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Introduction

The present memorandum has been written rather hurriedly, and the text is
therefore not as carefully polished as it ought to be in a manuscript ready for
publication, It should, however, be clear enough to bring out my point of view.

The present memorandum does not discuss details of the various equations
which Tinbergen has obtained and whose coefficients he has determined statis-
tically. My main concern has been to discuss what equations of this type really
mean, and to what extent they can be looked upon as "A Statistical Test of
Business Cycle Theories", (The title of one of the volumes which Tinbergen has
presented for discussion}.

My conclusion is that the work which Tinbergen is now presenting is of
paramount importance, perhaps the most important single step forward in Business
Cycle Analysis of recent years, But I do not think that it can be looked upon
as "A Test of Business Cycle Theories”. The question of what connection there is
between the relations we work with in theory and those we get by fitting curves
to actual statistical data is a very delicate one. I think it has never been
exhaustively and satisfactorily discussed,Tinbergen in his work hardly mentions
it, He more or less takes it for granted that the relations he has found are in
their nature the same as those of theory. See for instance his discussion in
Vol.II p.109 - 123 where he constantly refers to the. coefficients of his equatic..c
and takes the signs and magnitudes of these as tests of whether certain theore-

tical contentions are right of wrong. This is, in my opinion, unsatisfactory,

1) Reprint of a memorandum prepared by Prof.Frisch for the Business Cycle
Conference at Cambridge, England, July 18th - 20th, 1938, to discuss
Professor J. Tinbergen's publications of 1938, for the League of Nations.,
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In a work of this sort, the connection between statistical and theoretical
relations must be thoroughly understood and the nature of the information which
the statisticel relations furnish - a2lthough they are not identieal with the
theoretical relations - should be clearly brought out.
The present memorandum is an attempt to bring some contribution to this
guestion, It will be divided into 7 sections viz.
lo Some remarks on terminology.
2. Functional equations and their solutions.
%, The irreducibility of a funecti-ral comation with respect to a set of
funetions.
A« Coflux and superflux relations . The nature of passive observations.
H. The autonomy of a functional equation. The nature of explanation,
experimentation and reform.
6. Aberrations versus stimuli. Confluence analysis and shock-theory.

T Interpretation of Professor Tinbergen's results.
l., Some remarks on terminology
In any macrodynamic analysis there will be some constants or functions of-

time that are taken as data while others are considered as the variates to be

"explained". A dsterminate theory is one that considers just as many independent

relations as there are variates to be explained,

We shall use the expression ™iature" or “constitution" of the system of
phenomena studies as the whole of alle those characteristics that describe the
*way of functioning" of these phenomena. When we speak of the "structure" of the
system, we think more specifically of those features of the "constitution" that
can be cuantitatively described. We spesk for instance of the "structural equa-
tions" for the system, We do not intend however to draw any sharp line of demar-
cation between constitution and structure. The difference between them is only
one of degree and one that is not very important. The precise definition of a
structure is a matter of theorizing although of course the leading ideas of the
theoretical definitions will frequently be suggested by facts.,

A disturbance is a deviation from that situation which should have existed

as a consequence of the structure. In other words, it is something incompatible

with the sturcture; something new and spontaneous introduced in addition to the

structure, Such disturbances may be of two sorts. sberrations and stimuli. A

stinalus is a disturhance tha* cezrries on its effects to the subsequent states
of the system, ~ through the structural equaticns. In other words at any given

moment it is the magnitudes of the wariates including the stimuli that are taken
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as influencing the further evolution; that is, the stimuli act as a sort of
permanently changing initial conditions. An gberration 1is also a departure from
the value which a variate should have had according to the structure, but this
departure acts only at the actual moment at which it occurs; it is a sort of
instantanecus addition - unexplained by the structure - and without any conse-
guence for the subsequent states, In other words it is the magnitudes of the
variates exclusive of the aberrations that act as initial conditions for the

subsequent states.

The existence of aberrations leads to the application of the methods of

Confluence analysis.l) The existence of stimuli leads to the shock~theory. 2) \

There may also be mixed cases but I shall not go into this guestion here. |

2 Functional eguations and

their solution

The structure of a macrodynamic system will be described by means of a

number of functional egquations. We shall in particular consider linear lag-

equations, end taking as our variates the deviations from certain trend values,
it will be sufficient for our purpose to consider homogeneous eciations. Let
;1(t)....;N(t) be a number of variates whose movement is to be explained; t
designating time. Let il(t)...iN(t) be trend values determined in some way or

other, and let xl(t)°"xN(t) be devistions from trend, i.e.

(2.1) x; (t) = ii(t) - %, (t)

Between the variates xi we assume a number of relations {structure equations)
of the form

. = = ‘ I'r"'ﬁ"'-';
(2.2) Zieakiexi(t g} = ¢ {k = 1,2...)

k represents different equations, while the summation i6 represents the terms

of each equation; i runs through all or some of the variate numbers l... N, and
@ runs through a certain range of lag numbers, in general different for each
variate, The i6 range in each equation determines the nature of the terms in-

volved, we shall call it the form of the smation, the a's are the goefficients

of the ecuation. The distinction between the form and the coefficients of the

1 See the publication "Confluence Analysis™ of the University Institute of

Heonomics, 0Oslo,

2) puplication in preparation at the Oslo Institute.
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equation is essential for the discussion in Section 4. A similar distinction
may of course be made for more general types of functional equations,

For the discussion of the following Sections it is necessary to summarize
some of the classical facts of the theory of linear lag-equations (difference
equations).

A certain number of equations of the form (2.2) - equal or unequal to the
number of variates N - are said to be linearly independent if it is impossible
to deduce anyone of the equations from the others no matter what the time shapes
of the variates are, A necessary and sufficient condition for the independence
of a set of m equations of the form (2.2), is that there should pot exist any set
of numbers hl ha N hm not all zero, such that

(2.3) L N0y =0 for any ie

In terms of the coefficients o the criterion can be formulated by considering

the m roved and M columned matrix
(2'4) ” akig”

where all i © combinations are writien as columns, M being the number of different
i combinations that exist in all the m egquations and k reoresenting the rows.

The equations are independent when and only when this matrix is of rank m.
Or again the criterion can be formulated in terms of the moments [?haé]the sum-
mation being extended over all 16 combinations. The equations are independent
when and only when the symmetric determinant of the magnitudes [@hag] is different
from zero.

For each equation of the kind (2.2) that we add, we make less general the
class of functions that satisfy the equations. If the number of equations becomes

equal to N the system is determinate. This means that the nature of the solution

has been restricted as much as it is possible to do so by means of functional
time equations, It does not mean that the set of functions xl(t)..oxN(t) is com~
pletely determined, a considerable amount of freedom is still left and will have
to be determined by a set of initial conditions, But this determination is in
point of principle different from that achieved by the functional equations. This
is shown clearly by the fact that we cannot, say, replace the initial conditions
by one or more additional equations of the form (2.2). Indeed if there are more
than N independent equations of the form (2.2}, there will in general exist no

funetions satisfying the system.
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The solution of a determinate system of the form (2.2) can be achieved either
directly or by means of expansions in series of complex exponentials. The direct
method is applicable only in the simplest cases. Take as an example vhe system
(t) =0

alxl(t) - ayx,
(2.5) alxl(t) + a2x2(ta9) = 0

. . : / . aY =
From this follows immediately alxltﬁ alAl(t 6) = 0
(2.6) hence xl(t) + xl(t—o) =0

L solution of {2.6) is obtained by choosing arbitrarily the shape of x, over
an interval of length © and then repeating this shape antiperiodically for each
subsequent € interwval. (2.6) shows that no moreageneral form than this can be an
X solution of (2.5). If we further put xe(t) = a%-xl(t) we get a complete solution
of (2.H), Obviously this is the most general form of the solution. Any function
that can be a solution, must be a special case of this. The arbitrary shape of
Xl over the original 6 interval is here the initial condition., Putting this equal
to a sine function with period 26, we get, both for Kl and XZ’ over the complete
t range, sine functions with this period,

In the more complicated cases one must resort to the indirect method. It

consists in trying to satisfy the equations by expansions of the form

(2.7) x(t) =£C. & (1= 1,2,...0)

where Civ are constants and the summation over y rins over certain values te be
determined. Complex numbers are admitted both as C's and y's.
Inserting (2.7) in (2.2) we get - if the system is determinate -

(2.8) eY(t'g) =0 (k = 1,2...N)

Lrio %kie Viy
Any number of exponentizl functions with different exponentials are linear.y
independent, therefore if the y's are different, (2.8) cannot vanish identieallw
in t unless the terms of {2.8) vznish separately for each v. Assuming for the

moment all the ¥'s to be different we see that we must have

{2.9) z edyg =0 for all vy and k.

io %kio Ciy
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For any given value of vy this is a system of linear homogenous equations
(k = 1,2,..,N} in the set of N numbers, If this system is to have a solution apart
from the trivial C, = ,,.. = C. = 0, the determinant of the coefficients must

1y Ny
vanish, i,e, we must have

(2.10) B %) = 0 for any v

o %xie ©

k and i designate rows and columns respectively in the N rowed determinant (2.,10).

(2,10) is the characteristic equation whose roots Yy sV paesse {in general infinite

in number) give the exponents of the expression (2.7). Under very general condi-
tions this expansion is valid even though some of the v's are equal, the only
difference being that in this case the multiple terms are replaced by a polynomial
in t (of thes order equal to u -1 if w is the multiplicity of the y-root) multi-
plied by the exponentisl in question. We need not consider this case here. The
characteristic equation could also have been obtained by eliminating - in a way
similar to that used to obtain (2.6) - a certain number of the variates in order
to get a "final equation® in one or a few variates, and then ferming the charac-
teristic equation for this, This procedure is often useful when it is wanted to
give a concrete interpretation of the mechanism of the solutien, but in point of
principle it is just as easy to form the characteristic equation directly as in
(2.10).

It will be noted that the set of expon-nts as determined by (2.10} is the
same for all the varistes Xy ooy In other words all the variates contain the
same sort of components (if ¥ is a real number the component in question is a
real expouential, if v is a complex number its conjugate must also be a solution
of the characteristic equation and these two terms together will form a real,
damped, undamped or antidamped sine function). But tha intensities with which the
components occur in the various variates will be different. These intensities, -
amplitudes - are represented by the numbers Ciy' The distribution of these numbers
and in particular the extent to which it is determined by the functional equation
is essential for the interpretation of the relation between statistical and
theoretical relations in economiec mac~~cdynamics.

For any given v the corresponding numbers Cly"'CNy will - if (2.10) is of
rank N - 1 for this value of ¥ - be uniquely determined apart from a common factor
Ny will, when {2,10) is of rank
N - 1, be proportional to the elements in a row of its adjoint {the elements of

of propertionality CY' Indeed, the numbers C1y...C

all these rows are oroportional). There exists at least one row which does not

consist exclusively of zeros and hence determines the proportions in question.
)

A
Let Clr"’CNv be one such set of proportionality numbers. We may then put
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P
(2.11) C, =3 C. where c, is an arbitrary number.

1y Y 1
This applies to any root v that makes the rank of (2,10) N - 1, Suppose that
only such roots exist (the other cases de not alter those features of the ampli-
tude distribution in which we are here interested).
Inserting (2.11) in (2.7) we see that we can draw the following conclusions.
Each variate of the set of functions that is a solution of (2.2) can be

expanded as a sum of trigonometric components. The frequencies and damping ex-

ponents of the components are determined by the equations (2.2), and so are the
relative amplitudes, that is the ratio of the amplitude of a given component in
one of the variates to that of the same component in another variate. But the
absolute amplitudes are not determined by the equations (2.2). If these equations
enly are given, we may choose the absolute strengths of the various components in
one of the variates arbitrarily (the choice of the numbers CY)’ but then the
absolute strengths of these components in the other variates follow since their
relations to the amplitudes of the components in the one variate we selected are
determined by the equations (2.2). Briefly, the relative amplitude distribution
is determined by the equations (2.2), but the absolute amplitude distribution has
to be fixed by the initial conditions.
A similar situation exists for the phase distributions. Indeed the timing
of a given component in one variate as compared with that of the same component
in another variate is determined by the equations (2.2), but the timing of the
various components in one selected variate must be fixed by the initial conditions.
By elimination processes similar to that used in obtaining a final equation,
many new systems of equations may be deduced from {2.2). If the correspondence
between the two systems is unigue in the sense that the new system may be derived
from the old and vice versa, with identical variates involved, the solutions of th:
two systems must be identical, In particular it 1s of interest to consider linear-
elimination processes, that is processes where the form of the ecuations (the
specification of the functions and lag-numbers that occur in the equation) is the

same but the coefficients are changed. Any transformation of the form

x —
(2.12) o = T by apig

where ékh is a non-singular matrix, independent of i@, will furnish a new systam
of equations, that are independent if the old system is, and has exactly the same
set of functions as its solution, - and vice versa.

We shall now discuss in somewhat greater detail these various equations tha'
have the same solutions, and introduce a classification of them which is important
for our purpose, In particular we shall consider egquations which have the same f..

but different coefficients.
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532, The dirreducibility of a functional
equation with respect to

a 8et of funetions

When we compare a functional eouation invelving one or several functions
with particular set of functions, there are two questions to be asked: deoes the
set of functions satisfy the equation and does it satisfy this equation only?

Obviously, the set will satisfy all equations which - involving identical
functions - can be derived from the first equation, so we are only interested
in knowing whether the set satisfies some other equation which is independent of
the first. Furthermore we shall not consider all other conceivable equations but

only those which are of the same form as the first but have different coefficients.

(In the case of homogeeous equations of the form (2.2) this means that for any

given one of these equations {any given k) we are interested in knowing whether

a_particular set of functions considered satisfies not only this eguation but

also another with the same i8 range but with coefTieients that are non-proportio-

nal to those of the first equation, If this is so, we shall say that the first

1 .. o s s
equation is reducible with respect to this set of functions) if not it is irredu-
cible. Thus an irreducible equation of the form (2.2) is one whose coefficients

are uniocuely detemmined and allow of no degree of freedom if the equation is to

be satisfied by this set of functions (apart from the arbitrary factor of pro-

portionality which is always present in the case of a homogeneous equation). It

is clear that the property of irreducibility must be important when we are studying
the nature of those equations that can be determined from the knowledge of the

time shapes of the functions that are to satisfy the equations.

Obviously the first equation in the above definition is reducible, the second
is also raducible. The set of functions involved in the definitions may be speci-
fied in great detail or only very broadly as a general class of functions.

A similar definition may be established for a system of equations but we
shall only need it for a single equation,

If an ecuation is given, we may consider the class of all those sets of func-
tions (satisfying the equation) whieh have the property thet the equation is ir-
reducible with respect to those sets of functions. This class we may call the ir-
reducibility class of the equation.

Let us consider some simple propositions and some examples that will help
us to visualize the nature of this irreducibility definition. In the first place
it is easy to see that there cannot exist two or more equations of the same form
which are both irrelucible with respect to the same set of functions. But if the

two equations are of different forms (e.g. with different lag-numbers) each of
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them may be irreducible for the szme set of functions.

In the second place we notice that -y functional equation is irreducible
with respect to the most general set of runctions that satisfy this equation.
Indeed, if the set of functions should also satisfy another eguation = independent
of the first - this would represent a res.riction to the set, so that it could
not actuzlly be the most general set that satisfied the first ecquation. But if
we consider a set of functions that satisfy two independent equations, neilher of
the equations need be irreducible with respect to this set. This is indeed a more
special set of fuactions and the requirement that this set shall be a solution ie
less rigorous and therefore places less restrictions on the coefficients of the
equation.

As a more particular example let us consider the equation (2.6). Pure sine
functions with period 26 is a solution, and for functions of this sort the equa-
tion is irreducible, because there do not exist any values of p and g which will

make the equation

{3.1) pxl(t) + qxl(t-D) =0

an ecuation satisfied by pure sine functions of period 26, except the values
p = q. And in this case the ecuation is the same as (2.6).
On the other hand take the ecuation

(3.2) o.exl(u) + %) (t-0) * 0.4x, (t-28) = 0

This equation is also satisfied by a sine function of period 20 (which is easily
seen by insertion), but it 1s not irreducible with respeet to this function. The
equation would also be satisfied by this function if we let the first coefficient
be 0.9 and the last 0.1, or quite generally if the sum of the first and last
coefficiants are equal to the middle ~oefficient., In this case the coefficients
of the equation have a one dimensionnl degree of arbitrariness (even apart from
the arbitrary factor of proportionality which is always present in the homogener:
equations).

The following is a general rule abc:t the reducibility of equations of the

form (2.2).



(3.3) Rule about reducibility: If the functions with respect to which reduci-

bility is defined are made up of n exponential components (two complex exponen-

tials correspond to one damped, undamped or antidamped sine function}, the equa-

tion is certainly reducible - and hence its coefficients are affected in a more

or less arbitrary manner - if it contains more than n + 1 terms. And it may be

reducible even if it contains n + 1 tarms or less,

Let us first consider as an example the following three term equation in
one function

(3.4) ay o x(t-@l) ta x(t-ge) + a_(t—Q ) =0

573

If x is simply an exponential x(t) = CeXt, the left-hand side of (3.4) becomes
CeYt[ale_Ygl + aze"YG? + GBeYOEJ. In order that this expression should vanish
identically in t it is necessay and sufficient that ths bracket should disappear.
This leaves a one dimensional arbitrariness in the a's even apart from their
arbitrary common factor of proportionality.

If the function consicered is of the form

(3.5) x(t) = AeP?

sin(a+at)

it is equivalent to two exponential components (i.e. ), and since the number
of terms in the equation 1is only 3, the equation may be irreducible, But it
may also be reducible if the lag-numbers satisfy certain special conditions. In-
serting from {3,5) into the left-hand side of (3,4) we get

Bt ., - Bt
(3.6) Ae 51n(a+at)[@lcl+a2c2+a3c31+Ae cos(a+at)E&lsl+a252+a353:]
where
(3.7) ey = o PPigos o o4 s; = e™Pi gin a N

In order that (3.6) shall vanish identically in t it is necessary and suf-
ficient that the two brackets should disappear separatzly (because the two time
funetions in front of the brackets are linearly independent). I.e. we must have

c, +a 0

al 1 202 + CLBCB =

a

(3.8)

+ a.s 0

181 F %Sy T G285 7
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These are two ecuations in the a's. If the coefficients of the two equations are

provortional, i.e. if

a set of a's that satisfies one of the equations would automatically satisfy
the other. Hence there would again be only one condition for the three a's cone
sequently the a's would have a one dimensional arbitrariness, even apart from the
usual factor of proporticnality. The condition (3.9} is squivalent to the conditio
that all the three two-rowed determinants in the matrix of coefficients in (3.8}
should vanish (if any two of these determinants vanish, the third vanishes auto-
matically).

Since

c.c.
173} 7Py * 8dgin g, - e.)

{3.10) 3

S.5,
1

we see that in terms of the lag-numbers the condition (3.9) is reduced to

. hit Lo -kl
{3.11) 8, -8 =3 93 oy =

~

where h and k are integers (h = k or h = o or k = o represent trivial cases).
Thus, if (3.11) is fulfilled, (3.4) is reducible with respect to (3.5).

A general criterion for the case when even the (n + 1) terms equation is
reducible with respect to a series consisting of n exponential components, is

provided by the n rowed and {n + 1) columned matrix

(3.12) || €. eVPil | ¢, e YO ., Céneﬂyejl, C. e"Y9j2||
_ iy 1y i JY

where i, j... are the affixes of the variarles x5 s Xj"' which occur in the equa-
tion considered, and gil’ @iE ot le’ﬂja ..~ are the lag-numbers. The rows of
(3.12) are produced by letting v rua throven the characteristic numbers of which
we here suppose that there exist n .or “he (n+1} term equation in cuestion to

be reducible with respect to the zot of functions consideres, it is necessary and
sufficient that the matrix (3.12) shculd be less than n, More preciselys if it is
of rank r =n (vwhich is a cvi*eslor *l.ut cdenends only on the nature of the func-
tions in gquestion and the distribution of the lag-numbers) the equation will have
an {n - r) dimensional reducibility. i.e. its coefficienis will have an (n - 1)
dimensional degree of arbitrariness, in addition to the arbitrary factor of pro-

portionality associated with the hemogen. ity of the egquation.
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4, Coeflux and superflux equations.

The nature of passive Observation s,

If a determinate system of the form (2.2) is given, it is of particular
interest to consider the reducibility of the various equations with respect to that
class of functions which is & solution of the comlete system., This, of course, is
a much more special class of functions than that which satisfies each equation
taken separately, and the reducibility of the egquation is correspondingly higher.
The specialization of the functions is still further inecreased by the initial
conditions. We have indeed seen that even though the solution of the equations
themselves may contain a large - perhaps infinite - nunber of components, the
e pations do not say anything about the absolute amplitude distribution. It may
indeed happen that in the actual solution all components will disappear except,
say, one which is a pure sine curve. In this ease all the original equations that
consisted of more than three terms would certainly be reducible, and even some
of the three-term equations might be reducible, An equation which is irreducible
with respect to the set of functions that forms the actual solution of the com~
plete system (including those determined by the initial conditions) we shall call
a coflux equation, The others - those that are reducible with respect to their
set of functions - will be called superflux equations. These latter ecguations are
of course in a particular sense irreducible, but with respect to more general
classes of functions., If anyone of them is not reducible for any mere special
class of function it is at least irreducible for that class which consists of its
own most general solution. The word "flux" in this connection suggests that the
reducibility is here defined with respect to the time shape - the "flux" - actual-
1y possessed by the phenomena.

The notion of coflux relations is fundamental when we ask what sorts of
equations it is possible to determine from the knowledge of the time shapes that

are actually produced. The answer is obviously that all coflux ewuations and no

other equations are discoverable from the knowledge of the time shapes of the

functions that form the actual solution.

Indeed all other equations will have coefficients with at least a one-dimen-
sional degree of arbitrariness, If an attempt were made to fit such an equation
te the data, the coefficients would be of the f— form when no errors (aberrations)
were present, and otherwise they would have a fictitious determinateness, their

magnitudes being determined solely by the errors, and not by the structure,

This is the nature of passive observations, where the investigator is restric-

ted to observing what happens when all equations in a large determinate system are

actually fulfilled simultaneously. The very fact that thesec equations are ful-

filled prevents the observer from being able to discover them, unless they happen
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to be coflux equations, that is, irreducible with respect to the functions that
form the actual solution,

But why bother about these other equations that are not discoverable through
passive observations?

The answer is that some of these other ecuations frequently have a higher
degree of "autonomy" than the coflux equations, and are therefore very well worth
knowing, The "autonomy" of an equation is not, like the irreducibility a mathe-
matical property of a closed system like {2.2), but is built on seme sort of know-

ledge outside this system. I shall now proceed to a dicussion of this point.

5% The autonemy o f a functional
equation - mnature o f "explanations®,

experimentation an d ryeform,

Suppose that, from a knowledge of the time shapes of the two functions
xl(t) and xz(t), I have determined a relation of the form

(5e1) xl(t) = axl(t-Q) + bxz(t) + cxz(t-OE)

What does this equation mean? It means that so long as X1, and X continue to move

with the same time shapesas they have had in the past I can compute the value of

x, at any point of time t from the knowledge of X5 at this same point and X, and

1
x. at certain earlier moments as indicated in the formula. In other words the

eguation is simply a description of the "routine of change" which Xy and X,
follow. The equetion determined in this empirical way does not state that if a
situation cceurs where xl(t~91), xe(t) and xz(t-oz) have some arbitrary values.

I can again compute xl(t) by (5.1). To assume that {(5.1) should hold good for any
values whatsoever inserted for the variables on the right-hand side of the equatior
would indeed imply that I conceived of the possibility of another structure than
the one which prevailed when the equation (5.1) was determined. For instance, if
the original structure was taken as defined by two ecuations of the form{2.2), I
could not conceive of a free variation of the variates on the right-hand side of
(5.1) without giving up at least one of the two structursl equations that deter-
mine the course of Xy and Xy But that would mean giving up the very assumption
on which (5.1) was determined.

This situation can also be interpreted in terms of irreducibility. If T

conceive of the possibility that the constants, a, b and ¢ in (5.1) may have de-

finite values, I must also conceive of the existence of some time sha s of Xy

and X0 for which (5,1) becomes an irreducible equation, that is, has determinate
coefficients without any arbitrariness. And the same applies to any other strue-

tural equation.
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In a big system of structural equations it would be cuite exeptional if all
the equations should be irreducible with respect to that particular solution which
turmns out to be the final one. We only have to think of a case where the initial
conditions are such that only one single ccmponent is left with an amplitude
different from zero, while many of the structural ecuations contain a large number
of terms. The fact that I reckon with such a system of equations, must mean that

I conceive of the possibility that the structure may have been different from what,

it actually is, thus giving a chance of producing a time shapes complicated enough

to make the big structural equations irreducible with respect to these time shapes.

But when we start speaking of the possibility of a structure different from
what it actually is, we have introduced a fundamentally new idea., The big question
will now be! in what directions should we conceive of a possibility of changing
the structure. There is nothing in the nature of the equations that describe the
actual structure, which can suggest an answer. It is true that if a system of
equations is given, it would be natural to imagine in turn 2ll equations omitted
exept onej this remaining equation would then certainly be irreducible with re-
spect to the general class of functions which now satisfy the equation (see the
second example in Section 2). But this solution is only apparent, because there
exist an infinity of ways of writing the system of structural equations. (Compare
for instance the tranformation (2.12}).

To get a real answer we must introduce some fundamentally new information.

We do this by investigating what features of our structure are in_fact the most

autonomous in the sense that they could be maintained unaltered while other fea-

tures of the structure were changed. This investigation must use not only empiri-

cal hut also abstract methods. So we are led to constructing a sort of super—
structure, which helps us to pick out those particular equations in the main
structure to which we can attribute a high degree of antonomy in the above sense.
The higher this degree of autonomy, the more fundamental is the equation, the
deeper is the insight which it gives us into the way in which the system functictg;

in short, the nearer it comes to being a real explanation. Such relations form the

essence of "theory".

Once such a basic system of structural equations to which we can attach the
label "autonomous" has been selected, it is easy to derive others that have a
grester or lesser degree of autonomy. Egations that are obtained by long elimi-
nation processes, based on several autonomous souations will have a low degree of
autonomy, they will in fact depend on the nreservation of a great many features
of the total system,

The coflux relations that can be determined by observation of the actual
time shapes may or may not come near to resembling an autonomous relation, that
depends on the general constitution of the phenomena studied. To give two extrem>

examples: The demand function for a consumers commodity as depending on price and
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income and perhaps on some secondary variables will, if the coefficients can be
determined with any degree of accuracy, come fairly near to being an autonomous
relation. It will not be much changed by a change in monetary policy, in the
organization of production etc. But the time relation between the Harvard 4, B
and ¢ curves is a pure coflux relation, with only a small degree of autonomy. j

Such I believe is in essence the relation between the equations of pure (
theory and those that can be determined by passive observations,

If the situation is such that the coflux relations are far from giving in- '
formation about the autonomous structural relations, recourse must be had to

experimentation, that is one must try to change the conditions so that one or

more of the structural equations is modified., In economics the interview method

is a substitute ~ sometimes bad, sometimes good - for experimentation.
If the results of the investigation are to be applied for economic political
purposes - for reforming the existing economic organization - it is obviously

the autonomous structural relations we are interested in,

6. Aberrations versus atimuli,

confluence analysis and shock ~theory.

The existence of aberrations does not necessarily involve any important
consequences for the theoretical analysis, it only concerns the statistical tech-
nique, but in this respect it is important, The existence of stimuli entails
mich more far-reaching consequences., The total time shape will now be more or
less transformed, for instance damped cycles will become undamped in the long run,
but will have a disturbing effect over shorter intervals. The timing between the
cycles may be changed from what it is in the stimulus-free system, and entirely
new cycles, pure cumulation cycles will emerge. These consequences cannot be

discussed in detail here.
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7. Interpretation of
Professor Tinbergen's results.

A1l the way through his work Tinbergen uses approximations by which the
time equations are reduced to linear forms., This is certainly admissible in a
first approximation but the consequences should be clearly recognized. If the
linear approximations are used for as many scuations as are needed to make the
system determinate (which is what Tinbergen aims at doing. ".,..We must continue
this procedure until the number of relations obtained equals the number of
phenomena..." "Business Cycles ...." p.7) - only those features of the time series
are taken account of that can be approximated to by fitting to the data that type
of solution which a linear system of equations admits of,namely a number of tri-
gonometric components (exponentials or damped, undamped or antidamped sine func-
tions or as exceptional cases such functions multiplied by polynomialsh of the
time series over the interval considered, In itself there is nothing objectio-
nable in this but it means that the significance of the results must be inter-
preted in the light of the various algebraic facts of the preceding sections,
These become relevant with the same approximation as that involved in Tinbergen's

calculations.

This being so it is clear that it is only coflux relations that are deter- ]
mined by Tinbergen; and the lack of agreement between these equations and those

of pure theory cannot be taken as a refutation of the latter. Any number of

examples could be given of statements that are in need of very much qualification
on this ground. A case in point is that dicussed on page 11l in "Business Cycles"
or perhaps even better the attempt on page 26 to get an equation for consumers
outlay. The only result of the various attempts made here is to shift from cne

to another amongst an infinite number of coflux equations. By a suitable choice
of the variate and lag-numbers introduced one can produce practically any coef-
ficients one likes, A comPutation from series made up of a small number of trigo-
nometrie components shows this immediately. The reasons for discarding some of
the equations (p.2b) are qite unsatisfactory. No other reasons seem to be given
than the fact that the coefficients do not work out as the author likes. In my

opinion all these equations are acceptable when interpreted as what they really

aret a number of coflux equations. But none of them can, I believe, be taken as
an expression of the autonomous structural equation that will characterize dema.d.

In concluding this memorandum, I want to stress again what I mentioned in
the introduction, namely, the importance of the results obtained by Tinbergen.
They will have to be taken as starting point for any further investigation aiming
at obtaining limits or other sorts of information concerning the structural
coefficients,

17.7.38. (signed) RAGNAR FRISCH
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