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I·ill PROPAGATION PROBLEMS AND IMPULSE 
PROBLEMS IN DYNAMIC ECONOMICS* 

~ RAGNAR FRISCH, University of Oslo 

I. INTRODUCTION 

THE majority of the economic oscillations which we encounter seem 
to be explained most plausibly as free oscillations. In many cases they 
seem to be produced by the fact that certain exterior impulses hit the 
economic mechanism and thereby initiatt.: more or less regular oscil­
lations. 

The most important feature of the free oscillations is that the length 
of the cycles and the tendency towards dampening are determined by 
the intrinsic structure of the swinging system, while the intensity (the 
amplitude) of the fluctuations is determined primarily by the exterior 
impulse. An important consequence of this is that a more or less 
regular fluctuation may be produced by a cause which operates 
irregularly. There need not be any synchronism between the initiating 
force or forces and the movement of the swinging system. This fact 
has frequently been overlooked in economic cycle analysis. 

If a cyclical variation is analysed from the point of view of a free 
oscillation, we have to distinguish between two fundamental problems: 
first, the propagation problem; second, the impulse problem. The 
propagation problem is the problem of explaining by the structural 
properties of the swinging system what the character of the swings 
would be in case the system was started in some initial situation. This 
must be done by an essentially dynamic theory, that is to say, by a 
theory that explains how one situation grows out of the foregoing. 
In this type of analysis we consider not only a set of magnitudes in a 
given point of time and study the interrelations between them, but 
we consider the magnitudes of certain variables in different points of 
time, and we introduce certain equations which embrace at the same 
time several of these magnitudes belonging to different instants. This 

• The numerical results incorporated in the present study have been worked 
out under my direction by assistants in the University Institute of Economics, 
Oslo, established through generous grants from the Rockefeller Foundation, 
New York, and AjS Norsk Varekrig, Oslo. As directors of the Institute, 
Professor Wedervang and I take this opportunity of expressing our sincere 
thanks for the support received from these institutions. 
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is the essential characteristic of a dynamic theory. Only by a theory of 
this type can we explain how one situation grows out of the foregoing. 
This type of analysis is basically different from the kind of analysis 
that is represented by a system of Walrasian equations; indeed in such 
a system all the variables belong to the same point of time. 

In one respect, however, must the dynamic system be similar to 
the Walrasian: it must be determinate. That is to say, the theory must 
contain just as many equations as there are unknowns. Only by 
elaborating a theory that is determinate in this sense can we explain 
how one situation grows out of the foregoing. This, too, is a fact that 
has frequently been overlooked in business cycle analysis. Often the 
business cycle theorists have tried to do something which is equivalent 
to determining the evolution of a certain number of variables from a 
number of conditions that is smaller than the number of these variables. 
It would not be difficult to indicate examples of this from the literature 
of business cycles. 

When we approach the study of business cycle with the intention 
of carrying through an analysis that is truly dynamic and determinate 
in the above sense, we are naturally led to distinguish between two 
types of analyses: the micro-dynamic and the macro-dynamic types. 
The micro-dynamic analysis is an analysis by which we try to explain 
in some detail the behaviour of a certain section of the huge economic 
mechanism, taking for granted that certain general parameters are given. 
Obviously it may well be that we obtain more or less cyclical fluctua­
tions in such sub-systems, even though the general parameters are 
given. The essence of this type of analysis is to show the details of the 
evolution of a given specific market, the behaviour of a given type of 
consumers, and so on. 

The macro-dynamic analysis, on the other hand, tries to give an 
account of the fluctuations of the whole economic system taken in its 
entirety. Obviously in this case it is impossible to carry through the 
analysis in great detail. Of course, it is always possible to give even a 
macro-dynamic analysis in detail if we confine ourselves to a purely 
formal theory. Indeed, it is always possible by a suitable system of 
subscripts and superscripts, etc., to introduce practically all factors 
which we may imagine: all individual commodities, all individual 
entrepreneurs, all individual consumers, etc., and to write out various 
kinds of relationships between these magnitudes, taking care that the 
number of equations is equal to the number of variables. Such a theory, 
however, would only have a rather limited interest. In such a theQry 
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it would hardly be possible to study such fundamental problems as the 
exact time shape of the solutions, the question of whether one group 
of phenomena is lagging behind or leading before another group, the 
question of whether one part of the system will oscillate with higher 
amplitudes than another part, and so on. But these latter problems are 
just the essential problems in business cycle analysis. In order to attack 
these problems on a macro-dynamic basis so as to explain the move­
ment of the system taken in its entirety, we must deliberately disregard 
a considerable amount of the details of the picture. We may perhaps 
start by throwing all kinds of production into one variable, all con­
sumption into another, and so on, imagining that the notions "pro­
duction," "consumption," and so on,' can be measured by some sort 
of total indices. 

At present certain examples of micro-dynamic analyses have been 
worked out, but as far as I know no determinate macro-dynamic 
analysis is yet to be found in the literature. In particular no attempt 
seems to have been made to show in an exact way what the relations 
between the propagation analysis and the impulse analysis are in this 
field. 

In the present paper I propose to offer some remarks on these 
problems. 

2. LE TABLEAU ECONOMIQUE 

In order to indicate the most important variables entering into the 
macro-dynamic system we may use a graphical illustration as the one 
exhibited in Fig. I. 

The system expressed in Fig. I is a completely closed system. All 
economic activity is here represented as a circulation in and out of 
certain sections of the system. Some of these sections may best be 
visualized as receptacles (those are the ones indicated in the figure by 
circles), others may be visualized as machines that receive inputs and 
deliver outputs (those are the ones indicated in the figure by squares). 
There are three receptacles, namely, the forces of nature, the stock of 
capital goods, and the stock of consumer goods. And there are three 
machines: the human machine, the machine producing capital goods, 
and the machine producing consumer goods. 

The notation is chosen such that capital letters indicate stocks and 
small letters flows. For instance, R means that part of land (or other 

1 
forces of nature) which is engaged in the production of consumer 
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goods, r is the services rendered by R per unit time. Similarly V is 
the stock of capital goods engaged in the production of consumer goods 
and v the services rendered by this stock per unit time. Further, a is 
labour (manual or mental) entering into the production of consumer 
goods, so that the total input in the production of consumer goods 
is r + v + a. 

The complete macro-dynamic problem, as I conceive of it, consists 
in describing as realistically as possible the kind of relations that exist 
between the various magnitudes in the Tableau Econornique exhibited 

"'UMAN 

MACHINE 

c 

a 
FIG. I 

in Fig. I, and from the nature of these relations to explain the move­
ments, cyclical or otherwise, of the system. This analysis, in order to 
be complete, must show exactly what sort of fluctuations are to be 
expected, how the length of the cycles will be determined from the 
nature of the dynamic connection between the variables in the Tableau 
Economique, how the damping exponents, if any, may be derived, etc. 
In the present paper I shall not make any attempt to solve this problem 
completely. I shall confine myself to systems that are still more 
simplified than the one exhibited in Fig. I. I shall commence by a 
system that represents, so to speak, the extreme limit of simplification, 
but which is, however, completely determinate in the sense that it 
contains the same number of variables as conditions. I shall then 
introduce little by little more complications into the picture, remem­
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procedure has one interesting feature: it enables us to draw some 
conclusions about those properties of the system that may account for 
the cyclical character of the variations. Indeed, the most simplified 
cases are characterized by monotonic evolution without oscillations, 
and it is only by adding certain complications to the picture that we 
get systems where the theoretical movement will contain oscillations. 
It is interesting to note at what stage in this hierarchic order of 
theoretical set-ups the oscillatory movements come in. 

3. SIMPLIFIED SYSTEMS WITHOUT OSCILLATIONS 

We shall first consider the following- case. Let us assume that the 
yearly consumption is equal to the yearly production of consumers' 
goods, so that there is no stock of consumers' goods. But let us take 
account of the stock of fixed capital goods as an essential element of 
the analysis. The depreciation on this capital stock will be made up 
by two terms: a term expressing the depreciation caused by the use 
of capital goods in the production of consumers' goods, and a term 
caused by the use of capital goods in the production of other capital 
goods. For simplicity we shall assume that in both these two fields the 
depreciation on the fixed capital goods employed are proportional to 
the intensity with which they are used, this intensity being measured 
by the volume of the output in the two fields. If hand k are the 
depreciation coefficients in the capital producing industry and in the 
consumer goods industry respectively, the total yearly depreciation on 
the nation's capital stock will be hx + ky, where x is the yearly pro­
duction of consumers' goods and y the yearly production of capital 
goods. Our assumption amounts to saying that hand k are technically 
given constants. 

What will be the forces determining the annual production of 
capital goods y? There are two factors exerting an influence on y. 
First, the need to keep up the existing capital stock, replacing the part 
of it that is worn out. Second, the need for an increase in total capital 
stock that may be caused by the fact that the annual consumption is 
increasing. This latter factor is essentially a progression (or degression) 
factor, and does not exist when consumption is stationary. I shall 
consider these two factors in turn. 

First let us assume that the annual consumption is kept constant 
at a given level x. How much annual capital production y will this 

bering, however, all the time to keep the system determinate. This necessitate? This may be expressed in terms of the depreciation 
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coefficients in the following way. Let total capital stock be denoted Z. 
The rate of increase of this stock will obviously be 

(I) z= y - (hx + ky) 

Since the stationary case is characterized by Z = 0, the stationary 
levels of x and y must obviously be connected by the relation 
y = hx + ky, i.e. 

(2) y=mx 

h
 
where m= --k
 

1­

The constant m represents the total depreciation on the capital 
stock associated with the production of a unit of consumers' goods, 
when we take account not only of the direct depreciation due to the 
fact that fixed capital is used in the production of consumer goods, 
but also take account of the fact that fixed capital has to be used in 
the production of those capital goods that must be produced for 
replacement purposes. This follows from the way in which (2) was 
deduced, and it may also be verified by following the depreciation 
process for an infinite number of steps backwards. Indeed, the pro­
duction of x causes a direct depreciation of hx. In order to replace 
these hx units of capital, a further depreciation of khx is caused, and 
this amount has to be added to the annual capital replacement pro­
duction. But adding the amount khx to the annual capital production 
means that the annual depreciation is increased by k . (khx) = k 2hx, 
which also has to be added to the annual capital production, and so on. 
Continuing in this way, we find that the total annual capital production 
needed to maintain the constant consumption x (with no change in 
the total capital stock) is equal to 

h 
hx + khx + k 2hx + . • - 1 _ kX = mx 

which is formula (2). For this reason m may be called the total, 
hand k the partial depreciation coefficients. 

Now let us consider the other factor that effects the annual capital 
production, namely, the change x in the annual production of con­
sumption goods. 

Let us take a simple example. Suppose that a capital stock of 
1,000 units is needed in order to produce a yearly national income 
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production of consumer goods rests stationary at a level of 100 units 
per year, it is only necessary to produce each year enough capital 
goods to replace the capitals worn out, namely, m. 100, m being the 
constant in (2). 

But if there is in a given year an increase, say, of 5 units, in the 
production of consumer goods, then it is necessary during that year 
to increase the stock of capital goods. Indeed, in order to maintain a 
yearly production of consumer goods equal to 105, there is needed a 
capital stock equal to 1,°5°. During the year in question it is therefore 
necessary to produce an additional 50 units of capital goods. We are 
thus led to assume that the yearly production of capital goods can be 
expressed in a form where there occurs not only the term (2) but also 
a term that is proportional to x, i.e. y will be of the form 

(3) y=mx+fLx 
where m and fL are constants. The constant m expresses the wear and 
tear on capital goods caused directly and indirectly by the production 
of one unit of consumption, and fL expresses the size of capital stock 
that is needed directly and indirectly in order to produce one unit of 
consumption per year. In other words, fL is the total "production 
coefficient," in the Walrasian sense, for the factor capital. 

The two influences expressed by the two terms in (3) have been 
the object of a certain discussion in the literature which ought to be 
mentioned here. Professor Wesley C. Mitchell, in one of his studies, 
observed that the maximum in the production of capital goods preceded 
the maximum in the production of consumer goods (or, which amounts 
to the same, the sales of consumer goods if stock variations of consumer 
goods are disregarded). From this he drew the conclusion that it is 
rather in production than in consumption we ought to look for the 
factors that can explain the turning-point of the cycle. Professor J. M. 
Clark objected to this conclusion. He said that the rate of increase of 
consumption exerts a considerable influence on the production of 
capital goods, and that the movement of this rate of increase precedes 
the movement of the absolute value of the consumption. Indeed, 
during a cyclical movement the rate of increase will be the highest, 
about one-quarter period before the maximum point is reached in the 
quantity itself. 

The effect which Clark had in mind is obviously the effect which 
we have expressed by the second term in (3). If we think only of this 

(Le. a yearly national consumption) equal to 100 units, then if the term, disregarding the first term, we will have the situation where y is 
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simply proportional to the rate of increase of x. If the movement is 
cyclical, we would consequently have a situation as the one exhibited 
in Fig. 2. 

In Fig. 2 we notice that the peak in consumption comes after the 
peak in capital production, but if we compare production with the rate 
of increase of consumption, we find that there is synchronism: the 
maximum rate of increase in consumption occurs at the same moment 
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FIG. 2 

as the peak in the actual size of capital production. The fact observed 
by Mitchell can, therefore, just as well be explained-as Clark did­
by saying that it is consumption which exerts an influence on pro­
duction. This is an interesting observation, and it is correct if taken 
only as an expression for one of the factors influencing production.'*' 

In order to have a complete and correct picture we must, however, 
take account of both terms in (3), and we must also look for some 
other relation between our variables. So far the problem is not yet 
determinate. 

*' Clark, in his discussion of this question, went further than this. He tried 
to prove that the fact here considered could by itself explain the turning-point 
of the business cycle, but this is not correct. Indeed, equation (3) is only one 
equation between two variables. Consequently many types of evolutions are 
possible. See the discussion between Professor Clark and the present author 
in the Journal of Political Economy, 1931-32. 

8 

In order to make the problem determinate we need to introduce 
an equation expressing the behaviour of the consumers. We shall do 
this by introducing the Walrasian idea of an encaisse desiree. This 
notion will be introduced here only as a parameter by means of which 
we express a certain feature of the behaviour of the consumers. The 
parameter is going to be introduced in the equations and then 
eliminated. Its introduction, therefore, does not mean that we are 
actually elaborating a monetary theory of business cycle. It is only an 
intermediary parameter introduced in order to enable the formulation 
of a certain simple hypothesis. 

The encaisse desiree, the need for cash on hand, is made up of two 
parts: cash needed for the transaction of consumer goods and producer 
goods respectively. The first of these parts may of course always be 
written as a certain factor r times the sale of consumer goods, and 
the second part as a certain factor s times the production of capital 
goods, provided the factors rand s are properly defined. In other 
words, the encaisse desiree w may be written 

(4) w = rx + sy 

As a first approximation one may perhaps consider r and s as constants 
given by habits and by the nature of existing monetary institutions. 

l 

When the economic activity both in consumer goods and in producer 
goods production increase, as they do during a period of expansion, 
the encaisse desiree will increase, but the total stock of money, or 
money substitutes, cannot be expanded ad infinitum under the present 
economic system. There are several reasons for this: limitations of 
gold supply, the artificial rigidity of the monetary systems, psycho­
logical factors, and so on. We do not need to discuss in detail the 
nature of these limiting factors. We simply assume that, as the activity 
and consequently the need for cash increases, there is created a tension 
which counteracts a further expansion. This tension is measured by 
the expression (4). It seems plausible that one effect of the tightening 
of the cash situation, and perhaps the most important one, will be a 
restriction in consumption. In the boom period when consumption 
has reached a high level (in many cases it has extended to pure 
luxuries), consumption is one of the elastic factors in the situation. 
It is likely that this factor is one that will yield first to the cash pressure. 
To begin with this will only be expressed by the fact that the rate of 
increase of consumption is slackened. Later, consumption may perhaps 
actually decline. Whatever this final development it seems plausible 

9 
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to assume that the encaisse desiree w will enter into the picture as an 
important factor which, when increasing, will, after a certain point, 
tend to diminish the rate of increase of consumption. Assuming as a 
first approximation the relationship to be linear, we have 

(5) oX = c - AW 

where c and Aare positive constants. The constant c expresses a ten­
dency to maintain and perhaps expand consumption, while Aexpresses 
the reining-in effect of the encaisse desiree. 

Introducing into (5) the expression for the encaisse dest"-ree taken 
from (4), we get 

(6) x = c - A(rx + sy) 

This equation we shall call the consumption equation. 
The two equations (3) and (6) form a determinate system in the 

two variables x and y. If the parameters fL, m, A, etc., are constants, 
the system may easily be solved in explicit form. By doing so we see 
that the system is too simple to give oscillations. Indeed, by eliminating 
x between (3) and (6) we get a linear relation between x and y. 
Expressing one of the variables in terms of the others by means of 
this relation and inserting in one of the two equations (3) or (6) we 
get a linear differential equation in a single variable. The characteristic 
equation is consequently of degree one, and has therefore only one 
single real root. This means that the variables will develop monotoni­
cally as exponential functions. In other words, we shall have a secular 
trend but no oscillations.­

The system considered above is thus too simple to be able to 
explain dt:velopments which we know from observation of the economic 
world. There are several directions in which one could try to generalize 
the set-up so as to introduce a possibility of producing oscillations. 
One idea would be to distinguish between saving and investment. The 
fact that, in an actual situation, there is a difference between these two 
factors will tend to produce a depression or an expansion. This is 
Keynes' point of view. It would be exceedingly interesting to see what 
sort of evolution would follow if such a set of hypotheses were subject 
to a truly dynamic and determinate analysis. 

Another way of generalizing the set-up would be to introduce the 
fact that the existence of debts exerts a profound influence on the 

«< Incidentally this shows that the fact pointed out by Clark does not neces­
sarily lead to a development giving a turning-point. 
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behaviour of both consumers and producers. This is the leading idea 
of Irving Fisher's approach to the business cycle problem. 

I A third direction would be to introduce the Marxian idea of a bias I 
I 

in the distribution of purchasing power. This idea may-with a slight 

r I 

'change of emphasis-be expressed by saying that under private 
capitalism production will not take place unless there is a prospect of 
profit, and the existence of profits tends to create a situation where 
those who have the consumption power do not have the purchasing 
power, and vice versa. Thus, under private capitalism, production must 
more or less periodically kill itself. 

A fourth direction would be the introduction of Mtalion's point 
of view with regard to production. The essence of this consists in 
making a distinction between the quantity of capital goods whose 
production is started and the activity needed in order to carry to 
completion the production of those capital goods whose production was 
started at an earlier moment. The essential characteristics of the situa­
tion that thus arises are that the activity at a given moment does not 
depend on the decisions taken at that moment, but on decisions taken 
at earlier moments. By this we introduce a new element of discrepancy 
in the economic life that may provoke cyclical oscillations. I do not 
think that Mtalion's analysis as originally presented by himself can 
be characterized as a determinate analysis. By putting his arguments 
into equations one will find that he does not have as many equations 
as unknowns. But his idea with regard to production is very interesting, 
and, if properly combined with other ideas, will lead to a determinate 
system. Not only that, but it may lead to a system giving rise to 
oscillations. I now proceed to the discussion of such a system. 

4. A MACRO-DYNAMIC SYSTEM GIVING RISE TO OSCILLATIONS 

Let Yt be the quantity of capital goods whose production is started at 
the point of time t. We shall call Yt the "capital starting" or the 
"production starting," and we shall assume that this magnitude is 
determined by an equation of the form (3.3). A capital object whose 
production is started at a certain moment will necessitate a certain 
production activity during the following time in order to complete 
the object. The productive activity needed in the period following the 
starting of the object will, as a rule, vary in a certain fashion which 
we may, as a first approximation, consider as given by the technical 
conditions of the production. Let D-,; be the amount of production 

"'''' 10 
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activity needed at the point of time t + T in order to carryon the 
production of a unit of capital goods started at the point of time t. 
The function DT; we shall call the "advancement function." 

This being so, the amount of production work that will be going 
on at the moment t will be 

00 

(I)	 Zt = JDT;Yt--rt!7 
T;=O 

The magnitude Zt we shall call "the carry-on-activity" at the point 
of time t. 

In the formula of the encaisse desiree it is now Z that will occur 
instead of y, so that the consumption equation will be 

(2)	 oX = c - A(rx + sz) 
where c, A, rand s are constants. 

The three equations (3.3), (I) and (2) form now a determinate 
system in the three variables x, y and z. 

If the carry-on function DT; is given, the above system may be 
solved. If DT; is given only in numerical form, the system has to be 
solved numerically, taking for granted a certain set of initial conditions. 
If DT; is given as a simple mathematical expression, the system may 
under certain conditions be solved in explicit form. As an example we 
shall assume 

0<7<E 
(3)	 DT; = {:/E 

75E 

where E is a technically given constant. This simply means that a given 
element of capital starting will cause a certain constant amount of 
carry-on-activity per unit time over the E units of time following the 
starting, and that in this point the object is finished, so that no 
further carry-on-activity is needed. This is obviously a simplified 
assumption, but may perhaps be taken as a first approximation. 

In this case we get from (I) by differentiating with respect to time 

(4)	 EZt = Yt - Yt-8 

For certain purposes it will be convenient to differentiate also the 
equation (2) in order to get rid of the constant term, which gives 

(5)	 x = - A(rx + sa-) 
IZ 

I
I The three equations to be considered now are (2), (3.3) and (4) 

(or possibly (5) may replace (2». This is a mixed system of differential 
and difference equations. It is therefore to be expected that the solution 
will depend, not only on the initial conditions of the system in a given 

f point of time, as initial conditions we shall have to consider the shape 
of the curve over a whole interval of length E. 

We shall in particular investigate whether the system is satisfied 
if each of the variables is assumed to be made up of a number of 
components, each component being either an exponential or a damped 
oscillation, i.e. a damped sine curve. It is easier to handle the 
formulae if each such term is written in the complex exponential form, 
that is to say in the form 

j 

(6) a e(-P+ialt + a e(-P-ialt i=~1 2 

where a1 and a2 are constants. For brevity we may write (6) 

(7)	 a1ePlt + a2ePat 

where P1 and P2 are complex numbers. 
This applies to a single component. Considering now several 

components in each variable, we may express the above assumption 
by saying that the variables x, y and Z considered as time series are 
of the form 

(8)
 

X = a. + EkakePkt 

y = b. + EkbkePkt 
{ 

Z = c. + EkckePkt 

where Pk are complex or real constants, and where a, band c are also 
constants. By convention we let the numbering in (8) run k = 0, I, 2 ... 

Does there exist a set of functions of the form (8) which satisfy the 
system consisting of the equations (3.3), (2) and (4)? Such functions 
do exist. The exponential characteristics Ph of these functions are 
determined by the structural constants E, Mm, AsfL' '\r that enter into 
the system considered. On the contrary, the coefficients a, band c in (8) 
will depend on the initial conditions. 

It is easy to verify this and to determine how the exponential 
characteristics Pk depend on the structural constants. This is done by 
differentiating the various expressions in (8) and inserting the results 

13 
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obtained into the equations of the system. If this is done, one will find corresponding component of x, y and z will actually be a damped sine 
that the coefficients a, band c must satisfy the relations curve. If there exists a magnitude {3 such that ({3, 0) is a root, then the t
 

Ck M + Pk 
-=- As 
ak 

kb = m +I-'Pk 
ak(9) 
Ck I - e-ePk 

bk - EPk 

(k = 0, I, Z ...) 

This condition entails that all the Ph must be roots of the following 
characteristic equation: 

_Ep_ = _ As~m_+_I-'_p
(10) 

1- e-eP TA + P 

This equation may have complex or real roots. For the numerical 
computation it is therefore convenient to insert into (10) 

(II) p=-{3+ia i=V - I 

and to separate the real and imaginary parts of the equation after 
having cleared the equation of fractions. Doing this, we get the following 
two equations to determine a and {3 (assuming E and ASI-' ;-= 0). 

2 

m2 
E (m - ATI-') 

sin Ea - I-' 2
(12) 

1+ >Spe'P ~ - C.P_ m;) + (<0)' 

2 
E E

E{3 - ATE + m- I _ eeP cos Ea m
I-'
2 (m - MI-') 

_____1-' + Asl-'-=----­(13) 
E E 

E{3 - m­ E{3 - m­ (E{3 - m;)2+ (Ea)2
I-' I-' 

The terms of these equations have been ordered in the particular 
form indicated in order to facilitate the numerical solution. 

The roots ({3, a) of these two equations will determine the shape of 
the time curves x, y and z. It is obvious from (IZ) and (13) that if 
({3, a) is a root, then ({3, - a) will also be a root. In other words, if 
complex roots occur they will be conjugate, which means that the 

corresponding component will be a secular trend in the form of an 
I exponential. 
~ In order to study the nature of the solutions, I shall now insert 

for the structural coefficients E, 1-', m, etc., numerical values that may 
in a rough way express the magnitudes which we would expect to find 
in actual economic life. At present I am only guessing very roughly 
at these parameters, but I believe that it will be possible by appropriate 
statistical methods to obtain more exact information about them. 
I think, indeed, that the statistical determination of such structural 
parameters will be one of the main objectives of the economic cycle 
analysis of the future. If we ask for a real explanation of the movements, 
this type of work seems to be the indispensable complement needed 
in order to co-ordinate and give a significant interpretation to the huge 
mass of empirical descriptive facts that have been accumulated in cycle 
analysis for the past ten or twenty years. 

Let us first consider the constant E. It expresses the total length of 
time needed for the completion of big units of fixed capital: big 
industrial plants, water-power plants, railways, big steamers, etc. This 
span of time includes not only the actual time needed for the technical 
construction (the erection of the buildings, etc.) but also time needed 
for the planning and organization of the work. Indeed, the variable T 

in (I) is measured from the moment when the initiative was taken. 
In many cases the items planning and organization takes more time 
than the actual technical construction. 

It seems that we would strike a fair average if we say that the actual 
production activity needed in order to complete a typical plant of the 
above-mentioned kind will be distributed over time in such a way 
that in general it takes place around three years after the planning 
began. Some work will of course frequently be done before and some 
after this time, but three years can, I believe, tentatively be taken as 
an average. In making this guess I have taken account of an important 
factor that tends to pull the average up, namely, the fact that in a 
given individual case the activity will as a rule not be distributed evenly 
over the period (as assumed in the simplified theoretical set-up) but 
the peak activity will be concentrated near the end of the period. If 
three years is taken as the average lag of the various elements of pro­
duction activity after the beginning of the planning, we shall have to 
put E = 6 in (3), and consequently in (4), indeed in the case of equal 
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distribution, as assumed in (3), the average lag will be half the 

maximum lag. 
Furthermore, let us put I-' = 10, which means that the total capital 

stock is ten times as large as the annual production. Further, let us 
put m = o· 5, which means that the direct and indirect yearly depre­
ciation on the capital stock caused by its use in the production of the 
national income is one-half of that income, i.e. 20 % of the capital 
stock. Finally, let us put ,\ = 0'05, r = 2, and s = I. These latter 
constants, which represent the effect of the encaisse disiree on the 
acceleration of consumption, are of course inserted here by a stilI 
rougher estimate than the first constants. There is, however, reason 
to believe that these latter constants will not affect very strongly the 
length of the cycles obtained (see the computations below). 

Inserting these values in the two characteristic equations (12) and (13) 
we get a numerical determination of the roots. In the actual computa­
tion it was found practical to introduce Ea and E{3 as the unknowns 
looked for. By so doing, and utilizing an appropriate system of graphical 
and numerical approximation procedures, the roots may be determined 
without too much trouble. A good guidance in the search for roots 
is the fact that the solutions in a are approximately the minimum 

points of the function 
sIn Ea 

(14) Ea 

that is to say, a first approximation to the frequencies a will be every 
other of the roots of the equation 

tgEa = Ea(15) 

The roots of this equation are well known and tabulated.* The results 
of the computations are given in the first columns of Table I. 

* The above characteristic equation was worked out and the roots numerically 
determined by Mr. Harald Holme and Mr. Chr. Thorbj6rnsen, assistants at 
the University Institute of Economics. In brief the following procedure was 
used: The right member of equations (12) and (13) was put equal to a 
parameter q, and (12) solved with respect to ep, and (13) with respect to 
cos ca. From (15) a first approximation to a was determined and the corre­
sponding {J taken as the value determined by putting q = 0 in (12). This 
value of {J was as a rule immediately corrected by using (12) with the value 
of q that followed from the above preliminary determination of a and fl. 
This gave a new value of q that was inserted in (13), thus determining a new 
value of a. Starting from this new value of a the whole process was iterated. 
This method gave good results except for very small values of A, in which 
case it was found better to start by guessing at the value of fJ· 
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The first component (j = 0) is a trend, which in all the three 
variables x, y and z is composed of an additive constant and a damped 
exponential term. We may write these trends in the form 

PotIXo(t) = a. + aoe

(16)	 yo(t) = b. + boePot 

lzo(t) = c. + coePot 

These expressions are nothing but the first terms in the composite 
expressions (8). The damping exponent Po is the first root of the 
characteristic equation, it is real and negative Po = - 0'08045 (see 
Table I). The additive constants a., b. and c. are also determined by 
the structural coefficients €, Mm, etc. Indeed, if t _ 00 the func­
tions (16) will approach the stationary levels a., b. and c.. Since the 
derivatives will vanish in this stationary situation, we get from (3.3), 
(I) and (2) 

(17)	 b• =ma c = b >..ra. + MC. = c 

putting as an example c = o' 165 this determines uniquely the three 
constants a. = 1 '32, b. = 0,66, and c. = 0·66. 

The coefficients ao' bo and Co are not determined uniquely by the 
structural coefficients, but one initial condition may be imposed on 
them-for instance, a condition that determines ao' When ao is deter­
mined, b and Co follow from (9). If, as a numerical example, we imposeo 
the condition that X shall be unity at origin, we get the functions o 
xo' Yo' Zo in (23 a). 

Besides the secular trend, there will be a primary cycle with a 
period of 8· 57 years, a secondary cycle with a period of 3' 50 years, 
and a tertiary cycle with a period of 2' 20 years (see Table I). These 
cycles are determined by the first, second and third set of conjugate 
complex roots of (10). These sets are denoted j = I, 2, 3 in Table 2. 
There will also be shorter cycles corresponding to further roots of (10), 
but I shall not discuss them here. 

The presence of these cycles in the solution of our theoretical 
system is of considerable interest. The primary cycle of 8·57 years 
corresponds nearly exactly to the well-known long business cycle. This 
cycle is seen most distinctly in statistical data from the nineteenth 
century, but it is present also in certain data from the present 

century; in the most recent data it actually seems to come back with 
) greater strength. , Furthermore, the secondary cycle obtained is 3 •50 years, which 

corresponds nearly exactly to the short business cycle. This cycle is seen 
most distinctly in statistical data from this century, but it is present 
also in older series. As better monthly data become available back into 
the nineteenth century the short cycle will become quite evident also 
here I believe. 

The lengths of the cycles here considered depend, of course, on
1	 all the structural coefficients; but it is only € that is of great importance. 

The other coefficients only exert a very small influence on the length 
of the cycles. Choosing, for instance, >.. = o' I, S = I, r = 2, fL = 5,J 
and different values for m, we find 

Period 
m p 

0'7 8'53 
0'5 8'43 
0'0 8'20 

Damping Factor 
e-2,,~/a 

0'042 
0'043 
0'048 

, In other words, even an extreme variation in the total depreciation 
factor m leaves both the period and the damping factor nearly 
unchanged. 

A change in the constant>" that expresses the "reining-in" effect 

B of the encaisse desiree exerts a considerable influence on the damping 
factor, but a relatively small influence on the length of the period. 
For >"=0'001, s= I, r=2, fL=S and m=o'S, we find, for 
instance, p = 10·6 years, e- 27T{3/a = 0'000002. In other words, the 
period is still of the same order of magnitude, but the damping is now 
enormous, the amplitude being brought down to two-millionth 
in the course of one period. This means that the cycle in question is 
virtually non-existing. 

It is interesting to interpret the last result in the light of the limiting 
case where>.. = 0, i.e. where the need for cash as a brake on the 
development of production is eliminated. In this case it follows imme­
diately from (2) that x will evolve as a straight line with positive 
inclination (c being assumed positive). Hence by (3.3) y must also be 
a straight line, and by (4) z must be a constant, hence z linear. The 
movement of the system will consequently be a steady evolution 
towards higher levels of consumption and production without the set­, backs caused by depressions. 

I
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Of course, the results here obtained with regard to the length of 
the periods and the intensity of the damping must not be interpreted 
as giving a final explanation of business cycles; in particular it must 
be investigated if the same types of cycles can be explained also by 
other sets of assumption, for instance, by assumptions about the 
saving-investment discrepancy, or by the indebtedness effect, etc. 
Anyhow, I believe that the results here obtained, in particular those 
regarding the length of the primary cycle of 8! years and the 
secondary cycle of 3! years, are not entirely due to coincidence 
but have a real significance. 

I want to go one step further: I want to formulate the hypo­
thesis that if the various statistical production or monetary series 
that are now usually studied in connection with business cycles 
are scrutinized more thoroughly, using a more powerful technique 
of time series analysis, then we shall probably discover evidence 
also of the tertiary cycle, i.e. a cycle of a little more than two 
years. 

Now let us consider the other features of the cycles: phase, etc. 
We write the various cyclical components 

Xj(t) = Aje-Pjt s~ (cpj + ajt) 

yj(t) = Bje-Pi sm (if;j + ajt)
(18) 

Zj(t) = Cje- Pi sin (OJ + ajt) 

(j = 1,2 ...)I
j = I means the primary cycle, j = 2 the secondary cycle, etc. The 
frequencies a and the damping coefficients f3 are uniquely determined 
by the characteristic equation, but the phases cp, if;, 0 and the ampli­
tudes A, B, C are influenced by the initial conditions. For the primary 
cycle (j = I) two such conditions may be imposed. We may, for 
instance, require that xt(o) = 0 and xt(o) =!. This leads to CPt = 0, 

I 
At = -. And when the phase and amplitude for the primary cycle 

2at 

in x is thus determined, the phases and amplitudes of the primary 
cycles in y and Z follow by virtue of (9). Similarly, if CP2 and A 2 are 
determined by two initial conditions imposed on the secondary cycle 
in x, for instance, by the conditions x2(0) = 0 and x2(0) = !, the 
phases and amplitudes of the secondary cycles in y and Z are also 
determined by (9). 
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When the conditions (9) are formulated in terms of phases and 

amplitudes, we get 

B sin (if; - cp) = A/La 
(19) { B cos (if; - cp) = A(m - /Lf3) 

Aa 
C sin (8 - cp) = - ~ 

(20) 

1 
A(f3 - Ar)

C cos (8 - cp) = ~ 

These equations hold good for all the cycles, that is, for j = I, 2, 3 ... 
They show that the lag between x, y and Z are independent of the 
initial conditions and depend only on the structural coefficients of the 
system. From (18) and (19) we get indeed 

/La
tg(if; - cp) =­I m - /Lf3 

(21)	 lt (8 _ cp) = _ _ a_g f3 - Ar 

Similarly the relations between the amplitudes may be reduced to 

IB I = V(/La)2 + (m - /Lf3r~· t A I 
2(22) 

{ IC I=	 Va +\~ - Ar)2 .1 A I 

where the square roots are taken positive. If the amplitudes are 
taken positive, sin (if; - cp) has the same sign as /La and sin (0 - cp) 
the same sign as - a/As. 

A given set (18) (for a given j) does not-taken by itself-satisfy 
the dynamic system consisting of (3.3), (2) and (4). It will do so only 
if the structural constant c = o. If c i' 0 the constant terms a., b. 
and c. must be added to (18) in order to get a correct solution. If these 
constant terms are added, we get functions that satisfy the dynamic 
system, and that have the property that any linear combination of 
them (with constant coefficients) satisfy the dynamic system provided 
only that the sum of the coefficients by which they are linearly com­
bined is equal to unity. This proviso is necessary because any sets of 
functions that shall satisfy the dynamic system must have the uniquely 
determined constants a ,b and c . 

*. * 
21 



ECONOMIC ESSAYS IN HONOUR OF GUSTAV CASSEL 

The sets (18), with no constants a., b. and c. added, are solutions 
of the system obtained by leaving out c in (2). Or, again, (18) may be 
looked upon as solutions of the system obtained by letting (5) replace (2). 

If we impose on the trends the initial condition that Xo shall be 
unity at origin, and on each cycle in x the condition that it shall be 
zero at origin and with velocity = t, we get the functions in (23a, b, c, d). 
The corresponding cycles are represented in Figs. 3-5. 

XO = 1'32 - O'32e-0'08045t 

(23 a) Yo = 0,66 + 0'0974¥-0'08045t 
{ 

Zo = 0·66 + 0' I25I2e-0 080451 

Xl = o'68I6e- fJ,t sin alt 

(23 b) YI = 5' 4585e-fJlt sin (.1' 9837 + alt) 
{ 

Zl = - Io'662e-fJ,t sm (I '9251 + alt) 

X2 = o· 278I3e-fJlt sin a2t 

(23c) Y2 = 5' I 648e-fJ1t sin (I '8243 + a2t) 
{ 

Z2 = - 10' 264e-fJlt sin (I '7980 + a2t) 

rXs = 0'I7524e-fJat.sin ast 

(23d) lYs = 5'0893e- fJat sm (I '7582 + ast) 

Zs = - 10' I47e-fJat sin (I '7412 + ast) 

(The a and f3 are given in Table I.) 
From the constants given in Table I, and from the shape of the 

curves in Figs. 3-5, we see that the shorter cycles are not so heavily 
damped as the long cycle. Furthermore, we see that the lead or lag 
between the variables x, Y and Z is, roughly speaking, the same in the 
primary, secondary and tertiary cycles. To study the lag it is therefore 
sufficient to consider only one of these types-for instance, the tertiary 
cycle (Fig, 5). 

Let us first compare consumption with production starting. Apart 
from the fact that the cycles in Fig. 5 are damped, the relation between 
X and Y is very much the same as in Fig. 2, i.e. production has its 
peak nearly at the same time as the rate of change of consumption is 
at its highest. The reason for this is that the constant fJ- in our example 
is chosen rather large in comparison to m. This means that our example 
refers to a highly capitalistic society where the annual depreciation is 
relatively small. By reducing the size of the capital stock in relation to 
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the output (i.e. reducing fJ-) and increasing the annual depreciation 
(i.e. m) the peak in production starting will advance so as to arrive 
nearer the peak in consumption. 

Next, comparing consumption with the carry-on-activity, we see 
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that the former is leading by a considerable span of time, i.e. in the 
depression the carry-an-activity starts to increase only when the 
upswing in consumption is well under way, and the carry-on-activity 
continues to increase even after consumption has started to decline. 

The way in which the structural relations determine the time shape 
of the solutions may perhaps be rendered more intuitively by a method 
of successive numerical approximation. 
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In order to show this, we take for granted that the time shape of one 
of the curves-for instance, Yl-is known in the interval - 6 < t < o. 
That is to say, in this interval we simply consider the values of YI as 

TABLE 2 

STEP-BY-STEP COMPUTATION OF THE PRIMARY CYCLE 

t x y z X Z YI-6 

0 0 5'0000 - 10'000 0'5000 6'4264 - 33'5581 
O' 16667 0' 08333 4'4229 - 8'929 0'4381 6'6811 - 35'6634 
0'33333 O' 15635 3'8297 - 7' 81 55 0' 3752 6'7865 - 36 '8894 
0'50000 0'2 1887 3'2329 - 6' 6844 0'3 124 6'7592 - 37' 3221 
0,66667 0'27093 2'6435 - 5'5579 0'2508 6' 61 53 - 37'0480 

TABLE 3
 

PRIMARY CYCLE COMPUTED DIRECTLY BY FORMULA (23b)
 

t x Y z 

0 0 5'0000 - 10'0000 
0' 16667 0'07814 4'4138 - 8'9058 
0'33333 0' 14581 3,8179 - 7'781 7 

given by the expression (23b). Then we want by the dynamic equations 
to determine the solutions numerically from the point t = 0 and 
onwards. 

With the numerical constants 1:, 1-', m, etc., inserted, the dynamic 
system (where c in (2) is left out) will now be 

Y = o· 5x + lOX 

(24)	 X = - O'IX - 0'05z 
{ - 6zt = Yt-6 + o· 5(Xt + Zt) 

We shall use (24) for a step-by-step computation. Since x = 0 and 
X= o· 5 are given at the origin, Z = - 10 may be determined from 
the second equation in (24), Furthermore, since Yt-6 is given, we may 
compute z in origin by means of the third equation in (24), and finally 
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Y may be computed by the first equation in (24). Thus we have all 
the items in the first line of Table 2. Since we know x and x in origin, 
we may by a straight linear extrapolation determine x and Z in the next 
point of time, that is to say, in the second line of Table 2. And knowing 
x and z in this point, we may from the second equation of (24) 
compute X. Further, taking the value of Yt-6 as given also in the next 
line we can compute Z, etc. In this way we may continue from line to 
line and determine the development of all the three variables x, Y and z, 
A comparison between the values in Table 2 for x, Y and z with the 
values in Table 3 (determined by the explicit formulae (23b) and 
represented in Fig. 3) will give an idea of the closeness of the approxi­
mation obtained by the numerical step-by-step solution. 

5. ERRATIC SHOCKS AS A SOURCE OF ENERGY IN MAINTAINING 

OSCILLATIONS 

The examples we have discussed in the preceding sections, and many 
other examples of a similar sort that may be constructed, show that 
when an economic system gives rise to oscillations, these will most 
frequently be damped. But in reality the cycles we have occasion to 
observe are generally not damped. How can the maintenance of the 
swings be explained? Have these dynamic laws deduced from theory 
and showing damped oscillations no value in explaining the real 
phenomena, or in what respect do the dynamic laws need to be com­
pleted in order to explain the real happenings? I believe that the 
theoretical dynamic laws do have a meaning-much of the reasoning 
on which they are based are on a priori grounds so plausible that it is 
too improbable that they will have no significance. But they must not 
be taken as an immediate explanation of the oscillating phenomena 
we observe, They only form one element of the explanation: they solve 
the propagation problem. But the impulse problem remains. 

There are several alternative ways in which one may approach the 
impulse problem and try to reconcile the results of the determinate 
dynamic analysis with the facts. One way which I believe is particularly 
fruitful and promising is to study what would become of the solution 
of a determinate dynamic system if it were exposed to a stream of 
erratic shocks that constantly upsets the continuous evolution, and by 
so doing introduces into the system the energy necessary to maintain 
the swings. If fully worked out, I believe that this idea will give an 
interesting synthesis between the stochastical point of view and the 

L­
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point of view of· rigidly determined dynamical laws. In the present 
section I shall discuss this type of impulse phenomena. In the next 
I shall consider another type which exhibits another-and perhaps 
equally important-aspect of the swings we observe in reality. 

Knut Wicksell seems to be the first who has been definitely aware 
of the two types of problems in economic cycle analysis-the propa­
gation problem and the impulse problem-and also the first who 
has formulated explicitly the theory that the source of energy which 
maintains the economic cycles are erratic shocks."" He conceived more 
or less definitely of the economic system as being pushed along 
irregularly, jerkingly. New innovations and exploitations do not come 
regularly he says. But, on the other hand, these irregular jerks may 
cause more or less regular cyclical movements. He illustrates it by one 
of those perfectly simple and yet profound illustrations: "If you hit a 
wooden rocking-horse with a club, the movement of the horse will be 
very different to that of the club." 

Wicksell's idea on this matter was later taken up by Johan 
Akerman, who in his doctorial dissertationt discussed the fact that 
small fluctuations may be able to generate larger ones. He used, among 
others, the analogy of a stream of water flowing in an uneven river bed. 
The irregularities of the river bed will cause waves on the surface. 
The irregularities of the river bed illustrate in Akerman's theory 
the seasonal fluctuations j these seasonals, he maintains, create the 
longer cycles. Unfortunately Akerman combined these ideas with the 
idea of a synchronism between the shorter fluctuations and the longer 
ones. He tried, for instance-in my opinion in vain-to prove that 
there always goes an exact number of seasonal fluctuations to each 
minor business cycle. This latter idea is, to my mind, very misleading. 
It is also, as one will readily recognize, in direct opposition to Wicksell's 
profound remark about the rocking-horse. 

Neither Wicksell nor Akerman had taken up to a closer mathe­
matical study the mechanism by which such irregular fluctuations 
may be transformed into cycles. This problem was attacked inde­
pendently of each other by Eugen Slutsky; and G. Udny Yule.§ 

"" See, for instance, his address, "Krisernas gata," delivered to the Norwegian 
Economic Society, 1907, Statsokonomisk Tidsskrift, Oslo, 1907, pp. 255-86. 
t Det ekonomiska livets rytmik, submitted 1925, published Lund, 1928. 
t The Summation of Random Causes as the Source of Cyclic Processes, vol. iii, 
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In this connection may also be mentioned a paper by Harold 
Hotelling."" 

Slutsky studied experimentally the series obtained by performing 
iterated differences and summations on random drawings (lottery 
drawings, etc.). Yule only used second order differences, but tried to 
interpret the random impulses concretely as shocks hitting an oscillating 
pendulum. By the experimental numerical work done by these authors, 
particularly by Slutsky, it was definitely established that some sort of 
swings will be produced by the accumulation of erratic influences, but 
the exact and general law telling us what sort of cycles that a given 
kind of accumulation will create was not discovered. 

Later certain mathematical results which are of interest in con­
nection with this problem were given by Norbert Wiener.t 

But still the main problem remained, both with regard to the 
mechanism by which the time shapes of the resulting curves are deter­
mined and with regard to the concrete economic interpretation. In 
the present section I shall offer some remarks on these questions. 
For a more detailed mathematical analysis the reader is referred to a 
paper to appear in one of the early numbers of Econometrica. 

Consider for simplicity an oscillating pendulum whose movement 
is hampered by friction. If y denotes the deviation of the pendulum 
from its vertical position, the equation governing the movement of 
the pendulum will be 

(I) ji + 2f3y + (a2+ (32)y = 0 

where y and yare the first and second derivatives of y with respect to 
time, and f3 and a are positive constants, f3 expressing the strength of 
the friction. The equation expresses the fact that the net force acting on 
the pendulum (and being expressed by the acceleration y) is made up of 
two factors. First a factor which tends to make the force proportional 
to the deviation y (and of opposite sign). This gives the gross force 
expressed by the last term of the equation. From this gross force must 
be subtracted the effect of the friction, and this effect is proportional 
to the velocity y and is expressed by the second term of the equation. 

It is easily verified that the solution of (I) is a function of the form 

He-,BI sin (ep + at) 

where a and f3 are the constants occurring in (I). 
no. I, Conjuncture Institute of Moscow, 1927. (Russian with English summary.) 

"" Differential Equations Subject to Error, Journal of the American Statistical § On a Method of Investigating Periodicity in Disturbed Series, Trans. Royal 
Association, 1927, pp. 283-314.Society, London, A, vol. 226, 1927. t Generalized Harmonic Analysis, Acta Mathematica, 1930. 
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The amplitude H and the phase rp are determined by the initial 
conditions. For our present purpose it is convenient to write the 
solution in such a way that we can see immediately how the initial 
conditions determine the curve. If Yo and Yo are the values of 
y and y respectively at the point of time t = to the solution may 
be written in the form 

(2) y(t) = P(t - to) .Yo + Q(t -	 to) .Yo 
where P(r) and Q(r) are two functions independent of the initial 
conditions and defined by 

Va2 + fP . 
(3) P(r) = e-{h: sm (v + ar) 

a 

1 
(4)	 Q(r) = -e-PT sin ar 

a 

where 

a	 f3 
(5) sin v = Va2 + f32 cos v = via2 + f32 

By convention the square root in (3) and (5) may be chosen positive. 
By insertion into the equation (I) it is easily verified that (2) is a 
function that satisfies the equation and the specified initial condition. 
P(r) may be looked upon as the solution of (I), which is equal to 
unity and whose derivative is equal to zero at the origin r = 0, and 
Q(r) may be looked upon as the solution which is equal to zero and 
whose derivative is equal to unity at the origin. These functions satisfy 
indeed the equation, and we have 

{ ~(o) = 1 Q(o) = 0 
(6) 

P(o) = 0 (>(0) = 1 

Suppose that the pendulum starts with the specified initial con­
ditions at the point of time to and that it is hit at the points of time 
t1> t2 ••• tn by shocks which may be directed either in the positive or 
in the negative sense and that may have arbitrary strengths. Let Yk 
and Yk be the ordinate and the velocity of the pendulum immediately 
before it is hit by the shock number k. The ordinate Yk is not changed 
by the shock, but the velocity is suddenly changed from Yk to Yk + ek, 
where ek is the strength of the shock; mechanically expressed it is the 
quantity of motion divided by the mass of the pendulum. The concrete 

3° 
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interpretation of the shock ek does not interest us for the moment. 
The essential thing to notice is that at the point of time tk the only 
thing that happens is that the velocity is increased by a constant ek. 

Let us consider separately the effects produced by the two terms 
Yk and ek. From (2) we see that the initial conditions enter linearly. 
Consequently we can consider Yk and ek as two independent contribu­
tions to the later ordinates of the variable. In other words, the fact of 
the shock may simply be represented by letting the original pendulum 
move on undisturbed but letting a new pendulum start at the point of 
time tk with an ordinate equal to zero and a velocity equal to ek. This 
argument may be applied to all the points of time. We simply have 
to start in each of the points of time t1, t2 ••• tn a new pendulum with 
an ordinate equal to zero and a velocity equal to the strength of the 
shock occurring at that moment, and then let all these pendulums 
continue their undisturbed motion into the future. The sum of the 
ordinates of all these pendulums at any given point of time t will then 
be the same as the ordinate y(t) of a single pendulum which has been 
subject to all the shocks. In other words, the ordinate y(t) will 
simply be 

n 

(7)	 y(t) = P(t - to) 'Yo + Q(t - to)yo +IQ(t - tk)ek 
k=l 

If the point t is very far from the initial point to' and if f3 is positive 
so that there is actually a dampening, then the influence of the initial 
situation Yo and Yo on the ordinate y(t) will be negligible, that is, the 
ordinate will be 

n 

(8)	 y(t) = IQ(t - tk) . ek 
k=l 

This means that the ordinate y(t) of the pendulum at a given moment 
will simply be the cumulation of the effects of the shocks, the cumu­
lation being made according to a system of weights. And these weights 
are simply the shape of the function Q(r). That is to say, y(t) is the 
result of applying a linear operator to the shocks, and the system of 
weights in the operator will simply be given by the shape of the time 
curve that would have been the solution of the determinate dynamic 
system in case the movement had been allowed to go on undisturbed. 

The fundamental question which arises is, therefore: If we perform 
a cumulation where the weights have the form Q(r), what sort of time 

i.--­
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I I I I shape will the function y(t) get? 
: I ~ ~ The answer to this question is 

given by studying the effects of 
linear operators on erratic shocks. 
The result of this analysis is that 
the time shape of the curve will 
be a changing harmonic with the 
same frequency a as the one 
occurring in Q('T). By a changing 
harmonic I understand a curve 
that is moving more or less regu­
larly in cycles, the length of the 
period and also the amplitude 
being to some extent variable, 
these variations taking place, 
however, within such limits that 
it is reasonable to speak of an 
average period and an average 
amplitude. In other words, there 
is created just the kind of curves 

\0 which we know from actual stat­
S istical observation. I shall not 
~ attempt to give any formal proof 

of these facts here. A detailed 
proof, together with extensive 
numerical computations, will be 
given in the above-mentioned 
paper to appear in Econometrica. 
Here I shall confine myself to re­
producing the graph (see Fig. 6) 
of a changing harmonic produced 
experimentally as the cumulation 
of erratic impulses, the weight 
function being of the form (4). 

Thus, by connecting the two 
ideas: (I) the continuous solution 
of a determinate dynamic system 
and (2) the discontinuous shocks 

~ intervening and supplying the 
energy that may maintain the 

B swings-we get a theoretical set­
3 ! o 
i i 

~ up which seems to furnish a 
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rational interpretation of those movements which we have been 
accustomed to see in our statistical time data. The solution of the 
determinate dynamic system only furnishes a part of the explanation: 
it determines the weight system to be used in the cumulation of the 
erratic shocks. The other and equally important part of the explana­
tion lies in the elucidation of the general laws governing the effect 
produced by linear operations performed on erratic shocks. 

6. THE INNOVATIONS AS A FACTOR IN MAINTAINING OSCILLATIONS 

The idea of erratic shocks represents one very essential aspect of the 
impUlse problem in economic cycle analysis, but probably it does not 
contain the whole explanation. There is also present another source 
of energy operating in a more continuous fashion and being more 
intimately connected with the permanent evolution in human societies. 
The nature of this influence may perhaps be best exhibited by inter­
preting it in the light of Schumpeter's theory of the innovations and 
their role in the cyclical movement of economic life. Schumpeter has 
emphasized the influence of new ideas, new initiatives, the discovery 
of new technical procedures, new financial organizations, etc., on the 
course of the cycle. He insists in particular on the fact that these new 
ideas accumulate in a more or less continuous fashion, but are put into 
practical application on a larger scale only during certain phases of 
the cycle. It is like a force that is released during these phases, and 
this force is the source of energy that maintains the oscillations. This 
idea is also very similar to an idea developed by the Norwegian 
economist, Einar Einarsen.* In mathematical language one could 
perhaps say that one introduces here the idea of an auto-maintained 
oscillation. 

Schumpeter's idea may perhaps be best explained by a mechanical 
analogy. Personally, I have found this illustration very useful. Indeed 
it is only after I had constructed this analogy that I really succeeded 
in understanding Schumpeter's idea. After long conversations and 
correspondence with Professor Schumpeter I believe the analogy may 
be taken as a fair representation of his point of view. 

Suppose that we have a pendulum freely suspended to a pivot. 
Above the pendulum is fixed a receptacle where there is water. A small 
pipe descends all along the pendulum, and at the lower end of the 
pendulum the pipe opens with a valve which has a peculiar way of 

... Code og daarlige tider, Oslo, 1904. 
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functioning. The opening of the valve points towards the left and is 
larger when the pendulum moves towards the right than when it moves 
towards the left. Concretely one may, for example, assume that the 
valve is influenced by the air resistance or by some other factor that 
determines the opening of the valve as a function of the velocity of 
the pendulum. Finally we assume that the water in the receptacle is 
fed from a constantly running stream which is given as a function of 
time. The stream may, for instance, be a constant. 

Now, if the instrument is let loose it is easy to see what will happen. 
The water will descend through the pipe, and the force of reaction 
at the lower end of the pendulum created by the fact that the water 
is emptying through the valve will push the pendulum towards the 
right, and this movement will continue until the force of gravitation 
has become large enough to pull the pendulum back again towards its 
equilibrium point. During the return the opening of the valve and 
consequently the force that tends to push the pendulum towards the 
right will diminish, and thus the movement back towards the central 
position will be accelerated. The pendulum which is now returning 
with considerable speed will work up an amount of inertia that will 
push it behind its equilibrium point away over to a position at the 
left, but here again the gravitation will start to pull it back towards 
the centre, and now the valve will widen, and by doing so will increase 
the force which accelerates the movement towards the right. In this 
way the movement will continue, and it will continue even although 
friction is present. One could even imagine that the movement would 
be more than maintained, i.e. that the oscillations would become 
wilder and wilder until the instrument breaks down. In order to avoid 
such a catastrophe one may of course, if necessary, add a dampening 
mechanism which would tend to stabilize the movement so that the 
amplitude did not go beyond a certain limit. 

The meaning of the various features of this instrument as an 
illustration of economic life is obvious. The water accumulating in 
the receptacle above the pendulum are the Schumpeterian innovations. 
To begin with they are kept a certain time without being utilized. 
Some of them will perhaps never be utilized, which is illustrated by 
the fact that some of the atoms in the receptacle will rest there 
indefinitely. But some others will descend down the pipe, which 
illustrates that these new ideas are utilized in economic life. This 
utilization constitutes the new energy which maintains the oscillations. 
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oscillations but not of the secular or perhaps supersecular tendency of 
evolutions. This tendency seems to us to be irreversible because we 
have not yet lived long enough to see the decline. It is not difficult to 
complete the instrument in such a way that it will express also this 
secular or supersecular movement. We may, for instance, imagine 
that the pivot to which the pendulum is suspended is not fixed but 
slides in a crack in the wall, the crack ascending towards the right. 
This being so, the whole instrument will move by jumps, and each 
jump will carry it to a higher position than before. We only have to 
feed the instrument by a constantly running stream of water. The 
impulsion which the water creates as it leaves the valve will maintain 
the oscillations, and these oscillations will constitute the jumps which 
carry the instrument steadily to higher levels. Thus there will be an 
intimate connection between the oscillations and the irreversible 
evolution. 

It would be possible to put the functioning of this whole instrument 
into equations under more or less simplified assumptions about the 
construction and functioning of the valve, etc. I even think this will 
be a useful task for a further analysis of economic oscillations, but I do 
not intend to take up this mathematical formulation here. 

The instrument as thus conceived will give a picture of the 
35 
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