goitrous (158%), 309 confirmes out of 1624 (19%) and 109 soldiers out of 677 (16%). A more recent survey in 1910 of the district of Husby in the same county showed 15.9% of males and 336% of famales to have goitre. Other important endemic areas in the county were the districts of Bjursha, Sundborn, Stora Tuna and Svirisjo. In the Department of Gefleborg goitre was found to be endemic in a fer areas, but for the county as a whole the percentage of recruits affected was only 1.3% and of children $12 \cdot 2 \%$. The most goitrous districts were Ockelbo with 44% of children and 30% of adolesoents goitrous, and Bjensicer and Alfta with lower ratee A later investigation in the Hogbo district showed 5% of men and 30% of women to be goitrous.

I have ahown in Table II the total cancer deaths, deaths from all causea, deaths from unknown causes and corrected cancer mortality rates for the year 1911 for (i) the whole county of Kopparberg, (ii) goitrons areas of Ockelbo, Bjensker and Alfte of the county of Gefleborg, and (iii) rural areas of Sweden as a whole.

TABLE II.

Ares	$\begin{aligned} & \text { Population } \\ & 1911 \end{aligned}$	Cancer deaths 1011	$\begin{gathered} \text { All } \\ \text { death: } \\ 1911 \end{gathered}$	Deathas from unkown canase 1911	Corrected canncer death-rate
Department of Kopparberg ... Goitrous districts of Gefleborg	$\begin{array}{r} 235,427 \\ 19,159 \end{array}$	$\begin{array}{r} 240 \\ 20 \end{array}$	$\begin{array}{r} 3067 \\ 837 \end{array}$	240 88	二
$\begin{array}{lll}\text { Total goitre areas } & \ldots & \ldots \\ \text { Sweden (rural) } & \ldots & \ldots\end{array}$	$\begin{array}{r} 854,586 \\ 4,159,816 \end{array}$			262	110.9 96.7

It will be seen that the gnitrous areas had apparently a somowhat higher cancar mortality rate than rural Sweden as a whole. It is unfortunately not posssible to obtain more extended datan

III. Exophthalmic Goitre in England and Wales.

In view of the interest which is at the present time being aroused on the question of goitre in England and Wales, I have thought it advisable to include with this paper a map (No. 2) showing the standardized mean mortality rates from exophthalmic goitre over the 10 years 19131922 in the various comnties (ercluding county boroughs) which has been compiled from the statistics of the Registrar-General. For explanstion of the method used in standardising reference should be made to Section VIII of the original paper in Biometrika, Vol. xvI. pp. 398-398, Dec. 1924.

Recurrence Formulae for the Moments of the Point Binomial.

By Ragnar frisch, Kristiania

Introduction. In Biometrika, May 1924, Professor Pearson has given a very important reourrence formula for the moments of the hypergeometric series. In the special case of the point binomial ($p+q$) Pearson's formula may be written

$$
\begin{align*}
& \mu_{0}=\operatorname{rqp_{i=0}^{s-1}(\begin{array} {c}
{s-1}\\
{i}
\end{array})\mu _{i}-q\sum _{i=0}^{s-2}(\begin{array} {c}
{s-1}\\
{i}
\end{array})\mu _{i+1}\ldots \ldots \ldots } \tag{1}\\
& \mu_{t}+q\binom{s-1}{1} \mu_{n-1}+\sum_{i=1}^{s}\left[q\binom{s-1}{i}-\operatorname{rqp}\binom{s-1}{i-1}\right] \mu_{s-i}=0 . \tag{£}
\end{align*}
$$

where the moment of order a is defined to be
where

$$
\begin{gathered}
\mu_{v}=\mu_{0}(q)=\sum_{v=0}^{r}(v-r q)^{r} T_{v} \\
T_{r}=\binom{r}{v} q^{r} p^{r-r}, \quad p+q=1 \\
\mu_{0}=1, \\
\mu_{1}=0 .
\end{gathered}
$$

In the following lines I first deduce some general properties of linear equations betwean the moments of the point binomial. I then proceed to prove a eystem of recurrenco formulae, a special case of which is the formula (1). Lastly I generalize the recurrence formalae of Pearson and Romanovaky for the case of incomplete moments. The proofs of the last-named generalizations are based on principles entiraly different from those originally used by Pearson and Romanovaky. In fact only elementary summation operations are involved. By the help of these oparations the proofs may be given an extremely simple form. The formula of Romanovaky in fact arises with hardly any calculation at all.

8 1. Some Genoral Properties of Limarr Equations between the Nomente of the Puist Binomial. A function $F(x)$ which identically in x satisfies one of the equations

$$
\begin{align*}
& F(1-x)=+F(x) \tag{4a}\\
& F(1-x)=-F(x) \tag{4b}
\end{align*}
$$

may be called a reduced function of x, paritively reduced if it satisfies (4a), rogatively reduced if it satiafies (4b). A positively reduced function obviously is an even function in the variable $t=1-2 x$, and a negativels reduced fanction is an odd function in the same variable.

Putting $p=1-q$ for q in (3) we obtain

$$
\mu_{a}(1-q)=\sum_{v=0}^{r}(r-r+r q)^{r}\binom{r}{v}(i-q)^{r} q^{r-r=}=(-1)_{r=0}^{r}((r-v)-r q)^{r}\binom{r}{r-\eta} q^{r-r(1-q)^{r-(r-\eta}, ~}
$$

hence

$$
\begin{equation*}
\mu_{1}(\dot{l}-q)=(-1)^{\prime} \mu_{2}(q) \tag{8}
\end{equation*}
$$

The oven momests are positively reduced functions of q and the odd moments megatively reduced furctions of q. That is: the even moments are even functions and the odd moments odd functions in the variable $8=p-q=1-2 q$.

Now let us consider a linear relation between the ($a+1$) moments

$$
\begin{align*}
& \mu_{0}, \mu_{0-1}, \ldots \mu_{0}-a, \\
& \sum_{i=0}^{e} A_{i}(q) \mu_{0-1}=0 . \tag{6}
\end{align*}
$$

where the coefficients $\Delta_{i}(q)$ are functions of q.
The function $\phi_{i}(q)=(-1)^{i} \cdot \frac{A_{i}(1-q)}{A_{1}(q)}$ may be called the form-function of the equation. If the form-function is independent of the subecript i, that is to say if a function $\phi(G)$ exists so that identically in q we have : $(-1)^{4} \cdot \frac{A_{i}(1-q)}{A_{i}(q)}=\phi(q)$ for all values $i=0,1, \ldots$ a, then I call (6) a reducod equation. If no such function exists, I call (6) a rot-redruced equation.

The character of an equation as reduced or not-reduced evidently remains unaltered if the equation is maltiplied by an arbitrary function of q.
*Biometrika, Vol. IT. p. 410, 1928. After finishing the present peper I received a letter from Professor Tchonprofl who drew my attention to the fact thit Romanoviky's formula was first foand by Bohlmann. OL. Bortkiewios, Jahrabbricht der deutacher Mathamatikervercinigung, Bd. IIvis. (1918), 8. 78. [Romanorsk's formala was communiented by him in 1915 to the Society of Naturalists of the University of Wartavr. Eid.]

In the special case $\phi(q)= \pm 1$ I call (6) a complotely reduced equation, positively reduced if $\phi(q)=+1$, negatively reduced if $\phi(q)=-1$. A reduced equation which is not completely reduced is obviously transformed into a completely reduced equation when it is divided by any of its coefficients or any other function $F(q)$ which satisfies one of the equations

$$
\phi(q) \cdot F(q)= \pm F(l-q)
$$

where $\phi(q)$ is the form-function of the given equation.
Now suppose that we have given a not-reduced equation of the form (6). Since this equation holds good for every value of the varinble between 0 and 1 , it holds good for the value $(1-q)$. So we have

$$
\sum_{i=0}^{:} A_{i}(1-q) \mu_{n-i}(1-q)=0 .
$$

Subetituting the expression for $\mu_{0-r}(1-q)$ from (5) we get

$$
\sum_{i=0}(-1)^{i} \Delta_{i}(1-q) \mu_{n-i}=0 .
$$

\qquad
The last equation evidently is a not-reduced equation. Furthermore the two equations (6) and (7) are linearly independent since no function $\phi(q)$ exista, so that for all the values $i=0,1, \ldots$ a the coefficients $(-1)^{r} \Lambda_{i}(1-q)$ of the new equation (7) are $\phi(q)$ multiplied by the coefficients of the given equation (8).

Thus wo have the following fundamental property of the moment equations: To every notreduced linear equation between the momente corresponds anothor not-reduced equation retich is linearly indopendont of the firm, and which may be soritten down immediataly when the coefficionts of the firat equation are knows.

It is easily seen that this property does not belong to reduced equations. From the two notreduced equations (6) and (7) we may by linear combination deduce an infinity of new equations. Of these however not more than two can be linearly independent. Jay it in this way be possible to obtain two linearly independent reduced equations?

Evidently it does not restrain generality if we suppose the equations to be obtained by adding to the equation (7) as it stands the equation (6) multiplied by some function $\theta(q)$ of q. This gives

$$
\begin{equation*}
\sum_{i=0}^{q}\left[\theta(q) \cdot A_{i}(q)+(-1)^{i} A_{i}(1-q)\right] \mu_{i-i}=0 . \tag{8}
\end{equation*}
$$

The form-function of this equation is

$$
\Phi_{i}(q)=\frac{\theta(1-q) \phi_{i}(q)+1}{\phi_{i}(q)+\theta(q)}=\theta(1-q) \frac{\phi_{i}(q)+\frac{1}{\theta(1-q)}}{\phi_{i}(q)+\theta(q)},
$$

where $\phi_{i}(q)$ is the form-function of the given equation (6).
The necessary and sufficient condition that there exists a function $\Phi(q)$ independent of the subscript $;$ so that identically in q

$$
\begin{gather*}
\Phi_{i}(q)=\Phi(q) \\
\theta(q) \theta(1-q)=1 . \tag{8b}
\end{gather*}
$$

for all the valuen $i=0,1, \ldots a$, is that
for the values of q in the interval $0<q<1$ for which the form-function of $(\theta), \phi_{i}(q)$, in not independent of the subscript i. For the values of q for which (8b) is satisfied, we have

$$
\Phi(q)=\theta(1-q)=\frac{1}{\theta(q)} .
$$

Hence the necessary and sufficient condition-that (8) is a reduced equation is that $\theta(q)$ is a function with the specified properties. Furthermore it is evident that if we choose two such functions $\theta_{1}(q)$ and $\theta_{2}(q)$ so that $\theta_{1}(q) \neq \theta_{3}(q)$ the corresponding two equations of the form (8) are linearly independent.

So we have the second pruperty of the linear equations between the moments: $\Delta x y$ notreduoed equation of the form (6) may be roplaced by thoo reduced linearly indepondont equationt of the form

$$
\begin{align*}
& \sum_{i=0}^{i}\left[\theta_{3}(q) \Delta_{i}(q)+(-1)^{i} \Delta_{i}(1-q)\right] \mu_{o-i}=0 \tag{9b}
\end{align*}
$$

where $\theta_{1}(q)$ and $\theta_{2}(q)$ are troo arbitrary not identical furctions of q satisfying the conditions opecified under ($8 b$).

In treating linear equations between the moments one will nearly always find it ensier to handle the reduced than the not-reduced forms.

Application. The equation (2) is a not-reduced equation with coefficients

$$
\begin{aligned}
& A_{0}=1 \\
& A_{1}(q)=q\binom{s-1}{1}, \\
& A_{i}(q)=q\binom{s-1}{i}-\operatorname{rqp}\binom{s-1}{i-1}, \quad i=2,3, \ldots 2
\end{aligned}
$$

Choosing $\theta_{1}(q)=+1, \theta_{2}(q)=-1$ we may replace the given equation by the following two reduced equations which are written down immediately by the help of (9 a) and ($9 b$),
where the summation is to be continued to the last not vanishing ("not ∇. .") term. The equation ($10 b$) is the equation obtained from ($9 b$) when $(s-1)$ is replaced by 2

Writing out the formula (10a) we get

$$
\begin{align*}
\mu_{0} & =\left(\frac{p-q}{2}\right)\left[\binom{s-1}{1} \mu_{0-1}+\binom{s-1}{3} \mu_{0-3}+\ldots\right] . \\
& \left.+\operatorname{rqp}\left[\begin{array}{c}
s-1 \\
1
\end{array}\right) \mu_{0-1}+\binom{s-1}{3} \mu_{0-1}+\ldots\right]-\frac{1}{2}\left[\binom{s-1}{2} \mu_{0-2}+\binom{s-1}{4} \mu_{0-1}+\ldots\right] \tag{11}
\end{align*}
$$

where each of the sequences is to be continued to the last not vanishing term.
The formula (11) may be alightly more convenient for numerical calculations than the formula (1). Other formulse involving still less calculation may however be obtained as I shall show in the next paragraph.
\$9 2. A general System of Recurrence Formulae. Let us denote by H, the left-hand side of Pearson's equation (2),

$$
B_{i}=\mu_{s}+q\binom{s-1}{1} \mu_{1-1}+\sum_{i=1}^{i}\left[q\binom{0-1}{i}-\operatorname{rqp}\binom{0-1}{i-1}\right] \mu_{t-i} .
$$

Calculating the first few differences of H_{s},

$$
\begin{gathered}
\Delta B_{a}=H_{a+1}-H_{a} \\
\Delta^{2} H_{a}=\Delta B_{1+1}-\Delta H_{a},
\end{gathered}
$$

the following formula for $\Delta^{2} H_{0}$ is suggested

$$
\begin{equation*}
\Delta^{k} H_{1}=-\sum_{i=0}^{\operatorname{Dot} r}\left[(-1)^{i-1}\binom{k}{i} p-\binom{s-1}{i} q+\left(\binom{s-1}{i-1}+(-1)^{\mu}\binom{k}{i-1}\right) r q p\right] \mu_{0+k-i} \ldots() \tag{12}
\end{equation*}
$$

The formula may essily be proved by complate induction. It obviously holds good for $k=0$. Supposing it to hold good for k we have

$$
\begin{aligned}
& \Delta^{k+1} H_{4}=\Delta^{k} B_{s+1}-\Delta^{k} H_{s} \\
& =-\sum_{i=0}^{\operatorname{nox}}\left[(-1)\binom{k}{i} p-\binom{s}{i} q+\left(\binom{i}{i-1}+(-1)^{s}\binom{E}{i-1}\right) r q p\right] \mu_{0+1+k-i} \\
& +\sum_{i=0}^{n o t}\left[(-1)^{i-1}\binom{k}{i-1} p-\binom{i-1}{i-1} q+\left(\binom{s-1}{i-2}+(-1)^{i-1}\binom{k}{i-2}\right) r q p\right] \mu_{0}+t-(i-1) \\
& =-\sum_{i=0}^{\text {Dot } r .}\left\{\left[(-1)^{i-1}\left(\binom{k}{i}+\binom{k}{i-1}\right) p-\left(\binom{s}{i}-\binom{s-1}{i-1}\right) q\right]\right. \\
& \left.+\left[\binom{i}{i-1}-\binom{s-1}{i-2}+(-1)^{r}\left(\binom{k}{i-1}+\binom{k}{i-2}\right)\right] r q p\right\} \mu_{0+(i+1)-i} \\
& =-\sum_{i=0}^{\operatorname{not} r}\left[(-1)^{n-1}\binom{k+1}{i} p-\binom{s-1}{i} q+\left(\binom{s-1}{i-1}+(-1)^{i}\binom{k+1}{i-1}\right) r q p\right] \mu_{0}+(k+1)-i,
\end{aligned}
$$

which is the expression for $\Delta^{k+1} H_{4}$ obtained from (18).
From Pearson's equation we know that $\dot{H}_{0}=0$ identically in s, consequently $\Delta^{t} H_{t}=0$.
Hence replecing $(s+k)$ by s in (18) we have the following equation,

$$
\sum_{i=0}^{\operatorname{not} r}\left[(-1)^{k-1}\binom{k}{i} p-\binom{a-k-1}{i} q+\left(\binom{e-k-1}{i-1}+(-1)^{t}\binom{k}{i-1}\right) r q p\right] \mu_{0-1}=0 ; \ldots(13 a),
$$

where k denotes an arbitrary not negative integer. This is a not-reduoed equation, which is easily seen by an inspection of the form-function of the equation". Using the result of the preceding paragraph we may immediataly write down the following not-reduced equation,

$$
\sum_{i=0}^{\text {not }}\left[(-1)^{i-1}\binom{1-k-1}{i} p-\binom{k}{i} q+\left((-1)^{y}\binom{s-k-1}{i-1}+\binom{k}{i-1}\right) r q p\right] \mu_{0-i}=0 \ldots(13 b) .
$$

Taking first the sum and then the difference of the last two equations, which corresponds to choosing the functions $\theta_{1}(q)$ and $\theta_{2}(q)$ from the preceding paragraph equal to +1 and -1 respectively, we obtain the following two redroed equations,

$$
\begin{aligned}
& \sum_{i=0}^{\operatorname{mot}_{r} r}\left[\left(\binom{s-k-1}{i}+\binom{k}{i}\right)\left((-1)^{m-1} p-q\right)+(1+(-1))\left(\binom{s-k-1}{i-1}+\binom{k}{i-1}\right) r_{q p}\right] \mu_{0-i}=0 \\
& \underset{i=0}{\operatorname{not} r}\left[\left(\binom{s-k}{i+1}-\binom{k}{i+1}\right)\left((-1)^{i-1} p-q\right)+(1+(-1))^{n}\left(\binom{s-k}{i}-\binom{k}{i}\right) r_{q p}\right] \mu_{0-i}=0 \ldots(14 a b),
\end{aligned}
$$

whare k again denotes an arbitrary not negative integer, not necessarily the same in ($14 a$) as in (14b). The equation ($14 b$) is the equation obtained by subtracting (13a) from (13b) and replacing ($s-1$) by s.

To every not negative value of k correspond two recurrence formulae (14a) and (14b). Putting $k=0$ we obtain the formulae ($10 a$) and ($10 b$). In this special case the formulae contain all the moments from μ_{0} to μ_{2}. By choosing k conveniently we may reduce the number of moments occurring in the formulee. In fact if we choose any particular value $k_{0}\left(<\frac{8}{8}\right)$ of k, the coefficients of all the moments from order zero to order $\left\{\begin{array}{c}k_{0}-1 \text { (if }\left(s-k_{0}\right) \text { be even) } \\ k_{0} \text { (if }\left(s-k_{0}\right) \text { be odd) }\end{array}\right\}$ vanish in the formule. If s be even and $t=\frac{1}{8}$, the coefficients in (14a) vanish for the moments from order zero to order $\left\{\begin{array}{c}z-1 \text { (if } \frac{1}{2} \text { s be even) } \\ z-2 \text { (if } \frac{1}{2} \text { s be odd) }\end{array}\right\}$. If s be odd we may for instance choose $k=\frac{1}{2}(s-1)+$. Formula
*The only cace in which (13 a) might be a reduced equation is the case $k=\frac{1}{1}(0-1)$.
$\dagger k=1(s-1)$ being the cane in whioh (18 a) is a reducod equation, the apecial formala (10), p. 170, may of coarse aleo be derived directly trom (13a) or from (13 b).
(14a) then gives

$$
\begin{align*}
& \mu_{0}=(p-q)\left[\binom{k}{1} \mu_{t-1}+\binom{k}{3} \mu_{0-3}+\ldots\right]+\operatorname{srqp}\left[\binom{k}{1} \mu_{g-1}+\binom{k}{3} \mu_{1-1}+\ldots\right] \\
&-\left[\binom{k}{k} \mu_{t-3}+\binom{k}{4} \mu_{t-4}+\ldots\right] \ldots \ldots \ldots \ldots . . \ldots \tag{15}
\end{align*}
$$

This formuls involves considerably less calcalation than the analogous formule (11). For instance to calculate μ_{13} by (11) we must use the values of all the moments from μ_{0} to μ_{18} with numerical coefficients such as 495, 792, 924 , etc. To calculate $\mu_{1 s}$ by (15) we only use the moments from μ_{γ} to μ_{12} with numerical coefficients 6,15 , and 20 .

I think it should be possible by further transformation of Pearson's equation, using the results from $\& 1$, to obtain an equation only containing four consecutive moments, but I have not yet been able to carry out this transformation.
§ 3. Generalisation of Pearron's and Romanousky's Formulas to incompleto Noments The incomplete moment of order a may be defined as
where

$$
\begin{gather*}
\mu_{2}=\sum_{v=p}^{r}(v-r q)^{e} \cdot T_{r}, \\
T_{r}=\binom{r}{v} q^{r} p^{r-v} \tag{18}
\end{gather*}
$$

If it be desired to emphasize the lower limit of summation we may use the notation pt_{n}.
Differentiating the equation (16) with respect to q we obtain

$$
\mu_{p}^{\prime}=\sum_{v=p}^{r}\left\{\frac{(v-r q)^{\rho+1}}{q p} T_{r}-r s(v-r q)^{r-1} T_{v}\right\},
$$

hence

$$
\mu_{0+1}=q p\left[r \mu_{t-1}+\mu_{n}^{\prime}\right]
$$

This I think is the simplest proof of which Romanovaky's formula is capable. It is a very interesting fact that the formala holds good without any alteration, even for the general case of incomplete moments.

For the incomplete moment of the first order $\mu_{1}=\sum_{v=\rho}^{r}(v-r q) T_{v}$ I have given the explicit expression in the Skandinavisk Aktuariotideskrift ${ }^{*}$,

$$
\begin{equation*}
\mu_{1}=\rho p T_{\rho-\rho p p}\binom{r}{\rho} q^{\rho} p^{r-p} \tag{18}
\end{equation*}
$$

Introducing this expression in the equation obtained from (17) by putting $s=0$, we get

$$
\mu_{0}^{\prime}=\frac{P}{q} T_{\rho} .
$$

Integrating between 0 and q we obtain in the case $0<p$,

$$
\begin{equation*}
\mu_{0}=\rho\binom{r}{\rho} \int_{0}^{q} x^{q-1}(1-x)^{-\rho} d x \tag{19}
\end{equation*}
$$

This is the expression for the zero moment of the point binomial first found by Professor Pearsont. r and ρ being positive integers, the integral (19) may of course be calculated directly, but the expression for μ_{0} obtained would not be any simpler than the definition

$$
\mu_{0}=\sum_{r=p}^{r} T_{r} t .
$$

The formula (19) may still be useful in numerical applications as shown by Dr Camp§. Now

* No. 3, 1924, p. 161. + Bionzetrika, May 1924, Vol. xvi. p. 202, and note by Dr Oamp, p. 171.
\ddagger The most interesting results of the direct integration of (19) are obtained by equating coeffecients of equal poweri of q. In this way some not unimportsat identities antiafied by the binomial coefficients may be obtsined.
\& Biometrika, May 1924, Vol. IVI. p. 157.
assuming the numerical value of μ_{0} to be calculated, I proceed to prove a recarrence formala by which the values of the higher incomplete moments may be calculated successively.

Patting

$$
\begin{aligned}
& f_{v}=(v-r q)^{-1}, \\
& g_{r}=(v-r q) T_{v},
\end{aligned}
$$

we have, by partial summation of (16),

$$
\mu_{4}=\sum_{v=\rho}^{r} f_{v} g_{v}=f_{r} \sum_{v=\rho}^{r} g_{v}-\sum_{v=\rho}^{r-1} \Delta f_{i=p}^{v} \sum_{i}^{v} .
$$

Introducing the following expressions taken from (18),

$$
\begin{aligned}
& \sum_{v=p}^{i} g_{r}=\rho p T_{p} \\
& \sum_{i=p}^{v} g_{i}=p p T_{p}-(v+1) p T_{r+1},
\end{aligned}
$$

we get

$$
\begin{aligned}
& \mu_{v}=\rho p T_{\rho} f_{r}-\rho p T_{\rho} \sum_{v=\rho}^{r-1} \Delta f_{v}+\sum_{v=\rho}^{r-1} p(\nu+1) T_{v+1} \Delta f_{v}=\rho p T_{\rho} f_{\rho}+q \underset{v=\rho}{\sum}(r-v) T_{v} \Delta f_{v}
\end{aligned}
$$

$$
\begin{align*}
& \text { Introducing } \\
& \Delta f_{v}=\binom{s-1}{1}(v-r q)^{s-2}+\binom{s-1}{2}(v-r q)^{s-3}+\ldots+\binom{s-1}{s-1} \\
& \mu_{s}=p p T_{p}(\rho-r q)^{r-1}+\operatorname{TqP} \sum_{i=0}^{e-2}\binom{s-1}{i} \mu_{i}-q \sum_{i=0}^{s-2}\binom{s-1}{i} \mu_{i+1} \tag{200}
\end{align*}
$$

we finally obtain

This is Pearson's formula generalized to the case of incomplete moments. The formula only differs from the completo-moment formula (1) by the additional term $p p T_{p}(\rho-r q)^{-1}$. Putting $\rho=0$ in (20) we get of course (1). The incomplete moments do not satisfy any simple relation such as (5), so the equation (20) cannot be replaced by such simple reduced equations as (14a) and (14b).

The first few incomplete moments as calculated from (20) are

$$
\begin{aligned}
& \mu_{1}=p p T_{p} \\
& \mu_{2}=p p T_{p}[\rho-(r+1) q]+r q p \cdot \mu_{0}, \\
& \mu_{g}=p p T_{p}\left[(\rho-(r+1) q)^{2}+g p(2 r-1)\right]+r q p(p-q) \cdot \mu_{0}
\end{aligned}
$$

Review: The Fiements of Vital Statistics in their bearing on Social

 and Public Health Problems. By Sir ARTHUR NEWSHOLME, K.C.B., M.D., F.R.C.P. New Edition, George Allen and Unwin, Ltd.This new edition of The Eloments of Vital Statistica contains much fresh matter. Sir Arthur Newsholme discusses in an early chapter the different methods of eetimating population. We think that he has some doubt as to the advantage of subotituting "age in years and months" for "age last birthday" in the 1821 cansua. Personally we doubt whether it will conduce to accuracy. If anyone knows his age "age last birthday" seems to us the simpleat form in which to state that age and one wonders how recorders deal with a portion of a month when they have to enter "age in years and months." In considering "age at marriage" Sir Arthur Newsholme shows that between 1896 and 1020 there has been very little postponement of marriage, 88 of a year for bachelor bridegrooms and 40 of a year for spinstar brides, and one concludes that such a elight postponement can have little to do with the falling birth-rate.

The birth-rate is considered in Chaptars VII, VIII, and IX. In connection with the registration of births we should like to point out that though the maiden surname of the mother is

