhel"e midway between these figures, SILY 0.95. This 
also checks fa.irly w~ll with (124567) w hich contnins both [) a nd 
7, and g ives the flexib ility I). 9~ . The seV0 n et i3 of illtevest 
becausG it h as suIIicient lightness to i.tluicaLe th at there is no 
"-.Kplosion" and that the; slope djffeI~nce observed in the si x ­
S(,t~ is consequently a gro,,:::-slope~rrcc j so tha t it has a 
11lE'.alling t o take some sor t 01' rlJl a v'aI'age beLween the-m . But 
the slope ill the 8(l, e n-sct is llot so d early defined that it seems 
ad, ' isabJc to adopt the diagon a1 flexib iJ if.y in this set, a..s a lJet tRl' 

suE tluU1 the nho ve .w(}ra.ge of 0.90 to o.nJ. 'l'a k ing into 
acconnt all a.vailable- facts , it sooms th at whon the) SU1J 8titll tioJ~ 

possihilities arC' e1lll1inatoO(l, we may put 

(27. 19) - ,i·I'·L, lIt!'.J ' . = bet ween O.\)5 tlUll 1.00 

with a range of \";u' il1tioll of some {) per cent up or' down. 
n conclusion we 11 la,)' thus sa.y tl1Llt "5ulJS.titllt ion ]JeLS som!) 

effu:t - hut not n Ye)'Y ~l'eat one - ill t h~ case of meat. 'rhe. 1 ~ • ­

money floxibility measured via meat is IOIl'end when thi;: 
Ol'rcction is taken into ar·connt. 

Now, as to but ter. Here ti1eI'e is a 11 ig-h gross cOl'relaliQIl 
between 1 aDd 7, n m nely 1',~ = - 0. 8.5-1. This is simply clue to 
nIl' fil et tJ wt the butlf' l' priec phas l luc:t lla ted much wore ",io· 
lently than ilIa cost of living price P. When this ib th e c 
there will of course be produce.d a high (neg-u.li ve) cOl'l"elat.loI 
betweCJl th e varia·tcS 1 which is (log P - lug r), nnu 7 which 
is log p - 1.6. We 11lust iliet'efol'e be prepared to find tha.t the 
incJ usioll 01' th E' variate 7 with those a il'oudy di.seussed will 
in th<: case of huttcl' produce. a. Inuc11 larger opeuillg of tlle 
bunches, i. e. a less c1efi11 ite slope indication than in the pl"e ' 
viously consi dered set..,; not including 7. That tJlis actually 
ha,ppells is seen hy a glan c:.e a,t. tile b lUlc11 IlJap in Figure 2 or 
Section 26. The question is w h('Lher the change in s lope p1'6· 
cluced by the inclusion o f 7 is so ma,rke-J tha t Significant 0011 ­

c lusiODB can l)e dr awn Ewen th ough th e new bW1Cltes are more 
olJen. The whole si tnMion is sHch as to put (lur Itppat-alus of 
confluence cr iler ia to a.!1 interesting- test. 

U)7 

The ne\\ Lhl'oo-seL obta.inod by adding 7, namely (in) does 
not show a yery good tightn ess, but a t le:l.SL so much of i t, that 
the set Ull111 0 t lJ i) clis l'egarded a ltogether. T'he explanation 01: 
the amount. of or g<:Lnisation here found is probabl ~' as follows. 
TLe Yflria. te 1 is (log l'- log 11) lind 2 j" (Jog Q - log P), Q ueing 
till,: nominal income; si l1Ce log P ~CU1'S here in both expl'essiolls 
OJ.HI with opposite sib'1l, some negative cOl'l clatioll between 1 
:mJ. 2 ma.} be expeJtect. '1'h,"r~ <1.ctually turns out to be yel'J' 
Wtle of it (as is seen by the appearance or the bunch ill the 
set (12)). This i::; due to we vari~l,tion of log- p lind l('g !.l . Bli t 
if tl ll~ eHed 0[' Jog p is eliminl1ted, as it is in the set (127), the 
fit is improved.. Th e (12) slope is no /' - · 1 as it W' oulc1 1wye h OOll 
j f it hUll e~-Pl'essed (mly th~ defiu ition;.!l I;olln~ c;l ion due to the 
terms Lug P anll - log P. 1'he s lope is fla tter, whicll i" 

x}Jl<lined by iJJe pl"eSeUUe. o[ Jog !J ill t lll~ yaritll (' ~ II . 2. Inde(~d 

on accoUl ll of tho whole ecoIlDll1ic structure, fJ tlllrl P tend til 
vaJ'y in tl le same direction, 31H.1. this will work COllnter to tu.e 
negativ(, connection lietw OOD 1 and 2 Uw.L is ('!'e,lted by tll 
terms log P alJll - log P. The qnest.iou of whc ulel' this may 1 
l'cspousible for a "spnl'i ous" clement in the d.e te rmination of the 
wnller ll C':lI.ibillt.\' will be discussed in :s....c t ion 28. At present Wl' 
haJl coutiuuf} the systematic ;.I.llU l.\'~is of the bunch map. 

In tbe fo ur-srt.s we notice the SaJ:uc fight hctwcen 5 LLucl 7 
as we found in meat: ;~) s teepens the slope (n li ttle) lind / 
flaL tell s j t (quite a. hit). n is t rue th at thc organisation of j lw 
fow'-huncli c Oll w ining "( (in addition to the fuudu mcut;u se t 
(126» is not goo Ll (the reasons for tllis we have already llis· 
cussed), But even though the bunch in (1267) is rather open. 
it is qni te obv ious that it represents 11 flLLttCl' slope th ;.!n ill 

(1256). In (126() tho diagonal flexibility is 0.80 a.::: agaius t t .4 "( 
in (1256), The big clillel'en.ee beLwoon tltcse two measur'emoots 
makes it necc.ssa.ry to cOlls ider the five sots. 

The H,e-set that contain :5 a nd / (in a ddition to (12l;)) in 
mru k edly Liglttel- than (1267) , (lull j'he stoopenin~ crfec.t is d em': 
5 is th ercfo l'e u~cful when :1dded to (1267). In going frollit 
(1256) to (12.') (j7) the change is less clenr. There if: - as in. 
all eases w]l et'e 7 is tl'lded to <.L set crllltain ing (126) ..- :t 

huu'ked opening of the hunch. The chan!re ill slope is somewl1at 
veiled by the sma ller t ightness in t he new bunch, but som 
I'IntteJ1ing- seems tu he present.. The rUng-onal [Jexihilit.\' in 
( 12567) is 1. 26 as against 1.47 in (1.256). 

http:necc.ssa.ry
http:clillel'en.ee
http:Yflria.te
http:neg-u.li


168 

After the inclusjon of 7 tiler~ is also anothel' feaLm'e \\hich 
becomes apparent. 4, and to a. s t.ill higher dugroo, 3 have a 
tendency to flatten tho slope as compared with 5. This eftect 
is very marked: for in.stance, if 3 is ad<.loo. to (1267) we get a 
diagonal fll!xihi1 ity of 0.63, w bile if j is ac1deu, we- get 1.26. 
'\TId the ll1.llChes, while not yery tight, still have so much 01' ­

gauisation that they cannot ue disregarded. Al l tltis makes it 
necessary to COllsider the six-sets. 'rile tightness here is .not 
any pooror !Jlan ill the five-sets, amI U13 pulls of the various 
YUliates 3, <!, 5 llJJ.d 7 III diITereuL direeiions are still man ifest . 
'l'his suggest,.<; tilRt as a final attempt we must go to the big 
sevell-seL This IDlal step tW'IU; out to be ratller signlIicant. Thc 
tightness in this bnnch is decidodly betler Lhan in any of tJ le 
six-sets wiUl the exception of (123456). And willi regard to 
the passage from this 1a tter sct the chauge lD slope is here very 
onspi(;uous. One would tberefore, without hesitaLion, char:.t.e · 

teris{) all the variates in tJte seven-set as useful. The regression 
in th iR se l must cousequently be considcrd as admiRsible. In 
thIs regression the diagonal flexibilit.y is 

• · I· in j,q'tcr 097 / O~ -..,7.20) -- 1(·(1!.':1 I .~I ) ~ =.4 '. . I::' , 

'l'hus by taking into aeCOWIl. subsLitution possibilities, we get 
sensibly the same results J'Ol' the money flexibility via meat 
and via l,mt.ler. Not only t h tLt, but the values found are now 
GluseI' to t.hat which I found by using ilie United States house­
hold budget or 1918/19. Still Lhere is a good bit of diffel''(mce. 
tIle average values on the fl~xibiliLy curve I found ranged 
al'OUll d 0.0. The Llifferellce may ill. pal't, be due to the fact that 
I wus using exclu~j\'el)r ci~' famil ies, while ilie presen.t. dakl 
include the United StaLes as a wl.lOle. Anollicr , and probahly 
more important, fact is, I think, what may perha.ps be caned 
t110 "silk-shirt lllenWit..)... The <.lata fo r my investigatious 
"ere collected in a perioLI of prospority when inCQtlleS were 
increasing and poopl0 wero in an "active" consumption moort: 
they ~anted to expand consumption both quantIta tively and to 
new categorie.'S of goods. In other words, tltcy were just. in 
tha.t situation which would give a low money flexibility. The 
datu, used in the prcsent study covers a period ,,,here there 
have been bolli ups and downs. and cer ta,inly not any ste,1Jly 
"silk -Bhirt mentality", 
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28. DEFTh'JTlOKAJ~ lLATTE~r~G AND SPURIOUS CORRELATlON. 

111 Section 7 we considered each obse1'Yat.ional variat(} us a 
lineal' form .in certain basic - n ot directly observable - va.­
riat.es. What fur ther complications may al'ise if some of the 
observational variatE's can be expressed as linear forms in some 
)\' the other obserr'1llionn7 variates ? To what exten t will iliis 
cause "spurious" correlation? I hu-ve pl'eferrod not to discuss 
tIllS pl'oblem ll1 the theoretical pcH't ill, lmt ra1.J1el' to treat it 
in cOlmecLi(1ll WiU1 tile study of the consumption data: this will 
wake the discussion more concrete. 

Considcl' tho two yariales 

:1'1 = log P -Iogl'
(28.1) 

.:,.~ -:-log U - l o~ P 

that occur ill the flexibilily s~udy, )J heiD I-! the p.rice of tlle 
reference j'OllilUOllity, P Ille cOil t l if li\ ing a nd f! tue nominal 
income. The f1\ct tha t :C I coutuim log P unO. .T2 c(lutruns - lhg P
",ill tend to produce a nega tive corl-elaLion hctwee ll ; '1 :lnd X::.' 

'YIll this caUR(> "spuriom" l'e~;u\ts? TlJ:lt will tIe-pend on tho 
llature of Uw -variability of log p. log P nml [(Jg I} . Ii tl lerc i.'! 
no signjficaut correlntiOll b€'tween these latter ,ariales, then 
tho obsel',eu corJ'cl:tlion bel \\ e.en Xl ano X,2 wonld 110 \'0 to be 
iniel'prelClu n~ spul'ii}us. But if tllCl'C is ~omc significant connec­
tion bet.\\"ecn all 0 1' SOlllC of the YCU'illLeS log 11, log P ancllog {} 
- as there certai.nly is, 1'01' iTls t.aIlc8 between log P. (P being 
Hie coc;t (If li\'ing), ttn(\ It.?: :y, (D h('i n~ tLe nominal illCome), 
these two ,ariates having rOllg-hly spe:lkinga. t.endency to move 
in the same direction - then au ohsen-ed correlation between 
XI ami :r! t'mno t Leo intc' l'I'J'cteJ olll .\' as S}'tll'i Oll S. lr may '1/ par 

he spurious, namel:v to the ext enL thu,t log p. log P !I uri 10 ", c: 

contain oilltiltle cOll1pnncul<:. lliic; is to say, componellls that mnst 
bo looke(1 11p011 n<; disturbances in tho s;v,,;tem of the oilier V:1­

riates considered. But to the extent tiwt tile observ£d correla­
tion between ::1: 1 aJ1tl J'~ 1« due 10 dl(~ S./Jliletll(Jti(· components 01 

lop: p . log P ,\OIl log (), WI: ('nmlot cr1l1side>l' it uS tlpmious . 
If we did that, ",e could jnst [IS "'011 tUl11 the mot ter around 

and say for instnnre: "0 haye 

log p= :~'I + log )J
(28. 2) 

log {! = ."'1 + of! + log Ii 

http:perha.ps
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and siuce the oDsel'yuble v;ll'iate :/ '1 here uccurs both in the 
expressions for log P and log (} we must be prepared to find 3. 

"spur ious " correlation when we observe log P and log !! 
00gethe I', It is clca.r that th is Qr guLllen t leads in a cird e; inut!ed, 
whate ver va1'i1ltes we ha ve g iYell, we cau <.dwuys introcluee 
some new variates lill6c1J:ly dep<Hl!lent on the old, and Ul-en 
write some of the old varia tes a.s lin em' forms wh~.re StCllnC uf 
the new variates OCCUl'. The mere. fact tha t two observahonal 
YUl'iates can be e~-pl'es£i eci as lineaT forms in certain ot lier 
obscI'va-tional varia tes docs therefore not ill iL~elf constiLute a 
"apm'ious" elemen t. J..lI dcp~nds on the ll iJ (,w'e of t.he var ia ­
bility of these other va.ria tes by \\-hk h tile first vUJ'iates are 
expressed. 

In 1)1l1-ticu lm' if WE' h ave arri"ed a priori at certain UHwrt'tical 
relations ,vh ose coeffi.cient • ., we a ttempt to det.ermine s t.atlst i­
ca lly, it may well be tlmt some of t ho observational variate!> 
en tering can be. e~1>rcsscc1 ill terms of others. ~Ph is t.ransforma­
tion m ay then (m '" lJe an aitel'11aliue way of fOl'mulflting t I le 

prohlem (\Jl (l nee.d Ho t introduce au) thing- "spw.'ious" . A 
sncGesDftll deterlllilla tion of the eoefficiellt~ soug"ht may be 
possible l),v u<;i ng e it her form of the -equatio,us. Wether th~ 
at tempt shall lliet'L ,,,- itll :success, wiil clep~nd prima.rily on the 
actual stl'engtll with which 1111.? I)Ost.ul atecl IIll'uctur(li relation 
exist., in the va riate s. 11' this underly ing structm al I'elation is 
s trong , it. w ill be rel'le·ctecl and may be measured in e ither f 0 1'11l 

of the equatiolis. 

One tilin g we must look 'on t fOI' , how'eve)', is that a llunJlwr of 
degr ees of freedom is left \"dlich is sufficien t for the r egressiOH 
analysis cOll te rnplated. By this I me,all the followin g. Quite gen­
cl'al1y l~ t 

(28.3) .1\ :r~ . .. :CL 

be a set of vlH'iaJes \',r}tich are or coulc! be ob')erved. 
In the above !'If.'xlbility e xample. ,ye c ould, fo r inst,a.D.Ce 

eOD.shl er :1.'1 and Xj' nncl I m'tel' log )1, log P, log Q and log :c, ;/~ 
beillg the quantity c onsumed, giv ing n tota l of L = 6 variates· 
_\]1 of these would of co urse. not be indep~ndent, (28.1) (or 
if we prefer (28.2)) cuns titu te two independent equations 
het\YQell the s ix: varia tes. 'r hel'ei'ofB, if we pIa L/cd a sen.tLCI1· 
d iagram in 6-dim cnsions, t his sca tter woul (1 h aye. all unfolclin g 
··aparHy uf not more Ulan 4. \ .... ~C shall say that thi" scutl el' 

bas n definit ional fla ttening of 2. In addition 10' this $ome 8t l'lI('­

ura l flatt.ening may exist, for instance. the. one represented by 
the surface of consumption. Quite gOJ.lerally , if bet,,-een those 
variaL~s that are included in an obsor voo sca.tter there e:\.isls 
by definition (p indepen tl ent linMf equations, we shct.ll say that 
the scatter has a. defin itional flattcll iug oi' (p If in addit ion the 
s truetmal tondi tiotls imp()se II' further l'6laLions beLwC€n the 
YHl'in.tes, '''-e sha.11 say that the " tnlGtural fltlttellil1g i ~ If'. T he 
llll lUhor "/. = <F + If' is the tota l fl u.t.toning. ~\.nd it is this total 
.flaltenillg tbat is reyenled by t.he cQufluonue analysis. 

III order that a reg-res-s iml equa tion fitted to the data shal 
give any inJol'rua tion at all aboLlt II ,-trllt/ltrll/ relation present 
in the data , it. is 01' courSB uecesS<l.ry tllat tho scattcl' to wh ich 
tho e.qna tion is f i t terl has no lle-fillltional fla,ucnl'lg: illtioou, [I, 

regressioJ.l equation 1111Sasen~ only ,\hen the sc.nUer is Hnllell ­
!1:1 exaclly once., /.Ind if exlte tl y ane def i.ll il· iona1 flu tWUillg is 
present, this is the onJy thing that ,"rill show up in t he empiric al 
l'e.gression e quation fil tc.d to the cla.t.a. A dej'i nitiorluJ fl a.(,tC'uill o 

is ind&-xl a,hntys ma thematica lly oxact. while the struc tu r a.l 
'latteuings a.re always somewha t bllUTCtl 1JY the p l'esence of the 
is turbllllces. They can not the.r'Cfot'e compeLe " i lh the lle£in i­

n ouru flat.tenin g in influencillg the result obtained . If there ate 
more i han one defin it.ional flattcning in the set of those varia tes 
1l1J:l,t a.re ,subjected to tb~ regress ion analysis, the regression 
c~oerficien [s will of cour.se be exact1y of the inuefRl'mina.te 
() 
ii form. 

As examples we may not.icc> that there is no definitiollal 
flattening ill t.hl.) s e t consisting- of the t.w o yariutes Xl :r~ eou · 
sider ccl abovC', nor is Lhere any s uch fl a ttening if log:c (x= <llwn­
t ity cODsumeu; is ad\lef1 to Xl and x~, indeed ewn tnking into 
aC'CUlmt the wuy in which .c j an tl ;C2 nrc defined (in terms of p, 
P !l nd Q) ;'~ l fi nd :r~ unfl log :r mil," he chosen fIniie arhitrar·ily . 
No!' is t 1"l (31'C any definitional f la,ttening in lhe set consisLillg of 
the t lu'ee Yfll' i !\tcs .'1: , X c a ntI log p. Rut 111 the :-<Ct of four "'ilrintcs 
[.1:1 . C~ , log P (Lud log Q there exis ts n. uefin ilio ual flattening. 
llnme]y the last. equa.tioll in (28. 2). A regression iu this ~et or 
4 yal'iates would gin a matllemalieall y exact ril and would 
thereforo be llsoless fo[, any uwest igaLiull or s \.ruc tmul rclrtUous. 

~on~ of the sets actually usod for floxibilit.v measurements in 
the pr eceedi.ng Sections contaills a definitiona.l fl attening, but 

http:preceedi.ng
http:inuefRl'mina.te
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17~ 

conceivably the variability nature of the basic variables in ­
volved may be such that some spurious effec t is produced. For 
ins tance , if it should. happen iliaL log- 1', log P, log Q and log ."r~ 
were entirely disorganise.d with out being influenced by that 
sy-stoma tic COlll1ection which we are looking for, namely tho 
surface of consumption, then the obser ved correla tion in 1he 
vurions (rj awl in pLlrtieular the (12) slope \vould be spu~'iou .•, 
cHused uy the fact tlmt the Xi are linear forms in the Yur iates 
log 1J, Ing P. etc . In particulu.r the fnet that t.he (12) slope 
happens to turn our r ather close to - 1, tha.t is to s:ty equul to 
ihat val ue which in view of (28. 1) would COlle out if log p, l ug 
P nn rl log' !! w('l'~ disorganised, may make us suspicious. 

However, there m'e various reasons for rejecting this alter­
native. In the first placo it is boih for til601-etical and empir ical 
reasons out of the question to asaume log p~ log' P awl _1 1)0 

intlepemlent. Roughly spe.ak ing there will be a. tendency f Ol' P 
ilnU p to moya together, and also a tendency fo r Q and P to 
move togethel', F rom (28. 1) it is therefore seen tha.t what the 
(12) coefficient does IneasUl'e is the amount of den'(l/ ion l\ lileb 
ille rna teriul shows from the p r-oporf.iollality be tween E autl 1 
Oil the one l luuu Ana ~ Hnd P (In the ot her. T his dc"d ation can 
of course go in either direction. Whcn we bave found that it 
do<:'s f',"O so definitely in the ne.g'c1tivo direction (giving a nega­
tive (12) slope), lh is must be due to some structural r elation in 
ihe data. Furthermore, we ba Vt:> in a!l instanoos noticed that wo 
get or ga.nisatioll in t.he bunches only by taking into a.ccoun t'. 
the quantity Clonsumed., wllich is a Yariate that has no defini­
tional connection ,yhatsoe'lel' with jJ , P or f} . TJ li" is anotll ct' 
s trong inclication that 1he result expresses n stl1.1ct.ura.l corlllec. 
tion, not s iJnply a spurious relation due to the presence of 10 
P in XI Imu - log P i ll x~ 

0 

Finally, we may test the spmious factol' in the (12) coefficieut 
by fhe [oDowing expeJ'imemal modification of the data. Let :r-\ 

~md . ,.~ be defined by (28. 1) a11l11et us take exactly those yal ues 
of p, P aOil Q that were observed in the United States 001;001' 
datcA. 1919- 31 and used in the an~l ) .rsis of Sections 26 and 27. 
But let us imagine that the quantit~ cOllsUlned had. been diffe­
rent. Let us nut its logarithme equa.l to 

(28. 4) '("" =X1 - 0.7 x 2 +O.12x; + 

wh ere :I'j and x 2 are d efi ncd as a bo,"e, x , is log l' (as in Sectinn 
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(27) amI e an erntic variate (lotLm'y drawings) whose standard 
devia tion is about 15 pel' een\', of tha.t of x~ . '1'110 ('qua tioll (28 .1) 
would now bo the modified form of the surface of consumption. 
Tu~ term wit1! X 7 in (28. 4) r epl'€Sents the substitution effec t.. 
We hav~ chosen the coeffici ent ill front of : / ':1 I.egatlre: this 
means tha,t the. money flexibility wil1 no\" be positive, namely 
+ 0. 7. Of COW'50, this is a very unrealis tic nssumption, and i t 
is made here only to get a clear cut. case "here the monJeY 
flexibility is definite ly different from - 1. The object of the 
experiment is just to sec if, by using- the same mothod as in the 
preceJ ing Sed ioll s ( llQW ",ith :r~ jn<!teac1 of xu) we obtain that 
value for the money fl exibility which would now be cor l'eet, 
llamely + 0.7 or if we still obta in some va lue n eal' - 1. rr he 
l'esulL or the computations are. gi\'f.lll in F igure 15. (The scale in 
1278 is 10 times the sca.le in 128). 

8 

12.18 

1 

" £}. 15. 

Fron1 Ul€Se graphs we see immediately tha t the gcnera.l slope 
r the (12) connection is now pos'itive. Further , we not ice that 

the inclusion of 7 to the. set Ulat from tlleory is the. fundamen tal 
one, namely (128) will also now make thc fit poorer, l 'hi8 is 
what we would expect s inc e. there ex.ists such a high COl1.'Cla· 
t ion between 1 and 7, (B()ili 1 aml 7 are, it will be l'emember-ed. 
the actual data). The opening of the bunch is, however , not so 
strong as complet.cly to veil the fact that some change in slope 
is pr oduced. By the -s tandard r ules fot' the analySiS of the bunch 
map it appears admissible to consider the four-se t (1278). In 
thls set the diagona.l flexib ilit.y t.urns out to be 



0.8iO:!2:; 

467 3f,67 

At = 

12345 O.O2~)444 

12346 0.005990 
12356 0.OOH93 
J2-1~,) 6 0.00:3711> 
1.'1456 0.051034 
231.56 (J 0:33403 
12347 0.O U601 
123;-'7 0.022068 
12457 0.0174.72 
18457 0.0-15917 
23457 0.04747 1 
12367 0.006865 
12'!>i7 0.0061)71 
l i:J 4G7 O.Of}3184 
23461 0.068580 
lli5C)7 0.1]02 771 
13(,() 7 0.035001 
2;)5137 0.O:n G ~1 2 

145137 U.028330 
4ii67 O.023HO 

& "1>' <<:" ~ 

1:!3-J.i)6 0.001210 
1231a7 0.{)0[)82 
1:?3!67 O.00210D 

23561 0.l1OO928 
1245S7 O.ODU749 
134567 0.01O,l95 
234567 0.001620 

AG = 0.02H037 

:: eYrIl­
.ct 

1 1234567 0.(01)240 
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(285) + lV( rl" I;Onj!t.) = 0 r..7 ./ . 0 69(1278) . V • ,. 

It is seen that the "true" flexibilit.y according to (28. .i), 
namely +0.7 is amply cOllt~ined hebveen the upper and lower 
l imits of (28. 5), n amely +0.83 and +0.39. 1'he empirical val ue 
0.57 is no t, so very much off the true value, the disorepancy that 
does exis t is of com sa due t.o the rather heavy enatic corn. 
ponent which we h ave pUl1)ose ly introduced in .'T ' o 

Sinoo th0 monoy JJcxibilit.y in iJ1C dotermina,tions of Sec tion 
27 'Yore decidedly nega t i\'e, a nel since all the data are now 
exact ly the same as before , except the variate which i s now 
denoted as No. 8 and marle t() fit tJle al'tificicll sul'fac.e of con. 
sumption (28.4), \1'e must conclude that this surface when it 
exists does playa dominating l'ole in determiuing tho observe d 
lex ibility. It SE:e lTIS that this Ilexibili ty as det ermined by tll 

actual data, is not clue to a spurious connection betwoon Xj and 
;'(~ created through t he presence of log- P .I.Uld - log P in thef:e 
var iates, bu t is a r eality. 

20. SCA,"l. EH.L'\CES A..''D 1.1NE COI!: FF I CIENTS IX TIlE 
CONSU '\IPTIO~ DATA. 

The scatterances in the meat and butter data, ~tpe gi,'en ill 
t ables (2!:I. 1) and (29. 2) l'espectiYely. 

In tables (29. 1) and (29. 2) are indicated also ihe sums of th 
sca tterallCe.s on each level. 1'hese sums are nothing but the 
'oeffi cien ts AI: of tbe characteristic polynomja] P (!.). TlJ E' ~ 
coefficionts are used a.rnongst othel' for checking purposes in 
conn€Ction with (2D. 4) . 

Consider meat firs t None of the t\\'o-sets show any good 
corl '81ation. If the data al'e to hu,,'(' any me,nTIing in flexibility 
a nalysis, we must. therefore proG'eed to the three -sets. '1'his i~ 
also in agreement with the theor etical pattern which r equires 
tIre inclusion of at l e..'l.S t (1 2G). 

Amongst. the tlli:ee ·sets (1 26) s land out. very conspicuously . 
Th e scatterance in this set is equal to 0.049, while the' smallf.'s1. 
of the other thl'E~Howct1 scnttcrances - that in (157) - is 

.136. The SUbsC<1,t t.erances in (126), namely 0.69, 0.73 and 0.83 
are not widely dif ferent, but, they a,re so la.rge that it seems 
safe to cons ide::: (126) as a 111'omising set. accorrling t,o (III) of 
Section 1. If a tllree.·se t i s to be accepted , it. must undoubtedly 
be (126). 
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TABLE l29 .1 ). SCATTEllAXCES. ~IEAT HI19- 31. 

Two, Tbree· FO llT" n\'~' 
~ct ~sets (;" Do SefS J\oeel< Do 

I i 
13 
23 
14 
24 
3·1 
15 
25 
3 
·j5 
Hi 

21i 
:16 
46 
51j 
17 
:! 7 
lH 
47 
fl. 

0.G~1822iJ 

0.9550iH 
,432414 

0.822088 
O.8f1255.'i 
0.71465G 
0.558082 
0.536446 
0.8;;6850 
05158412 
0 .i38746 
0.838212 
O.752G8l 
O. 3~31 ,:,. 
0.981904 

fUHfltJ0 7l 
O.99211j O 

123 
124 
134 
2M 
125 
136 
3iJ 

146 
... 41) 

315 
126 
13G 
236 
1016 
246 
346 
156 
'lSI) 
3;)ti 
4f>G 
L27 
137 
2~n 

H 7 
2-11 
~47 

157 
2j7 
R57 
4~1 7 

167 
26, 
367 

0.261244 
0.260968 
0.396221 
0.30BfiOO 
O.2~J04-1 6 

0.477 42G 
O . 213S~'2 

0.4.587Z9 
O.29G388 
0.4..47483 
0.049302 
O.3ilRl;3!i 
0.324155 
0.282653 
O.an03~J 

0.26 7787 
() .37OfJ5 ~) 

U .~U·;18bl 

0.:,4U812 
{I.3(;6580 
0,31291'3 
OAjOfl fi4 
('. aGf,:1Sn 
U.413727 

.I;H[):!2!=l 

0.£>1 2243 
O. l ~lG i')aO 

.416E31 
(),M09S! 
0.877011 
0.371832 
.1.53071 9 

1).1302123 

1234 
1235 
124(; 
1341) 
2345 
12:31) 

12J6 
134G 
2a.1G 
1256 
li356 

2856 
145(i 

2456 
3.J,5G 
1237 
1.:217 
1:#7 
2347 
1257 
HI57 
~'j;, 7 
1457 
2-1&7 
;H~) 7 

1267 
1367 
:2367 
14ji7 

2467 
341, 7 
156, 
2567 

0.088678 
0.106864 
0.086653 
0.1921 24 
0.1 00775 
0.018238 
0.01807-1 
O.111 4m 
0.lOb~35 

0.012920 
0.1 66484 
0.108264 
(J.laG9S0 
0. 098441 
0.l G7 140 
0.128173 
(J. 12ilGO\l 

1.1 .190.108.'; 
0.224222 
0.062455 
0. 1141)87 
O.l l)o6f,fj 
O.108SG!1 
0.141342 
0.:17:1-10;; 
0.01 85G7 

O.21:!2fj 9 
O,07!H81 
0.079977 
O. 4.2il;JJ!J3 
0.311342:) 

5.0UR2nJ 

http:0.0174.72
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TA SCA'l'TER~L'CES. BUTTER 19HJ-3 l. 

The four~ sets with. the lowest, scatterancc'" are summa.riscd 
in (20.3). 

Fow'· Yi ....,. 
sets b.. ~ots ~ 

1234 0.23i374J· 12345 O.OPI86:l 
1235 O.(H60!)I> 12340 U.0129f1U 
12-!5 0.Oj5~139 123;,\) 0.00274'2 
134ii 0.167600 12456 0.0020 10 
234.6 O.WC, 256 13456 0.027658 
1:?:If) 0.u:H72G 23156 0.017060 
124G 0.01i579 123·H 0.007747 
1346 O.153~78 12357 0.003081 
2346 0.1 10/46 124fi7 0.003496 
1256 0.006566 13457 0.00552·1 
1356 2:H.fi7 0.019409 
2356 12367 U.001633 
14.56 12467 0.003212 
2156 13467 0.003281 
345G ~;J467 0.02165R 
1237 0.02924.7 
1247 0.0:) 7532 
1,H 7 0 011 :J~i;) 
2347 0.29!J38S 
12.11 O.011 2~J 

1:357 O.tI'211 17 
2357 U.OG88S!I 
1457 lJ.04.l-193 
24.G7 
3437 
1267 
1367 
2:3G7 

'l G7 
2467 
34G7 
15l.i7 
:2567 
3567 
4.")Gi 

O.(lOOOI5 

0.1 21;G78 

O.0£::lH76 
U.U3!J 6:23 
0.07032i 
0.1921'>:14 
0.016:120 

6 

0.000435 
0.00045 1 
0.000420 
0.0001 12 
O.OO()] 22 

A6 = 0.U036410.012--1 ,,2 

12567 O.UOO4.11 
1!301l7 0.001552 
235ti7 O. OO4.51!:J 
115f)7 O.OOr.s51 
2 l..j(i7 0.001150 
315!i7 O.OMO'!! 

AD = 0.201 901 

17, 


TABLE {2\!. 3 .. 

1~ 5 G 12 01(; 1 ~ 3f, 12 67I 
'sCI\ttcTfmce .01 :!fI .01"0 .U162 .1118:", 

.:!!IO .2Gu .261 .0 l~ 
SlIuSc(lltcTllnct's .U49 .U .UI .(l·HI .!l42 

.:170 .~R2 .:5Sa 
.:121 . i)~5.3:21 

l'hese fvur ·sets form a gJ'oup quite distinct fl'OUl the other 
foursels. the~' ha,v~ markedly lower seaUerancus. Tile lowest. 
four·rowed scatteran0e after those listed ill (~9.3) i~ 1) ,O(i2 in 
(1257). It will be Dot-ie-eli that. t11e four·sets lisLed i.n (2V.3) a r e 
those obtained by adding 3, -1, 5 ClIlLl 7 r c.:;pect b·ely to (126). 
~inco (126) bad markedl,) lowe r sca tLc l':l1WC tha.n the other 
tlll'eeseLS, it ,,"as t o be cxpc('ted tllnl the fouf' ~sets containing 
(120) would give low scatterances. The iHtcres t in.~ th wg is U.ta.t 
[letuul1y no oOler four· set comes in and <.:ompetes with those 
that tleri\'c llieil' good fit D'om the connection " 'irh (126) . 'Ye 
:IJ80 sec lliat all these i'our·se1...c; have a ma.l'ked spread ill thejr 
suhsc<l ttcl'ancos. }ul the {uur·sets listed in (2H.3) may thl'l'efore 
be eonsidererl a o: promj"ing. This checks witll 1lle bUllCh map 
,mal.ysis wlJere i t wa,,; found that just thc:;e rour ·sets were the 
lJll CS to be considm'ecL 

In the fivc ·sets 11 slmilar effect is fo und: tl le (J sets oLlained 
hy fldiliug au)' 1.\\0 of the varia tes 3, 4, i; ruul 7 to (126) form 
agaiJl a group b.\ themsd\"es hosing scattera.,,(;~ lower t halL 
tho others. ~~gajll , it is interesting- to note that no othCl' set. 
COIDt"!-' in. Tller€' is a lso <{uiJic ient spl'ea,(] ill th4" subsc<'1tterances 
.0 consider Imy of lliese sets promising. 'rJlis also checks w ith 
the lmuch analysis. 

nul wl len it ('lIme~ to discriminatillg hetween the li pl'om ising 
fivp·c;cl!', the scatl.erance nnal:vsis p roves inadequaLc. ,Yo tben 
nced to tllkt.~ int o aceoun t fiUCl' traits of th e data which ape not 
revrnled by the !\cat1eranc('$. From lli is p Oin l. on we mnst; 
lem'e the scalterance andl"ely on thi> lJUuch ·malJ ann]ysi"" . ThiJ:! 
is u ;!'ood example of tho gellcra l r ulo that the sCIlUcran ces ll1a~ 
be us<:ful in wdicaling l'ouahl y tilE' ;::i.J11plel' I'e~ture<: of the dala. 
- pnr-t icularly in rases where these feature.:; a re ,Cl'5" djsti n ctl~' 

and stron~]y presCllt. BUL t he scaHerauUls must not he presser] 
to ~iye infol"'lllnJion nhont. the fi net' fe at ul'f"'s: they wi ll t hen 
onl,\ give' nOIlsen<;ical inI'Ol'lna t io1L 

,.. 

Two­
ael s t:. 

12 0.9~J499l) 

13 0.G877: 
23 0.i81931 
14 O.9525-J 1 
24 O.8fJ2?,53 
a4 0.507588 
5 0.699055 

25 0':)36446 
35 0 .9849£)8 
·j5 0.~J584 17 

16 0.736198 
G O.3!)S256 

36 0.982863 
-46 O.!l2!lG87 
ijG 0.3783 11 
17 0 .09000 

Thr~e· 
set3 t:. 

1:23 
124 
134 
234 
12.') 

ltl5 
235 
14.5 
2-i.'i 
345 
126 
136 
236 
1·.1{i 
240 

34G 
Ifill 
;)6 

30G 
456 
127 

37 
2:-1 7 
147 
2-1 7 
347 
157 
257 

57 
57 

167 
267 
::l67 
467 
[.(1 7 

....13 = 11.82994.i 

27 
;31 
47 
"'7 

O.~)07n8';! 

0.850195 
0.318713 
0.399923 
0.1 77620 
v .416881 
0.:232571 
O. li58753 
0.2963!l9 
0.4860;)6 
0.073015 
0.331648 
U.2(j2579 
O.!if)!1087 
0 .!l553..j."j 
OA.li885fl 
0.257888 
0.14.)874 
0.320S R7 
O.Uil14.f) 
0.06905 
0.0 128!l3 
U.;:)!l8-!77 
O.08j tjfJ3 
0.836323 
0 .422;:';13 
0.044422 
O. 11l3!Jtj1 

0.4.57940 
0.53701 8 
0.0:)4;,01 
0.1 04/08 
0.-106681 
0 .467200 
0.207688 
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The most cOllspicuous difference uetwc.en butter antl meat is 
th a t in buU,el' we find aJreacl.v a two-set with a, small scat ter­
anee, namel y (17). '1'he rcas on fO l' this \\" as discussed in 8ec:tiOl 
28 It is mainly a spurious cor'l'el a tioll aud should no t be taken 
as a-Il expression for a structural l·elationship. The secunrl 
lo\y est. t.wo-set ill butt.el' is (56) with a sca rtel'ance of 0.378. 
This simply e xpresses the fact that. there is a stl'Ollg' trmd in 
t.he lmUer consUluption. Tho third lowest is {2G) with a sL;n tlel '­
alice of 0.398. Mor e precisely the varia tes 2 IHlIi Ii move i.n the 
same iliredion, r~f; being positiYe. This ca ll 11l'o1);1.b]y be intel'­
preted as a structural relatioIl, fiu,mely tlle Engel c/u'uc 1'01' 
buLter : Butter consumption increases as income incr eases. 
Of (,O tu'se , the c:o llllel"tion as exh ibiLed in th~ gr'oss conela hOIl 

tween these t"o va riaLes is not. perfect , due to the influen 
I other factors . '1'h e main conc lusioll<; from the study of tho 

three amI highel' roweU seattemnces for butler ,,1.I·e shnilat· t 
those for meat.; the l'e<l.dBl' can himself ea."ily emor y tllis anal~-s i$ 

tlu'ough. 
Tallle (2n.4) gives the line coe.fficl€uts JOI' lIUtt C:l·. T lw LIYo , 

I'll" ed line coefficienLs are the s~tme a,:, UJe ,scaUcmllce.s .mlL 
Heed therei'ol'c n o fl1l't iler cOlllIncn t.. 

'Thf'. threc-rowed line Goefficien Ls illdica.te (126) a;;; the hos t 
se t. This is remarkable. The line coeffi c ient. in iliis set is e YBll 
srultlJer tban m'o a laI. in (127) aJl ll ill the uthel' se t::; COnLaillin),!' 
t he' spurio llsly connec ted V.'1l'ialcs 1 anti 7. A_1Uongst the foU!'-o:e to: 
the best is (1256) w ith a line coefficient 01' 0.16. Its sub-lin 
c.oefficients arc. 0.33, 0.16, 0,73 and 0. 71. 'I'hese show a 0.011­

s id~rable spread and some a rc- no t small: (Uo6) is the refore a 
tlecidedly promising set. This eh(" rks wit h the bnIlcll analysis 
-which, it will be remembm10d. ga\"e best t ightness in (1256). 

H we- waut to go from tile four-sets to the fi,~e-sets , we sec 
'rpm l;ahJe (29.4) tllat we must accep t a mat'ked incI'8aSe in th 

Jill !) coefficient. Indc-ed, t he lowest fi ve-r owe d line coefficients 
nmge about. 0.25 as against 0.16 in the four-sets. This llleaUg 
that even the best five.-set is sur ll that the (t/:omge tightne:->'1 ill 
ils val'ious bunche" is poorer than i.n fue set (1256), ",Yhetl1eJ' 
it is ne '\crt.heless adm issible to conside r some of these sets 
will depend on the st.rength of the slope rhunges. Ire haye 
therefore he.t~ reached 11 point ,,-11e1'8 the analys is cannot b 
pushed any fm ther, pm'ely on the lX-Is is of line c.oefficients. 
F rom ihis point 011 we h a vc to rely 011 111 e huneh map . 

TABLE (29 . 4 •. U NE COEFFICIEN'TS, BUTTER. 

Thr l'l!­ l'oul" Fh'("
"'t't "'- !:l (.'! !-! ~'ots 

l:?iJ 
124 
134­
:1al 
1:25 
l'lii 
2a~ 

1-l ;) 
:2-l;, 
313 
Llfj 

!lin 
2:J6 
1415 
246 
a4Li 
1;,6 
:t.')1) 

a;jf~ 

4,,(; 
]if 

1:17 
~in 

J-n 
:!-1'i 
:Ai 
1()7 
:loY; 
•.ItJ," ­
,167 
JIll 
:!Ii 
:)(;7 

4G7 
;,1;; 

n. 'i ;)67 
O.f101!-J[)f\ 
o.li4270 
0.7i ll!I1 
O. :~3:? 101 
1l.i2j~1 

o.4t);m;) 
O.H78H 
O..i8Hl' 
U.7;,)5:3:) 
n.1:1412 
V. ;;~2(Jj 

o. -,3~:.l 
c.l.i384i 
c1.f,F!fi:l3 
U. i 41;;17 
1I.7:l1ii:1 
1I. Ti l-i ,( 

.:ili212 

O.a38n~1 

1).1 i7:iP 

O.1 7 ~I1H 

!l. 'i84!JI: 
0.2Uti '1 
(J . ~3(H)c) 

(I.nB8;) 
O.2G183 
O.3fll (J8 
O.7aH64 
O.~O!·17 

O.2'i40G 
U.24;'3;)3 

U.ti(J!l4'l 

0.1l6:'j95 
O.7HO:?3 

1234 
1235 
124;; 
}31;) 
Z31 ;,) 
1:??li 
124(; 
13j(j 

2M li 

1:25(; 
13JG 
2:i .'iH 
14jIJ 
:!4:;(j 
M ilG 
12:1. 
}2·17 
13J7 
2:H7 
1:!ii7 
l:'!;, 'i 
;!:1~" 

l-1'li 

24:'4 
3Jii7 
1267 
13t)j 
231;7 
141;J 

2·167 
341H 
156/ 
2;)67 
;-l 51) 7 
;loC7 

0.73491; 
O.1l41i'A 
0.21'2{)fJ 
0 5~'9.-) r; 

1).6771}..1 
O.310±9 
U.2 1117 
O. IO!)43 
O.hlJ!lS7 
O. lIil !l1 
() 71003 
0,;')774 
O..iil301 
D.ljn;')li 7 

U.:ii1(;2t; 
V.2f1~I().) 

0.21S7:32 
0.200::'1 
0.80703 
t)J; I G87 
:;'.281;20 

VA l 107 
.3.J1.!.) 

() 23H47 
0.72.>40 
O.fJli i\:: 
V.SS5!).) 
OA.j /12 
O.4 lH75 
01:l2f':)8 
O. tlU2ii-! 

Hi5;) 
V.30i21J 
C) 7841lG 
U . i)i.i~JfJ 1 

12n4f) 
12341; 
12.)i')G 

124:16 
l3 Hiti 
2;H,ji,; 

123.4-7 
12,'l~, 7 

1 :?4 ~'7 

VH;J 7 
2;3.1.-) , 
113(;7 
12467 
1 ~li7 

234(j7 
l:!Sfi/ 
1:1iifi7 
~:l')l j f 

n.ll!!;)!" 
O.44' !I2 
0.25537 
O.2G IOfJ 
0.724(; 7 
O.71l80K 
0.25577 
O.f,;'Ofio1 
O.G!ll.J/1 
U,;10;)10 
0.443(j7 

0,[,(11.131 
0.61\22 
O.2ml?:-; 
(J.lliifJl 
O.D:?O~d 
0,412-1[) 
O.31lif!:) 

n;)(i7 

znrii 
3-l iili'j 

:,ix-~ , ~ 

1:!:iJ;;(j 

1234.)7 

1:!:l.J6i 
12J5G7 
li!-1iiG j' 
13-156. 
:!;'I..I ') [;7 

O.2t:\:!1G 
0.61301 
0.( 1)814 
0.(; J,8i~;I 
O.1i2-31'" 
0..')0627 

.4RfiiiO 

se\ (!rl-!'- t~r 

128J567 .6UfJ 'U 

Tht' cO<'ffi cj(>nts i ll. Ihl' hl'o-<Hi' are " impl y tile 5l'.a l!erancl'~ ~iven 

J(l, EHPIRJCAL DiSTRIBUTION or SCATIERANCES TN AS EIGHT-SET 
OF RAz,,-nmr YARlATES. 

For various purposes it is useful - as a s ta,ndar tl of com­
parison - to know the decline that takes place in the scatter ­
lUlces as 'We pass to llighcr sets in the case where no systematic 

http:illdica.te
http:uetwc.en
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C01lllectioIls exist between the variates. I lin.\ e therefore h ad 
'omputed the scattel"atlces in aU possible S11bsets of 3 e ight­
rowed correla tion matrices formed on the h:u;is of r allClom elata . 
The variates wero constnlCwd b~ lottery clrawmgs. The 
murlber -of obs€l'v(l .Lions from ,,-hicili the e.orrclat.ions were 
IOl'lllCU was X = 100. As an example t ile cumulated rrequenc~ 

TABLE (30.3) . A\'EHAGE o:F' CHARACTEHISTICS FOlUlED h'f ,\Bon: 
13 MATllICES. 

&t MedloD 

2·rowod 0.99-1 
13 (l.!Ii2 
4 0.9.'lG 
[, II.St18 
6 0.826 
'j 0.763 

0.7)2 

Lp\1 or 'IU~ rUle 

O.!IS!J 
U.952 
0.904 
u.Sf)4 
O.~O1 
1.1.,47 

1. pper quar t i Ip 

O.!l!IR 
lUIS:! 

0.955 
0.914 
0.81)0 
D.iS4 

ilistl'Ihutioll 01 the fOUl' -l'Owed c~"11' .... .. tu::.4.~Y O51"<I ,....... T,~tI 
or • . "owt!) a.u.nt1t~(:. I N ""TII.. iII'][

l::ll'att er<1nce:; conW inea in one 
of these matrices (Xo. III) is 

in~ll in Figw'c 16. The COnl­
plete lkt. n[' the above mention- ...... 
cd s('ftticraJ1CeS compute<l wiLh 
ftix decimal places are aVctil ­

alllf' at Ule U l1iversit~ Tnstitutc 0 ~ I 

of Economics, Oslo. A ('op~r "'p ' .. , - .. 
• .' 

<al 
1/1 . In . 

Wll1 be sent 011 request. 
The median values and quarti1e.-> of the empirical clistribut.ionq 

of these scat terances are given in Vlules (30. 1) - (30.3). 

TABT.E (30. 11 . ~lliDIA?\ OF TIrE :E~IPIR1CAL DISTnTBUTlO~ OF SCAT· 

TEHA:\C,ES 1:--; _\ N EiGHT-SET O ~' HAXl)O~J \' AfUATES. 

~d 

2 r owcll 


2 


.t 

:) 
Co 

7 

b 

~cl I­

2-rowl'U 
::! 
-1 
') 
H 
7 

O.!)9 1 

0.967 
0.921) 
0.81)7 
O. i !H 

0.731 
Ofi,,, 

~.lJItr\ " :\0. 

1[ fI1 

0.99;0.997> 
0. 972 
o~4H 

0.90!) 
0.Sii3 0.827 

0.788 0.771 
0.7·11; 0.71 :1 

TADLE (30.2). 

r jlpor qu,n'!\les in matri" ~o.o1\'nr quart ile. Ut molri" ~o. 
- Il IIIIT III 

0.979 0.984 O.98r, O.!W8 0.998 O.9fJ!t 

O.93!J . 1J.91iJ 0.91;1 U.f1 , IJ O.!'l85 0.!J84 

0.885 0 .921 1).900 0.948 0.960 0.9;)6 

O. S2'J 0.8,4 0.8.')9 O . ~I05 I 0 92. 0.911 

0.776 0.816 (l.S1l D,S-¥! 0.880 O,A."i6 

II t On 0.7.6 O.75!l 0.751 CU)l6 0.785 

Of course, these distr' ibutions do 110t J'epl'€Se nt the sampling, 
distrilJUUon of inLlcpemlellt scatlenmccs. F Ol instance, somo 
of the f(Jut -rowc '! scatt,erauces wlw~e t.1istribution is gh-en in 
.F igure 16 are conne<:ltll! heca.u:st: they ar~ uJ] contained ill Oll' 

and the snme: (light-rowed matrix. rrhe t hiug that interest..;;; us 
from 1hc COnIIUCllCY view-point is this kind of distribution m ore 
t1Wll Ute WSll'iout-ioll of intlepelldenl sca ltel'allces. 

Some information about the distribut.ion 01' independent 
;:.cattcrances may howcyer al so be der ived from the abovc data, 
In Table (30 . ....) m'c listed Lbe actual \fa lues of SOln e scattel·:tn ­

s [hat art: not ('.onneded. 

L\ fiLE (;10. tl ) . !.I'\'DEl'EXlJE:-''l' SC.\.TTER .\.:\CES OF lI ,\:--;ncnr " A1U.\TES. 
\i,II", 

....• • • _ t .... _ __ • .~ 
11 III 

12 . ~R2:ifj6 .HfJfI21;l .~I!11 i l4 
;H .!ll:!IJ~ ;?;, .mU:~(j 7 .!I!ifl 1(j(j

2·rowed 51; .!)!lb2a~) .~IT::lI)7" . !l!ltil;U, 
.H81OS-.1 .99nf13

-I1 :!:I .!I'i)~21 .!n;;u~{; .\l3i77;, 3-rO"'ed 
·1:lG .~W :! !I.j.2 .!)1)3i;)1; . !J8 If)l:j 

4-row('d 1231 .f)·WOl f! .&'! ' IH J 

ij· rowed 

!.i·rowell 

.• 76(,2,i .v1141H 

12345678 .11M,4!) . 114 (jf,7 
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TABLE (30. 5). CIU TIXCTEnlSTICS OF THE EMrUUC.U mSTRIB u ­
TION OF SCATTERAXCES or lL\XJ)O~I D_H.\.. (.For each character istie 
severa l indep endent dctenniDll.tiOTI '; were made b~' mca.ns oi the eompututi on5 
in tha 3 matrlcG$ I, II lI.n.d TI [ n.J.l ()n~. 1"1'11' llL:i ktll CC (;iLch median 
i.ll 	 t l,e ij r~1. (>1) lutnu 01 t 11l' 

determinations. 

Di muMlo lJAHh tJ! I 
t b" hi;.: II\ntrix . . 	 ~le'l!~1J 
,-Il)Dlnfn iug' Il il': Dl~~IJSlOn- yolue 

~c-f111 t..'rant-'{!1( niU., nf thll o f flu..' 
wh osO! oistrlbn · '(','III"IIIIIC(,'1 ",'"II~''' 
fion h ~ , Ifg111 	 ~n~t!~ 

2 2·rowed .9DO 

3 	 . "o~-, 

il 	 .K)8 

:2 

4 ;~ 


-1 

.!J93 .nl7 .!ltIS I Ii .HtIG 

.962 .~4.2 .il!l l 6 .!I14 

.!J2:2 Same ns meditl ll (-; .888 

12 . !1 ~14 

:3 	 .977 
5 4 .932 

;) .885 

2 .995 
g .H77 

(i 1 4 .94;) 
5 .fIO:? 
(j 	 ~ . 85~~ 

2 .9B:J 

" .91;;3 
4 
,J 

.9287 

.88(1 
6 
5 

.818 
7 .76·1 

2 	 . !J~-i 
.972 
.931'; 

8 i) 

4. 
.888 

G .i>26 
7 .76;! 
8 .7Ll 

present table j , lt D a n'Tn g e of 

Simila rly for t b2 qlla l' tile~.l 

Xllml",1' 011 	 J.oI", 'C\ 
iU(J"]JCJlthmt ,·,.lu~L(\wer T"PI'<ll' 

qll;,rlilu "wlrtile . ! ~tcrUlj ll l\·. [DuedI ,' Inn- l'( "''''n for th.e 
(1ll11'llClertSliC: ID!'(iin ll 

ISume IlS median 1 12 

I 
(j I .fJ73 I 	.ll!);) 

Same ,! S median G 

I 	.;, j; i) .9!i8 ::I 
.. 118 .984 a 
.!l92 .%4 ;)I 

(I1 Same :18 l11edlnn 

3I .985 	 .!198 
.:J"I .•" .9Il.l 3.D1R .!J62 

J~8 1 .H31 i:I 
H!:)ame os medi an 

,982 .W)!) 3 
.!liS l .fl80 3 
.900 .!)54 :3 
.8-1.8 I .fllI 3

I .t:.02 	 .849 3 
SlIme a~ median 3 

J)!lB 3I 	 .988 
.£182 .fJ52 3 
.ur);).!lll1 3 

,854 3 
.801 

.Hl4 
:3 

7·t.7 
.860 
.784 3 

Sam e nsnledia n 3 

.!J74 

. ~'G ;) 

5)15 

. ~Jn:? 

.~70 

.888 

.8;1~' 

. ! ID3 

.!170 

. ~13 1 

.81i3 

.1:116 

.nH1 

.!)li2 

.flO' 
_834 
.778 
.705 

.!J[l1 

.!Hl7 

.~ I :!iS 

.8ti7 

.1!17 

.131 

.lj7S 

givlln 
SC\'l,r(l1 

lIi ~h~·j 
\oI1Ul' 
!Duml 
fin Ott ' 

lJ1l.'(lh,1J 

. ~1!)9 

. ~l!J~ I 

.!H!3 

.!Jflb 

.HU 

. ~).;Hl 

.f.!!!' 

.981) 

.s,;);• 

.!l27 

.!Il)' 

.!l~ i'l 

. ~J;)G 

.!12~ 

.b!IU 

.!)!-lil 

.!Ii:l 

.ll40 

.l-lO4 

.859 

.811 

. ~Illf) 

.!-I7Ii 

.!I·Jfl 

.!lllB 

.85: 

.788 

.Ufl 

The mater ial that scrYf"ll to dC:Wl'lni.ne (30. 3) ma.J" of c oul's· 
also be utilisetl to finLl UtE'! eOI'I 'es[lOm1illg medians and quartiles 
for the distrib uLion of scaLtel'al1COO conta.ined. in (;L watr ix. of 
(ol/'cr rlimensioDa liL~' thi1l1 eight to wluch (30. ~) refers. lndce rl 
if "e lca.ve ou t all tllose sca ['1A~'a.uces ~l1a L COllt.aiu the affix 
Ko. 8 we obLaill tlle (;orrcspondiug (ti5t."ibut.ion of ;;cattCi'aJ.1C{)$ 

Qutn illcd in <~ se,on·set. Similarly, ono may lea"e out t. WD 

n11'ixes, ;:Lnd th us deter mine tile dis tr'ibul ion of S ('~1 ureranccs 

~oll tajned in a. six-set, etc. rThe re~mlt of these computa tion::; ar 
given ill ta.ble (30.5). 

111. 	 AN J2.XAMI'LE IX k YAnIATE :;; FRO:\I T.llE :\"E\\' mGL.Dl'l ) 

POTATO :lIARKl!:T. 

1'11e cxanJples of Sections 26-29 gave n, rather close fit and 
pcrul iUed to dr'a.\' - as it SL'tllD$ - significant ~oncl l1.siol1s 
about the inter coeffi(!ienb in question. We sl1al1 now ll.iSCll8S 

nn example where tl1E~ Iit is THlleh pooN::r ; its main interes t will 
be to illustrate how the llluw.h ·ana lysis tcchnique pormits us to 
obt.ain at. l ea.sL Lha t liWe regl'essioll inror m atio ll which c:l1l b 
S(juoozecl out Lhe data. r,Phe example is th e potato d:tta. fo r 
which correlatiou coefficients are. given in St'ction 2 . 

The complete set of scatterances in this example was com· 
l1Uted. In table (31. l) are give.n the. lowest. an d lJjghest values 
as well as the I1 Jooians for each dimensionality of the scatt~ l" 

ances. (A complete lis t will be. sent on request.) . 

:1 
4 
iiI, 

Set L uWC.3t sentt or-
an~ IOllot! 
- -

.79ii - ~ll l ! 1 

.(j2fl .!lR t 

.;;;}15 ,80a 

.439 .l'iI 
.47:l 

7 ) lG !J 

.2sn 

.3(; , .fi2:i 

.30H .·lr, 
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It is quite obyious that the values of the scatttlrances in the 
potato data are distincLly lowf'!' than for I<luuom variates, A 
glance at (31. 1) as I.!ompart:'d \\ iUt (30. 3) shows this immedia­
tely, 'rllerefor-e some sort of org-a,nisation is uutloubtellly pre -
CHt, but, of coursf', it may not he goutl enough to pel1n it fOI 

point out ex-acHy linn' t he various fa ctol's influence price, We 
see for instance tlwt O,'()ll in the higher sets of the p oraLo data 
tIle organisat.ion is very much poo\'cr than in the llicat a nd 
butter dat.a. sLudied ill tile previous "ec tioll:>, e . g. the lOWEl$t 6­
rO~'ed scattCl'ance in thBll)otato dal.a is de.ciclealy h igller than 
th~ 10"'est 6'l'owed Rr.a ttcrauce ill meat. and but ter. AlUlOngh 
the scatLel'allCM may not. he able Lo di~rl'illlin.at,e betwcen 
('erwin uillicult eases of mllltilllc colline.(lI' i1y - as we have 
seelJ - ye t they do ghTe an un[u.i!ab10 71c('es" CI/,I/ nitei'10H : They 
'11t/<>'i be small if an~' goou r~gl'(>sRioll equatoD shall exist. There 
is therefore no hope of gettin~ a nice looking l 'Ltnch map for the 
pot..'1I0 data, 

~'be r t:UlSon Cor Uti:: pOOL' fit, c\-en in lIt~ hi!!'her sets of th 
potato data, must he that one or more val'iales whielJ. are 
l1ighly hnpOl' ta..uL for the dct('nniua ti un of the pl'ke m-e 110t 

present alllollf:,"St ilio",e llere l:onsi tlcred. One snch Y:ll'i ;-\lc lhat 
suggests itself is th-e quantity t j('ought to the mal'kct; uu­
fortunately exact. info r ma tion about t.his YUlial.c was lIot avail ­
ablo in l.lle present case, 

To see if it shoulll not be possiLle lleverthcle'3s Lo ~ queezCl 

~ome information out of the data , a. complde l)1Ull'h Dlill' was 
plotted for all sets np La amI inclurUng the rom -sets . 

A fi rst ie..c;t. tha t "as l11ade on this map wa.<; 1-0 see what 
hallpenec1 if the 'Val'ia,ie No. 1 (pf'i(~e) "as adlled to any or lh~ 
two-sels, It. turuec1 ~uL to be eilhm' detriment n1 or DLlperDuolls 
(accordiug to Ule (,I'it-eria, of &<;etion 11) ill all cases except 
when added to thl' ~et (24) antI (2;)); in iliP"e two C1-<;e<; i 
turned out to be useful, r('hjs illfonnation \\"0 !'Chal] JlOW 11'Y io 
verify ill othel' "'a~'s, TJwre llT'e fonr varia t.?S invol vcrl in the 
abovo preliminar'Y (:onclusion. namel~' (12-1.5). Lp. t us S~ what 
happens if we add one of thc<:e v;ll'in tos to an~ of Ute Lwo-s('ts 
('ontained in Ulis fO\lI' set. Doill /! tll is we get the rollo~-i.ng: 

st.ar m ap. 

185 

TABLE (31. 2) . 

Ar!I ~1 no.: 
Variate 

~ 1'; :..' ;.. ~o

~' 
"4 

1_ 
Xo. 1 

.'...- 0* 
,'.
'O. 02 I * 

I .'. 0....• J ...... •J 
~ - -I.:~ I • 

In tile ril'sL place 'we see that any of tlle 21 t.lliee-sets (12JV, 
or (125) seems pl'oruising. Illcieell, adding 1 to (21), :? to (14) 
0'" J to (12) we gct U 1Is(;\1'u\ vUl'iMc (ma.rked " 'HIt an asterisk. 
ill (31. 2». The samc is tTlIe if we add 1 to (25),2 10 (15) 01' 

ft to (12), But if we add J to (15) or 5 to (14) we get an indica ­
iou of a uetI'i lUenlal variatl:'. FinAlly, bot L 1 uu(l :? are inrli ­

('ated as supel'flu(>l1~ in aUllition to (-15) . This in cunnection \, iill 
tho fact that we have the following- val ues of tbe ol'igiual 
coITelalion coefficients 

rl ~ -= - 0.2108 
I'll = - 0.4;')26 
1', ~ = + 0,014.5

(31. 3) f,,,=- 0.31.) 
r"~ .-= ().D.-,·\ 7 

i:I.~=+ 0.4436 

sugge,"'t-"l the follow ing ('onc1usion: 'rho priee 1 tlcpends essen­
hall ,v on tile t\\'o qualiUes ~ aBd J , the~e t.wo qlla1itie~ heing 
pra.ctically uncon'elaLed ill the material at haTld, the set (2.1) 
rlisplnying ilia l.'ll1al le.:-t gross corr~lation of an the t\':o sets, 
Eul OIl the! uther hand there is a (: lo~e relatiun b e\,W'f:'0n 

the two qualities 4, and 5, so that we l1Hl~' abo as un a/tenwfiu 
cOllsider to express price as a function of the 1\\"0 qualifi<?s ~ 
and~. BHt we tI/IIS! Ilot ma].·/; all attempt to exprl ss price ,c;i­

rdl(wemcsl!l (1.$ .fw,ctirm of -! an 5. The ,tlternative (124)(I 

seems to he slightly bet ter Uwn (1.23). 
The aboye conclusioll is corroborated by the following rurther 

feature!'; of the bunch map. All the bUllehes ill t..he three·sew 
that include price indicate that the prine depends negatively 

http:f,,,=-0.31
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on both the .t wo qu alities iny olvccl. If the bUllches in any such 
three-set should show compatible signs, the buucl1 r xhibiting 
the intercoe fficient betw~een the two qualities ought therefore 
to indica te a /legative slope. 1'h is is Ole case in tite sets (124) 
and (120) but m ?lone of Ole other thee-set., : ill p;wtiC'u laJ' the 
signs ar e not compat ible in (145). 

F inally, the sLar map for the four -se t. (12015) is 

ABLE (31. 4 ). STAR :MAP F OR (1245 ). 

lntercoel!i cient 1,et,veen ,·arll\.te ::\0- . 
Yllrln t ~ ,1(\<1('.1 ------~------- --- ­

l:! 11 :2' 1 1b :! .'} ·1;; 

1 0 • 
0 

0 

o 0 

• 
o 

2 	 I 
4 	 I • 
5 

If tile fit in the tllree s.e ts had been better, there would hayc 
boon produced mOl'e of an "explosion" by passing to the four ­
se ts, but even as it is (31 . 4) inrlicates clearly that the set (1245) 
should llot be accepted. In other wor'tls, the two three sets (124) 
and (125) must be kept dis t inct. 

In normalised coordinates the diagonal regre ssion equation 
in (124) is 

(31. 5) 	 ~l = - 0.892 s~ - 0.978 ~4 

(price) (size) (colour 

Of the two variates in the r igllt member of (31. 5) the abo\'6 
cri teria iudiL'ate 	 t-l (colour) as tile most important. 

The concrete knowledg'c which we h a.ve of ilie data indicates 
that the result 	 summarised in (31.5) is quite plallS~ble. It is 
a t least a more plausible r es ult fuan the one whicb seemed to 
follow fr om the ellipsoid method of Section 2. 

If we add the sign ificance factor A, th e rcgression coe ffic-icllts 

of (31 . 5) can be written 

(31.6) -- 0.892 I 0.22£1 and - 0.978 . . O. ·HiO. 

u~-

IL is interesting to compar e the a boYG final conclusion with 
ilie lJehav i(}ur or the sc;atteJ:illloos. The s mallest sca.Lterance 
in the thr ee-sets is that ill (1,10) \yh ich is equal to 0.62. If we 
shou ld let ourseh'es be gwdcd o111 ~' by this, we would be led 

adopting jus~ that three-set " h ich by LhH bunch a,nalysi'" 
113$ been characterised as a. dangerous inct.dmissible set. In 
o Lher words, we just ha,e the second - the dangeroLls one - ­
of the two alterlla1h -es that wcr~ discussed in Section 1 in 
connection with the interpret.at.ion of small s(:utterances. Tl 
subscatt,crances in the set. (1-.15) arc 

(31.7) 	 0.80, 0.90 amI 0.80 

In order to anivc at t ha.t interpr~ta.tion or the. scatter tlJlces 
l\ Weh we now - f rom the bunch u.na.l~' s is -- know is the 
,COI'l'€ct one, we \youl cl h n.ve to be 8<0 CO !1serva!ti,'(' as to La.!$ 
tho t111'oo numbers in (31. 7) as e ssellf,ia.lly equal. Possibly tl 
whole appea rance of the da ta might ha.ve led us to such a, 
scepticism, but at allY r at.e i t is evident that th-6 complete 
lnl1lch analysis furnishes a much more conclusive techniqu~. 

;i:!. lO~-n.CEXCE A" ALYSI S AS ,\ MEANS ali' DETER!\Il KIXG TR~KD 
PARA130T,AF. A~"D OTHER CUR\TF, FJ'J:'TTXGS. 

A problem that is frequently encounte red in time series an(.{· 
ly~is is to Cit a polynomial a.s a " trend" in a g iYen time serie s. 
'rhe ques tion theu arises as to how h igh a degree Olle sh ould 
take in the POlYJ10Jnial. The confluenoe analysis t echniqu 
m.r," be a. help jll ans \Teril1g this quest ion. Of cour se., stri.ciL~' 

spc.1killg, a numb!"!' of 1erms representing different powers of 
the iime·\' aria.tc can ne \'er b e lineal'ly dependent, but it may 
llc that the oppro-:r: imnte line~,r connection that ex ists between 
such tel·ms over a short inter \Tal makes llic whole fitWllg appa ­
ratus so much more sensitiYe to the random disturbances that 
H '\ (mld he ootrer to bo satisfied \\'ith II smaUer number of 
terms. The point where to s t-O}J m a.y then be decided by con ­
sidering the given time s er ie s .1'/ (I dE'Doling time) a ~ well n.~ 

the SUt·ce:5l:< iye POWel'S o f t as so mall~' 'i'aria tes to be throwu 
togcllier in a. regression annJysis a,nd f: Cli .ltiniscd by il bunch 
an,1 star map analysis. I n p,·actiee it is llsually better to use 
hillomial eoeffkient.s ill t instead of powers. 

)10r(' generally the sallle proocdur·e rna,v , of course, be a pplied 
if it is wanted to f i t l() a g1veu ser ies a lineal' form in a.n:v 
sequence oC prescribed funct ions. 
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The bunch analysis may a lso be al)pl ioo in Last ing the Rigni­
ficance of the information obtained by successive laggings of 
a given time se ries. This is equiva lent. to using the COllfluence 
technique in ordel' to ueoormine the. si£,'1liCica.nce of tho coeJfi~ 

cients of a llifferonce equal-ion which the giyen series is 
assumed to satisfy. The. confluence anaJysis " oul (l t.ell ho\v 
high order ot tIm UlHcl'elloe e quatioll it would have a meimingo 
to consider . 

\101'0 generally tile same kind of anal~Tsis ma.~· be applied t 
test we significance of tJJe inforIm t.ion obta.ined b~~ applying 
t.o tt gi'~OIl scf'les a Dumber or different lineal' operations (mov­
iug tut.als with different weight-systems). 

3:l . TIIE lK.\'DE!JD.\CY OF 'rIm L:LM81CAL 8A~1!'LmG THEORY AS A 
:\{EANS OF' 'rESTING LL'iEAR CON Ir IXENCY. 

In concluduJg the present im-e~tigalion it may be intel'esLing 
10 compar{' t]le res ul ts obtained by bunch nnnl,vsis wit h that 
(ib1.aillC(l b~' the clussjc<l l salllphng error approach in a case of 
] inea.r ('Oldluc l1 cy. 

~l.s an cxruulile I select the. cOllStrnctcd exalllple in Section. 
23, \\ llcre we adulllly kuow t.he composi tion of ilic (la ta and 
thus can see Jil'ectly which meUlod leaLls to an appl'oxilllatP-]Y 
eOrI'Cct l'f'sult and wh ich one gives nonsense resu lts. 

'fho classical s.ull11ling- er ror mcUHld of testing the " sign ifi· 
:auce" of the coefficients in a regl'ession e qual ion is a" follows. 
If ilie numbf'l' of obsernltiollS is sma ll, the coefficients lL:we to 
be tested hy "Studen t." q di~ Lr·ibu t.ion. But if the. J1uml)er of 
observations is fairly la l ge - as it is ill the constructed 
exampie where S = 100 - th ere b only a fJC~1 ige..1bIe difference 
betw('en the \'('\:;)11 1. obtained by using "Studeut"s distribution 
and that obtained hy si mpJy computing ilie onlina.l'Y standn,l'd 
orran; of Hie regrossion ~oofficiellt~. In the present case i t 
will amply suffice to consj rl el' the ordinary s i.'ludard errors. 

rl'11e formula for lhe element.a.ry rCg'rcc;sion coefficien t. of t.be 
nnn~n0111)alideL1 V!1r.ia tc :1' . on '"Vj takon wi thin the set (cc} ... /) is 

<i/ . , •. ) 
, ~ . ~ _ ~i")_'_'_I_(33. 1) bjj,n) . 

"iln (/J. , )'l 

whore the nl'S ure the elements of ilia uujolnt moment mMrix 
in the set (a/i . .. i ' ), 

The standard error of (33. 1) accOl1:lillg to the cla~ical C<>r· 
Ululue l is 

1 ,- l' 6 1 .~ . t.." ,1 . . . lUi. ./ mjj '" . . 1 •
(33.2) (} Ib,/(",> " ,,\1 = l N ' \ ?1l ' D./(,9 .. I iI 

jj 

where the L -s are tile 5catter8. nCelO and tIle ilia = ITt.l·,l ilie snm 
squares of the vllriJ too cxtlCncled vel' all observations. Th 
n1ullber N' is the co~-rected number of obserra tiona (the degrees 
of froedom) , n amely 

(33,3) 	 X'= N- I' 

where N is the (letual number of observati01)S and j' the number 
of yarial.es in the ]'egreesion e lJ.ua t.ion , i. 8. the n umber of affixes 
in the seL (atl .. . ,,), 

II the regression equation is written in norm a.} coordinates, 
the regression coefficient of Xi on Xj ill tl le set (a{1 . . . r) will be 

PiJ(f<j~. . ' ''J
(:~:j. 4, .j' ) = i i {t,tj ,' j ­

l'ii-a" . . . J') 

where the '-" S a re thlO elements of the adjoint corrc:t.ation 
matrix in the set (a(3 .. . r), in oilier words, they are the. cleo 
ments in t.ho tilling table for the set (cc fJ • . . t), WheD the tilling 
technique is used, it is mosL convenient first. to compu t.c th 
regression equations in norma1ised coordinates, and then - if 
wanted - t.o pass to the coofficiel1ts b by means of the t lrst 
equttUon in (33. 4). 

1'he sta.n(lard error of (33. 4) is \ Im}}/m,j times the standard 

~Il'or of (33. 1), tha.t is 

• ~~" fnt ill , tolJ ('" r,d. : . \1\ TlI l r('llu"tion to stnti,1i. ·~. ~h:lI,t~r X\' lJ . (IT 

;=(' /~ "j, / : :\t"t.1!tJll" of COHdnLiull _\llllly~ i ~ jl:l!!p :!:>S. The ,.\..(:udnrtl l'rrur , tJl 

f Ill! rf'gT{!~"iO\l ('odl ie if'll b ar t> lI slI nlJy g ' ''cn h~' 1l1l'Un;; of reClirrem·" forlfl lll ... 
I I, 1", 1I1'1'1i~ in 1'OlIlu'ct.ion wit h ("(!rt uin '''(!Ill'd''1I1 ('on ' pntal iO!l ~(·hCJn!.' ·.. ror 
o"r I "lq,v~(' it j- lll'ft!.'r to (" (llL- ideJ' th r· eXl'li" il '? fnTmul .. r:1 :).:Z .. :rhi~ forJltulu 
i.e 	 c\"on to 1'1> l're rerr{'u in actulll (,amput..tioll w llcne ,-er t Im S..-;.ltt .. r:tI Il·0, III I' 

\~.. il:lhl,· , rOT ITI ~t,m("l' t ilTon!!ia 11\1' ': llmph'TI' ti ll:iJ!!I . 
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1 ,,~ ('(33. f)} (J [,ji.i'It ~ . . . ?)l= IN 
/\ (fp . 

l'he formula (I LL» show's that in any suhset (a,a . .. {') whicL. 
- so far as the systematic components of the varia,tes is eOll­
'ornro - is multip ly collinea.r', both the scaUer-ance Qnd the 
subsca tterances \Till have the dislurlJCf 1tcc~ ,I~ tlJeil' p rincipal 
terms . III oLher words, th ey l1ill be me-anillgless fr om tho view· 
point of (h e I'egression equat.ions studied. I n a ny multicollinea,l' 
set the st.:wua.rd. errors (33. 2) ami (33. 5) ,,-mlliere[ore in poin t 

of principle be of the indetel'minate ~ JOl'l1l , amI iu pradi<:6 

they will have to be look ed upon as IIIwlbers dr(flw at ralldom. 

In other 'lords, they wiB be entirely meaningless as tests of 
tho "slgnificlUlC()" of the regl'ess ioll coefficients. 1I .,-e mn-er'· 
tlle.less usc them we actuall~ ' take a number drawn out of Cl ne 
hat as au express ion fo], t.he ":o; ignU'ican co" of sOll1e othel' 
number dra.wn out of anothe.r h at, 

l'hat. this is aG blally so is yel'ified in a stl'ik ill!;" lUa.llllCl' if we 
eomputc the oleUlcllt ,u'Y r eg ression cOf'ffi cieuts and t.heir -- tan· 
dan i errOl'S in t he set. (1234) of the constr'Ucted exa mp le of 
Section 23. The r esul ts are given in (33. G) aud (33. 7), In 
these table.B the regression coefficients arc printed in Imge 
'J"Pcs alld ilie corrcspondin g s taudal'd ("ITOri' .in small tYlJes. 

The regression coeffic ients in Lable (33.6) are obtn.i.ned simpl.', 
by r edu cing tile clements on each 1'0 \\' in lIle four-r o,vcd tilling 
table 3 in Section 23, in suell 11 ,yay that Ul e diagonal e lemcllL 
becomes equal t.o .- L The otl1el elements in that t o,," will 
then be the regr·e.ssion coefficients (33. 4), 

T.\.l\T,}; (33. 1;). :ELE:.\IE~T.tIn: REGln JS3 lO X GOE.lo'FlOIE.'\IS A~D I llE rn 
f.TA-:-"1URD BRRORR N TIfE I'ET (12341 

~XA)fPLE . 

I N THE CONSTR UCTED 

t 

- i .(lOOO 
.11110,1 

.1121\ 

1, ,1:­

;$ 

.721·1 
.l liI\I~ 

.f, .>116 
t)ifi7 

:! .1120 
lUl~ 

-1.000n 
.000(1 

.7408 
.OM7 

.65!J3 
\till!-\ 

:-J . 7362 
01116 

.7;)9f1 
.tJ6H·l 

- 1.0000 
.uuoo 

.0173 
10111 

4 ,MO. 
07 r.~ 

.1;\;37 
, t ~ li ~ 

.0169 
.1 OU 

- 1.00uO 
1101 

T.U~LE (33. ' ) . ELE~~T"\n.Y 11£G11£SSIO.'\ COEFFICIE~TS AND THE! p, 

RTAJI."DAl1n ER R Ol{S 1:1\ TIIE SET (1 2345.1 I X 'THE CO~STRUCTED 


E X_·\..llPLE. 

1 2 4 b 

- 1.0000 .141 .. ..Hi .6.J.2 ~ .0153 
00110 lO.JH .117H . ~ 7,," .llllIU 

1328 - 1.O(){JO .7[)?ii ,6:H l .U3;)0 
.Oll8'~ UI'IlU .IIM/! O ~I.5 .lIl a l 

:3 .7162 ,7,88 - l .COOO .0366 .0;1411 
,(U,1J( ) OW<! .ooul! .100:\ .Olaf: 

.l)i ,2 .13817 .0:.182 - l.Ot)OO .0 112 
.U7R6 .u,,1I1 .lUj6 l'VllO .01111 

5 .8137 U H)24 - 1.8;)36 .;')932 - ] .Uooo 
.; 4::2 . ; ·15:1. ,7:~'-,i .7·t !·j U"l'() 

T.f Ute stamlul'll enors should be r elbtble warning signal,." 
they ought to tell us. to keep away fl'om any of tLe;.;e regl'cs:; ion 

quntious. 111doocl, from the way in which the example was 
coustructeu we know tha t. not a single one of tlle i'egressi 
coefficients in the tables (33.6) and (33. 7) has a meaning. 

Tho minimum r equirement which the stan dard errors must 
satisfy in order to be such a wallling sih"lLal is tJw.t for any 
given regressioll coefficients the standartl error must. be equal 
il) at le3lSt one·t hird or a, qum·ter of t.he. absolute val ue of th.e 
regression coefficient in que.s tion_ Otherwise we would con clude 
[ltat fl leas t the sign of tllis r e.gression coefficient j :j significant. 
low is Ulis fulfilled in t.he tables (33. G) and (33. 7)'? 1t t·.'! rer 

.. "r from fu{filled. Take for instance tJl0 first equa.tion in (33. 6), 
Here we have Pl ~ = O.,(214 and its st.a.ndard error 0.07. In other 
wordS, the sLandru'd e1TOT is less the one· tenth of tile regression 
coellicient. And for thc n ext rcgr(-'ssion coefficieut fJH Ule 
standa.rd error is about. one-tenth . No statist ician who is used 
to wOl'kiug w ith slandUl'd eITOl'S would hesitate to conclude that 
thE':! last two regressio n coeffici<lllts al'e Significant. At least h e 
would conclude that i t is pr'acticaJ.ly cet'tain that both these 
t~oeHi(·ients <Ire posi.tn1c. From t.he way in which t.he example 
was constructed ,YO know ihn.t th is is sbe('1' nonsense ; a 1'8· 

l'ression equation in t h e set (1234) 11M in cle{'d no meaning at. all. 
In the second equation of (33, G) \ve have [t similar situn.tion . 

One woulrl here conclude fa!' instance 1ha t /']~;: is pignifi canUy 
liOsi tive find fJ~1 l'lignificantly n ega ti ,-e, 9 ncl "t') on . 

Tn '~ie,,' of the fact that t.he standard. enors ar e now to be 

http:pr'acticaJ.ly
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lookcd UpOll a.s llumbel's dra ,,' U :1.t random, we would expect 
that, roughly speaking, one·half of them ,yill actually do the 
r ight t.h ing, ualllel~' to warn us against Ule regl'o'ssiOIl coeffi· 
cient in question, and ilw otlter half would do the wrong thing, 
namely not tll '''(D'il us, DiRl'egar'u ing t he diagonal el ements 
that are by necessity equal to - 1, 'lye have ill (33. 6) 12 stan­
dard errol'S of which 8 do the wro11g tiling. In (33. 7) we may 
disregurd tho coefficieIlts in the las t column where - as we 
have previously seen. - a persistency effect is present.. 'I'his 
leave.:; us \'lith 16 coefficlonts of which 8 do tho wrong thing, 

The bunch analysis of Section 24, it will be remembered, fur· 
n ished the con'eet criteria for the nonsense of the r egression 
e quation in the sets (1234) and (123·15), and dirt it with such 
distinctness t hn,t, there. could be no doubt n.bout the conclus i . 

veness of tlle result, 
:I: 

I do nol claim that the technique developed in the presellt 
paper \" ill, like a stono of the wise, solve all lhe prOiblems of 
testing "signii'icance" with wllil'h the economic statistician is 
eonironled. :No s tatistical technique. however refined, will ever 
he able to do such a thi.J.lg. The ultimate te"t of signilicallce 
must consist in a net wol'd of conclusions and cross checks 
where tlleol'etical 'economic conSiderations, intimate and rca· 
listic knowledge of the da ta a,nd a r efined statistic-al technique 
concur. But I do claJ.lll that th€ tec.hn ique here presented wil 
in a great number of cases be very helpful. I would even 
ven ture to say that for ma ny kinds of problems it will b 
i ndispensable - until some th ing bettcr is found tha t can 
replace it. 
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