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THE ANALYSIS OF STATISTICAL TIME SERIES
1. INTRODUCTION

All the known methods of determining secular trend in a
statistical time serieé are total methods in the sense that the
secular trend is determined by totalling or averaging in some
way or another the data covering a shorter or longer period of
time. Therefore the secular trend determined by one of these
methods gives an adequate expression for the “normal" movement
“only so far as the conception of “averave maJ~be taken as
synonomous with, or at any rate as a ilrst approx1mat10n to the
conception of "normal"e.

Prima facie this substitution of the average point of view
for the normal point of view seems inevitable when the datum to
be analyzed consists of a given statistical time series and
ndthing else. In this case a total method seems to be the only
way of attack. This accounts, I think, for the development’of
the various total trend methods.

In my estimation this prima facie conclusion does not hold

good. The scope of the present essay is to point out how the
conception of normal may be defined in another and more rational
way, and to show how a given statistical time series may be
decomposed not only in a seasonal fluctuation, a cyclical fluctu~
ation and a long time trend, but in any number of components of

successive orders, by studying the differential (as distinguished

from the total) properties of the composite curve.
This amounts to saying that the ordinatég of the components

of successive orders in any point (i.e., at any given moment of -



=2~

time) may be determined solely by the course and shape of the
given composite curve in the vieinity of the point considered,

without any reference to the course of the curve in the past
years.

L ]

May I be permitted to summarizé what in my estimation are
the main features of the present stage of time series analysis.
We find a variety of methods. Some of them are concerned with.
.seasonal fluctuations, some with long time trend and some with
the business cycle itself. The nature of the difficulties
encountered in the application of these methods is very differ-
ent. ILet us take a short survey of the difficulties connected
particularly with the various trend methods.

The Fourier analysis and therperiodogram method is only
applicable to the analysis of a closed set of data (no account
~ being taken of new data which successively become available),
and even for this purpose it is subject to an inconvenience
which in my opinion is fundamental. It does not show the
evolution of the length of the period or periods present. Take
for instance a sine function whose period is constantly growing,
say growing in linear progression. If the interval considered
is sufficiently large, the Fourier analysis of this function
would show no predominant period. And the co-variation of two
phenomena, of this sort could not be revealed by Fourier analysis.
But co-variation with respect to simultaneous lengthening or
shortening of the period of oscillation of two phenomena is Qust
one of the most important objects of time series anélysis- If a

gimul taneous variation in the length of the periods of two



phenomena (economic or physical) can be traced, this tells much
more sbout the interrelation of the two phenomena than would do
the exisfence of predominant Fourier coefficients for periods
of approximately the same length in the two phenomena.

In determining secular trend by some sort of curve fitting,
either the number of constants to be determined is small, as

for instance in the case of the straight line or a simple curve

of Gomperz or logistic type, but then the fit will generally
be too poor if the interval considered is of ahy length, the
secular trend being itself a line that changes curvature from
time to time. Or the number of constants is great, as for
instance in the case of a high order parabola, but then the
curve which should be an expression for the secular trend only,
will be influenced by the course of the cyclical fluctuations
themselves. With regard to the extension of a curve fitted
trend (with any number of constants) to new data which become
available, experience has shown that even for the relatively
short post-war period it has proved necessary in many cases 1o
adjust-calculations by changing the trend previously adopted.
From a theoretical point of view it is évidently a very un-
satisfactory method that from time to time necessitates such
changes based on a subjective judgment.

The moving average method eliminates the difficulty of
changing trend, but the condition for the applicability of this
method is evidently in the first place that the period of the
cycle is relatively constant (the numberlof items in the average
then being chosen so as to cover one period), and in the second

‘place that the oscillations above and below the normal are
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approximately of the‘same magnitude. As is well known neither
of these conditions-égg fulfilled in the case of the actual
time series which are usually submitted to statistical analysis.

Analagous remafks may be offered relative to the ares
method.and its variants, e.g., the method of moving integration. |
Furthermore, in my opinion the very idea of defining the secular |
trend so as to have the average oscillation (or the area) above
and below the normal equal, is mistaken, because one of the
problems we have to face is just to make a comparison between
the magnitude of the positive éﬁd the negative oscillations.

The reason for this great variety in the nature of the
difficulties is evidently that there is no logical relation
between the various methods. There is no logical relation
between the trend methods inter se, or between the trend methods
and the seasonal indei methods etc. There is no general prin-
‘ciple from which these various methods may be derived.

This leads up to a more general consideration regarding
the present stage of time series analysis.

The time series analysis has now reached a point of devel-
opment where the problem can no longer be formulated in this
simple way: How to determine the long time movement around
which the bﬁsiness cycle is fluctuating. This long time move- .
ment has proved to be itself a major cycle(l) (with a duration
of about 30 to 50 years) oscillating around a  still longer
"long time movement". And I think that if our series were long
enough, we should certainly find that this "still longer move-

(1) The major cycle has recently been discussed by N,D.Kondratieff,
Archiv f. Socialwissenschaft u. Socialpolitik, 1926, PP.573-609,
The problem will also be considered in a forthcoming book by

Simon Kuznets. Nr. Kuznets has been kind enough to show me some
of his charts. : -




ment" contains in it a super-cycle with a duration of say be-
tween 200 and 500 years. One thing suggesting the existence of
a super-cycle is the fact that the normal of the major cycle in
some cases is found tc ascend and in other cases to descend.

On the other hand, the ordinary business cycle is itself
a long time movement with respect to the seasonal fluctuations
and these are in turn long tiine movements with respect to the
weekly or daily oscillations obéerved in some series. It is
perhaps a daring generalization but is it ﬁot piausible to
think that many of those fluctuations which we how consider
as accidental, are really due to small cycles, and only appear
as accidental because our data are not available at intervals
short enough to investigate the manner in which these "acci-
dental" fluctuations are generated as an interference phenomenon
composed of small and still smaller cycles?

Our time series then should have to be interpreted as a
phenomenon composed of a great number of waves, the waves form-
ing a sort of suite or scale which extends practically indefin-
itely downwards and upwards. Actually we are capable of tracing
only the waves in the middle part of this scale much in the same
way as our eye is capable of catching only the waves in the vis-
ible part of the spectrum.

“Anyhow, whatever opinion one might have regarding such a
generalization, I think that the only logical consequence of the
facts revealed by the modern intensive study of cycles and trends,
is that all the hitherto recognized components of a time series,
should be considered from the same point of view: as trends of

successive orders. They should therefore be treated by methods
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which in principle are of the same nature, the difference between
the methods being rather a difference in application necessitated
by the fact that both the period covered by the available data
and the length of the interval between consecutive data have a
different éignificance with respect to trends of low and high
order.

Consequently the time series problem must be restated and
given this more general form: What is the order of complexity
of this particular series? That means, what is the number of g
" trends which can actually be traced in it? What are the periodsf
of these trends? How can the trends be eliminated one after \
another, and how can the ordinates of each isolated trend be |
determined?

This is the general problem we have to face in this article
and whose solution shall be attempted by the differential method.

If a solution is possible, and I believe such is the case,
the solution will be much more flexible than any methed of curve
fitting or seasonal index computation, etc. It will be essen-
tially a "moving" method. The very fact that the method is
differential makes it possible to change the basis of computa-
tion continuously from one moment of time to the next. If, for
instance, the seasonal fluctuations are considered as the trend
of lowest order, it will be possible, at any rate theoretically,
to trace how the course of these fluctuations changes from one
year to another. The practical carrying out of this procedure
has proved possible even with monthly data if the seasonal fluc-
tuations are not too complicated, But of course the method

will work better with weekly data.



It is quite ¢clear that unless some sort of hypothesis is
adopted as to the nature of the trends of successive orders
present in the statistical time series to Dbe analyzed, a differ-
ential method cannot be devised. 1In this case the problem is
quite indeterminate. Therefore while the total methods are pure-
1y empirical, the differential method must be to a certain ex-
tent a priori.

This fact does not, I think, indicate a diffefence between
the differential and the total methods in the sense that the
- former is more problematical Dbecause more dependent on restrict-
ive assumptions. The total methods, too, are certainly condi-
tioned by restrictive qualifications. The difference is rather
that the restrictive assumptions underlying the differential
method are stated more explicit;y than those involved in the
total methods. This should not be a weak point in the differ-
ential method.

Furthermore, I believe that the assumptions underlying the
diffefential method may be found on closer examination to be
not less plausible than the implicit or explicit assumptions
involved in the usual methods of time series analysis. There—‘
fore, in my estimation, no serious objection can be made regard-
ing the theoretical aspect of the differential method. If any
gyggquon is to be made, it must 6e a practical one, namely that
??g differential method involves the consideration of successive
differential coefficients, approximated by successive diffefehées,
gnd the higher the order of a difference, the more it is influenced

by accidental errors.




There is only one way of testing the weight‘of an eventual
objection like this: To apply the differential method to actual
statistical data. During the past years I have applied the me-
thod of normal points (Bection 5.) and parts of the method of
moving differences (Section 6.) to various kinds of statistical
series, and the irregularity of the material used has not proved
too great for a successful determiﬂation of the various compon-
ents. But working in the University d¢f Oslo without organized
assistance for tabulating and cdmputing work, I have not been
able to carry the numerical tests as far as I should have wished.
It is, therefore, my sincere hope that some well equipped Ameri-
can research bureau will consider it worth while to undertake a
thorough numerical test of the methods here presented.

‘ *

The first and very simple idea which has served as the
starting point of the differential method is this:

Taeke a curve.which is a sum of a sine function and a

straight line.

Let
(1) W=+ 2 = :@ éin\l"b(t-to):’-!— at + b“f
Y = C sinVe(t-ty) |
zZ =

at + b
be the equation to the cﬁrVe.

This curve evidently represents in its most simple form
the composition of a "cyclical fluctuation" y with a "secular
trend" z.

Now differentiate the given function w twice and change



the sign. This gives _ -
y = -w"/c
In this case therefore:

(a) The cyclical fluctuation is simply proportional to the
second differential coefficient of the composite function w,
which is supposed to be known.

(b) The cyclical fluctuation passes its normal in the very

‘ same points where the second differential coefficient of

of the known composite curve vanishes.

When we have to consider actual statistical data it would
certainly not be a working hypothesis to assume that the given
composite curve is,rigoroqsly of the form (1). But it might
perhaps be plausible to make a more general assumption from
which it might be deduced that one or both of the propositions
(a) and (Db) ﬁold good approximately. To search for such an
assumption, let us first consider separately a single compon-
ent: The ordinary cycle itself.

It is rather popular by way of analogy to speak of the
cycle as é pendulum oscillating back and forth. Suéh an analogy
might be good or bad according to the use made of it. 1Its value
can hardly be proved or disproved by any a priori discussion.
The ultimate test must be if it works or not when it is applied
to actual data. It should be emphésized that the pendulum
analogy is here used merely as an illustration for theAsake of
suggesting some plausible working hypothesis regarding the dif-
ferential properties of the curves representing the various com-

bonents in a time series. It is not considered as an adequate
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fepresentation of the complexity of economic life, from which
all kinds of theoretical explanations might be derived.

If a pendulum is oscillating without friction in a gravi-
tation field of constant intensity and the oscillations are
small, then the force driving the pendulum back to its normal
(i.e. vertical) position, is in every moment of time of opposite
sign and proportional to the actnal distaﬁce of ;he,pendulum
from the normal. Therefore if we plot the curvéﬁykf)rwhich
- ghows how this distance varies with time, the differential equa-
tion to the curve will Dbe
(°) y" +cy =0
¢ being a positive constant, whose magnitude depends on the
length of the pendulum and the intensity of the gravitation
which strives to drive the pendulum back as soon as it is dis-
placed from its normal positionm.

The solution of the equation (2) is just the sine function

v = C sin¥e(t-tg)
where C designates the maximum deviation from the normal and
to one of the moments where the pendulum passes its normel.
The ratioW/ve is equal to the constant distance between two
consecutive zeros of y. In this simple case the average (or
the area) of the positive deviations is equal to that of the
negative deviations.

Now suppose that the intensity of the field which strives
to drive the pendulum back to its normal ig no longer constant
but & function of time F(t). The constant length of the pendu-
lum may be considered as included in the function F(t) as a

feature characterizing the intensity, so that the equation to
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fhe curve will be
(3) y"+ Fy = 0

This means that at a given moment of time (i.e. when the
{ntensity of the gravitation has a given magnitude) the force
acting on the pendulum will still vbe the stronger the more the
pendulun is displaced from its normal, but if we compare the
situations at two different moments, the force will no longer
be proportional to the distance from the normal. The equation
(3) is the canonical form of thegdifferential equation of the
second order, any eguation of the second order being reducible
to this form. Our only restrictive assumption is that F shall
be regular and essentially positive over the whole t-range con-
sidered.

In this case the pendulum will still be oscillating around
its normal, but otherwise the oscillations may take any form
compatible with the condition that the force acting on the pendu-
jum is always directed toward the normal position (because F
is supposed positive).

For instance, the movement away from the normal may be
sharp and quick, the return slow, eventually speeding up at
moments more or less suddenly. The duration of an oscillation
to one side, or the maximum deviation to one side, may be greater
than to the other side, and so forth. If we add that the pendu-
um may be exposed to small accidental pushes during its move-
ment, I think we shall nave a fairly good picture of a kind of
cyciical fluctuation where positive and negative deviations al-
ternate much in the same manner as in the cycles revealed by

the study of actual statistical data.
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Furthermore not only the ordinary cycle, but also the
shorter oscillations: the seasonal fluctuations etc., as well as
the longer fluctuations: major cycle etc., may be illustrated by
the pendulum movement. For the average length of the period of
oscillation may be varied by varying the average magnitude of F.
A great F means a strong force driving the pendulum towards the
normal and at the same time a short period of oscillation (i.e.

seasonal fluctuations), and inversely (i.e. major cycle). If

F = O we have as a limiting case the straight line.

These considerations will justify the hypothesis on which

the differential trend method is based. We assume that each ]

et

[

of the trends which maeke up the composite time curve, is a

[ T—

solution of a differential equation of the type (3).

F may be called the gravitation of the trend considered.

And the reciprocal of the average value of F or rather of
JF may be taken as a preliminary expression for the order of the
trend. We shéll later discuss the question of trend order in
more detail.

As to the manner in which the successive trends make up
the composite curve w, various assumptions are possible.

If yp(n= 0,1...N) are the trends of successive orders,
each yn being a solution of an equation of the form:
(4a) Yh + Fpyp= O
then we may, for instance, coﬁsider additive trends:
(4b) Wz Yo FYLFeee tYN= S Vn ‘

or mulfiplicative trends W o= Yby1~--YN= (i, e.

log w =108 yn )¢ Or we may consider any combination of
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additive trends and multiplicative trends. 1In this article I
shall only consider additive trends, but it can be shown that
under certain additional assumptions, some of the.results hold
good approximately also for multiplicative trends.

If we plot the solution ypn of (4a), we shall have a curve

which may take nearly any shape provided it has a finite 4if-
ferential coefficient and always turns the concave side to the
t-axis. This property of the curve yp is only another ex- |

%

pr35310n for the fact that the force acting on the pendulum (and

SR

therefore also the acceleration) is always directed toward its

1

normal position. This is an essential feature of our assump-

tion. It entails an important consequence regarding the con-

ception of the normal of a variable which oscillates as a func-

-~ tion of time. The normal or equilibrium position is defined as
the position toward which the force tends to push the variable.
If we do not want to introduce the conception of force in the \
definition, but only want to take account of the shape of the }

‘curve which represents how the phenomenon varies with time, then ?

the normal will be defined as some position lying to the side %

toward which the curvature is directed.

The maximum deviation of the curve y, to one side of the

normal will no longer as in the simple case of the sine function
be equal to the maximun deviation to the other side. Nor will
the average (or the area) of the positive deviations be equal
to that of the negative deviations. This "total" property of

the ¢urve is only an incidental property which is present in

JE——

the special case where the gravitation is constant. . The essen-~

tial property which characterize the points in which the normal
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is passed, is a differential property, namely that these points
are the very poihts where the second differential coefficient
vanishes. This property holds good exactly not only for the
gine function but aleo for the general kind of functions here
considered.
If yo is the trend of lowest order, the second differential
coefficient yg of yo‘will no longer as in the simple case (1)
be riéorously equalbto the second differential coefficient w"
 0£ the composite curVe'w. But under certain conditions fegarding
the relative diffeféﬁce in order between successive trends, yj
will be the predominaﬁt term in w" in points not:lying in the
vicinity of the zeros of y,, s0 that thé points where ﬁ“ vanish-
es will approximateiy indicate the location of thé zeros of yg,-
énd hence of yo; ?hie generalization of therabove proposition
kbgé&s the basis of the“method of normal points”’developed in
Section 5. |
The ordinate y, of a trend will not in general be propor-
tional to its second differential coefficient. But it might be

éo approximately in the‘vicihity of a point (not lying close to

a zero of y, ), if the proportional variation of the correspond-
ing gravitation F, is small. ’

Furthermore if not only fhe first order proportional varia-
tion of the various gravitations are small, but also a certain
number of the‘higher order proportional variations (which will
be defined more precisely‘in the following Section), then the
ordiﬁates of the successive trends may be expresséd in terms of
the differential coefficients of even order of the cbmposite‘

~curve. This generalization of the above proposition (a)Vis the
' (pa>
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‘iAbasis of the“method of moving differences”(method of instantan-

eous approximation) developed in Section 6.

Note on the relationship of successive trends.

The pendulum moVemént might further be applied as an illus-
tration of the relationship between the successive components
in a time series. i.e. the way in which a fluctuation of low
order might be éaid to generate those of higher order or vice

versa. As this problem does not fall within the scope of the

‘present article, I shall only givé a short indication of an illus-

tration which might perhaps be found suggestive.

Suppose we have a pendulum of considerable length and mass.
To this we attach a péndﬁlum, much shorter and with much smaller
massj to this a third pendulum, still much shorter and with still
much smaller mass, eté. Suppose the chain of pendula is at rest
in a vertical position. Now set the upper pendulum in movement
without touching the rest of the chain. The very fact that the
upper pendulum gets into oscillation will entail the oscillation
of the next one, etc. When the system is in movement and the
mass of each pendulum is very small in proportion to the mass of
the next higher, then thé oscillation of each pendulum referred
to its normal, i.e. the vertical through the next higher péndul—
um, will approximately be a sine function, and the duration of
its oscillation will be approximately proportional to the square
rbot of its length. The fluctuation of the lowest (smallest)
Pendulum referfed to the vertical through the point of suspension
of the whole system, will be a composite fluctuation, where the
oscillations of the higher pendula (referred to theif respective

normals), will represent " trends. of successive orders".
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Inversely: if the lowest pendulum is set into escil}ation,
this will entail the bscillation of the next higher, much in the
game ﬁay as a sudden draught will give impetus to the oscilla-

. tion of some freely suspended body, say the cord of the window
shade. The mean amplitude of the ogcillation of the cord will
depend on the intensity of the impulse, but the mean duration
of an oscillation will not. 1In the same manner the mqvement of
the second lowest pendulum of our chain will propégate itself

to the higher pendula until the whole system is in oscillation.
Andragain the oscillations of the various pendula will represent
ntrends of successive orders". The same result will follow if
one of the intermediate pendula is set in motion.

Iflfriction is present, a stream of new impulses will be
necessary to keep the system going, It may be impulses of a
more or less accidental character distributed more or less irreg-
ularly over the fnterval of time consldered, and over the vari-
ous pendula. In this case it would have no meaning to say that\
the movement of any particular pendulum generates the movemen‘l:assi‘i
" of the other. . The movements of the various pendula might rather

be said to be in part independent and in part generated by each

other.
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2. THE NATURE OF THE TREWDS OF SUCCESSIVE ORDERS

The theory to be sét forth in the present article is essen-
tially concerned with approximations. If the theory is to be
something more than a pure statement of rules of thuwb, it is of
fundamentél importance that the nature of the approximations in-
volved should be thoroughly investigated. Especially I consider
it important that it should be made quite clear on which proper-
ties of the components the closeness of the approximations really
dependsi

_The object of the present Section is to give the ﬁrecise
gefinition of tHose properties of the trends, with which the ar-
gument of the following sectionsis concerned. In order not to
break up the introductory mattér of the first sections, some pro-
positions are here assumed without proof, the proofs being given
in Sections 3 and 4.

The properties of the trends present in a time series may

'be classified under two headings: properties which characterize

i

Ethe relation between successive trends, and properties which .
}characterize the nature of a trend as such.l Let us take these
propefties up in order.

If an illustration was té be given for the purpose of visual-
izing the manner in which a composite time series is made up of
trends of successive orders, one would probably start by drawing
the first component in the shape of some sort of cycle curve,
where the zero distanc% i.e. thgﬁdistaﬂce between two consecutive
zeros, did not vary widely. Thé:relative difference between one

zero distance and the next following would always be less than
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8y 1004. The next component would be of the same kind, a sort
;Qf major cycle, where the average zero distance would be far
greater than the average zero distance in the first cycle,'say
7 or 10 times as great. The very conception of the second com-
ponent as a trend of higher order than the first, implies that
" the second component does not change its curvatures as often as
the first component does. If the average zero distance in the
gsecond component should be nearly as small as that of the first
component, the curve representing the sum of the two components
would certainly be a composite curve, dut it would not be plaus-
ible to consider the two components as trends of different or-
ders. Similarly the average zero distance in a third component
would be much greater than that of the second component, and
'Atherefore still greater, say 50 or 100 times as great as that
ﬂbf the first component, etc. Let us state this fact in a pre-
‘cise form.

We introduce the following notations

| tyx (n= 0,1,..N; k=1,2...), zeros of yy
(5a) Dpk
(5b) ik

'If t is any point, the corresponding intervals ioj and ipp

zero distances in y,

tn,x+1 ~ tnx ,

1]

interval (tpy,tn k1)

may be defined without ambiguity by
(5¢) to3%t<to, j+1
(5d) tnk2t<tn,k+l
Consider the function Dn(t) = Dpx, where k is defined by
(54).
If yo, ¥1... are trends of different orders, the value of

the function An(t) = DO/Dn would always be a small fraction, and



~ _the smaller the greater n is,Apn(t) would oscillate (discontinu-

‘::fously) between say (1/7)Pand (1/10)" The upper limit A, of A (t)

for the whole t-range considered would also be a small fraction,
“gay (1/7)? Let A be the greatest of the numbers Aj,As... . The
megnitude of the positive numbers 5, (n = 1,2...N), and their
upper limit A is one of the features which characterize the
relative difference in order between the successive trends.

If t is any point and j and k are defined by (5cd), then
(6a) Do3/Dpx £ Ay €4

Now consider the ratio an/an , where Hp, designates the
value (regardless of sign) of the extremum of y, between tpx and
tn,k+l(one and only one such extremum exists because ¥, always
turns its concave side to the t-axis). The ratio Hpy/Dpyyx gives
an idea of the intensity (the distinctness) of the wave in yp
betﬁeen tnk and ty k4. The wave is sharp if Hp/Dpy is great,
otherwise it is flat.

The conception of trends of different orders does not imply
that the average value of an/an shall decrease.say in the same
pr0poftion as the numbers A, when the order of the trend is ris-
ing. It would indeed be quite possible to imagine a time series
where; for instance, the major cycle was more distinct than the
'ordinary cycle. But still I believe that in most practical cases
the ratio an/an will be decreasing or anyhow not increasing
as n increases.

Let'

B,(t) = Hnx/Dnk
Hoj;Doj
where j and k are defined by (5cd).
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And let the positive number 3, be the upper 1limit of the
function B,(t) for the whole t-range. If yoyy.-+ are trends of
‘,differ&nt orders, then B, would probably in most cases be less
than unity. And in many cases it would probably be a small
fraction say not greater than (He

The magnitudé of the positive numbers By ( n= 1,2...N)
is the second feature which characterize the relative difference
in order between the successive trends. |

If t is any point and j and k are defined by (5cd) then
(6b) ' H 1/ Dnic < Bn.Hoj/Doj

1t should be pointed out that the definition of the numbers
A and B does not in itself involve any assumption as to thé mag-
nitude of these numbers., The mathematical deduction of the fol-
lowing sections is therefore general. It is only when the ul-
timate formulae are to be interpreted that we come back to the
assumptions regarding A and B. |

I now proceed to the properties which characterize a single
_ trend. These properties will be concerned with the average
value and fhe fluctuation of the gravitation F, of the trend yp.
_ Let i,, designate the interval defined in (5b). 1If F, is
considered as an arbitrary function, any of the various average
definitions may be applied to it. Consequently the average
value of F, in i, mizght turn out differently. However, if Fy
is considered in its relation to y, , only one average defini-
tion is possible for i,,. The average of F, in i, must be put
equal to
AN ¢ = (/Dnk)?

where Dpyis defined by (5a).
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Tor in conformity with the conception of an average, the
average value of F, in i must evidently be such a value that
if the various actual values of F, in the interval are put equal
to the adopted average, the effect produced should be the same,
nemely, yﬁ(tnk) = yn(t’n,k-a.) = 0 (with ‘ynpo between t and n.k+1)‘
And by (Ia) of Section 4 no other value than ¢ can satisfy this
condition.

This consideration is perfectly similar to the consideration
which leads to the definition of the average (proportional) in-
crease per unit of time in a population between two censuses oOr
to the definition of the average ratq of interest in.the period
between two moments of time at which the magnitude of capital is
given.

The question might arise if Fn really assumes the value ¢
at least once in the interval ink.That this is really so will
be shown in (IIIb) of Section 4. From (IIId) of the same section
will further follow that the average-definition for F, satisfies
the condition that if all the values of Fn‘?é multiplied by some
constant quantity, the average too will be multiplied by this
same guantity.

ﬁithout further explanation the notion of Fy as.the
“gravitation" of the trend ¥, m;ght perhaps be somewhal vague.

I believe that this notion is rendered more palpable by the fact
that the average value of F, in ipx is equal to ¢W7an)2. This
fact also shows, I think, that the notion of gravitation deserves
to be given some attention in time series analysis.

In comnection with the gravitation wé shall consider what

might be called the fictive.(as distinguished from the actual)
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gero distance of Yy for a given moment of time t. By this is

" . meant the length of the half period (i.e., distance between two

consecutive zeros of yn) which wouid be realized if the gravita-
tion Fn kept constant and egual to the actual value it has in
the point t. The Tictive zero distance of the trend Yn in the
point t is therefore equal to

= B
(8a) a4, (t) =T/NE

If Fn is constant i.e. if y, is rigorously a sine function,

then the fictive and actual zero distances will be equal in any

point. If F, is not constant, there will still be a certain
relation between the magnitudesof the fictive and the actual
sero distances. And the relation will be all the closer the
less the proportional‘variation in Fpe

In fact the average value of 1ﬁ/§n for é certain interwval
may be defined as 1//A where A is the average of Fy for the
interval. If this definition is adopted, we see that the average
value of the fictive zero distance, taken throughout the interval
1 is just equal to the lengin of this interval, i.e., equal to
the actual zero distance. This is another way of rendering the
notion of the fictive zero distance more intuitive.
| Now considering the fictive zero distance instead of the
actual, we may define two sets of nugbers a, and by, anal@gous to
the numbers A, and By previously defined. In view of the rela-
tion existing between the actual and the fictive zero distance,
the ratio of the fictive zero distance in the trend yq to the
fictive zero distance in the trend ¥,
(8b) any(t) = d/dy

will be a function fluctuating (continually) between limits not
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very different}from the 1imits of the previously defined ratio
i An(t) . If a, is the upper limit of a,(t) for the whole
t-range, then the numbers alaz...gN'will form a suite of ap-
proximately the same kind as the suite AjAs...Ay -

In any point t we evidently have

(9a) RSN

Similarly we might consider the ratio

b(t) = Bnk/dnf{t)
" “0J dgj T

which is analagous to the previously defined ratio Bn(t).

If bn is the upper limit of bn(t) for the whole t-range,
then the numbers bybs..by will form a suite of approximately
the same kind as the suite Ble...BN .

In any point t we evidently have

(90) ansﬁn‘z-bn-ﬂojqﬁ;
where j and k are defined by (5cd).

Suppose that the numeration of the trends has been chosen
80 as to make the suite of products A B, (or the previously
considered suite anph) not increasing and such that AyBy (or
albl) has the least possiple value. The product ApBy, (or a,by)
may then be takeﬁ as an expression for the order of the trend
Yo measured in proportion to the trend yp. The relative differ-
ence in order between y, and ¥y, is great if A B, (or a,bp,) is a
small fraction. We shall especially have to consider the case
in which the small value of A B, (or aﬁbn) is due to the fact
that A, (or ay) is a small fraction and B, (or b,) is not great.

In this case Y, and ¥y, may be’said to have a great difference
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in order in the proper sense. On the contrary, Yo and ¥y, must
pe considered as trends of the same trend order if AB, (or
anbn) is close to unity or even greater than unity. 1In the
special case where the gravitations are rigorously constant
and the numeration of the trends is chosen in the way referred
to, we evidently always have AﬁBn(z anbn)z—l.

It was pointed out that the accordance between the actual
and the fictive zero distance in ¥n is all the better the smaller
- the proportional variation in F,. Now to characterize}the maxi-

mum proportional wvaristion of Fn in i we introduce the numbers

nk

pnk and an which measures respectively the ratio of the
maximum value of F, ih ink to its average value (TT/an)z , and

the ratio of the average to the minimum value of Fy in i,.
fv(max)_ - 2 | (min)_ a7 2
(108) [ Fp #*= (T /Dy ) oy (10D Fpp ™= (10/Dpy )%/ qpy

Both ppx and qui are obviously positive numbers not less
than unity. For the sine function where F, is constant, we have
Ppk = 9pk ~ 1. ZFor any other function we must have pnk:’l and
Qx> 1. This follows from (IIIb) of Section 4.

In ink we evidently have

Res 2 - < aT 2
(10c) /Dy ) oy 2%, 2T /Dy ) “p g _
The product P, = p,;+q. eXpresses the ratio of Fnﬁax to
(min) (max) (min)
nk ’ l. 2. Fnk - Fnk . Pnk

Evidently ppx 2P,y and aniiPnk. The greatest of the numbers
P,y and Qe will be designated by p . The greatest of the
numbers P, will be designated by P.
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The signiricance of thne numbers p and P might be rendered
more intuitive by analyzing their relation to the ratic between

two consecutive zero distances. We evidently have

e st it s

———— .\ /p(ain)/p{max
(118) Dy y41/Dnic = VPn, k+1 Gniic \Fpin) /BT
F{BIN) cannot be greater than F{UpX) because F is continuous
T -

(min) -

and hence Fnk “<Fn‘tn,:+l) zF{max)
. n, £+

factor on the right hand side of (lla) cannot be greater than

Therefore the second

unity, but it will be equal to unity if the wvalue of Fn in any
point in ink is not less than the value in any point in in,k+1’
this is for instance the case if Fn is monotonically decreasing

~

throughout both intervals.
Now if Féﬁin) = F(maxi we have

(11D) Dn,1+1/Dnk =P, k+1%nk <P

This means that the ratio between two consecutive zero
distances in ys. can never be greater than the upper limit p
of the numbers D,y and Qe - But it might be equal to p.

On the other hand as
F{ELY) (/D) B m (e

the egual signs holding cood only in the case where Fp is

constant), we have

/P 2 Dy jera/Pric < F

The difference between Dn K*l/D;k and the limits can be

rendered arbitrarily small, nasuwely if F, 1s nearly constant in
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voth interwals ink and 1n,k+1’ falling sharply or rising sharply
erom the last part of i to the first part of i, iy, (in which
case Ppk and Ap, k+1 OF Pp, k+1 and Qy are close to vnity). This
means that the ratio between two consecutive zero distances in
yn cen never be greater than P, but it might come near to P.

The case in which Dn,k+l /Dy come near to P ig of course a much

more special case than that in which it is equal to p.

The numbers Ppi Apk and Ppy measure the total variation of
Fp in ipge but gives no account of the differential variation of
Fn (per unit of time). Even if an upper limit of p. and Qpye
or of P,y is fixed, the differential variation of Fu in any |
point in ink may take any value. A coefficient measuring the
differential variation of F, is now to be éonsidered.

In economic theory as well as in statistical application a
well known coefficient is the coefficient of elasticity or its
reciprocal which might be termed the increase-proportion. The
increase-proportion of a function f(t) is defined as the ratio
between the relative variation in f(t) and the corresponding
relative variation in t, i.e., as

L&E(n (£(t+h)-F(1))/£(t) ¢+ b/t = 3 log £/d 1og t = (£'(t)/£(E))t

This coefficient is independent of the unities with which
£ and t are measured but it is not independent of the origin of
t. However for the purpose of measuring the differential varia-
tion in F, what we need is a coefficient which is invariant for
a linear transformation of t.

Such a coefficient would be the ratio between the relative

variagtion in F, and the corresponding relative variation in t,
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!the veriation in t being measured relative to some quantity which

48 independent oI the origin of t and varies in the same propor-

¢ion as t when the unit of t is changed. B8uch a guantity is the

zero distance in Yy The intuitive signification of an increase-

kproportion defined in this way would be that if r is the magnitude

of the jncrease-proportion, and the increase in time amounts to

gay x4 of the zero distance (X being a small quantity), then the

corresponding proportional increase in F, would De rx7 (to a first

gpproximation). I shall later offer another observation support-

{ng the plausibility of measuring the variation in t proportion-

/ally to the zero distance.

Now the zero distance in proportion to which the variation

in t is to be measured, might be the actual zero distance

»”th or the fictive zero distance 4, (%) = TT/th

Accordingly we shall have the two coefficients

R =(F}/Fy)Dy r_ =WF;{/F2/ 2

The first is discontinuous in the zeros of Vo but the

‘ definition is unambiguous as we have made the convention that

-k shall be determined‘by (5d4). The second coefficient is

continuous for ail values of t. Both coefficients are invari-
ant for a linear transformation of t.

Now let the positive numbers R and r he the upper limits
of the functions R, and rn respectively (regardless of sign)
for the whole t-range and for n = 0,1...N. We consequently have
in any point t
(12a) |FY/F | 2 R/Dyy (12b) \Fr'l/Fg/z\g r/Ar

The rough intuitive signification of the two coefficients Rp
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 and Ty 8rE mach the seme. Multiplied by the relative increase

in t (measured in proportion to the actual or fictive zero
distance respectively) they give the corresponding proportional
increase in F,, to a first approximation. The significance of
the upper limit R may further be illustrated in a very simple
menner by its relation 10 Ppks Anke Fnk and their upper limits

pa.nd P.

Let t! and t" be the points in ink where F, reaches its

maxlmum and minimum respectively, then
t
in i in S k41
((max » —
log|g, J)(F' /Fau< [ [Fy/Fpfdt < R
go that btk
(13) P - Pric- Gk &

This holds good for all n and k, even if Py OF Ppy or Quy
ghould be equal to their upper 1imits P and p respectively.

Hence
(142)  PzeR and a fortiori (14b) p=zeR

This shows the relation beiween the maximum total variation

of the various gravitations and their maximum differential

variation. If R is'given, this entails an upper (but not a

lower) limit Tor P and D. If one of the numbers P or p are

given, this entails a lower (but not an ypper) limit of R.

The 1limit (14a) is & precilse 1imit in the sense that if

P is given, the course of Fn may be chosen so as 1o have eR

not exceeding P and still make one of the P,k equal to P. And
if R is given the course of Fy may be chosen S0 as to have one
of the Py equal to eR. 1In fact, if Fy is monotonically in-

creasing or decrea.31no throughout the whole interval ik at its
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 paximum rate, then we have‘Pnk; Féﬁax)/ Féﬁin) = eRa and no

other Pnk;can'exéeed this value. The 1imit (14b) is not a
: précise 1imit (except in the trivial case where all the gravi-
tations are censtant).
We get perhaps a still better idea of the significance of
R by analyzing its relation to the ratio between two consecutive
gero distances 1in yn.
From (1la) and (14b) we deduce
(14c) Dy yx41/Dpx < €8 and  Dpy/Dy yq < o8
This is not a precise limit. It might not be possible to
choose F, so that Dn,k+1/an:eB But it is certainly possible to
have
(144) Dn,k+1/an:eR/2 or an/Dn,k+1:eR/2
This means that if the upper limit R of the differential
veriation of the various gravitations is fixed, this does not
.. prevent the ratio between two consecutive zero distances in any
trend Yy from becoming equal to eR/?
I shall show that the Tirst equation of (14d) holds good
if F, is monotonically decreasing throughout both intervals
ing and iy 4 at its maximum rate R.
In i, and in,k+ryn would satisfy respectively the equations
0 = vt + yif. e~ R(E-tc)/Drk
and | 0 = z" + z.e_RM.e—R(t"tn,k+l)/Dn,k+l

- with the conditions
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% (max)
Y(t-nk) = y’(tﬂ,k{'l) = Z( “n,k+1) = Z(tn,k+2) = O’ M;Fnk

Now put

o F(x) = DS M.e RX
y(t) = Y((t-t;)/Dy)
z(t)

K}

Z((t-tp, %+1/Dn, k1)

Theh Y(x) and Z(x) would satisfy tae equations
YY"+ F(x)Y = O

2"+ nF(<)Z = O h=(Dy, e/l R
with the conditions
Y(0) = ¥(1) = Z2(¢) = 2(1) = O

Since x = C and x = 1 are consecutive zeros of both Y and Z,
h must be equal to unity. For if it was not, one of the
functions F and hF would be identically greater than the other.
Consequently by virtue of (Ia) of Section 4, at least one of the
points x = O and ¥ = 1 would be a point where only one of the
functions Y and Z vanished. EHence Dn,k+1/an = € R/Z.

If By, is constantly increasing through both intervals ink
and in x+1, we should evideatly have the second equation of (14d).
The precise 1limit (14a) shows quite clearly that the only
plausible procedure of measuring the differential variation in

the gravitation of a trend 1is by introducing the relative

varistion in t measured in terms of the zero distance, as we

héve done.

The kind of differential increase-proportion which is of
real significance in time series analysis is certainly a
coefficient that indicates what would be the total pfoportional

Variation in any of the gravitations F in the course of an
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1ntervél between two consecutive zeros of the trend considered,
if the rate of inérease kept constant. We are not interested
in a coefficient indicating what would be the total proportional
variation in F, during some definite length of time Which is
defined as a constant for all trends. We may put it another
way too: R is now defined 0 as to give a 1imit for the
maximum proportional variation of the zero distance (formulae
(14c) and (14d4)). Therefore it has a significance for any
trend. If it had not been defined by measuring the relative
variation in t in terms of the zero distance, it would have
given a  limit for the maximum abgolute variation in the
zero distance. Therefore it would not have been a coefficient
with the same significance for trends of low and high order.

We finally have to consider increase-proportions of higher
order. The definition of fhese will be readily suggested by
analogy with the higher differential coefficients.

If we have a regular function f(t) and attribute to t some
finite but small increase h, the corresponding absolute increase
in the function itself may be developed to succeésive orders of
approximation by taking account of the successive powers of h.
And the coefficients of this expansion are just the differential
(i)= f(i)

coefficients f (t), for we have

el (1) i
f(t+h) - £(t) =5 (£ /iHh
i-1
Now if we want to express the relative increase
(£(t + h) - £(t))/f(t) of f(t) in terms of the corresponding
relative increase h/a of t, where a is some quantity in propor-
tion to which h is measured, we should get an expansion of the

form

(£(t+n) - £(2))/E(t) =0 - (.bx(l)/i-').(h/adl
izl
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The coefficients A(1) might be considered as the increase-
’proportions of higher order of thé function £{(t), whean the
 ‘1ncrease in t is measured relative to a. We evidently have
' AlL) o (e(i)gly /g

I1f we apply this to the gravitation F,, we get two sets

of higher order increase-proportions accordingly as we define
the reiative variation of t in proportion to the actual zero
distance Dy Or to the fictive zero distance’F/J Fn;
Hence
(1) . p(i)pi /7 . (153 (i)_~ip(i)/gl+i/2
= {15% r =" F
(15a) Ry n an/ﬁn anc (159) n ~'T7n /Fn
may be teken as the definition of the higher order increase-
proportions of F. t is readily seen that they are invariant
for a linear transformation of t.

The intuitive significance of these coefficients is

evidently that if the increase in t amounts to x4 of the actual

and the fictive zero distance respectively, then the expansion

of the corresoonding pe :::entage incr%gse n F, will be
oc i : (i i
100 ;_'*l (3 / $Ho(x/100)  aad 100 121 (v, )/1.*-).(;;
1= ™

(1) (1)

The first order increase-proportilons Rn and r, are of
course identical to the increase-proportions R, and T already
considered.

. A R . i X .
The higher increase-proportions rg ) will be used in

developing the criterion for the applicability of the method

0f moving differences. E
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‘3. PROPOSITIONS CONCERNING THE ZEROS OF A SUM OF TWO
CONTINUOUS FUWCTIONS
This section and the next following are mainly concerned
ith certain propositions on which the argument of the other
: gections are founded, Some of the propositions are proved in- 8
gomewhat more general form than is strictly necessary for our
_ purpose. It has béen found that this could be done without

. {ntroducing materially more cdmplicated considerations.

Let
£f(t) + R(t)

H

M ()
f and R continubus.
Let
tk(k

U

1,2...) and TK(K = 1,2...)

be the real zeros of f and i!respectively, the zeros being

s

arranged in an ascending order of magnitude, i.e,,

tkftkalTK‘TK+l . Shorter T will be written for TK'

-

Let Dy = ty =ty d a lower limit of the Dk,Smay be a not

-

precise 1imit, i.e. O may even be smaller than the smallest of
the Dk’ Finally let 1& C<Dk) and 1§ (Dy_;)be positive numbers,

1 an upper (not necessarlly precise) 1imit of the numbers li
L

and lk'
The intervals (tk - l%?tk-+lﬂ), (tx+1) and (TK +1)

will be designated by ikak and JK respectively, or shorter by

i’ I and Jo

If

Il

(1) > ROl £ty + 1) > Rty *+ 1)




and
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f(tk— li;)f(tk + lk)(o

k= 1,2...
then each 1 and a fortiori each I contains at least one zero
of{P-
This means that if the i are separated, each zero of f
is announced at least once by the vanishing ofﬁ?.
1(b) The first condition of (Ia) is evidently satisfied if
£f'(t) exists in each i and lfﬁ)mﬁ in (tk - lk,tk)?(f"continuous)

|£4sm in (t,,%, + 1y)while |R(ty - 1f)j< 1pmf and

[R(tg + )| Wmt, m% and my being positive numbers. In this

case the 1 must be separated.
1. 1If gft>‘Rf outside the i, qscamnot vanish outside the i
and a fortiori not outside the I. Consequently if zeros of‘qp
exist, each J contains at least one zero of f.

This means that the vanishing Qf<§>never announces a

false (non-existing) zero of f.

I1I1(a) If 192, the I and a fortiori the i are separated and

each J contains at most one zero of f.

III(b) If further (II) is satisfied, each J contains exactly

one zero of f. But an i may contain any nunber of T (eventually
none). Furthermore two different J may be overlapping both in
the case where the two corresponding T belconz to the same i and
in the case where they beiong to two different i, so that still
the knowledge of the T is insufficient to locate the tx in sepa-

rated intervals.

III(c) If further 1< ©/4 , two different J cannot overlap unless

the two corresponding T belong to the same 1i.
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This means that if zeros of{i?exist, the intervals J occur
jp clusters in such a manner that the total length of a cluster
does not exceed 41. The clusters are separated and each cluster
contains exactly one zero of £. This is situated in the interval

3 which is common to all J of the cluster.

I111(4 1f further (Ia) is satisfied, the intervals j of (Illc)

jrraamsssmaSe———_

exhaust the zeros of T, f having no zero outside the J, soO that
the knowledge of the zeros of(? ig sufficient to locate all the

geros of £ in separated intervals whose length does not exceed

21. .

1V(a) If(iiis monotonic in which i, each i contains at most one
zero of%@.This condition is evidently satisfied if in each i

£ is monotonic while £' and R' exist, If'] being >|R .

EXSEl_If further (IIla-d) are satisfied, not only the I but
slso the J are separated, each I containing exactly one zero of
<?and each J exactly one zero oi f. Consequently f has no zero
outside the J and(? no zero outside the I. The clusters con-
sidered in (IIIc-d) now contain exactly one T each.

This means that not only is the knowledge of tne zeros of
<§ sufficient to locate separately all the zeros of £ (as in the
case of (IIId)), but also will each zero ol f be announced once

and only once by the vanishing ofé?.

The proposition (IIId) might be called the one-sided and
(IVh) the general or reciprocal zero proposition.

The proofs of these propositions are evident.




- 36 -

4. UPPER AND LOWER LIMITS FOR REAT, SOLUTICKS OF THE LINEAR
DIFFSRENTIAL EQUATION OF THE SECOND ORDER
Let v and z be real solutions of tne two differential
equations
y" + By = 0

z" + Gz

0

F(t) and G(t) being regular and (F - G) not negative in an
interval L extending over the whole t-rangé to be considered.
Let to be a value of t in L |
y(ty) = a z{ty) = P

y'(to) = A z'(to) = B

We assume that either are a and b both‘# 0, or a =b = 0.

This means that the curves y and z start from points lying
either none or both onn the t-axis. We further assume that A
and B both ¥0 and finite. |

Since a solution of a linear equation cannot have
singularities in a point which is not a singular point for at
least one of the coefficients, y and z are regular in L.
Consequently there must exist an interval of positive length,
i' = (to,tl) extending upwards of to such that both y and 2z
keep a constant sign in i', limits excepted, at least one of

the functions y and z vanishing at the upper limit tl.

Similarly there exists an interval i" = (%5,1)) extending
downwards cf t., such that both y and z keep a constant sign

in i"«imits excepted, yz being = O at tz.

We interoret y'(t,)/y(t,) as Lim y'/y, and y'(t,)/y(t,)

1 1 tat;-0 2 2

as Lim y'/y. '
>t 2+0
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The sign € of yz is evidently the same in i' as in i", both
yn the case where a = b = O and in the case a0, b¥ 0.
AApoint t in i' or i" such that (F - G) is identically zero
petween t, and t, will be termed a point of identity. Other-
wise t will be called a point of non-identity. There must exist
g point t' in i' (eventually t' = t,) such that all points
between t, and t' are points of identity and all points between
t! and E. are points of non-identity. An analagous point t"
exists in i". If t is a point of non-identity, there must exist
g finite interval between QJ and't ﬁhere all points are points
of non—idéntity. Tor F and G are sunposed continuous. We
gesume that the first zero of y to the right and left of to is
e point of non-identity (if it belongs to (iv+i)).

Let A= A(to }: & ;’a Ail
b B

I. If A

A4

0]

then in i', upper 1limit included yvt/v<z'/z except when t is

a point of identity and & ~ O, in tals case y'/y = z'/z.

The ratio }z/y[ is monotonically increasing as i increases,
except when £ = 0 and t increases through points of identity,
in tais case z/y is constant.

The function y is = O, and [zl > O at the upper limit {4 .

If A% 0
then in i" lower limit inciluded y'/y >z'/z, except when t is
a poiht of identity and A = O, in tais case y'/y = z'/=z.
The ratio 3z/y} is monotonically increasing as t decreases

except when A = O and t decreases through points of identity,

SRR
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4n this case z/y is constant.

e functicn y is = O, and |z} C at the lower limit to.
‘zCOrollar a

Let tg be an arbitrary point, A =4 (ty). Then to the

- right of t, ¥ must vanish before z if A3 0. To the left of t,

y must vanish before z ifA<O0. Therefore if & = 0, y must

venish before z both to the right and left of tg.
The condition A = O is evidently fulfilled if for instance

z is a first order approximation curve 1o ¥y in the point to

(., a = b, A=zB ¥ 0) or if to is a common zero of y and z
(i.e., & = b = 0), no other assumptions being made as to A and
"B than A 4 0, B # 0. In this case, therefore, y must vanish

before z both to the right and left of t,.

Corollary (b)

Suppose that Lim z/y =1, i.e. either a = b $ O
t=t,

 ora=b=0Oeand A=B%o.

if AS0 , then

y'/y<z'/z and ]y{ < {z{ in points of non-identity in i' upper
limit included.

If /\z0, then

y'/y> z'/z and |yl ¢iziin points of non-identity in i" lower
limit included.

ConsequentlyA if a=b=0wand A=B F0 (kenced= 0),
then |y| <« |z| in points of non-identity in the total interval
(i' + i") limits included, with exception of the point t, where
¥ = z. And y'/y < z'/z in points of non-identity in i', while

y'/y> z'/z in points of non-identity in i".




Further let a = D = C and A= B ¥ 0 and let J' an? /®
designate the intervals between tb and the first points st 8* of
extremum of ¥ to the right and left of t, respectively.

Then y*'/y is positive in j', negative in j" {limits
excepted) and equal to zero at the upper limit of j' and the
lower }imit of j"%. Consequently if s' and 8" are points of
non-identity, z'/z must be positive ( not zero) in s' and
negative (not zero) in s", so that the first extremum of z to
the right and left of t, must lie outside j' and J" respectively.

In points of non-identity in the total interval (j' + j")
we evidently have '

(16) : ly'/yi < 1z'/zi

To prove the preceding propositions let us consider the
function

(17) Q(t)

We have‘

yz' - zy!

Q' (t) = yz" - zy" = yz(F - @)
hence .
(18) Qt) = Vyz(F - @)at  +s A
The function un;g} the sign of integraticn in (18) has the
sign € (not zero) in points of non-identity in (i' + i") except

in the points tz, to and t, where yz vanish. Consequently

1
Q(t) has the sign & (not zerc) in points of non-identity in

it if 2Y0, and the sign -¢ in points of non-identity in i" if
AEO.; In the first case we have consequently O0<&(yz' - zy'), and
in the second case $(yz' - zy'XO0. Dividing by & yz (which is

positive, not zero,in {(i' + i"), limits excepted), we find that
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yu/y < z'/z in i (1imits excepted) ifA3 0, and vy'/y > z'/z in
40 (1imits excepted) ifA%0. The only excepltion is when t is a
point of identity and,d = 0, in which case we evidently have
y'/y = z'/z.
Hence, T1<T2 and T3<T4 being arbitrary values of t in i' and
i" respectively, (limits excepted), we have
Z(T; ) /y(T) < |2(T5) /3(Tp) | if ASO
12(T,) /y(T )< |2(T5) /37(T5)| if AZO
The only exception is when TZ and T3 (hence Tl and T4)-are
points of identity andd = 0, in which case the inequalities
are reduced to equations.
Furthermore by virtue of the definition of i', at least
one of the two fuactions y and z must vanish at t;. If430,

they cannot vanish doth at t For if they did, @ would vanish

1°
too by virtue of (17). But this is impossible, for if both
functions vanish at tl, this point will be a zero of y, heﬁce
according to our assqmptions a point of non-identity. Con-
sequently Q would have the sign ¢ (not zero) as shown by (18).
The function that vanishes at tl must be y, for if it
“were z, Lim Qz/yl would be = O and gz/y! would consequently be
decreasi§g§1£{; finite part of i'. Similar argument regarding i",
That y'/y < 2z'/z in t, if 45 0 and y'/y> z2'/z in ty if 4%0

foliows from

Lim y'/y = + @ . and Lim y'/y =+00, z'/z being finite at both
limits.

The proofs of the corollariesg are evident.

II(a) Let y be a solution of y" + Fy = 0, t, an arbitrary value
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of t, & and M two positive numbers,O<mcM.

ty= t, + (- arctan a m/A)/ m
ty= t, + (77~ arcten a M/A)/ M

a=y(ty) » A= yrty)) ;./ASO , and arcus being inter-
preted as lying between O and + 7 /2.
Then t0< tMKtm.

If m<\F ¢ M in (tot,z\ limits included, y keeps a constant
sign in (totM) and vanishes at least once in (tth). The same
proposition holds good in analagous intervals to the left of toe

As a special instance we have the proposition that if t,

is a zero of y and ma\E‘zM in (tg,t, +7 /m), the only assumptions

as to A = y'(to) being A ¥ 0, then y keeps a constant sign in
(torto *T /M) and venishes at least once in (t, +T/M, t, +77/m).
If m{F4M in (b, -%/m,t,), theny keeps a constant sign in

(t, - T/M,t.)) and vanishes at least once in (t, - T/mt, -/,

o
These propositions are easily proved by the corollary (Ia)
if y is compared with the solution
2 . A2/2
Yy = \/az + A2/M,sin (-M(t - to) + arctan a li/A)
of y" + M%y = O and the solution yy of y" + m®y = 0, where

a

Y(to) = Ym(to) = :fﬁ(tc)
A

H

yrt ) = v (E0) = ¥iy(ty)

II1(b) A consequence of the above propositions is that if

- ]féim >0, zeros of y must always exist. On the other hand,
-0
a non-identicallyvanisking solution of y" + ¥y = O, I being

regular, can only hav% simple zeros. For we have
, o
< (o -2 32
y(n) - __{)_Oerz)F(n 2—1)y (1) (n32)
so that if y(t ) = y:(to) - O we should also have y(n)(to) =0

(n = 2,3...).
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The same proposition may be proved without using the
expansion of y. In fact z may be chosen so that in (I) zl(to)ﬁc};
then tl is zero of y. If y' vanishes at tl, Q would vanish too
vy (17), but would be ¥ O by (18), because G may be chosen
so that t, is a point of non-identity.
I now proceed %o certain propositions concerning limits
for a solution y of y" + Fy = O which may be formulated by

introducing the consecutive zeros of y.

11I(a) Let r be a zero of y and s the first point of extremum

of ¥y to the right of r (r<s). 1IT Oom<F M in (r,r + 7' /2m),

then s is situated in the interval (r +4 /2, r +%7/2m) and the
value of the extremum y(s) lies Deiween A/M and A/m, where
A = y'(r). The same proposition holds good for analagous
intervals to the left of r.
These propositions follow immediately from (16) of (I Db),
if y is compared with the functions yy and yp defined under(Ila).
The condition that O«wm «F:M in (r,r+71i/2m) may evidently be

replaced by the condition that O«m-< JFZM in (rs).

II1I(b) Let r and r'(r<r') be two‘consecutive zeros of a solu-~
tion y of y"+Fy=0. Then F takes the value c=(TT/(r-r'))2
at least once in the interval (rr!').

Let z(t)=C sinvec(t-r), C being an arditrary constant # O.
Then z satisfies z"+cz=0.

Suppose that F<c everywhere in (rr'). As r and r' are

consecutive zeros of z, y could vanish in only one of the points £
r and r' by virtue of (Ia). On the other side if F»c everywhere

in (rr'), it would follow that y had a zero between r and r',




g0 that r and ' coill.d no% te corsscutive zeros of y. Hence F
must at least ciuce assumne g valuve ¢, and at least once a value

B

<¢c, and being -~zriuous 1t must at least once assume the value c.
It is alse =31y seen that if ¥ i3 not = ¢ ih (rr'), then .
F must be> ¢ in gome finite part of the interval and <c¢ in some
other finite part. |
The above proposition can also be proved by (IIa).

I1I(c) Let ri>r>r" be three congsecutive zeros of a solution

——

y of y"+Fy=0 {(F>C), ¢! and s" the points of extremum in the
intervals i's=(rr') and i"=(r"r) respectively. One and only
one point of extrammun exists in each of the intervals i!' and i"
because F>0. Let H' and H" be the values of y(regardless of
sign) in s' and s".

Finally let mi<}i' and m"<k" De the (rot necessarily precise)
limits of f@ in i' and 1" respectively. The limitis are sup- |
posed to be posiiive (nct zevo).

Then we have to the right of r

(19a) (r,r+Tifu) Hefw.sin Wls-r) < fy(od< Hu/m.sin m(t-r) (rr?)

fHM.cos m(t-r) (rst")
(R0a) (r,r+ii/2u) fr.cos L(t-r) <lyr{t)” -

: _déi.cos m(r'-t) (s'r")
| The intervals in which the lower and uprer limits hold good
are indicated in the parentneges tc tae extreme left and right
respectively; m,M and H stand for m?, M’ and H'.

To the left of r we hnave

(19%) (r~1j/i,r) Em/li.sin (r-t) <iy(t) <Hi/m.sin m(r-t) (r"r)
| ‘ (. cos m(r-t) (s"r)

(20b) (r-ii/2u,r) Ha. cos #(r-t) <yt (e)] <<
iqi.cos m(t-r") (r"s")
.

where now m, ¥ and H stand for n", M" and H".
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We only prove the limits to the right of r. The argument

is analagous to the left of r.

i

Let
Yy = A/M . sin M(t-r)
Ty = A/m . sin m(t-r)
A = y'(r) (30 because the zeros of y are simple)
m=m M= M
We have

yir) = YM(I‘) = ym(r) =0

y'r) = wyylr) = yalr) = A3D

Ty and I satisfy respectively

yﬁ + M?xu =0
T2
" =
and ym f m ym 0
Noticing that r+T/M«<r'<r+T/m by virtue of (IIIb), we have

by corollary (Ib)

(r, r+T/N) [yl < ] < g (r,r')
As by (IIIa)
mH'< [A] <yH?

we immediately deduce (19a).
As i

2 2
d y'- _ Fy +y! (0<F),
at y ve

y'/y is decreasing for every value of t. It decreases A
monotonically from + o to - as t runs from one zero of y to the
next following, passing zero at the point where y reaches its
extremum. To establish the upper 1limits of (20a) it will
therefore be necessary to consider separately the intervals

(rs') and (s'r').

Let ynibe defined as above, and let
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¥ = y'(r')/m.sin m{(t-r')
Then ,

y(r') = yu(r*) =0

y'(r") = yr;(r') 0

= 2.

Vg ¥ m Yy = 0

We therefore have by (16) of (Ib)

vty <fa/vyl (rs')
fe lon /s tpt
| AVCARATE N (s'r)
ic€e,
m cotan m(%-r) (rs!')
e <§
im cotan m(r'-t) (s'r')
Now multiply by
7@}<H'M/m.sin m(t-r) (rr'")
b+<H‘M/m.sin m(r'-t) (rr")

respectively, the Jast inequality being obtained from (19v),
which holds good also to the left of r!', in which case m, M and
H would‘stand for m', M' and H'.
This cives the upper limits of (20a).
To prove_the lower limit of (20a) we only have to notice
that from (16) of (Ib)
| ‘{yﬁ/yM\<ky'/y‘{ (r,r+T7/2M)
IIISdz Let .y and z be solutions of the equations
y' +F(t)y = O
z" + heF(ht)z = O
where B=0 is an erbitrary firnite constant.

If y and z are determined so as to be equal to O in the

point t = O, then
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2(t) = %‘,—%— y(ht)

From this formula we see that if y and z are determined so
as to be equal to zero in the point t = r (r = O oOr 4+0), the
 distance to the next zero of z is 1/h of the distance to the
next zero of y. This holds good both to the left and right of
r and regardless of the values{ +0)which have been attributed
to z'(r) and y'(r). |

' To prove the above formula we‘put 72(t) = z(t/h).

It is readily seen that both Z and y are solutions of the

same equation

z" + M(t)Z = O
with Z(0) = y(0) = 0. Hence 2 and y can only differ Dy the
determination of Z'(0) and y'(0).

Now let Z here stand for z of (I). If r is a common zero
of Z and y we have /\(r) = O. Hence if r' is the next
following zero of y, the ratio z/y 1is constant as t increases
in (rr') through points of identity. Consequently for points
in (rr!')

z/y = Lim z/y = Z2'(r)/y'(r)
tor .
From the demonstration of (I) it is seen that this holds
good even if the next zero of y is a point of identity. Hence
Lim 2/y = 2'(r")/y'(r") = 2'{r)/y'(r)
tor!
Consequently for all values of t
z2(t) /y(t) = 2'(r)/y'(r)

which proves the proposition.
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5. THE METHOD OF NORMAL POINTS

This section will be concerned with the following
problem. Given a compoéite curve w = > ¥, where the y, are
trends of successive orders, each,yn being a solution of
yﬁ + Fnyh = 0. The various F, are supposed positive and of
descending order of magnitude in the sense explained in
Section 2 (formula (9a)). How far will the zeros of the second
differential coefficient w" of the composite curve indicate
approximately the location of the normal points}(i.e., the
zeros) of the trend of lowest order yo? If the approximation is
accepted as sufficiently accurate, how can the normal points
(i.e., the zeros) and the ordinates of the successive trends
¥, be computed?

I shall first make an intuitive approach to the problem
and develop the computing scheme which may be derived therefrom.
1 then proceed to the rigorous proof of the theorem which
establishes the criterion of the closeness of the approximation
used.,

" An idea which will naturally present itself is that
according to the conception of y, as trends of different orders,
thevcurvature of Y% will generally be far greatef than the
curvature of Xi’ and still greater than the curvature of %é’
etc. Therefore, yg will generally be the predominant term in
w", However, this does not hold good in the vicirnity of the
very points with which we are here concerned, viz. the zeros
of x). For in these points yg will vanish on account of its
containing y as & factor besides the finite factor (-E ). But

only a slight displacement from the zero of p will generally

v T R

T
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suffice to reestabiish the predominance of yj over the other
terms in w". And the reason is that in the zeros of y, the
first differential coeffieient yj is at its maximum (regardless
of sign).

What we have to do, is therefpre, to consider intervals
encircling the zeros of Yor 88 small as possible and just large
enough to reestablish the predominance of yg outside these
intervals. It then follows that between a zero of w" {which is
known) and the corresponding zero of Yo (which is not known
but lies somewhere in the neighborhood of the zero of w") the
distance cannot exceed the intervals considered.

A priori it seems obvious that these intervals may be
determined all the smaller the greater is the difference in
order between the successive trends. (Difference in order
being defined by (6ab) or (9ab) of Section 2). The closeness
of approximation, therefore, seems 1o depend on the relative
difference in order, and this prims facie impression will be
verified by the exact carrying out of the analysis.

Now if we suppose that the difference in order is suffi-
ciently great to insure a good approximation, then the normal
points of fb msy be considered as determined by the location
of the zeros of w".

Purther, since o = 0 in the normal points, the data

relating to these points may be congidered ag a new geries

where the trend of lowest order yu is eliminated.

And this new series may be treated in the same way, thus
eliminating the trend of next higher order ¥y o and so forth.

Let WO be the original series where all the trends ybyi...yN
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are present., And let W1W2"'WN be the series successively
derived from WO by the method;of normal points. Then Wn con-
tains only the trends Ya¥n+1e* YN This is how the successive
trends can be eliminated. Now to actuall& construct the or-
dinates of the trends we may proceed in the following way.

| When the difference in order between the successive trends
is great, the ordinate of the trend of lowest orde; Yo will be
represented approximately by the deviation Qf the actual dats
W, from a line interpolated in some way or another ph;ough the
series Wi which represents the normal points fpr Yo We may,
for instance, draw a étraight line between every two consecutive
normal points (i.e., between every two consecufive data in Wi),
or draw a m-th order parabola through (m+l) cbnsecutive normal.
points, or use any other method of curve fitting. The essentiaﬂ
point is that whatever the method used may be, the data W

1
determining the interpolation line, are data where the lowest

order trend yb is already eliminated.

Bimilarly the ordinates of a higher order trend In is
determined by the deviation of Wn from a line interpolated
through W,,; by one of the methods referred to.

This is the essense of the method of normal points. In
Section 6 we shall consider another method of determining the
trends yh, which may be used even in the case where the differ-
ence in order between any of the trends is not great. This
method, however, is subject to more restrictive assumptions as
to the‘differential nature of the gravitations of the successive
trends. | |

I now proceed to some points connected with the actual
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computation of the normal points.
In practically all cases the data in the given series w(=Wo)

will be equidistant. I shall, therefore, make this assumption.

2
%
g

ﬁet Wy be the items in the given series for the moments of time

t = 1,2-..

The second differential coefficient of w has to be
approximated by the second difference of wy. It will hardly
ever be necessary to carry the approximation further than
Simply pﬁtting the second differential coefficient of w equal

to the second difference.

(21) W) =AWy = W 2w W,

To study the location of the zeros of w"(t), we therefore
have to plot the variation ofﬁ?wt_l and determine the points
where this curve passes zero. |

It should be noticed that the operation (21) might be
carried out graphically in the plot of the original data simply
by measuring.the deviation of Wi from the straight line through
Wial and Wt-l;

It is quite clear that a successful determination of the
zeros of w" by the variation of‘ﬁxzw depends on the following
conditions

2 (a) The distance between the data in w (which will also be

the distance between the known values ofAﬁszw) must be

smaell in relation to the actual distance between the zeros

in w".

(b) The accidental errors in the data must not be so dominating

that a number of false zeros is indicated in A aw.
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By a false zero is meant a zero in [izw which does not

correspond to actually existing zeros in wY.

Let us take an illustration. Suppose the data are monthly
and we intend to eliminafe the seasonal fluctuations (considered
as the trend of lowest order-yb).

Even if the accidental errors are quite insignificant,
the variation in & zw will not give a good location of the
zeros of w" if the actual seasonal flucfuations Yo are very
compllcated say have peaks and vallles at the short distance
of one or two montis, because in +hls case y and ‘hence w"
will change sign at so short notlce that it might not be in-
dicated in.ﬁszw. This follows from the simple fact that if
we only know the value of a functlon in certain discrete p01nt3,
we are not able to trace the variation of this function within
intervals whose length does scarcely exceed the distancevbe-,
tween the discrete points where the value of teefunction is known.

To this must be added the effect of accidental errors.

If accidental errors are already present in w, they will Dbe all
the more dominating in élgw. Now it can be proved that the |
magnifying of the error-effect, which is introduced by the
operation Asz, will be approximately balanced if the original
data are smoothed by a twice iterated, moving quarterly average.
(Smoothing the original data or the series ﬁ;zw evidently amounts
to the same.)

1 shall not prove thig proposition, waich would necessitate
the opening of a new gection., I hope, howevef, t0 be able to
revert to the general question of the smoothing of time series in

another articlee.
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Now if a twice iterated, moving quarterly average is applied,

the approximation formula for w" will be

(22) wh(t) =‘A2ﬁt—1’(wt+3 - Rw, + Wt_3)79
Wtdesignating the smoothed series.

Ag is readily seen;ﬁzw may be determined graphically from
the plot of the original data simply by measuring the deviation
of wy from the straight line through Wit3 andw%~3.

If a smoothing of this kXind is necessary, the zeros of
w" cannot be determined with any degree of accuracy unless the
zero distance in the seasonal fluctuations amounts to say three

or four months at least, the degree of accuracy depending, of

course, also to some extent on the shape of w".

If weekly data are available, or if the data are monthly
while the trend of lowest order Yo to be eliminated is the
ordinary business cycle (the seasonal filuctuations being in-
significant or already eliminated by some other method, for

%~ instance by a moving yearly awerage, arithmetic or geometric),
then the case is quite different. The number of dats in each
period is then greater, and the accuracy will be much closer.

It should be pointed out that if the plot of Aygw or of
z&zﬁ shows quite distinctly certain intervals of positive and
others of negative values, while the curve passes zero in &

o cluster of points lying between an interval of distinct positive
and an interval of distinct negative values, this cluster should
only count for one normal point (i.e. one zero in w") 1If, for
instance, the trend of lowest order y, to be eliminated is the
business cycle, and the plot of A S or of Aszﬁ shows a distinct

positive period say from the beginning of 1901 to May 1903 and 4
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distinct negative period from August 1903 to the end of 1905,
while the item for June 1903 is negative and fdf July positive,
this should count only for one normal point 1§ing between June
and July, 1903. | ; |

When the trend of lowest order is eiimiﬁated and we pro-
ceed to the determination ¢f the normal points>in.the deriVed
series wl,wz..., then the data will no longer be equidistant
and we have to approximate the second differential coefficient
by divided differences (instead of ordinary differences). Buti
otherwise the procedﬁre will be the same as for the geries W,.

It is obvious that the number of data in the successive
series W,,W, ... is rapidly diminishing. We finélly arrive at
a series WN containing only some few data; This series WN may
be taken as representing thé trend of highesf order yN«”

I now proceed to establish the theorem regarding the
closeness of approximation with which the zerds of y, may be
determined from the knowledge of the zeros of w".

Let D, &y, by, Ap, Bpe A and R be the numbers defined in
Section 2.

The criterion for the error committed by taking the zerqs?
of w" as the zeros of y,, may be stated by introducing either
the numbersvé and b or the numbers A and B.

Thne limits established by a and b are the sharpest. Iﬁf
return the limits established by A and B have the advantage that
the signification of}the numbers of A and B is more intuitive.
It would certainly be possible to prove limits much sharper than
those of the following theorem, by introduéing'mofe complicated

expressions. Our aim has been rather to establish formulae that
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_.514,.
might be easily interpreted than to obtain the sharpest possibie
1imits.

It is comparatively easy to establish an upper limit for
the ratio between the error committed and the actual zero dis-
tance in.yb, in which the zero of w" in question is situated.
This 1imit is furnished by (A) of the following theorem, which-
already gives a valuable information regarding the accuracy.

However, we want to know more than this. We want to ex-
press the error in proportion to the actual zero distance in
w", and to distinguish the case in which the absolute error
intervals encircling the zeros of w" are not overlapping or at
any rate only overlapping in such a manner as not to prevent
the unambiguous location of the zeros of y, (case of the one-
sided zero proposition indicated in Section 3.), further to
distinguish the case in which the correspondence between the
zeros of w" and y 1is a one to one correspondence.

This is done by (B) and (C) of the following theorem. The
proposition (B) is uniform in the sense that it holds good for
the whole t-range without regard to the variation in the length
of the zero distance in yp or w". In (C) account is taken of
the relative length of the consecutive zero distances in w*
(which are known). In return (C) assumes less than (B) with
regard to the difference in order between the successive trends,

Before formulating the theorem I shall define éome nota-
tions, and state certain conditions, which are involved in

various combinations in the following propositions:

The first conditions are ;

(232) _P 2 anbnﬂél,' f
st e o ‘
(23Db) TP AgBp< 1 |
(" N—— e N
where & designates s
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These conditions are fundamental. One of them must be
fulfilled if any of the propositions below shall hold good.

Further we shall have to consider the conditions

(24a) ho! Za.nbn <sin /4

(24Db) p°S AB <sin /4

(25a.) , P2 a b <sin(» N/4)

(25b) pBZAan< sin(\T/4)

where\ = D(min)/r}max) designgtes the ratio of the smallest zero
dlstance in y, to the greatest.

_ Further, 7
(268) (Dgyy*Dg_y)/Dg < (T /u) - 2
Dy 4 Dg /Dy < (T u) -2
(26b) g(DK+l _4DK—1)/DK <(T/uy - 2
I(DK * DK—Z)/DK.l <(M/uy - 2
where

Dg = Tge1 - Tx

Ty (K = 1,2...) being the zeros of w" arranged in

an ascending order of magnituaé;anu*u arid U designating

(27a) u = arcsin p 2 a,b, u being interpreted as O<udil /2

(270) U = arcsin p5§: A B, U being interpreted as O<U<ii/2

For reasons which will be evident by the following, the
conditions (24ap), (25ab) and (26ab) will be called the condi-
tions for non-overlapping, or shorter, the non-overlapping
conditions.

Further,

(28a) RVD + A(R+T) «Tcos ufu
(28D) RID + A{(R+TM <T cos U/U
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If (24a) or (24b) is satisfied, then (28a) or (28b) may be

replaced by
(28c) RVD + A(R+M < 22
For ficos x/x is monotonically decreasing from + @ to 215,
when x runs from zero toTT/4. Evidently (28ab) assumes less
than (28c).
\?he conditions (28abc) will be called the conditions for
onewﬁg:ééq géfréspoﬁdehce or shorter, the one to one cohditions.
The combinationé of tggéé conditions to be considered will
always be either a combination where only (a) formulae enter or
a combingtion where only (b) formulae enter. The first will be‘

called an (a) case, the second a (b) case.

Theorem of normal points.

A If (R3a) is satisfied,‘the presence of a normal point in the
lowest order trend Yo rmust be anncunced at least once by the
vanishing of w". A vanishing of w" which announces a zero r of
Yo must take place in the interval (r-h", r+h') where

h' = (u/iN)D!

h* = (u/m)D"
D' and D" designating the distance from r to the next following
zerao of y, to the‘right and left of r respectively, and u being
defined by (27a). The interval (r-h", r+h') does noﬁ overlap
with any of the analagous intervals encircling the other zeros
of ¥

Further, w" cannot vanish outside the intervalévconsidered,

i.e., the vanishing of w" never announces.a false (non-existing)
zero of y,. Hence the normal points of Yo can never be displaced
from the zeros 6f w“ by more‘than a time interval amounting to a

fraction u/fi of the zero distance in y in which the zero of
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w" in question is sltuatedu

If (23b) is satisfied, the sane prop0s1t10n holds good
when u is replaced by U (formula(Z?b)).
g; If (25a, 28a) or (25b,28b) is satisfied, then each normal
point (i.e. zero) of the lowest order trend yé will be announced
once and only once by the vanishing of w".

If :K (K=1,2...) designates the_zefos'of w", and we put

(29a) 1=1, = ( 2x) u/m in the (a) case
(29D) 1=y D(ma’?)U/GT in the (b) case

m
where D ax) is the greatest of the zero distances in Yoo then

the intervals (TK ¥ 1) do not overlap and y, has one and only
one normal point in each of these intervals and no normal point
outside them.

If (R5a) or (R25b) but neither (28a) nor (28b) is satisfied,
the knowledge of the zeros of w" is still sufficient to locate
all the normal points of Yo in separated intervals in the manner
indicated in (IIIcd) of Section 3, But a normal point of Yo
‘may now be announced more than once by the vanishing of wt".

g, If (23a, 28a) or (23b, 28b) is satisfied, then each normal
point in yb'will be announced once and only once by the vanish-
ing of w".

If further for a particular zero :K of w" (28a) or (26Db)

is satisfied, and we encircle :K by the interval

K (T LK’ T,+L})

X “K
where
(30a) Lg = DK_l/(m7u~2) Ly - DK/(ﬂiu—Z) in the (a) case
(30b) Lg = Qxﬁl/fWVU“z) Ly = DKﬂﬁZU~2) in the (b) case
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then JK will not overlap either with the analagous interval
JK-l to the left or the interval JK+1 to the right; y, has
one and only one normal point in JK and no normal point neither
between JK-l and JK nor between JK and JK+1'

To prove these propositions we first notice that the zeros
of y, are the very points in which y" vanishes. It is therefore

sufficient to consider the zeﬁos of ¥g»

Let z=> ¥,
n=1
then w" = y“ + z"

Further, let toj (j=1,2...) be the zeros of yg.
Thé propositions (ABC) will be proved if it is possible to
: specify non-overlapping intervals
(toj - lgj'toj + 153)

such that the conditions (Ia), (II), (IIIc) and (IVa) of
Section 3 are fulfilled. The furctions w“. yg and z" here
stand for @, f. and R of Section 3 respectively.

In particular (A) will be established when it can be shown
that (Ia) and (II) of Section 3 hold good, snd- further that the
intervals (tOj t +1 ) are included in the intervals of

proposition (A), these 1ntervals being separated. (B) will be
established if it can be shown that not only (Ia) and (1I) but

also that (IIIc) and (IVa) of Section 3 hold good. If (Ia),
(11) and (IVa) (but not (IIlc)) hold godd, and the intervals
(t

-1 t, +1'J) are seaarated, the first part of (C) is

oj “oJ?
established. The second part of (C) is then to be proved by
(26a) or (26Db).

What we have to do is therefore to show that (Ia) and (II)
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of Section 3 follows from (23a) or (23b), (IIlc) from (25a) or
(25b) and finally (IVa) from (28a) or (28b).

I shall first show that the conditions of Section 3 re-
ferred to hold good if the (a) conditions of the present section
are fulfilled, and we choose

1y = (uw/MD, 3’13;‘3
185 = (@/MD, 5.1/ Paga
where D 0j is defined by (5a) and poj by (10a).

Let s_, be the pOlnt of extremum of y, in the intervals

nk
ik defined in (5b). And let an = tyn(snk)!

The apostrophes ' and " will be used throughout the
following analysis to designate quantities to the right and
left of toj respectively.

For the sake of brevity we put

p' p" q’ q"
for Poj Po,3-1 Y03 %, 5-1
and r* g " r £ gt !
. - "
for %o,5-1 ®o,3-1 toylos  Pos  Postros  Soi  Yo,5w

The quantities in the last two lines are wrltten in an
ascending order of magnitude, for it will be shown that s"<t" and
t'< s'; U 5 is defined by (10D).

Further we write

1! 'ln D! D" H! g
T ' " q2 ., .
or 1 03 loj Doj Do,j-l {03 Ho,3-1

. . 2
By (10c) the upper limit of F, in (rr') is (/D) p'. The
lower 1limit of (19a) Section 4 therefore holds good in
(r,r+D'/Jp') and a fortiori in (rt') because u <M and hence

1'<D'/Jp'. We consequently have by putting m =T ntJq',
va
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¥ =TTJ57/D‘ gnd t = t' in (19a)
et )|> (B'F (£ AP a") sinl@ yp'1'/D"

since sin(Mp 1'/DY = sin u = P a b,
and b'a' 2o

we have

(31) PASARIES: 8 ISP PICH

On the other side we have for any value of t in (rr?)
)] 2 By By (t)
 where k is defined by (54). .
Hence by (9ab)
‘y"(t)l z H'F (t)a b,
Consequently
(32) ety 2z T | 2HF ()Y a b
for any value of t in (rr').
Therefore
acenl > faren)
An analagous argument shows that
o] > PLICAM
Furthermore we have by {IIIa) of Section 4, s'-r>~D'/2J§T
which is >1' since u< 47/2. Similarly r-s" > 17
Therefore y, is monotonic in (t"t'). Consequently yo,(t')
and y,(t") are of opposite sign. As F, is essentially positive,
yg(t') and yg(t") mast also be of opposite sign.
The conditions @a) of Section 3 are therefore fulfilled.
In (t's') we have
y (¢} > [y (") which by (51) is>H'}a b .
In (s}r'-lg’j*l) we have

y ol > o (rr-1g J+1)\
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As 1O j41 T 1'J = 1', we get by applying the lower limit of (19b)

for the point r* instead of r
’yo(r'“lg'3+l)'7 H'Zanbn
so that the limit
(33a) iyo(t)}7 H'Zea b,
nolds good in the whole interval (t',r‘-lg j+l).
Consequently in the same interval
(53D) | y8(t)] > H'F ()T a,b, which by (32) is?%z“(t).\
An analagous argument shows that
1) " N 1"
| yn (63 > 5B ()Y a b > |2 (t)k

in (r"+1! ).

0,J-1?
The condition (II) of Section 3 is therefore fulfilled.

Hence w" has at least one zero in each (t, 0j “1o3

zero outside these intervals. The same will be true of any set

toj+1éj) and no

of intervals which are defined so that each of them contains a

(tOJ—lgj, toj+163)’ Such a set of intervals is (t héJ’t +h'j)
where
1 - .
his = (u/Tr)Doj
h"J = (u/n‘)Do,j__l

It is readily seen that each of the new intervals contains
one of the original for we have p03$> 1, hence h! J‘$ l’J and
i

And the new intervals do not overlap. TFor h! 0} + h! = 2h!

0,Jj* 0Jj
is less than Dy because u</2.

This proves the proposition (A) in the (a) case.

The intervals (toj—lgj ,t j+l .) must evidently a fortiori be
non-overlapping.

To demonstrate that (Ia) and (II) of Section 3 are fulfilled,
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we have only used (23a).

That (IIIc) of Section 3 holds good when (25a) is satisfied,

(max)u/n is an upper

(min)/4

simply follows from the fact that 1, = D
1imit of the numbers 153 and 133 and this limit is< D
if u<ATr/4.

The foregoing iimits could be'developed without taking

account of the differential vafiations of the various Fn {measured

A S S R

by R). To establish (IVa) of Section 3 we shall have to introduce

P it Sl

R and use the one to one condition (28a),

We have to establish an upper limit of lz‘"(t)! holding good-

for any point in (t"t') and show that|y" (t)| is greater than this
(o]

B

1imit in any point in the same interval. As the upper limit of
lz'"(t)lmust be essentiallyVPOSitive (not zero), it will follow
that yJ is monotonic in the‘ihterval considered.
Bvidently for any value of t
m S L -
lyo (t)|>'Fo('yo‘ ‘yo" IFé /Fo’)

1T.et us first consider the interval (rt'). This interval is

included in (r,r+D'/2J57) since u<T/2, so that we may use the upper
limit of (19a) and the lower limit of (20a) by putting m =TT/DWq"
and M =TT Jp'/D'. Further by (12a) |F!/F, |< R/D!

This gives in (rt')
lyg o)
Fo(t) H'/D'En/@)cosm[;'(t-r)/D')- R. \/’p_'} sin(ﬂt-r)/n'ﬁ'}}, |

Sinee in (rt*)

Vo' (t-r) /D' ZRfp'1'/D' = u<Tl2
and  Tr(t-r)/DWaq' =T ' (t-r)/DVp'a' L uffpiq <T/2

we have a fortiori

}.'Yg"(t)bFo(t)H’/D'[(T/ﬁ) cos u - R/p'q’ Sin(“/vp'q'.).!



Since o<u//p'q!? <W72 we have sin(u/ji'Q')<u//57ET-

Further WMat s 1//p
Hence a fortiori in any point t in (rt')
(34) |y (03 B (0)H'/D [(W//B) cos u - Rl

On the other side we have for any point t
" — t + ] .
v (e B (v + |FLE |y D
Now let t be any point in (rt'), and let k be defined by
(5d4).
As cos<1l, we have by the upper limits of (20a)

|7 O By o e/ Prge XM Big B/ Dy

Further
|5/B) {7 )< HyyR/Dy
That is
(35) 72 | < (BB /D) (WD + R < (B H /D Wo(T+R)

Using (6a) and (9ab) we get
|y | < (B H'/D')/D(I+R) Aa b

8o that in any point t in (rt!')
(36)
|z" (t)j< (Fo(t)H'/D')Amm)JEzanbn: (F,(t)H'A(T+R)/D'/P) sin u

Comparing with (34) we see that in order to ensure
!yg‘(t)!>’z"‘(t)i in any point t in (rt') it is sufficient that
(37) A(TT+R) sin u<jlcos u - R/p u
As sin u<u when o<u, it is a fortiori sufficient that

AGr+R)u<Tlcos v - R/p u

which is the condition (28a) of the theorem,

A quite analogous argument shows that{yg'(t)b>lz"’(t)l in any
point in (t"r). The condition (IVa) of Section 3 ig therefore

fulfilled.
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That the second part of (C) follows from (26a), may be

proved thus.

Consider the intervals (tOj ./ j+loj) These intervals
are separated and w" has one and only one zero in each of them,
and no zero outside them. For it has been shown that (Ia), (II)
and (IVa) of Section 3 follows from (23a) and (28a) and further
that the intervals considered are separated.

Now let T. be the zero of w' in (t .—1' , b .+l If we

K 0J 0J OJ)
‘move from any point in this interval, a distance l&j to the left
and a distance l 0J to the right, we shall surely cover toj‘
Therefore if we put Ly # it 03 and L" léj' the intervals Jy of
proposition (C) will surely contain at least one zero of Vor

Now DK = TK+l - TK must be greater than

(to,j+1-lg’3+1) - (t5%103) = Doy=R155> 9051-(2u/n-))
Hence 1342 (u/T)D,4 1s 2 (u/TT)DK/(l-(Zu/‘}T))

It is therefore sufficient to put

L% = DK/(W/U.-Z)

Similarly it is sufficient to put
L$ = Dy /(T /u-2)

If LK and LK are chosen in this way, it is readily seen
that nqt only must y, have at least one zero in each of the
intervals JE, but it can have no zero outside them.

Furthermore if any particular one of these intervals does
not overlap either with the analagous interval JK-l to the left
or the interval JK+1 to the right, then JK must contain exsactly
‘one zero of Yo

Now the condition that JK shall not overlap with JK+1 is

1 tr
(38a) Ly + Lg, <Dy
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ice. (Dg_y + Dg4q)/Dg \<.7T/g-2
And the condition that Jg shall not overlap with Jp , is ;
38b R ALY
(38b) Ly *Ip<Dp, 5
i.e. (Dp_p + D)/Dp ;< T Ju-2

which are the conditions of the proposition.

It should be noticed that while the numbers 1' and 1" are

defined as a fraction of the zero distance in Yo which lies to
the same side of toj as 1' and 1" respectively, the numbers L'
and L" are defined as a fraction of the zero distance in w"
which lies to the opposite side of Ty as L' and L" respectively.

The demonstration of the theorem of normal points by using

the (b) conditions is not very different from the foregoing.
The main difference is that we now approximate F, by (10c) and
therefore have to introduce the numbers A, and B,.

We shall use the same notation as before. The numbers léj
and 1", have now to be taken equal to

0j
1}, = <U/1T)Doj/f§oj
o5 = (U/MID, 5 NP, 5.9

In this case too we have 1'< Doj/J Poje Therefore the
lower limit of (19aj may be used,which gives
9 i 1 ‘i ! 2

(39) [y(en)]> 21 (W /D) p T A B,
On the other side we have for any point t in (rr')

[yr(t)|2 an(W/an)zpnk
where k is defined by (54).
Hence by (6ab)

2
" Z It v

[y ()| B (T /D) pa B

Consequently for any point t in (rr')

(40) [z*(t)|z H'(TT/D")%p T A B,



|

i

\
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This formula corresponds to the formula (32) developed by
the (a) conditions; (39) and(40) shows that'yg(t')l> iz"(t')f.
Same argument to the left of r. As yg(t')yg(t“)'< 0, (Ia) of
Section 3 is fulfilled.

It is further easily proved that the limit
(41) |yace)|> B (m /D)% T AR,
which is analagous to (33b), holds good in the whole interval

tys 8 7 U
(tir lo,j+1)'
similar argument may be applied to the left of r, (II) of Sec-

As (40) holds good in the same interval, and a

tion 3 is satisfied.

To establish that (IVa) issatisfied, we notice that to the
right of r the formula (34) evidently holds good if we change u
in . U. Hence by (10c) _

2 -1

(42) [v4 (&3] > (/D0 (w /D" p [ TABIeos U- RU]

Further from (35) by using (6ab) and (10c)

N 2 3/2
[yo k(s /D) (T /D) 2" (T +R) AL B,

i.e. '
(43)  |z" ()< (H'/D")(TT/D")

in any point t in (rt').

Zp‘3/2A(1T +R) sin U

Comparing with (42) we see that we fell back on the
condition (28b) of the theorem.

Analagous argument to the 1eftlof-r.' Hence (iVa) of
Section 3 is fulfilled.

I now proceed to an interpretation of the significance of
some of the formulae obtained. I shall try to form an idea
about the closeness of approximation with which the method of

normal points may be actually carried out.
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_The main feature of the accuracy of approximation is the

magnltude of the angles u and nd U respectlvely, (formulae (27ab)).

It is quite clear that we cannot make any exact computation of
these ang%gsubecause we do not know the exact value of p, ans
and An B, respectlvely The value of these numbers ev1dent1y

varles from one series to another. But it is p0551ble to make
a rough estimation of the value whichwthese qﬁantifies will have
in a time series of the usual type when the components are really
. trends of different ofders.

Let us first see what the result would be if the.numberS'
an and b, had the values suggesfed in Section 2 for the analagous
numbers A, and By, viz., a, = (1/7)n and b, = (%)n. This means
that each cycle contains at least seven cycles of the next lower
order, for instance each major cycle contains at least seven
ordinary cycles, and that the intensity (distinctness) of the
‘0801llat10ns of each trend is at most half that of the next

lower. Let us further assume p = 1,5. This means that the
total fluctuation in the various gravitations is such that the
ratio between the greatest and smallest of two consecutive zero
distances in any trend can go up to 1,5 but not more. The
closeness of approximation will be all the better the smaller
the number of trends, but_let us make no assumption in this
respect. Let us calculate u as if the number of trends were
infinite.

In this case we should have

o8]
Py a0, = 1,5 Zl (1/14)" = 1,5/13 = 0,115
L= .

Hence the fundamental condition (23a) is largely satisfied. We
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further get (formula (27a)) sin u =“0,115, hence u = 6°935¢.
Consequently (u/J’) = 0,036 = 3, 6%.

_IE£§’gpans (pr0p051t10n A) that the normal points 1n the

trend of lowest order " ¥g cannot be dlsplaced from the known

zeros of the second dlfferentlal coefflclent w" of the composite

curve by more than a tlme 1nterva‘ amounting to at most 3, 67 of

the actual zZero dlstance in yq 1n Wthﬂ the zero of w" in ques-

ji.%was. Ssituated.

Now let us drop the assumption that the intensity of the
oscillations of the higher trends is smaller than that of the
lower trends, i.e., we now assume that the ratio between the
maximum amplitude and the zero distance in any trend may be as

great as the same ratio in Yoo Hence bn = 1 and

o
pZ ab=1,5J (1/7)" = 1,5/6 = 0,25
. n-=1

The fundamental condition (23a) is still largely satisfied. We

H

get u = 14°30', hence (u/qr) = 8%.

Finally let us make some still more unfavorable assuﬁptions.
Suppose that &, =
may contain only five cycles of the next lower order. And the

(1/s5)", b = 1. This means that each cycle

intensity of the oscillations of the higher order trends may be
as great as that of y_. Let us further suppose p = 2. This
means that two consecutive zero distances in y, may differ by
100%. 1In this case too the fundamental condition (23a) is
largely satisfied and we get u = 30°, hence (w/qr) = 16,74.

The accuracy of the'approximation is now decidedly weaker,
but still it is ﬁot quite useless. Furthermore it must be
remembered that the iimits used in the demonstration of the

theorem have been very large. Therefore if the error in the
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actual determination of any particular normal point of ¥, should
amount to the full value of u/T, this would certainly be an
extraordinary case. It would mean that all the various possible
deviations we have considered in the course of the demonstrations
should happen to be present at the same time and accumulate their
effect. h}n»most practical cases the error would_prppably amount
to only a small fractionwof_“g/ﬂ":—m’ m

The foregoing considerations were only concerned with the
magnitude of u/dr, which determines the degree of accuracy. Now
let us see what would be the condition for the fulfillment of the
one to one condition (28a).

When an, and bn are given, then (28a) will hold good if
(44) R < T (cos u/u-a)/ /p+a

If the numbers An are decreasing, we evidently have A = Al’
According to our assumption concerning the numbers A and a we
might therefore put A = 8, = 1/7 and 1/5 respectively in the
two first and the last of the three cases above. This gives

R< 20

R< 8,7

R< 2,8
respectively.

Now the assumption that R shall not exceed but might be
equal to 20 has the significance that the differential rate of
variation of the gravitation of any trend may be so great that
if the variation kept on at this rate through two consecutive
zero distances of the trend considered, the ratio between the

greatest and the least of theé two zero distances would be a

number written with five digits (formula (14d)). It would
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evidently be quite meaninglese to assume that the differential
rate of variation in any gravitation should ve greater than this.

In the second and third case the ratio between two con-
secutive zero distances would be equal to 76 and 4 respectively.
This, too, is largely sufficient to sustain the assumption that
(28a) is fulfilled. |

This analysis suggests the conclusion that the one to one
conditions (28at) are in ordinary cases far less restrictive
than the condition that u/77 shall be a small fraction. This
‘means that if u/T is really a small fraction, so that the
i&;;;;;; of the normal points of y, may be determined fairly
accurately, then in nearly all caées the correspondence between
‘gé;2eros of yo and‘w“ will theoretically be a one to one

correspondence, each zero of y, being announced once and only

e ———— —

e ——

once by the vanishing of w". Conseguently if in an actual case

_ - ~—

wﬁ should ;Egg;éntly passrzero in a cluster of points lying
within an interval that is short in relation to the zero dis-
tance in the lowest order trend (as in the illustration given

in connection with the computation scheme for the normal points),
then this should be interprefed as due to accidental errors.

Finally let us consider one of the conditions for non-

overlapping, for instance the condition (26a) and let us see
how the criterion of accuracy may be formulated by introducing
the zero distances in w" (which are known) instead of the zero
distances in y,. Suppose that w/T = 0,036 as in the first
illustration above, then we have T /u-2 = 26 hence

1/( T /u-2) = 0,039. This meéns (proposition (C)) that if we

encircle each of the zeros TK of the second differenfial
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coefficient w" of the known composite curve by an interval Jgs

extending to the right of T

r & distance equal to 3,9¢ of the
distance from T, to the next zero of w" to the left, and to the
left of Ty a distance equal to 3,94 of the distance from TK to
the next zero of w" to the right, then each of these intervals
will contain at least one normasl point for Yor and y, has no
normal point outside these intervals. . Further if one of

these intervals, for instance J does not overlap with the

K!
analagous intervals JK-l and JK+1 encircling the next following

zero of w" to the left and right respectively, then J, contains

K
exactly one normal point for Yo And y, has no normal point

neither between JK and JK—l nor between J, and JK+

K 1°
B Now from the condition (26a) is seen that overlapping
between the intervals considered can only take place if, of
three consecutive zero distances in w", the center one is less
than 3.94 of the sum of the two others. Such a possibility
cannot be seriously considered. It would mean that of three
consecutive zero distances in the lowest order trend yo, the
center one amounted to only some few per cents of the sum of
the two others. |
In the two other cases considered above, viz., u/qr = 0,08
and u/T = 0,167, the intervals encircling the zeros of w" have
to be made larger and the accuracy would be accordingly dimin-
ished, however, not to such an extent as to make the case of
overlapping intervals very probable.
The case is quite different if two or more of the trends

present are approximately of the same trend order. Suppose for

instance that besides the ordinary business cycle with a duration
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of 6 to 10 years, there is present a minor cyele with an average
duration of 40 months. Let y, be the minor cycle aﬁd ¥y the
ordinary cycle. Then the magnitude of a, would probably lie
somewhere between 1/2 and 1/3. And if the comparatively great
value of a; is not balanced by a very small falue of by, then
the product - a,b; and hence 5; 8yby would not be a small
fraction. This means that if the small difference béfween the
average magnitudes of the periods in Yo and vy is not balanced
by the fact that the curve ¥1 is very flat as compared with the
curve y, , i.e. has oscillations much 1ese distinct than the
oscillations of y,, then Yo and ¥ will be of approximately the
same trend order. The method of normal points will therefore
at best only permit a very rough estimation of the location of
the zeros of y . And if the product a,; is close to unity or
even greater than unity, the method of normal points will not
work at all. To trace the components ¥, and ¥ in this case
it will be necessary to have recourse to the method of moving
differences developed in Section 6.

We can make an interesting application of the general
theorem by assuming that w is rigorously a sum of sine functions.

N
W =2 Yy = S Cnsin ﬁn(t-tn)
N=0 ‘

In this special case we should have R = O, P =1 and

ay(t) = Dy =7 /Y,

Hence

a (t) = ‘/cn/co

5 o,

(Cpey) /(Cyey)

b (t)

t

and consequently anbn



a 3 4

If we introduce the half-periods (1.e. the zero distances)
B, =1 // c1 We get

8By = (C/D2)/(cy/D?)
Therefore

. N »
sinu = () Cn/Dg)/(CO/DCE;)
n=1

This means that.the accuracy with which the zeros of yo'may
now be determined by the location of the zeros of w", will be
close if the ratio between the maximum amplitude}and the second
power.of the period in Yo is predominant as compared}with the
same ratio in the various Yy

When w is rigorously a sum of sine functions, we have u = U.

Further in this case thne fulfillment of the one to one
condition of proposition (B) is an immediate consequence of the
noh-overlapping condition. 1In fact, the non—overlapping condi-
tion involved in (B), namely (25a), may now be written u< T /4.
And the one to‘one condition (28a) may always be replaced by
the slightly less assuming (37) which in the case here considered
reduces to A< cotan u. The one to one condition is therefore a
fortiori fulfilled if only A% 1. And this does not imply any
assumption as to the relative difference in order. Whatever be
the periods of the components Yn: the numeration of the trends
may always be chosen so as to have the period in Yo smaller than
the other periods.

It would be interesting as an illustration to choose w as
a sum of sine functions, compute a series of numerical values of
w and»then by the method of normal points work backwards and
plot the various components. The comparison between these plots
and the values of the various components calculated directly

would give an illustration of how the method works.
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6. THE METHOD OF MOVING DIFFERENCES

The problem of this section is to investigate under which
conditions the ordinates and the gravitations (or which amounts
to the same, the fictive zero distances) of the various com-
ponents of the composite curve w = 2 Y, may be determined
approximately in a given point from the knowledge of the
magnitude of the successive differential coefficients of w in
this point, without introducing interpolation formulae of the
type used in the method of normal points for determining the
ordinates of the trends. ZFurther to point out how the compu-
tation may be carried out if the conditions referred to are
satisfied, and finally to establish a criterion which ?ermits
the classification of the trends present in a given series.

The conditions for the applicability of the methods of
the present section will'be more restrictive than those of the
preceding sections with regard to the differential variations

of the gravitation F_ of & particular trend Yy In return the

n
conditions regarding the difference in order between successive
trends will be less restrictive. 1In fact in its most general
version, the method of moving differences developed in the
presént section makes it theoretically possible to decompose
the given series even in the case where two or more of the
components present have periods whose magnitudes do not differ
widely.

This is an important feature which distinguishes the
method of moving differences from the method of normal points.

The method of normal points is at a disadvantage as compared

with the Fourier analysis when periods of the same order of
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magnitude are present. But this is not the case with the
general method of the present section. The method of moving
differences may therefore perhaps prove to -be useful also in
the analysis of certain kinds of physical phenomena which are
now usually studied by harmonic analysis.

The ﬁfactical applicability of the method will of course
depend on the condition that the data must not be afflicted
with accidental errors to such an extent as to completely
‘obscure the finer traits of the curve, which are represented
by the magnitude of the successivevdifferential coefficients.

I shall first make an intuitive approach to some special
.and very simple cases.

Let us revert to the case where the composite curve w is
made up of a straight line and a sine curve (formula (1)). In
this case the ordinate of the lowest order trend is simply
proportional to the second differential coefficient w and the

factor of proportionality is the reciprocal of ¢ which is the

gravitation of the lowest order trend, the gravitation here

being constant. The magnitude of the factor of proportionality
is therefore given by the distance between two consecutive
zeros of the lowest order trend (here y). And this distance

is in turn equal to the distance between two consecutive zeros
of w" which are known. ZLet D be this distance. Then we have
(45) y = -(D/7r)w"

Therefore, to plot the ordinates of y in this case, we only
have to plot w" with the sign reversed and multiply by the
known constant (D/r)<. '

We may also express y in proportion to the second difference
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of the composite'curve

4 zw£—1 = Ve T Sy YW

Since

sin(x+h) - 2 sin x + sin(x-h) = -2(1-cos h) sin x
- -(2 sin(n/2))%sin x

we have

(46) y, = ~(2 sin (1 /20)) %A %w,

And this formula is exact (not approximate) when w is rigorously
of the form (1). In the case (1) the ordinates‘of y may there-
fore be determined rigorously either from the plot of w" or from
the plot of A%w, , by multiplication with a constant which can

be computed when w is known.

This suggests the idea that when we have a composite curve
w =Z yp, where the gravitations F, are of descending order of
magnitude in the sense explained in Section 2, we should have
an approximation to the ordinate of the lowest order trend Yo
in a given point if we multiply -w" Dy the reciprocal of the
lowest order gravitation Fo in this point.

The conditions under which this really will give an approx-
imation to y, shall be investigated later. At present I shall
follow up the idea suggested.

The magnitude of the gravitation F, in a given point is
not known,»but may itself be approximated in one of the two
following ways. In the first we may replace Fy by its average
value, the average being taken over the zero distance
ioj'z (toj'to,j+
situsted. Now by formula (7) the average of F, taken over the

1) in y, in which the point considered is

zero distance ioj is equal to (Tr/Doj)z. For any point in ioj
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we should consequently have an approximation to Yo by putting
(47) Yo = = (Dyy/w Yow"

If the normal points of Yo are determined by the method of
the preceding section, the ordinates of y, would consequently
be determined from the plot of w" by multiplication with a
quantity which is constant between two consecutive normal points
but might change from one zero distance to the next following.
This would not entail a discontinuous variation in y, because
the points in which the factor of proportionality is changed,
are just the points where Yo is equal to zero.

The next step would be to consider a factor of proportion-
ality which not only moved by steps from one zero distance to
the next, but moved continuously, which in practice would mean
moved from one point of observation to the next.

Let us again revert.to the case (1) where w is made up of
a straight line and a siné curve. If we differentiate w four

times we get

w" = -cy

w(8) o o2y
Hence

c =-W(4>/W"

y = an/W(4)

This suggests the idea that if in the general case w = F yn
the difference in order between the successive trends is great,
we should have an approximation tc the lowest order gravitation
Fq in the vicinity of a point by putting it equal to
e B = ~w(4)

Consequently we should havg an approximation to Yo by putting it
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equal to
(49) Vo = w2 w(4)
It should be pointed out that the kind of approximation
f here considered is quite different from the kind of approximation
‘ used in curve fitting with constant parameters. We do not con-
‘gider the lowest order trend as capable of being represented by
s sine function throughout an interval of definite length. This
would involve the assumption that the gravitation is constant
throughout the interval considered. But this is just the as-
sumption which we now have dropped. In fact by (48) the gravi-
tation is determined as an essentially moving feature of the
lowest order trend.
% The kind of approximation here used may rather be charac-
terized as a method of instantaneous approximation, valid ounly
in the vicinity of a point. Or it may be characterized as a
method of curve fitting with moving parameters, the value of
the parameters being continuously changed and determined in
each point by the differential properties of the given series
in this point.
The difference between the two points of view may perhaps
be rendered more precise by the following general considerations.
Suppose we have an analytical expression
V = f(t;clcz...cn)
which is a function of the variable %+ and contains the parameters
C1Co+-+Cp- 1f the function V is to be applied to a given series
w(or a given analytical function) for the purpose of smoothing
or>interpolation, the values of the parameters (supposed constant)

have to0 be determined by one of the known methods, for instance
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the method of moments. The procedure would be to express the
parameters in terms of the thedreticai moments of V and then
introduce in these expréssions the empirical moments of the
given series w for the theoretical ones, the empirical moments
being computed with or without‘corrections’as the case may be,
(or introduce the moments of the given analytical function for
the moments of V).

On the contrary, the procedure of a general method of
instantaneous approximation would be the following.

First the parameters of V have to be expressed in terms of
the theoretical differential coefficients of V (of order 0,1...),
these expressions being such as to hold good identically in t.
Generally (n-1) differentiations would give the necessary number
of equations. The differentiations have to be performed as if
the parameters were independent t. If in the expressions ob-
tained, the values of the empirical differential coefficients
‘of the given series w for a certain point t (or the values of
the differential coefficients of some given analytical' function)
are introduced instead of the theoretical differential coeffi-
cients of V, then a set of values of the parameters would be
determined. And the function V thus defined wWith constant
parameters) would be such as to have contact of high order with
the given series (or function) w in the point t considered.
The same procedure may be applied in any point t. Thus a
function V is determined, which is of the form V but with para-
meters that are functions of t.

Now any series (or function) w may evidéntly be expressed

in the form ¥ with variable parameters (generally in an infinity
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of ways if n I2). 1In any point the value taken by w will
evidently be rigorously equal to the value taken by V. Further
under g gertain condition, the values of the parameters of w in
a given point will be approximatély equal to the values of the
parameters of V in this point. The condition is evidently that
when w is expressed in the same form as V, then the equations
obtained by differentiating w e cé}tain number of times as if
the parameters were constant, shall hold good approximately in
the given point t. The'accurééy of the approximation in a given
point t depends therefor only on the differential properties of
w and its parameters in this point, and is independent of how
the approximation workéyout in other parts of the t-range. The
procedure of determining the paramefefs of w in any point by
putting them equal to the pafameters of V in the same point,
may be called the method of instantaneous approximation.

The difference between the assumptions underlying the
ordinary method of curve fitting énd the method of instantane-
ous approximation, is now obvious. In the first case it is
assumed that the given series (or funétion) W can be represented
over the whole t-range by the function V with rigorously con-
stant parameters. In the second case the assumption is only
that when the given series (of function) w is expressed in_the
form V (which is always possible when the parameters are con-
Bidered as functions of t), then the differential variations in
the parameters shgll be of a certain kind.

This leads up to the idea of a method by which the curve
W = E Y, may be decomposed even in the case where two or more of

the cdmponents present have periods whose magnitudes do not
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differ widely, i.e. the case where the difference in order
between twa consecutive trends is not great.

In fact if we suppose that the giveh composite curve
w =5y, in the vicinity of a point can be represented
differentially (i.e. not only with respect to its ordinate,
but also with respect to a certain number of its differential

coefficients) by a sum of sine functions and a linear function

N-1
(50) V=% Sn“' + at + Db
n=0 '
where
Sn = Cp sin\{fén(t-tﬁ )
Cpo Chr tn, a and b being parameters, then the method indicated

above would permit the moving determination of these parameters.
In particular we should have the possibility of the moving de-

termination of the gravitations c i.e. of Fn, and the moving

n
determination of the ordinates Sn’ i.e. of Yo+ And this de-
termination would not be subject to the condition that the
difference in order between successive trends shall be great.

The plan of the following analysis is first to investigate
the general properties of an expression of the form (50) and to
show how the gravitations‘cn (now supposed rigorously constant)
and the ordinates S, themselves can bPe expressed in terms of the
successive differential coefficients of even order v(2h) | 14
will be seen that this problem has a certain resemblance to the
Stieltjes problem of moments for the case of discrete distribu-
tions. |

When these questions are'séttled, I proceed to show under

which conditions the curve w =¥ ¥n (where the gravitdtions are
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not rigorously constant) may be represented differentially by

an expression of the form (50).

We introduce the following notations
N-1

(51) v, = V() = g2hy - &% (-ep)BS; B =1,2...0
dtzh n=0
(52) An = 'Vl 'V2 ...Vn n = 1,2...03
Vo V3 Va+l

Vn+1°” Ven-1

n

Instead Oféih we write /A ,, when it is necessary to

nN
emphasize the number N of sine terms in V.

Further we designéte by dppy (h=0,1...n) the determinantes
obtained by letting out the (h+l)th column in the matrix

(55&) vl Vg qo.Vn+l n = 1,2-.-m

n n+l en
Bvidently
(53b)

If n = N we write in brief

(53c) dy instead of th

The h-th order elementary symmetric function of the
numbers C,Cy.--Cp 1> i.e., the sum of all the products of
h factors which can be formed by picking out in all possible

ways h of the n numbers cyCy«..Cy,.7, Will be designated
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(54&) ahn - (Cocloolcn_l)h h = O,lc--n
8.00 = aon = 1 n = 0,1..-N
If n = N we write in brief

(54b) ay instead of apy
Purther let
55a) gl (-c,)Bs, n=1,2
( a:) Rhn = izo (Co-Ci)(Cl-Ci)...(Cn_l"oi) -Ci i = '3 oo:@

= O,l,gccaN
Bno = "h = .Z (-c;)08; |

The effective number of terms in Ry, is evidently (N-n), Rhn
contalnlng only 8 Sn 1"'SN—1 In particular we have

(55b) RhN =0 h=1,2...00

h -
(55¢) Ry 3= (Comeyglley-cy q)..leyg pmcy ) -y 1) 8y bellw®

Finally let p,d...s be n different numbers from the suite

0,1...(N-1), (1€ n<zN); p,g...s are supposed to be arranged
in an ascending order of magnitude, i.e. p < gq... <s . Then
(p,q...8) will be used to designate
2
(56a) (p,g...8) =cc ...cC 1 ¢ c®...ch-1
p:a P a 8 P D P 1
n.-
1 cq cq...cq
2 n-1
1 cS cs...cS

Developing the Vandermonde determinant to the right in (56a)

2
cpcq. - Cq Tr(c* -cv )>
< R

where Wruns through the numbers p,qg..

we get

(56D) (p,q...8) =

.8 with exception of the

last one, an%p through those of the numbers p,q,..s which are

greater thanw. Hence (p,g...s) can only vanish if one of the
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¢ is zero or if two of the ¢ are equal. If all the c are
positive (not zero) and different, then (p,g...s) is essentially
positive (not zero). Evidently it does not restrict generality
if this assumption regarding the numbers ¢ is made.

I shall first prove that if N is the number of sine terms
in (50), all the quantities c being different and different from
zero, then the determinants 4 1A2' . 'AN can only vanish in
discrete points, i.e., they cannot vanish identically in any
interval of finite length however small. On the other hand,

A -
£3N+1 N+2" T
identically in t. This evidently furnishes & necessary and

and the higher determinants will all vanish

sufficient criterion for the number of sine terms in V.
To establish the criterion we shall use the equation
(57) a + an-l,nvh+l + ... + alnvh+n—1 + aon"hin = Rhn
h = 1,2..-03

n 0,1...N

This equation evidently holds good for n = O and h = 1,2...00,
because in the case n = 0, it reduces to v, = Rho (h . 1).

Now suppose that it holds good for n and h. BSuccessive
derivations with respect to t show that it holds good for any
higher value of h. On the other hand, adding the equation for
h multiplied by ¢, to the equation for h+l, and noticing that

%h+l ,n+l n+l,n T %n®hn

Rh,n+1 = Rh+1,n * CnRhn

we get the equation (57) for n+l and h. Hence (57) holds good in

= &

general. ,
As RhN = O by (55b), we get in parﬁicular

(58) oNn * e-1"hm F ot Yt B Vha iy = O
' h o 1,2.-.0)
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Now if n € N+1, add to the last line of the determinant (52)
the first line multiplied by a _; , 1, the second line multiplied
by 8n-2.pn-1°"" finally the (n-1)th line multiplied by 8 n-1°
The quantities in the last line will then by (57) be

. e

R1,n-—lR2,n--l n,n-1"
Hence we have the formula

(59) A = Vl 72 ..;Vn \ =iV Vz .o o v

n 1 n
V2 V3 .« n+1 V2 V . e e Vn+1
} v v v
Vn-1 i co+Vop-2 n-1 n *** "2n-2
Yy Vpe1 - Ven-1f Ry p-1 Room-1 o0 Bnyna

n=1,2...N+1

From this and (55b) we immediately deduce that if N is the
number of sine terms in (50), then 11N+1 = O identically in t.

If n>N+l, add to the last line of the determinant (52) the
(n-N)th line multiplied by 8y the (n-{N-1))th line multiplied by
Byt finally the second last line multiplied by By e By virtue
of (58) each element in the last line will be zero, hence

B 1= Byag =+ =0 identically in t.

It is seen that if Rhn (h=1,2...0 ) is defined as being

equai to zero for n>N, the formula (59) will hold good for any

value of n=1,2...0 .

Further we get by édeveloping ZXnN

A22 = (01)8,8;
Ay = (01)8y8y+ (02)8,85+ (12)8:85
-A 25 = (012)808182
and generally
. A - (y?
(60a) Zin = aN = (=) Zl(P'q°'-S)Squ"'SS
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the sommation being extended to combinations without repetition
of the n numbers p,q...8 chosen amongst the N numbers

O,l--v(N"l), i.eo

p = 011000(N—n)
q = p+l,p+2...(N-n+l)
S :..:.'(I.q-l)

From (6Ca) we get in particular
(6ob) By = A= (0,1 (-1))88, -8y
As (0,1...N-1) is different from zero, we immediately
deduce that tihe highest of thne non-identically vanishing
determinants, namely'~ﬁN.can only venish in points in which
at least one of the sine terms vanishes. To show that the
lower determinants cannot vanish identically, we proceed in
the following way.
We first notice that a linear combination of non-idertically
N-1

vanishing eine terms = g  where the periods are different,

n=0"
i.e. all the c, are different, can never vanish identically in
any finite interval however small.
N-1
For suppose that T Sp= O identically in t in a certain
n=0
interval. By 2N-2 differentiations we should have in any point
in the interval considered
N-1
Z(-cn)hsn = O h = O,l-n-(N"l)
n=0
This is a homogeneous system of N equations linear in the N

guantities 8,- The determinant of the system is a Vandermonde
determinant which cannot vanish when all the ¢ are different.
Hence in any point in the interval considered each of the 8,
would be equal to zero.

The same evidently holds good of a linear combination of

cosine terms.



- 87 -

Further by successive application of the formulae

2 sin x.s8in y

it

cos (x-y) - cos (x+y)

2 sin x.cos y = sin (x+y) + sin (x-y)

]

we see that sin xl.sin xz...sin x  can be developed as &a linear
combination of sine terms (if n is odd) or a cosine term (if n

is even). The expansion contains amongst others the term
sin(x1+x2+... +xn) or cos(x1+x2+... +xn) with a non-vanishing
coefficient. PFurther the expansion will contain a certain

number of terms of the form sine or cosine to the angle
(ixltxz...ixn) where the signs are combineq in different ways,
however not so that all the signs are minus.

Hence the product of n factors Squ...SS in (60a) may be
developed as a linear combination of sine terms or cosine terms.
One of the terms being sine or cosine to the angle
(61a) (J‘Ep * JCg teeet Jet - (et +J“c'qtq+...+f'6‘sts)
and the coefficient of this term is non-vanishing. '

Now without restricting the generslity we may assume the
periods in the various S, to be positive, i.e. all the guantities
J Cpn may be taken positive.

Hence the pre-factor of t in (6la) is not equal to, but
greater than the pre-factor of t in any other term which occurs
in the expansion of 8 _S "‘Ss' Further the numbering of the

P q
guantities CoCqe**Cn-1 may be chosen so that the quantities cy
are arranged in a descending order of magnitude, c,> Clees >Cyoye
In the expansion of (60a) there must therefore be a sine or
cosine term (with non-vanishing coefficient) where the pre-factor

of t

(61b) JCo *JCp + ..ot Jena
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is not equal to, but greater then the pre-factor of t in any

other term, and further different from zero, because all theJEn
are positive (not zZero).

If in the rest of the expansion there should occur terms
where the pre-factor of 1 is zero, these terms would be constants
(eventually zero). 1f there should occur terms with equal
pre-factors of t, i.e. with equal periods, these terms might
evidently be expressed as one single sine or cosine term with
the same period. The coefficient of such a term may eventually
vanish.

When the rest of the expansion is ordered in this way, the
rest is either constant (eventually zero) Or it is the sum of a
constant and a linear combination of non-identically vanishing
sine or cosine tefms, where the periods are all different, dif-
ferent from zero and different from the period of the first
term, where the pre-factor of t is (61b) and where the coeffi~
cient is certainly non-vanishing. In the first casel&n is the
sum of a constant and a simple non-identically vanishing sine
or cosine function. In the second case it is the sum of a
constant and a linear combination of such functions with differ-
ent periods. In neither case can.Zln vanish identicaily.

The criterion for the number of sine terms in V is therefore

established.

S

‘Corollary regarding the moments of a frequency distribution.

From the formula (60a) may be derived a direct and simple
proof of the Watanebe criterion (1) for the order of a discrete

frequency distribution.

(1) Watanabe,T6hoku Mathem. Journal 15(1919). See also the
present writers ¢gsa “Sur les semi-invariants et moment

]
employés dans 1'étude des distributions statistiques.'" Skrifter
utg. av det Norske Videnskapsakademi. Oslo I1 1 26. No. 3, p. 7.
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Let
%% Tyel
PoPyees Py
be a frequency distribution (empirical or a priori), XoXpeo Xy q
designating the possible values of the attribute and PyPy...Py-3
the frequencies (absolute or relative). All the P are supposed
positive (not zero), all the x are supposed different. N is

called the order of the distribution.

Let
1_\1.’_'1 h
My = 2= Xy Pn
n=0 ]

ébe the moments of the distribution.
Further let
Anzmo ml'...mn_l
ml m2 o-omn

® o e s 6 0 s 0 s 0 00

Pp-1 @ nee-Pen-2

Then Watanabe's necessary.and.sufficient cfégerion for the
order of the distribution is that if N is the order of the
distribution, Z)N+l and all the higher order determinants are
equal to zero, while all the lower order determinants are

different from zero.

If we put | .

| "Cnsn = Pn‘ ‘ and ~c_, = Xn
we get by (51)

T S ou )
St R e T

B Vnh
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Mmtroducing in (55a), (59) and (60a) we have

N-1

- _ h 1
Rhn = fib(xi xo)(x xl)...(xi - 1) Pi
. H !
(62a) [Xrlz imo My ees W4 = tnb my | ERT Y
my Mg ... My iml, mo seelly
i :
Bp-2 Pn-1 - ®2n-3 Pn-2  Pp-1 cccT2p-3
-1 P *rc Uop-2| \Rl,n—l RB.n-l"’Rn.n-l

and
S
(52b) An = 2 (9,0...8) P ,P...Py
where the summation is extended to combinations without repetition

of the n numbers p,q...s chosen amongst the N numbers 0,1,...(N-1),

and where now (p,g...s) designates /
, -1 2 _f’[ _
{(p,g...8) = xb e xg ‘ .&{ (x, 73)
n-1 Y
1 xq xq R | Vv P

® e ¢ o o0 080 oo

2 -1
1 Xg Xg oo xg

From (62a) is seen that Ay = O yio = ... = 0, because
Ryy = O for n> N+l.

And (62b) shows that the lower determinants are different
from zero. For (p,q,...8) is essentially positive when the
various'xn are all different (positive, negative or zero).

And the frequencies P, are all positive.

+*

I now proceed to the determination of the periods in the
gine terms of (50). This amounts to determining the numbers Cp-

By virtue of the definition of the quantities ap = anN
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(formulae (54ab)), the numbers c, are the N roots of the egquation
el - g cN1 + a N2 ...+ (- ey = ©

Now, fromx (58) we get

(63) aVp * ew-1Vn+r T o0t Y B VheN-1 T TVheN
h=1,2...N
This is a system of equations which are linear in the
quantities a. The system cannot be homogeneous except in a

point where all the sine terms vanish separately. For if

Vot ® o for h = 1,2...N, we should have
I.V'— 1 - —er
7 (-e )8 =0 n=1,2...N
n=o0

which is a homogeneous linear system in the &, with non-vanishing
determinant.

The determinant of the linear system (63) is lﬁN = dNN = dN’
which by (60b) can only vanish in points in which at least one of
the sine terms vanishes. With exception of these points we
therefore have
(64) a, = (-)Pa,  /a
where the d) are defined by (53ac).

Consequently with exception of the points where one or more
of the sine terms vanishes, the numbers C,Cj...Cy_y are determined
as the N roots of the equation
(65) d, +dc + dge? + ...+ agel = 0
This egquation will be cailed the period equation.

In the points where one or more of the sine terms vanishes,
all the coefficients of the period equations, i.e., all the

determinants dodl”’dN vanish simultaneously. In any other point

they are all different from zero. This means that if one of the
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coefficients of the period equation vanishes in a given point,
then all the other coefficients must vanish too in this point.
Further in points where the coefficients do not vanish simul-
taneously they have alternating signs, i.e., 4, and dl have
opposite signs, dy and dg have opposite signs and so forth.

In fact we deduce from (63) that in any point

dyap = (-)Pdg.y

hence
(62) dy = () Pay ay

Here ay.p 1s essentially positive (not zero) because the
periods of the sine terms in (50) are supposed real and conse-
quently all the c positive. And dy = AN vanishes only in
points where one or more of the sine terms vanishes.

That the determinants d) must have alternating signs in
points where they do not vanish, can also be seen by applying

the Descartes rule of signs to the equation (65).

I shall now show how the ordinates S, in (50) can be
determined.

In analogy with (54a) we defiine aén) as the h-th order
elementary symmetric function of the numbers CyCyv e ({ except
Cplles-Cyq
(67) a(n) (c 0%y " (( except cn)) "'CN—l)h

From (57) we get for n = N-1

N

Rp,w-1 = o afN-1)Vyun 53

But Rh,N-l contains only one single sine term, namely,

SN—l‘ We therefore get by (55c)

X(CO—CN—l)(CIJCN-l) ceologgreg M (-oguy M8y = by a(N l)VN+n-1 1

i=0




Now the successive elimination of the sine terms which is

performed by the equation (57) for n = 0,1..;N—1, may evidently

be so arranged that any of the Sn is the‘last term to remain

in Ry y-1- Further h may be chosen sg any of the numbers 1,2...

If we put h = 1, we must therefore have

(68a) (c0~cn)(c1—cn)...((cn-ch)) ...(cN_l—cn)(~cn)Sn1=§£Zaén)vN_h
n - O,l.:,N-l

here ({cy-¢y)) indicates that this factor is excluded in the

product on the left hand side of fhe equation.

The pre-factor of S, in (68a) is different from zero because
all the ¢ (the roots of the period equation) are different and
diffé?eni from zero. The formula (68a) therefore determines all
the Sn una@biguously.

We may also obtain another expression for Sp. In fact if
we put n = N and use the last determinant of (59), we see that
we get an expression for SN—l‘ And analagous expressions hold
good if the successive elimination of the sine terms is arranged
so that any of the terms is the last one to remain in By y-1°
We therefore have gquite generally
(68b) (co—cn)(cl—cn)...(( Cn'cn))“'(CK—I“Cn)(—Cn)Sn = A*8/£3§n)

where

13;?) =7 A cee Ty
Vo V3 o VN
Vg-1 cre Vonoo
- - N-1
i 1 ( Cn) voos ( Cn) )

In the foregoing analysis we have only used the guantities

vh_for h 51. That is, we have only considered the second order
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and higher differential coefficients of the composite curve V.
The formulae obtained are therefore independent of the "secular
trend" at+b contained in (50). The ordinates of this "secular
trend" ﬁay be determined as the residuum left in ¥V when the
ordinates of the various 8§, are subtracted.

Further we have made no assumptions as to the relative
difference in order between the various S,. The various ¢, may
therefore be of the same order of magnitude. If this is the

case, the various S5, may be considered as a trend group, the

various components in the group being of the same trend order,
and the group as such being of a low trend order as compared
with the “secular trend", i.e. the straight line at+b, which
can be lcooked upon as a solution of y"tcy = O with ¢ = O.

1 shall now consider the case in which the smallest of the
'cn, i.e., CN-1° is very smell as compared with the other c,, and
the case in which the greatest of the Cpe i.e., o is very great
as compared with the other Cpe This analysis will throw a light
on the notion of trend group. .

If cy.y tends towards zero, one of the roots of (65) must
tend toward zero. As all the determinants 4 are finite, d, must
also tend towards zero for any value of t.

Now if in an equation of the N-th degree in ¢ the coefficients
are considered as independent, and the term independent of c¢ is
put egual to zero, then one root of the equation is ¢ = O and the

remaining (N-1) roots may be determined as the roots of the

equation obtained by dividing the original equation by c. 1In

our case, however, this procedure is not possible. For if do

vanishes identically on account of one of the,cn becoming zero,
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then dN =&y rust vanish identically by virtue of (60D).
Consequently all the other coefficients 4 must vanish identicald-
1y, as is seen by (66). Hence the period equation will be of
nouse whatsoever in determining the periods.

If the various S, are considered as trends in a composite
curve, the oniy possible interpretation of the fact referred to
is that Sy_; no longer belongs to the same trend group as the
other sine terms, but belongs to the group of "secular trends"
represented by thé straight line. This interpretation is also
‘in conformity with the criterion that if Ayz O, the number of
sine terms cannot exceed (N-1).

I1f the periods of the remaining {(N-1) sine terms Sosl"'sN-z
are different and different from zero, the periods will evidently

be determined by the equation
dg g1 * 4,y F - dy-1,§-160 1 = ©

Now suppose that cgy is tending towards o . As seen by (60b)
the flucdtuations in 4 N will be more and more violent the greater
Cq- And the moments of time in which & passestfrom positive
to negative values will be more and more frequent. For A N
passes zero in all the points where S, passes zero. If not only
Co but also some of thne next following c, are great, then the
fluctuations inAN will not only be violent and with frequent
changes of sign, but also more or less irregular and confusing.
The practical interpretation of this fact would be that the first
components Sosl"' belong to a group of lower order than the rest
of the §,. If the ordinates of the composite curve are only

~ known in discrete points, the lowest order group mast necessarily

be considered as a group of accidental components, and it will
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not be possible to énalyze the periods and ordinates of the rest
of the S, before the lowest crder components are eliminated(as
far as it can be done) by some sort of smoothing, for instance by
applying a moving average to tne given composite curve.

If this is done, the significance of the vanishing of the
verious determinants is changed. The point of real interest
now is not if the determinants themselves vanish rigorously
in all points t ', but if the average value of any of the de-
terminants considered, taken over any small interval is prac-
tically =zero.

The vanishing of the various determinants, taken in this
practical sense, will be a criterion for the number of terms
which ik left after the moving average elimination of the

components that are considered as accidental.

In the Ease where the function V is smoothed before
submitted to analysis, a correction must be introduced in
the formulae (68ab). This correction shall now be considered.
If we take the sum of (2k+l) equidistant terms in the
function sin t, the interval vpetween consecutive terms being
h, and the terms being multiplied by arbitrary weights /(3
(j = -¥,-(k-1) ... 0,1 ... X), we zget

k k
> Xj sin (t + jh) = EZAj (sin t.cos jh + cos t.sin jh)
j=k j=-k

k
= sin t (XO + 551 ()j +)Lj) cos jh )

+ cos t ﬁ%_ ()j-};j) sin jh
T =1 :
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If the weights to the right and left of t are symmetrical,
i.e. \j=Ad_5 . the last term in the right hand side of the
formula will vanish.

Therefore if we apply a central moving average with {(2k+1)
equidistant terms and symmetrical (but otherwise arbitrary)
weights to the function considered, the item sin t will be

replaced by ? sin t , where f is a constent independent of t

p=hy +2 Jﬁl j3 c0e 313/, + 2 ;;Zkf{ﬁ

It is readily seen that P is always‘iess than unity.
Further { is certainly positive if 2kh< 77. This means
that if the length of the interval covered by the moving
average does not exceed the zero distance in the sine function,
then the only effect of the moving average operation is that
the oscillations of the function are damped, i.e. depressed, in
a constant proportion, the ordinate being multiplied by a
positive factor which is independent of t and less than unity.
The factor £ will be called the coefficient of damping.

Now suppose that a central moving average of the kind
considered and with h=l is applied to the function (50). This
means that the item V(t) is replaced by the item

jov(t) + jlw(t+1)+V(t—1)) * e f}k(V(t+k)+V(t-k))
/IO + 2()1 + /{2 + ...‘FA k)

V(t) =

where the weights are positive but otherwise arbitrary.

If the length of the average viz. 2k is less than 7r//E;,
i.e. less than the zero distance in the term S,(which is the
term with shortest zero distance), then the only effect of the

moving average operation is that each of the sine terms S, is
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multiplied by a coefficient of damping {5, (< 1) which is

positive and independent of 1t

Fnz= Qo *? Z,{j cos ij;n)/()O +22 Aj)

- k
where 2_ designates ‘Zl i
J=

The linear term at+b in V will of course not be affected by the
moving average operation.

Hence the Tunctior V(t) will be a function of the same kind

as the original function V(t). The periods in ¥ will be the
same as the periods in V. The only difference is that the
constants §, in ¥ will have other values than the constants Cy
in V. Therefore v may be decomposed and the ordinates éﬁ of its
components determined by the method developed above. When this
ig done, we may revert to the ordinates S, of the original

function simply by using the formula

fnn = Sy

Consequently if a moving average of the kind considered
is applied to V and now ViVge .- designate the differential
coefficients of the smootrned function V, then the periods of
the original function V are still determined by the period
equation (65) and the ordinates S5, are determined by the
equations obtained from (68a) or (88b) by introducing the
factor fn on the left hand side.

It is readily seen that the coefficient of damping fn
for the term B, lies all tke closer to unity the shorter the
inferval covered by the moving average is as compared with
the zero distance in Sn' Therefore the damping effect is

heaviest for the first term §,- If the interval covered by
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the moving average is very short as compared with the zero
distance in the first term S,, then all the corrections f£,
will be insignificant and may be left out, i.e. all the ¢,
may be put equal to unity.

The foregoing analysis was concerned with the case where
the grevitations were rigorously independent of t. 1In this
case the composite curve has the form (50) and the gravitations
Cn and the ordinates S, may be determined rigorously from the
knowlédge of the differential coefficients 6f the composite
curve. |

I now proceed to show under what conditions the curve
we= 2 Yn with not rigorously constant gravitations may be
represented di'fferentially by (50) in the vicinity of a point
and hence may be analyzed by the method of instantaneous
approximation, the approximatién curve with moving parameters

being (50).

The function w is capable of being represented differenti-
ally by (50) in the vicinity of a point, if w is of such a kind’l
that k differentiations of w carried out as if the various F,
were constants, will give approximately the right value of
w(k), k being not greater than the order of the highest differ-
ential coefficient which it is necessary to introduce in the
formulae (65) and (68ab), i.e., k = 4N + 2.

As the method only involves even order differential co-

efficients of w, it is sufficient to consider k = Zh
(h. - 1,20..2N+1).

It is easily seen that when the differentiations of w are
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carried out as if the various gravitations were constants, then
we get
(69) w(2h) . Z{‘(-Fn)hyn

(h = 1,2...2N+41)

The problem is therefore to show uander which conditions the
actual value of w(?h) ig approximately equal to the value given
by (69).

Let us consider an isolated trend y,. For the sake of
brevity we drop the subscript n.

It is easily seen that if y is a solution of y" + By = O,
then the n-th differential coefficient of ¥y (n = 0,1...®)
is of the form
(70) y() - Ay + By |
where A, and By are polynomials in F and its differential
coefficients. In particular

(713.) AO = 1 Al

i
(@)
ér
i
'
o

(711) BO =0 Bl =1 BZ =0

From

o <

y(a2) | & (9yp(a-i)y (D)
1=

we derive
B nypin-i)
(72a) An+2 = 2; (i)F Ay
=0
(72b) B .. = -5 (Mp{n-ilp
n+2 ~ i’” i

i=0
.. This recurrence form:lae and the initisl ccnditions (71ab)
give an easy means of calculating the An and Bn successively.

Differentiating (70) we further get the recurrence formulae
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i

(738) Ay = A3 - FBy

(73D) B4l

Ay + By
from which we deduce

(742) A3 (n+1)

1]

-FA,, + A3y - RFBjy - F'Bgy

#

It is easily seen that Apy and Bop respectively is a sum
of terms of the form
(75) o gl 0Tk
where the exponents ngnj...nx are not negative integers.

The sum

(76) 2ng + 3np + 4dng t+ ... F (k+2)ny

will be called the weight of the term (75).

I shall .ghow that all the terms in Ag), have the same
weight, namely 2h, and all the terms in Bgy, have the same
weight, namely (2h-1); onand (2h-1) will be called the weight
of Aoy and Boy respectively.

We first notice that if the term (75) is multiplied by F,
then the weight is augmented by 2, and if the term is multiplied
by F‘, the weight is augmented by 3.

Further if the term (75) is differentiated with respect to
t, the result will be a sum of terms whose weight isg one unit
greater than the weight of (75). 1In fact the differentiation of
(75) with respect to t may be performed by first differentiating
with respect to F and multiplying the result by F', then differ-
entlatlng with respect to F' and multiplying the result by F",
etec. Now if (75) is differentiated with respect to F(J) and the
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result is miltiplied by F<3+l). we get a term where the ex-
pression for the weight is the same as (76) with the only
exceptibn that the term (j+2)nj in (76) is replaced by
(j+2)(nj-l) and the term (j+3)nj+l is replaced by (j+5)(n3+1+1).
As

(3+2)(ny-1) + (343)(ny 1 +1) - ((J+2)my + (J43)ny,,) = 1

we see that the weight of the term obtained will be one unit
greater than the weight of (75).

Two differentiations of (75) will consequently transform
the term (75) in a sum of terms whose weight is two units greater
than the weight of (75).

The proposition regarding the weights of -Agp and Bpp may
now be proved by complete induction using (74ab).

;n fact the proposition holds good for h = 1 because
As = ?F and Bz - O. Supposing it to hold good up to h we see
that in the right hand side of (74a)
| 2h+2

FABh has the weight (2h) + 2

A" has the weight (2h) + 2

oh 2n+2

FBap

F'B

has the weight (2h-1) + 1 + 2 = 2h+2

on has the weight (2h-1) + 3 = 2h+2

Consequently has the weight 2h+2.

A2(h-t-1)

In the right hand side of (74b)

FBZh has the weight (2h-1) + 2 = Zh+l
th has the weight (2h-1) + 2 = 2h+l
Al has the weight (2h) + 1 = 2h+l

2h

Consequently Bz(h+1) has the weight Zh+l.



For any term in Asy, and By, we therefore have respectively

(77) Bng + 30y + dng + ...+ (k2)ny ={2h (in Asp)
\Zh"l ( in th}

As n,n,...nare not negative integers, we see from (77) that
the highest possible value of ny in Agy is ny = h (hence
N =N = ... =Ny o= 0) and in BZh.no = h-2 (hence
ny =1, nzz...:nk:O).

It is further easily proved that the term with n,z= h, i.e.

‘the term Fh is always present in Aoy and has the coefficient (-)h.

We first notice that in the sum resulting from ome differ-

entiation of (75) none of the terms can have a n, waich is

greater than n. in (75). In particular, if in (75) n, is the

0]
only non-vanighing exponent, then one differentiation of (75)

gives a single term where ng is one unit less than n. in (75).

o}
Utilizing this remark the pfoposition concerning the

presence of the term (--F)h in A2h may be proved by complete
induction. The proposition evidentliy holds good for h = 1.

Now suppose that it holds good up to h. Then the first term

-FA, in the right hand side of (74a) contains the term (-F)B*1,

The second term Agh cannot centain Fh+1. Further Béh does not

contain a higher power of F than h-2 (because in 52 we imast

h

have n,< h-2), hence FBS, does not contain P, Finally F'BZh

does not contain a higher power of F than h-2. Consequently in

th potl

A2(h+1) only one term wi is present, namely the term

(”F)h+la
From (77) is further seen that in A, we must have k<2h-2,

“and in BZh we must have kXZ 2h-3. The highest order differential
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coefficient of ¥ that occurs is therefore F(zh"z)

F(2h—3)

in A2h and
in BZh' That these differential coefficients really
occur is easily seen from (72ab).

Consequently y(Zh) is of the form

(78) y(2) - (-R)By(1 + By + (r'/yEIQy)

where Pp)y, is a sum of terms whose denominator is Fh and whose

numerator is of the form (75) with weight 2h and with not all

the nyns..n, equal to zero, and Qop is a sum of terms whose
-1

denominator is Fh 2 gnd whose numerator is of the form (75)

with weight 2h-1 and with not all the Ny No. . . Ny equal to zero.

Any term in P5y, Or Qo) may therefore be written

Fno Fv_nl e F(k)nk

n. (1+i)n {(1+k/2)n
rop Tl ... F k

Now the higher order increase-proportions of F defined by
(15b) of Section 2 are
(k) - 7k p(k)/Fl+k/2
For the sake of brevity we write
_ (K)
ry=r
If the increase-proportions ry are introduced3 the general
term of ch and th will be
n, n : n -(n, +2no+. .. +kn, )
1 2 K\ 1 2 k
(rl ro «e. Ty yam
where not all the nlnz...nk are zero, and where the highest k in
any term in ch is k = 2h-2 and in QZh kx = 2h-3.

For h=3, we have for instance



;(6)
(-B’ EL-((4/«72)r§+(7/ﬂ2)r2—(1/u4)r4)+(y'/yﬁ‘)((6/n)r1~(4/173)r3):}

Now y*/yq/% is the first order increase-proportion of y
itself. This is finite for any point which is not a zero of y.
We therefore see that if the increase—proportidns of ¥ up to the
order 2h-2 are small as compared with unity, and also so small-
that the product obtained by multiplying them by the first order
increase~proportion of y, is small as‘compared with unity (in '
points not lying in the vicinity of a zero of y), then we shall’
approximately have

y(#h). (-mby
in points not 1&ing in the vicinity of a zero of y.

If this holds good for any of the trends y, and for
h = 1,2...(2N+1), the equation (89) will hold good approxXimately
in points not lying in the vicinity of a zero for any of the !

trends. Therefore in this case w may be analyzed by the methodS

of instantaneous approximation, the approximation curve with

moving parémetefs beihg (50). And the moving determination of
the gravitations and ordinates of the trends in a point not

lying in the vicinity of a zero of one of the trends, is to be

performed by (65) and (63a or b).

The method developed in this section may be called the
method of moving differences because if a time series wy of
discrete values is given, the differential coefficients have
to be determined by the successive differences of the given

series.




7. SUMMARY

In this section I shall give a summary of the results
obtained in the preceding sections and state some practical
computation rules which may be derived therefrom. The order
to be followed will not be the logical order of the preceding
sections but rather the order in which the actual computations
have to be performed. All demonstrations will be left out in
~ the summary, 1 further believe that it should not be necessary
to indicate for each step in the anaglysis the conditions under
which the various approximations hold good. These conditions
can easily be formulated by reverting to the text of the pre-
ceding sections.

When a time series of discrete values LAY is given, the
differential coefficients have to be determined from the suc-
cessive differences (e#entually divided differences) by one
of the known methods. In most practical cases it will probably
be found sufficient simply to put the k-th order differential
coefficient in the point t equal to the k-th order difference
(eventually divided difference) which extends over an interval
whose center is t. TLet i be the empirically determined dif-
ferential coefficient~of order 2.

In the simplest case (method of normal points, indicated
below) it is sufficient %o take account of vl only, i.e. the
second differential coefficient of the composite curve. If g
more refined analysis has to be performed, then a certain number

of the following VoVz... must be introducad.



‘material available.

character. 1In fact, if data were available at shorter intervals

‘make:+ it plausible to assume that the trend of lowest order Yo
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The first thing to do, is to plot the variation of v, or
the variation of a certein number of the first Vi V5... a8 the
case maj be, If the fluctuationsin these quantities are very
violent and irregular, all the Vi consicered changing sign
frequently within intervals so short as to corntain only some
few original data, tpis will indicate the presence of components

of such a low order that they cannot be investigated with the
These components are not necessarily all of a true accidental

it might be possible to trace real periodiq_fluctuations in some
of these components. But in the actual material they have to be
considered as accidental. Consequently the group of these
components will be called the accidental group. ‘
.Before proceeding to the analysis of the higher components,

EE? accidental group has to be eliminated (so far as it can be

done) by a moving average smoothing of the original series.

I shall consider separately the two cases referred to.

The first case is the case where g priori considerations

which will be present after elimination of the accidental group,
is of considerably lower trend order than the next following

trend yy- This means that the period in Yo 1is small and the

distinctness of the oscillations in yo“(in the sense indicated
in Section 2) is not very small as compared with the period

and the distinctness of the osé&llations of y1- In this case

Yo, may be eliminated and its normal as well as its ordinate

determined by the method of normal points which only involves vl.
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If only v, has to bé introduced and if the datsare monthly,
(hence equidistant) it will\probably in most cases be found
gsufficient to smooth the original series by a‘twice iterated
moving duarterly-average, This means that before determining

v the original item Wy has to be replaced by the item

If in this case the second differential coefficient w"(t)
is approximated by simply putting it equal to the second
difference, we have -

w'(t) = v, (t) = A W

oy T Vg tRWT L = (W gmRwe 5) /9

In this case therefore the composite operatibn of first
smoothing and then forming the second.difference may be per-
formed graphically in the plot of the original data wt.simply
by measuring fhe'deviation of wy from the straight line through
Wy, and W, 5, and maltiplying by 2/9.

If"a‘heavier smoothing should be found necessary or if the
data are not'équidistant, then the smoothing and the difference

operation can not be performed by such a'simple rule.

Now if vy is plotted, the procedure of first eliminating
and then determining the normal and the ordinate of Yo will Dbe
this.

Determine the points where vV, basses zero. These points

are taken as the normal points of y,. 8Since y,=0 in the normal

points, thebdata relating to these points may be considered as

a new'series where the trend of lowest order is eliminated. Let

Wo be the series from which v, was determined, and let Wl be
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the new series derived from Wo by the method of normal points.
Since the difference in order between Yo and the following trend
is great, the ordinate of Yo will be represented spproximately
by the deviation of Wy from a line interpolated in some way or
another through the series Wl which represents the normal points
for yo. We may, for instance, draw a straight line between every
two consecutive normal points (i.e. between every two consecutive
data in W;), or draw a m-th order parabola through {m+1) con-

secutive normal points, or use any other method of curve fitting.

The essential point is that whatever the method used may be, the

datsa Wl determining the interpolation line, are data where the
lowest order trend Yo 1s already eliminated.

The series W1 or the line interpolated through Wl'may
evidently be considered as the normal of Yor

If the further assumption can be made that the lowest order
trend present in Wl namely ¥y is of considerably lower trend
order than the following trend Yo, then Wl may be treated in
exactly the same manner as WO, thus eliminating Y1 and so forth.

Let wowlwz ..+ be the series successively obtained by the
method of normal points under the assumption that each trend is
of considerably higher order than the'preceding . Then W,
containsg only the trends Ynyn+1 -+ - And the ordinate of y,
will be represented by the deviation of Wn from a line inter-
polated through W, ., by one of the methods referred to. W,
evidently represents the normal of Yne .

The number of data in the successive series WoW,Ws ... is
rapidly diminishing. We finally arrive at a series WN containing

only some few data. This series WN'may be taken as representing



- 110 -

the trend of highest order YN which can Pe traced in the given
series.

If no plausible a priori sssumption can be made concerning
the relative difference in order between Yo and the following
trends, we shall have to introduce the higher vV in order to
perform a classification of the trends present. The practical
applicability of the method involving the higher v is of course
contingent upon a more reliable and more regular material than
the method which only involves Ve

 The Quantities vy, are to be interpreted gs the differential

coefficients which are determined empirically after the smooth-

_ing of the original data. It will generally be found that the

smoothlng of the original series must be all the heav1er the
hlgher is the order of the highest h to be con51dered.

As 1n most practical cases the orlglnal data Wt are
equidistant, I shall make this assumptlon. I shall further
assume that the graduétion of the original dats is performed
by a central moving average with (2k+;) terms and with syﬁmetrical
but otherwise arbitrary weights ‘Xj' This means that the original
item L is replaced by

Q{Owt+)l(wt+l+wt-l)+.,.ka(wt+k+wt_k))/(]o+2(11+)2+...+}k))

The length of the interval covered by the average, i.e. 2k, is
supposed to be less than the shortést zero distance in the lowest
order trend Yo which is present after moving average elimination
of the accidehtal group.

If a graduation of this kind is performed, the effect will

be not only the elimination of the accidental fluctuations but




also to a certain extent the damping, i.e. the depression, of
the oscillations in the various higher trends present. The

proportion in which the ordinate of the trend ¥y 1s shortened
in the point t, is approximately measured by the coefficient

of damping ?n

(79) on = Uo +2}* )jcosj‘/—n)/(/l +2 ,1)

where F, designates the gravitation of the trend Yne
It is seen that $°n is always less than unity. It is
certainly positive if 2k <71/ /B, i.e. if the length of the

moving average interval is less than the fictive zero distance

in y, in the point t considered (the fictive zero distance

.

having the significance indicated in Section 2). If the length

of the moving average interval is very small as compared with

the zero distance in yn, then f"ﬂ. is close to unity. This means
1

that the moving average operation has nearly no effect on the
ordinate of Tne In this case, the correction ;Pn in the formulae
(81a), (82), (87ab), (89) and (21) velow may be left out by
puttlng Py = 1.

I now procede to state the method by which the various

trehds may be classified and their gravitations and ordinates
determined.

When a certain number of the first vy, are plotted, the
determ‘inantsal.ag... (formula (52)) should be formed and the
fluctuations of the first of tinese determinants should be plotted.

The question is if any of the A , vanishes identically in t.
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In practice, none of the 4 n will be rigorously zerb for all
values of t. The practical criterion will be if the fluctuations
in any of the &n, say A y4p, are of such a kind that & N+1
changes sign frequently, say in points between which there are
only one or some few points of observation, and further such
that the average of & N+, baken over small intervals is prac-
tically zero over the whole t-range. When in the following
reference is made to the identical vanishing of determinants,
it should always be understood as identical vanishing in this
practical sense. In the illustration below £>N+l would repre-

sent an identically vanishing determinant (in the practical

sense), and & N would represent a non-identically vanishing
determinant.

Naw if A N+ Venishes identically and it can be traced
quite distinctly certain intervals where the next lower deter-
minant AS.N, or the smoothed curve representing A N,is

essentially positive, or intervals where it is essentially

negative, then the number of trends in the lowest trend group
will be equal to N.

This means that there are present N trends which do not

differ widely with respect to thelength of the period. They

~are approximately of the same trend order. But the difference

in order between these trends and the next following is great.
The trends in the lowest trend group have to be eliminated

and their ordinates determined before we proceed to analyze

the higher order trends.

I shall first consider the two special cases N = 1 and N 2y

it
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which will probably be the most frejquent cases when the time
series to be analyzed represents an economic phenomenoﬁ.

IfTN=1, i.e., if‘é&l = v shows distinct positive
intervals or distinct negative intervals while

(80)

_ } 2
4, -fvl vz! =V V5~ Vo

72 V3|

venishes identically, then the lowest trend group consists of
only one sihgle trend y,. - And the difference in order between
Yo and the next following trend is great, 1In this case the
lowest brdéf trend ¥, may be determined either by the method of
normal points or by the method of moving differences.
The practical computations involved in the determination
of y, by the method of normal points have already been indicated.
The method of moving differences may be applied in two
different ways to approximate ﬁhe values of y . In the first
place we may consider the gravitation ¥, as constant in the
interval between two consecutive normal points, and here put F,
equal t%d its average value in this interval. This average
value is (iT/D)z, where D designates the distance between the
two hormal points considered. In this case the ordinate of y,
in the interval considered would De
(81a) £o7, = - (D/m)3vy
where o 1is determined by (79). If the length of the moving
average interval is small as compared with D, then the correction
Po may be left out by puiting ¢ o ° 1.

The method of formula (8la) only involves vl.' If Vo is
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introduced, we mey consider Fo not only as moving by steps from
one zero distance in Yo to the next, but as moving continuously
from one point of observation to the next. In this case F,
would be determined by

(81b) FO = —Vz/vl

If (81b) is used, the determination of F, will be uncertain
in the vicinity of the normal points, because in all practical
cases v, and Vo will not vanish rigorously in the same points
(as assumed by theory). Therefore FO has to be plotted and its
value in a point lying in the vicinity of one of the normal
points has to be determined rather by interpolation in taking
account of the general shape of the curve Fo than by calculating
the actual value of —vg/vi in the point considered. 1In deter-
mining the general shape of the curve FO it should be remembered
that the average value of Fo Detweea two consecutive normal
points is (1T/D)2 where D is the distance between the two normal
points considered. F, should never vanish, but be essentially
positive.

When the variation in Fy is determined, y, is given by
(82) foyo :,-Vl/FO

I now proceed to the second special case, viz. N = 2.

Ii’ALz shows distinct positive intervals or distinct
negative intervals while

(83) VAN z =1V Vy Vg
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vanishes identicaily, then the lowest trend group congists of
two components y, ard ¥y between which the differences in trend
order is not great. But the difference in order between this
first group and the next following is great. In this case y,
can not be eliminated before y;, ¥y, and y; have to be considered
simaltaneously.

We now have to form the determinants dy» 89 and dowhich are
obtained from the matrix

[¥1 72 75\

j
\V'2 V3 Ve /

by letting out the first, second ard third cclumn respectively.

Hence
i I _ R
{84) do _zwz v3§ = V5 V, - V3
]
V3 v4:
I} -’v v v -
17171 Ty = 174" V2¥3
i
V2 V4
G =1v. voi = v, v, - v2 = N
2511721 T 1 Vs T 2R
Yo V3,
1

The variations in the two determinants do and d1 have to be
plotted on the same chart as dp =A 5 already plotted. The three

determinants, do’ d} and d2 should generally show alternating

signs, 1i.e. either do positive, d1 negative, and dz positive - .
or inversely. And they sholild pass zero in approximately the
same points. The method will work all the better the more

closely this condition is satisfied.




The next step is to plot the variation in the ratio
(85) x = dydp/a%

In the vicinity of the points where 4, vanishes, the
determination of x by (85) will be uncertain because the three
determinants will not in practice vanish rigorously in the same
points (as assumed by theory). Tnerefore the value of x in the
vicinity of the zeros of 4, has to be interpolated rather than
determined by (85). If necessary the curve x should be smoothed.
The ratio x should generally be a fraction between O and {. If
x is greater than % throughout a definite interval and no
plausible smoothing will bring it down to %, then the method
will not work.

The moving determination of the two gravitations F, and ¥y

has to be performed by the following formulde

(86a) F, = -(d,/2d5) (1 + V1-4x)
(86b) Py= -(dy/2d5) (1 - J1-4x%)

In the vicinity of the zeros of d, the determination of F
and F; by (86ab) willegain be uncertain. Interpolation should
therefore be used in the vicinity of these points. F, and Fy
should never vanish, but be essentially positive.

1t is seen that the ratio between the two gravitations will
be all the greater the smaller x. The ratio 1/yf; or better
(1-x)/V x will indicate approximately the number of (fictive)

Yo periods which are contained in each Y1 period.
The ordinates of the trends y, and y; are given by

(87a). Vs = (Vo = Byv ) /F (F -F)

1]

(870) g9 = - (Vg Fovy) /P (Fo-Fy)
where o and ¢ are defined by (79).
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If x is small, i.e., if the ratio F,/F, is great, then the
first term in the expression for Yo Will be predominant over
the second, but in ¥y both terms will be of the same order.
I now proceed to the general case where the lowest trend
group consists of any number of trends N.
As has already been pointed out the number N is determined
by the criterion that A N shall show distinct positive periods
or distinct negative periods while A N+1 shall vanish identicaliy.
We now have to form the determinants dodl...dN which are
obtained by letting out the first, second... and finally the

last (i.e. the (N+1)th) column respectively in the matrix

(88) vl V2 -..VN+1\
Vz VB ‘...VN__‘_l

. \
Lo ?
| /

| \VN V41 ...'VZN/_,

The Various dy, have to be plotted. These plots should be
such that the quantities dodl"'dN generally show alternating
signs and pass zero in approximately the same points. The
method will work all the better the more closely this condition
is satisfied.

Now in a point where the dh have alternating signs, the
gravitations FoFl"°FN—1 of the N trends in the lowest group
are determined as the N roots of the period eguation (65).

The variations in these roots have to be plotted. In the
vicinity of a point where one of the dy vanishes, the deter-
mination of the Fy, will be uncertain. The magnitudes of the

various F, in the vanishing intervals of the dp have therefore
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to be interpolated by taking sccount of the general shape of the
Fn curves outside these intervals.

When the N roots of (65) are plotted and if necessary the
curves sﬁoothed, the ordinates Yo¥1-++¥yx-1 of the trends in the
1owest‘trend group are given in any point by

(89) ¢, (F ~Fp) (F-Fp)ene ((Fp-Fp)de. (B y-Fp) (-Fplyy, =

N-1 .
5 {n}y ~
where ((F,-F,)) indicates that this product shall be excluded in
the left hand side of the equationd The corrections ?n are{
defined by (79). And o
) (pw

(90) ap _v(FOFl.,.((except Fn)?"‘FN-l)h
designates the h-th order elementary symmetric function of the
quantities FoFl...((except Fn))“‘FN-l‘ That is the sum of all
the products of h factors which can be formed by picking out in
all possible ways h of the T~1 guantities
FOFl...((except Fn))...FN_l.

The value oI the Yn in any point can also be calculated
from the formula _

| - (n}
(91) §n(F0—Fn)(Fl—En)...((Fn—an. APy PPy, = AN/AN
where

(n)
& N = Vl V2 L) N
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The values of ¥, &iven by tre two formulae (89) and (91)
should approximately coincide.

If the ordinates of the trends in the lowest trend group are
subtracted from the original data, we shall have a series where
only the trends of higher order are present. This series may be
considered as the normal of the composite curve which represents

the first trend group. None of the components in the first

}trend group can be considered as a component in the curve which

>represents the normal for the other components in the first group.

The first N components must be considered as a unlty. This
dlstxnguishes the present case from the case D o =

As the difference in o*der between the first group and the
following 1% great, the number of original data contained in each
period is far greater for the next trend group than it was for
the lowest trend group. This is an important point. It makes
i£ possible to perform a new and effective smoothing of the
residuum left by subtraction of the lowest group from the
original data. In fact, in this case the correction (29) for
the ordinates in the next group would be close to unity and
could be left out. It would even be possible to analyze the
higher order trend by only taking account of isolated points at
intervals amounting to several times the interval between con-
secutive data in the original series.

Now let W, be the series obtained after the elimination of
the lowest trend group. The series Wl may be treated in exactly
thé Ssame manner as the series of original data, thus eliminating

the next trend group and so forth. If 4;2» for Wl should vanish
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identically, thén the lowest trend group in W; would consist of
one single trend which might be eiiminated by the method of
normél points or the method of moving differences. If A z for
Wy should vanish identically but not £\ oy then the lowest trend
group in W; would congsist of two trends, and so forth.

Let W, be the series from which the original v; vg .;.
were determined, and let Wlwg;f. be the series successively
6btained from Wo after elimination of the 1owest trend group,
~ the second trend group, and so forth. 1f A o should vanish
identically not only for WO but also for WyWs... and the follow-
ing series, then we should have the special casé where each
group consists of one single trend only. This is just the case
considered under the development of the method of normal points.
 The series W W,
more general than the series WyWy... of the method of normal

... now considered are therefore analagous to but

points. There we have eliminated one trend at a time, here we

have eliminated one trend group at a time.

pro tem. Ragnar Frisch

New York City, April, 1927
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