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goitrous (156 %), 309 confirmees out of 1624 (19 ¥) and 109 soldiers out of 677 (18 ). A more
recent survey in 1910 of the district of Husby in the same county showed 169 ¥ of males and
336 ¥ of females to have goitre. Other important endemic areas in the county were the districts
of Bjursis, Sundborn, Stora Tuna and Bviirisjo. In the Department of Gefleborg goitre was
found to be endemic in a fow areas, but for the county as a whole the percentage of recruits
affected was only 1'8 % and of children 122 %. The most goitrous districts were Ockelbo with
44 % of children and 30 % of adolescents goitrous, and Bjendker and Alfta with lower ratea. A
later investigation in the Hogbo district showed 5 % of men and 30 % of women to be goitrousa.

I have shown in Table IT the total cancer deaths, deaths from all causes, deaths from unknown
causes and corrected cancer mortality rates for the year 1911 for (i) the whole county of Kop-
parberg, (ii) goitrous areas of Ockelbo, Bjendker and Alfta of the county of Gefleborg, and
(iii) rural areas of Sweden as a whole.

TABLE 1L
Deaths from
: Cancer| All Corrected
\ Po%uolﬁtxon deaths |deaths unknown
1011 | 1911 1911 death-rate

Department of Kop)nrbe 235,427 | 240 | 3067 240 —_
Gefleborg

Goitrous districts o 19,169 20 237 22 —
Total goitre areas ... . 254,580 | 260 | 3304 262 1109
Sweden (rural) .- | 4,159,218 | — — — 867

It will be seen that the gnitrous areas had apparently a somewhat higher cancer mortality rate
than rural Sweden as a whole. It is unfortunately not possible to obtain more extended data.

I1I. Ezophthalmic Goltre in Ergland and Wales.

In view of the interest which is ot the present time being aroused on the question of goitre
in England and Wales, I have thought it advisable to include with this paper & map (No. 2)
showing the standardized mean mortality rates from exophthalmic goitre over the 10 years 1913
1922 in the various counties (excluding county boroughs) which has been compiled from the
statistics of the Registrar-General. For explanation of the method used in standardising reference
should be made to Section VIII of the original paper in Biometrika, Vol. xv1. pp. 392—398,
Dec. 1924.

Recurrence Formulae for the Moments of the Point Binomial.

By RAGNAR FRISCH, Kristiania.

Introduction. In Biomstrika, May 1024, Professor Pearson has given a very important reour-
rence formula for the moments of the hypergeometric series. In the special cass of the point
binomial (p+¢)" Pearson’s formula may be written

-1 ,8-1 -2 /g1
,.,n.rgp&( ; )H—q‘fo( : )pm .............................. 1)

or htq l;l)h_ﬁ.‘é,[q(':l) -rqp(:-:i)]f*'-"" ..................... (@),
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where the moment of order s is defined to be
r
pe=pty(g)= 3 (»—rqy T,
rep

where Ty=- (:) P pig=l i easnce RAITIREI (3),

Ho=1,
p1=0. .

In the following lines I first deduoce some general propertiea of linear equations between the
moments of the point binomial I then proceed to prove & system of recurrence formulae, &
special case of which is the formula (1). Lastly I generalize the recurrence formulae of Pearson
and Romanovaky® for the case of incomplete moments. The proofs of the last-named generaliza-
tions are based on principles entirely different from those originally used by Pearson and
Romanovsky. In fact only elementary summation operations are involved. By the help of theee
operationa the proofs may be given an extremely simple form. The formula of Romanovaky in
fact arises with hardly any caloulation at all.

§ 1. Some General Properties of Linear Equations between the Moments of the Puint Binomial.
A function F(r) which identically in r satisfies one of the equations

Fleoz)m 4+ F(2) coviiiiiiiiiiniincreniicnesrniinnenes (4a),

F(lm2)m ~F(2) ccvniiiiniiniiiiniiieiceenennnninieaens (4%),
may be called a reduced function of z, positively reduced if it satisfies (4a), Regatively reduced if
it satisfies (43). A positively reduced function obviously is an even function in the variable
t=1-2z, and a negatively reduced fanction is an odd function in the same variable.

Putting p=1—g¢ for ¢ in (3) we obtain

ma-)= 2 G=rtrgp(D)A-rerm(-172 (r-n)=rar(,],) o A-gr-r=n,
hence (L= @)= (= 1) ag (@) ceveervversrencrraeneasmesesensenessonins (5)-

Ths even moments are positively reduced functions of ¢ and the odd moments negatively reduced

Junctionsof q. That is: the even moments are even functionsand the odd moments odd functions
in the variable dmp—gqml—2g. .

Now let us consider a linear relation between the (a+1) moments
For Pamly oor Pamay
L3
‘ioA¢ (€3] PSP L_1 ¢ R UUOUIUO PSR, (8),

where the coeficients 4, (¢) are functions of ¢.

r

The function ¢ ()=(~ L) %(}G?L{) may be called the form-function of the equation. If the
form-function is independent of the subecript 7, that is to say if a function ¢ (¢) exists so that
identically in ¢ we have: (-1). AL(‘I(; )-¢(g) for all values i=0, 1, ... a, then I call (6) &
reduced equation. If no such fanction exists, I call (6) a not-reduced equation.

The character of an equation as reduced or not-reduced evidently remains unaltered if the
equation is multiplied by an arbitrary function of ¢.

* Biometrika, Vol. xv. p. 410, 1928. After finishing the present paper I received a letter from
Professor Tchouproff who drew my attention to the fact that Bomanovaky’s formula was first found by
Bohlmann., Of. Bortkiewics, Jahresbericht der deutschen Mathematikervereinigung, Bd. xxvn. (1818),
8. 78. [Romauvovsky’s formula was communieated by him in 1915 to the Bociety of Naturalists of the
University of Warsaw. Ebp.]
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In the special case ¢(g)=+1 I call (8) a complately reduced equation, positively reduced if
b (9) = +1, negatively reduced if ¢p(q)= —1. A reduced equation which is not completely reduced
is obvioualy transformed into a completely reduced equation when it is divided by any of its
coefficients or any other function F(g) which satisfies one of the equations
¢(9). Fl@=1F(1-q),
where ¢ (g) is the form-function of the given equation.
Now aupposs that we have given a not-reduced equation of the form (6). Since this equation

holds good for every value of the variable between 0 and 1, it holds good for the value (1 -g). 8o
we have

2 A(1-q) pe—c(l-q)=0.
=0
Subetituting the expression for u, (1~ ¢) from (5) we get
z (- 1)‘A‘(1 — @) Bami™O it .

The last equation evidently is a not—radu.wd equation. Furthermore the two equations (8)
and (7) are linearly independent since no function ¢(g) exists, so that for all the values
1=0, 1, ... a the coefficients (- 1)¥4,(1~g) of the new equation (7) are ¢ (g) multiplied by the
ooeﬁclent.s of the given equation (6).

Thus we have the following fundamental property of the moment equations : 7' every not-
reduced linear equation betwesn the moments corresponds another not-reduced oquation which is
linearly independent of the first, and which may be written down immediately when the coefficients
of the first equation are known.

It is easily seen that this property does not belong to reduced equations. From the two not-
reduced equations (8) and (7) we may by linear combination deduce an infinity of new equations.
Of thess however not more than two can be linearly independent. May it in this way be possible
to obtain two linearly independent reduced equations?

Evidently it does not restrain generality if we suppose the equations to be obtained by adding
to the equation (7) as it stands the equstion (6) multiplied by some function 6(g) of g. This
gives -

2 (0@ A+ (=D A= patm0rsrnrn (8).

The form-function of this equation is .

@, ( )-6(1" Yhilg)+1 6(1- )ﬂ;%l_ﬂ
== P(@+8(@)
where ¢ (g) is the form-function of the given equation (8).

The necessary and sufficient condition that there exists a function &{¢) independent of the
subacript ¢, 80 that identically in ¢

for all the values 1= 0, 1,...4a, i8

2i(q)=2(q)

0(g) 8 (1=g)mLuereerreevereerereserreeteerareenaees ©.(8),

for the values of ¢ in the interval 0 < ¢ < 1 for which the form-function of (6), ¢; (¢), is not inde-
pendent of the subscript . For the values of ¢ for which (85) is satisfled, we have

®(g)=6(1- 9)"qu

Hence the necessary and sufficient condition-that (8) is a reduced equation ia that d(g) is &
function with the specified properties. Furthermore it is evident that if we choose two such
functions 6, (¢) and 8, (g) so that 8, (q) + 6; (g), the correspondmg two equations of the form (8)
are linearly independent.
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S0 we have the sscond pruperty of the linear equations between the moments: Any not-

reduced equation of the form (8) may be replaced by two reducsd linsarly indapendent equations of
the form

éﬂ (61(@) As(@)+(= 1 Ae(L =] ot =0 o (9a),
éo[ﬂa (@ 4@ (=154 =] i =0 ceevecvnraaaeinannenn, 9b),

where 6,(q) and 0y(q) are two arbitrary not identical functions of g satisfying the conditions
specified under (8 ).

In treating linear equations between the moments one will nearly always find it easier to
handle the reduced tban the not-reduced forms.

Application. The equation (2) is a not-reduced equation with coefficients
4, =1,

41(9)“9(';1)7
4@=g("7)rep ((2))s =23 n

Choosing 6, (q)= +1, 83(¢)= —~1 we may replace the given equation by the following two reduced
equations which are written down immediately by the help of (94) and (8d),

2p.=:°§:~[_(q+(;1)¢p) (':1).,.(14-(— H (::i) ﬂ]?]/‘.q ............ (10a),
(De="2"[ - @+-10m (i 1) +a+= 19 (F) ;'qp:l#.-f ............... (108,

whero the summation is to be continued to the last not vanishing (“not v.”) term. The equation
(100) is the equation obtained from (85) when (s—1) is replaced by a.

‘Writing out the formula (10a) we get

N (]
+rqp[('; 1) p...:+(';1) Post ]— %[(';1)/;.-14- (':l)p._.+ ] ...... an,

where each of the sequences is to be continued to the last not vanishing term.

The formula (11) may be alightly more convenient for numerical calculations than the formula
(1). Other formulse involving atill less calculation may however be obtained as I shall show in

the next paragraph.
8§ 2. A gensral System of Recurrence Formulas. Let us denote by H, the left-hand side of
Pearson’s equation (2), .

Pt (7 st 8 o) (1) o

Calculating the first few differences of H,,
AH.- gl "Hn
. A‘H,-AH”. 1= AHn

........................

the following formula for A &, is suggested, -

A‘E--"E‘[(_l)"‘(f)p-(‘:1)q+((::;)+(“l)’<i-b1>) fqp]#.u-(...(lﬂ).
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The formuls may easily be proved by complete induction. It obviously holds good for £==0.
Supposing it to hold good for t we have

== (B o= () g+ ((21) +-17 (51) ree Joonence
£ [ om(E) - (1) o+ (Goa) o0 (L)) rep ] meases
=75 L (O (A2 (O - o)
(5 = b e ((2) + (2a))] e} e

not v. E+1 =1 -1 k+1
== E [ (7)o (51 2+ (G0 o (1)) e mvsene
which is the expression for a*+! &, obtained from (12).

From Pearson’s equation we know that H,-O identically in s, consequently aA* H,=0.
Hence replacing (s+ £) by ¢ in (12) we have the following equation,

E O N T T

where ¢ denotes an arbitrary not negative integer. This is a not-reduced equation, which is
easily seen by an inspection of the form-function of the equation®. TUsing the result of the pre-
ceding paragraph we may immediately write down the following not-reduced equation,

E (Yoo () () oo

Taking first the sum and then the difference of the last two equations, which corresponds to
choosing the functions 8, (g) and &8¢ (g) from the preceding paragraph equal to +1 and -1 re-
spectively, we obtain the following two reduced equations,

LT #E) ommasasm((TET) + () e fmeemo

B () remsercn () () wmens -t

where k again denotes ap arbitrary not negative integer, not necessarily the same in (14a) as in
(14b). The equation (145) is the equation obtained by subtracting (13a) from (133) and replacing
(s—1) by s

To every not negutive value of t correspond two recuwrrence formulae (14a) and (143).
Putting k=0 we obtain the formulse (10a) and (105). In this special case the formulae contain
all the moments from g to g,. By choosing £ conveniently we may reduoce the number of

moments ooourring in the formulse. Innctifwechooaemy'puﬁcnmm;eto(ﬁ) of &, the

. ko—1 (if (s — k) be even
coefficients of all the moments from order zero to order { by (if (s—ko) be odd)
]

formula. If ¢ be even and k=, the coefficients in (14a) vanish for the moments from order zero

2
E—1 (if 45 be even)
tom’der{b-ﬂ(if{:beodd)}' Ifoboodd'wemayforinsfaneechooeeb—ﬁ(a—l)t Formula
* The only case in which (18 a) might be a redused equation is the case k=} (s - 1).
t k= § (s-1) being the case in whish (18 a) is s reduced equation, the special formauls (15), p. 170,
may of eourse also be derived directly from (18a) aor from (18 b).

)}vn.m'shint.he
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(14a) then gives

m=(p- 9)[(‘)p.x+(k>p.,+ ]+2rqp[ p,_’+ ,;,_.+ ]
- [(;’) pams ( 0 ,..-.+...] ................................. (1s).

This formula involves considerably less calculativn than the analogous formula (11). For
instance to calculate p;5 by (11) we must use the values of all the moments from pg to gy with
numerical coefficients such as 495, 792, 824, etc. To calculate p;y3 by (15) we only use the moments
from py to u;e with numerical coefficients 8, 15, and 20.

I think it should be posaible by further transformation of Pearsor’s equation, using tbe.

results from § 1, to obtain an equation only containing four consecutive momenta, but I have not
yet been able to carry out this transformation.

§ 3. Generalisation of Pearson’s and Romanovsky's Formulas to incomplets Moments. The
incomplete moment of order s may be defined aa

P : (»—rq»T,,

ympg

where T,-::(:) PI eeeeeeeereeeremsssseeseeerreeseens (18).

If it be desired to emphasize the lower limit of summation we may use the notation ,u,.
Differentiating the equation (16) with respect to ¢ we obtain
pim 3 {E= g, rao - gy T}
rmp
hence B 1=@D[Fopg 1 H ] e Q7).
This I think is the simplest proof of which Romanovaky’s formula is capable. It is a very

interesting fact that the formula holds good without any alteration, even for the genersal case of
incomplete moments.

For the incomplete momeunt of the first order p,-' f (»—r¢)T, 1 have given the explicit
expression in the Skandinavisk Aktuarietidssbrift*, . '
pr=ppTompp C) GPPTP ettt revee e (18),
Introducing this expression in the equation obtained from (17) by putting s=0, we get
,.,'-S T,.
Int.egra.ting between O and ¢ we obtain in the cass 0<p,

po=p C) ﬂ e T a9).

This is the expression for the zero moment of the point binomial first found by Professor
Pearsont. r and p being positive integers, the integral (19) may of course be calculated directly,
but the expression for u, obtained would not be any simpler than the definition

Ho™ 3 T3

yup

The formula (18) may still be useful in numerical applications as shown by Dr Camp§. Now

* No. 8, 1824, p. 161, + Biomsetrika, May 1924, Vol. xv1. p. 202, and note by Dr Camp, p. 171.

1 The most interesting results of the direct integration of (19) are obtained by equating coefficients
of equal powers of g. In this way some not unimportant identities satisfied by the binomial coefBcients
may be obtained.

§ Biometrika, May 1924, Vol. xv1. p. 157.
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assuming the numerical value of y, to be calculated, I proceed to prove a recurrence formula by
which ths values of the higher incomplete moments may be calculated successively.

Pnttin,g fr-('_rq).-li
y--(" -'Q) T,,
we have, by partial summation of (16),

I-'-'“' 2 fryr-fr : 9'— ! .Afr : 9«

trodumng the following expressions taken ﬁ'om (18),

2 gr-PPTpv
vep
‘3 gi-PPTP_(’+1)PTr+h
-5
we got r—1 r-1 r
w=ppTefr=ppT, 2 0fs+ 2 pOr+ D) TonrbfomppTafpt+g 2 (r-») T, 00,
ymp vo ymp

r r r
=opTofo+g !’(rq-v+'?) T.8f,=pp Tofp+rep 3 T-Af--q 2 (v—rq) T.af,.
e rmp

Introducing o= ("7 ") G=rer=t+(*3) G-yt (i })
we finally obtain "ty e
F'-P?Tﬁ(P-’?)"l+'9?‘zo< ; Jm—e b 1 ( )m“ ............... (20).

This is Pearson’s formula generalized to the case of incomplete moments. The formula only
differs from the complete-moment formula (1) by the additional term ppT,(p—rg)~1. Putting
p=0in (20) we get of course (1). The incomplete moments do not satisfy any simple relation
such as (5), 8o the equation (20) cannot be replaced by auch simple reduced equations as (14a)
and (14d).

The first few incomplete moments as calculated from (20) are

Hm1=pp Th
pa=ppTplp—(r+1)gl+rgp- por
#a=pp Tp[(p~(r+1) g} +gp (2r— 1)]+rqp(p 9)- Koy

............................................

Review: The Elements of Vital SBtatistics in their bearing on Bocial
and Public Health Problems. By Sm® ARTHUR NEWSHOLME, K.C.B, M.D,
F.R.C.P. New Edition, George Allen and Unwin, Ltd.

Ta1s new edition of The Elements of Vital Statistics contains much fresh matter. Sir Arthur
Newsholme discusses in an early chapter the different methods of estimating population. We
think that he has some doubt as to the advantage of substituting “age in years and months” for
“gage last birthday” in the 1021 census. Personally we doubt whether it will conduce to
acouracy. If anyone knows his age “age last birthday” seems to us the simplest form in which
to state that age and one wonders how recorders deal with a portion of a month when they have
to enter “age in years and months.” In considering “age at marriage” Sir Arthur Newsholme
shows that between 1896 and 1920 there has been very little postponement of marriage, ‘88 of
a year for bachelor bridegrooms and ‘40 of & year for spinster brides, and one concludes that
such a slight pestponement can have little to do with the falling birth-rate.

The birth-rate is considered in Chapters VII, VIIL, and IX. In connection with the regis-
tration of births we should like to point out that though the maiden surname of the mother is
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