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The Relationship Between
Primary Investment and Reinvestment,

Ragnar Frisch

1. Introduction.

Dr. Schoenheyder asked me some time ago that I provide a mathematical

formulation of his new theory of crises. I have not had the opportunity to

make a general analysis of the theory. It should not be necessary to do so,

either. I have, however, noted a single point, the theoretical content of

which lends itself to illustration only with difficulty by simple numerical

examples, and the mathematical analysis of which might therefore be of some

interest. This refers to a point which several authors have touched upon

in their study of cyclical movements in the economic system, i.e., the rela-

tionship (connection) between a given primary investment and the reinvestment

which is necessary to maintain the concrete capital objects being produced

by the given primary investment. The purpose of the following analysis is

only to clarify this relationship, not to investigate the consequences for

the general theory of crises which can be drawn from it.

Even if the idea and the occasion of the following reflections are

Dr. Schoenheyder's, he is not, of course, responsible for the correctness of

the results which I give. The framework in which I conduct the analysis,

i.e., the distinction between what I have called the numerical theoretical

phenomenon, the phenomenon of distribution and the phenomenon of repetition,

is, besides, not quite similar to that of Dr. Schoenheyder, according to

what I understand from the exposition of the theory given to me by Dr. Schoen-

heyder.
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The problem under consideration can be illustrated by the following

simplified example. Lst us suppose that at a given point of time a primary

investment (new investment) takes place, consisting of the production of a

hammer of wood, a hammer of iron and a hammer of steel. The wooden hammer

has a durability of one year, the iron hammer two years, and the steel hammer

three yea.rs. We assume that the hammers are renewed as they are worn out.

The first year after the primary investment, the wooden hammer has to

be renewed, the next year the wooden hammer and the iron hammer, the third,

year the wooden hammer and the steel hammer, the fourth year the wooden ham-

mer and the iron hammer, the fifth year the wooden hammer alone > and the

sixth yesr all three,of them have to be renewed.

The annual reinvestment which is occasioned by the given primary invest-

ment is thus far from constant. There is a marked fluctuation. The question

is what economic significance should be given to this fluctuation. In section

2 I will try to show that no economic significance can be attached to the

fluctuation in the annual reinvestment which occurs in this example. This is

due to the composition of prime numbers of the numbers 1 - 6 in connection

with the arbitrary choice of unit of time in the example. It can in fact be

proved that, if the distribution of the primary investment according to the

durability of the capital objects has a finer classification, e.g. with class

intervals of one quarter or one month, the fluctuations in the annual rein-

vestment will be damped, and from continuity considerations, they disappear

completely. This phenomenon I call the numerical theoretical phenomenon.

There is, however, another kind of fluctuation i:i the annual reinvest-

ment that does not cisa-ppsar when viewed continuously and to which economic

significance therefore should be given. Suppose that the primary investment



- 3 -

does not consist of one wooden hammer.? one iron hammer and one steel hamper,

but of one wooden hammer, three iron hammers and one steel hammer. The

durability distribution of the concrete capital objects is in other words

not uniform, but unimodal. The capital objects are distributed around a

certain typical durability (two years). In this case the annual reinvestment

will show certain (approximately periodical) fluctuations which do not disap-

pear when reviewed continuously. This phenomenon I call the phenomenon of

distribution, to indicate that it is due to the statistical durability distri-

bution of the concrete capital objects.

There will also be a dan ping of the fluctuations in the annual rein-

vestment by the distribution phenomenon in the sense that the further one

moves away from the point of time in which the primary investment took place, .

the more the fluctuations in the reinvestment will slacken out. After a

certain time has elapsed, they will become almost imperceptible. The annual

reinvestment will from now on be approximately constant. We can say that the

capital objects under consideration have become an integral part of the circu-

lating capital in the economy, of which a certain constant quantity is renewed

every year. This phenomenon of damping is in my opinion very interesting.

It is treated in more detail in section 3.

It is constructive to compare the distribution phenomenon with the

phenomenon of population dynamics which is called Eilert Sundt's law. The

comparison is not, however, quite appropriate. Eilert Sundt's law refers to

the way in which fluctuations la the number of newbcrns per annum propagate

themselves relative to the composition of population r,r.id the mobility of popu-

lation in subsequent generations. Eilert Gandt's law focuses attention in

other words on the fast that the size of a certain influx of newborns



(represented by the natality) can vary from one year to another. With the

distribution phenomenon we are not, however, concerned about how the influx

(here represented by the primary investment) varies from one year to another>

because the distribution phenomenon refers to the influx of a single year

(the primary investment of a single year). The distribution phenomenon

focuses attention on the circumstance that the elements of the influx in

the year in question (the individual capital objects) have a typical unimodal

distribution according to the time which will elapse until they will be repro-

duced. The theoretical population phenomenon which would be an analogy to

the capitalistic phenomenon of distribution, is the effect upon the composi-

tion and mobility of population in subsequent generations which would occur

if the current population experienced a certain increase on a certain occasion,

and this increase itself was a composed population with a certain age distri-

bution. Conversely: The reinvestment phenomenon which would be an analogy

to Eilert Sundt's law is the variation in the annual reinvestment which

results when the annual primary investment consists of a certain kind of

capital objects (with the same durability), e.g. only steel hammers, and

when the size of the primary investment varies according to time, e.g. when

10 steel hammers are invested in 1916, 20 steel hammers in 1917, etc. This

last phenomenon I call the repetition phenomenon. It is treated in section 4.

So, under the distribution phenomenon we study the primary investment of

a single year, under the assumption that the concrete capital objects have

a certain durability distribution. Under the repetition phenomenon we study

how the annual reinvestment varies according to time. And the assumption is

now that all capital objects of the annual primary investment have the same

durability.



The distribution phenomenon is in a certain sense the most general of

the two phenomena. The assumption that all physical capital objects have a

certain durability is in fact a special assumption which is contained as a

limiting case in the more general assumption that the capital objects have

a certain durability distribution. In another sense the phenomenon of repe-

tition is the most general. The assumption that a certain primary invest-

ment is undertaken at a given point of time is in fact a special assumption

which is contained as a limiting case in the more general assumption that the

size of the primary investment has to vary according to time in a certain way.

The most special phenomenon is the one which occurs when a primary

investment of capital objects is undertaken at a given point of time, and all

of them have the same durability v. The reinvestment in this case will simply

consist of exactly the same mass of capital being invested anew every v-th

year. This phenomenon we might call the pure phenomenon of repetition. It Is

evidently a limiting case of the above-mentioned general phenomenon of repe-

tition. Moreover it can also be considered as a limiting case of the distri-

bution phenomenon. The difference between the repetition phenomenon on the

one hand and the general phenomenon of repetition and the phenomenon of dis-

tribution on the other, is that the first one is a simple phenomenon, while

the two others (except for certain special cases) are an interference phenom-

enon or a resultant phenomenon in the sense that the reinvestment at a given

point of time will be a sum of partial investments, i.e., the sum of a certain

quantity of first-time reinvestment, a certain quantity of second-time rein-

vestment , et c.

The most general phenomenon is the one that occurs when the size of the

primary investment (per annum) as well as its durability distribution vary
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according to time. This phenomenon I will call the composed phenomenon.

This is treated in section 5.

In the following I assume that a common scale of measurement for the

quantity of capital objects of -various durability is defined by means of

prices or standard coefficients:, so that the objects can be added. How

this is to be done in a given case, e.g. concerning a statistical observa-

tion, is a question which it should not be necessary to discuss in this

connection.

An additional assumption in the following is that every capital object

which once has been created by a primary investment, is always effectively

renewed, after its lifetime. As a first approximation to the real world we

therefore waive the circumstance that some of the capital objects are not

renewed when they are worn out. The case when some of the capital objects

are not renewed can be treated by considering a negative primary investment,

but I will not go into this on this occasion.

2. Capital Objects with a Discrete Durability Distribution.

The Numerical Theoretical Hienomenon.

Both the primary investment and the reinvestment are distributed vir-

tually continuously in time in the real world. Thus for example the annual

investment of the nation (primary investment and reinvestment) for 1926 will

be distributed over the months^ weeks and days of the year. Similarly the

durability distribution of the capital objects will be virtually continuous

in the real world.

The problem concerning the relationship between primary investment

and reinvestment is, however, in a certain respect more surveyable and easier
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to attack when we suppose that the investment of the year takes place

concentrated in a moment of time and that the capital objects are discretely

distributed according to durability. We shall, therefore, first make this

assumption. In the next section the continuous distribution is treated.

We assume that at a given point of time a certain primary investment

takes place, consisting of a quantity f^ of 1-year, f^ of 2-year ... f of

n-year capital objects. The question is now what reinvestment this will

occasion in the future.

Let us first suppose that there is the same quantity of 1-year, 2-year

... and n~year capital objects in the primary investment under consideration.

We have then f. — f = ... = f . in order to get a view of the reinvestment

we will use an illustration as in Table 1.

The head of the table represents the time T, considered from the moment

when the primary investment was injected. The primary investment is thus

undertaken at time T = 0, i.e. at the beginning of the first year. The first

column of the table represents the durability of the capital objects. In

the column directly below T = 0 is given the durability distribution of the

primary investment by placing a point just opposite v = 1 (durability one

year) which represents the 1-year capital objects, just opposite v = 2

(durability two years) is placed a point which represents two-year capital

objects, etc.

The reinvestment is shown in the following way. The 1-year capital

objects will be renewed at time T = 1, 2, 3, ..., etc., i.e. at the end of

the first, second, third years, etc. This is represented by the points on

the first row of the table. The 2-year capital objects are renewed at times

T = 2, 4, 6, ..., etc. This is represented by the points on the second



row in the table. And so on for the following rows. When this construction

is done, the reinvestment points can be arranged according to downward sloping

lines. First the points (T = 1, v = l), (T = 2, v = 2) etc. are connected

by a line, the slope of which (i.e. the relationship between height and base)

equals one. The points along this line represent all first time reinvest-

ments, i.e. the first reinvestment of the 1-year capital objects (the point

T = 1, v = 1), the first-time reinvestment of the 2-year capital objects

(the point T = 2, v = 2) etc. Then the points (T = 2, v = 1), (T = 4, v = 2),

etc. are connected by a line with slope if. The points along this line repre-

sent all second-time reinvestments. Correspondingly for the following lines.

It is easy to see that the slope of the k-th line is equal to ̂  of the density

of the points along the first downward sloping line. It is also easy to see

that the density of the points along the v-th horizontal line is ̂  per unit

of time, i.e. the distance of time between two neighboring points is v.

The total reinvestment at time T = 1, 2, 3, ... etc. is represented by the

points in the vertical columns corresponding to T = 1, 2, 3, ... etc. These

sums are shown at the bottom of the table.

If the durability distribution of the primary investment is not uniform,

i.e. if not f. = fp = ... = f , then there must be assigned different weights

to the various points in the column of the primary investment (i.e. the

column T = 0), according to the size of f (v = 1, 2, ..., n). Thus this

difference in weights propagates itself from the points of primary investment

to the points of reinvestment, as all the points on the v-th horizontal row

are to be assigned a weight f . This can be illustrated theoretically by

constructing a perpendicular on the plane of the tabla in every single point.

The length of each perpendicular equals the size of f . Or each of the points
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of the table can be substituted by a nurnber, and in fact the number which

designates the magnitude of f . Finally we can give a particularly instinc-

tive illustration of the different weights that are to be assigned to the

points., by assuming that every point is assigned, a mass, equal to the

nitude of f . We will primarily use this illustration in the following.

The above-mentioned illustrations are, however, equivalent in principle.

When the distribution is not uniform, we have to consider the density of the

mass along horizontal and downward sloping lines instead of the density of

the points. When in the following I use the expression "density", I always

mean the density of the mass per unit of time. The expressions 'feass" and

"quantity of capital objects" are used synonymously.

The average density along the v-th row is _Z , because there are on the

average y points per unit of time along the v-th row, and each of these

points has a mass equal to fy. This density along the v-tĥ  row is an express-

ion for the average reinvestment per year which is occasioned by the v-year

capital objects.

Along the k-th sloped line the average density in an interval of k
.p

years (measured along the T-axis) equals T v , where v is the durability cor-
v

responding to that point of reinvestment which can be found on the k-th

sloped line in the interval of time under consideration (there exists one and

only one such point). The total mass along the vertical line which corresponds

to a certain magnitude of T, equals the total reinvestment at time T.

The density along horizontal lines is related to the concept of the

(total) average reinvestment per y_ear.

This is defined in the following way: in the primary investment there

is a quantity f^ of 1-year capital objects. These recu.- every year; this

fgives an average per year of _J. . There is a quantity f^ of 2-year capital

"f*objects. These recur every second year. This gives an average of 2 per
2
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year etc. The total average annual reinvestment is then

(1) a =
1

jn
n

- 2 £v
v=1 v

If the durability distribution of the primary investment is not divided

into intervals of a whole year, but e.g. in intervals of a quarter, a month

cr generally in intervals, the width of which is a (proper or improper) frac-

tion I of a whole year, and if f (w = 1, 2, . .., n) denotes the quantity of

capital objects of durability *w years, the average annual reinvestment will

be
n

(2) a = I £w .

I have treated the construction of Table 1 and the related concepts of

the density along horizontal and descending lines this fully because Table 1

is an important tool in the study of reinvestment.

I return now to the uniform distribution of the primary investment

(f = constant). I first make the assumption that the durability distribu-

tion of the primary investment has 5 classes 1 — 5 years. The development

of the annual reinvestment is given in the bottom row (l) in Table 1. There

are considerable fluctuations in it. Calculated as a percentage of the aver-
n .j

reinvestment a = E — = 2.28 ,(as f ~ constant is put equal to 1), the
v=l v . . . . . . .

j Reinvestment
! I \ /; i

->! ! /

•<s Year
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development is as shown in column (l), Table 2, and the curve (I) in Figure 1,

I will now show that these fluctuations' (the numerical theoretical phenom-

enon) are a phenomenon that cannot be given any economic significance.

Suppose that the durability distribution of the primary investment is

given with class intervals of half a year (I - ?), the distribution still

being assumed to be uniform. Instead of a quantity 1 of capital objects

with durability one year etc., there is now a quantity ̂  of capital

objects with durability half a year, a quantity 2 of capital objects

with durability one year etc. The annual reinvestment which is occasioned

by means of Table 1 because the scale of measurement for both T and v is

now half a year, and every point in the Table counts as \. We are to con-

sider the upper half of the Table (v =• 1 — 10). The sum for T • 1 — 2,

i.e. 3 points each with weight \, gives the total reinvestment for the first

year = 1^ etc.

Tab. 2.

!' Reinvestment in T-th year as a percentage
!: of the average reinvestment per year.

I When the capital objects of the primary invest-
|i meat are distributed with class intervals of

I ;

ir i>
1 •---; O :

4
5
(i
7

S !

0.'
10;

11

1-2

13

one year
(I)

Sd 7o
133 >

38 >•
.175 »

h i »

133 .
*8 »

133 •,
44 ,

175 :-

44 -.

' half a year ; one quart
; (ii) j (in)

102"/«

102 '
•: .119 »

' 102
• 08 »

!1.9 >
| 102 /

i 102 >

\5 .»

! i u) *
• ' 03 :>

: 10 i%
i 104 »
'* 111 :,

97 >

: 00 ,
I 07 .v
i 118 <
! (!7 »
; 8.̂ } :--

i 111 :

i 00 j

Proof: In the limiting case I •* 0 we can use the forraula (3) in section 3.

»(T) - r i re-*-) •
k«1

[Footnote continued on following page.]
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(the bottom row (II) in Table 1). The average annual reinvestment according

to formula (2) for I = i and tw = i is

10 f 10 i.
n _ T _w - F -?- - p qqCt SS £j -r-«»-u _ £j X *— *- • t?O »

w=1 *w w=1 ^

The percentage fluctuation in the annual reinvestment is calculated from this.

It is shown in column (ll) in Table 2.

The annual reinvestment can be calculated in the same way when the dura-

bility distribution of the primary investment has class intervals of one

The distribution will then be continuous with f (v) = constant = c for

0 ̂  v £ b, but f(v) =* 0 for v > b (in the example c - 1, b = 5). In order

to determine — in this case we can go to the limit and first determine
s*

f̂ for the distribution f (v) = c. for e S v § b, but f (v) = 0 for < e or

v > b. Then we let e -* 0.
N 1

We have <p(T) = c E TT , where M and W are the two positive integers
k=M

determined by

and a = c J 7 - cflog $ + log f]
e

so that,

W , M-1 .
y JL y J.
^ k " L u-

jSS _ k=1 k=1 K
a "~I if! I m

log i + log £

TIf we let e take on the values ~ as v -» ro through whole positive values, we

will get, because the second term in the numerator and denominator is finite,
V -i

— V '
j

Lira ~~ = Lim &=-.!,. 5 - f°^ every finite magnitude of T.
e-O v-^03 log v
In this case we have first let l •*• 0 and then e -» 0. If the analysis should

be complete, it should be investigated whether the result would be the same

when the sequence, in which we have taken the limits, is reversed, but there

is hardly any reason to examine this further here.
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quarter of a year (the bottom row in Table 1). In this case we have
20 |

* * $> so that the average reinvestment per annum is £ y - 3.60.

The corresponding percentage variation in the annual reinvestment is given

in column (III); Table 2 and by the curve (III) in Figure 1. It is evident

from both Table 2 and Figure 1 that the fluctuations in the annual reinvest-

ment are damped considerably when smaller class intervals aye adopted for

the durability distributi.on of. the primary investment. And it is possible

to prove exactly, that when the class interval approaches zero, the damping

becomes absolute! The relationship between the annual reinvestment and the

average reinvestment becomes constant. Also in another respect is the pic-

ture of the fluctuations of the reinvestment quite different for the differ-

ent class intervals. The year which is a maximum year for one class interval

may be a minimum year for another class interval. We may for example compare

the fifth year (T = 5) for class intervals of one year and half a year, or

the ninth year (T = 9) for class intervals of one year and, one quarter of a

year*

The phenomenon of damping when the class interval gets smaller, can also

be analyzed in another way, and in fact by a probabilistic theoretical con-

sideration. This analysis gives an interesting insight into the way in which

the damping occurs.

I reproduce the reinvestment schedule which was used in Table 1, simpli-

fied as in Figure 2,

31 First time Second time Third time
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The line AB represents the primary investment, b is the longest dura-

bility. The durability distribution can, as shown before, be illustrated

by a distribution of mass along AB. I have not marked this distribution by

points as in Table 1, because the distribution is going to vary in the fol-

lowing analysis. If the capital objects are distributed uniformly in a

certain number, e.g. 5 classes of one whole year, the representative mass

along AB will be concentrated in 5 discrete points along A, with the same

quantity of mass c in each point.

The more smoothly the primary investment is distributed, i.e. the

smaller the class intervals, the more representative mass points there will

be along AB, and the smaller quantity of mass will be contained in each

point. If the class interval is Z years (e.g. I = -J which corresponds to

class intervals of one quarter of a year), the distance between two neigh-

boring points on AB equals I. There is a total of "j points along AB, and

each point has a mass equal to lc. In the limiting case Z -» 0 the number

of points becomes infinite, and at the same time the mass in each point

becomes 0. The distribution has become continuous.

The reinvestment will be represented by analogous mass distributions

along the respective descending lines. If I is the distance of durability

between two neighboring points along AB, then the distance of time between

two neighboring points on the k-th sloped line is k.l (the distance of time

being measured in the direction of the T-axis). There are then on the aver-

age--^points per unit of time (years). As each point has a mass cZ, the

average mass per unit of time (the average density) along the k-th sloped
£

line is equal to ̂  .

Let us consider the mass which falls inside a vertical segment T = Tp

for T = T2 (see Figure 2). This mass represents the total reinvestment
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between the points of time T. and Tp. If the k-th descending line cuts this

segment and if̂  the,_Kass ̂distribution ..... is coutiauoug, the sloped line inside

the segment must have a total mass equal to the density times the width of

the segment. Let us call the width of the segment 5 = Tg - T-j, and the

k-th sloped line inside the segment T. to T0 will then have a mass equal

to ]j5 in a continuous mass distribution. When the mass is not distributed

continuously, but concentrated on certain discrete points along the sloped

line, £s represents only the probable, mass which falls in the segment be-

tween T.. and Tp on the k-th sloped line. This means that if we choose at

random a number of segments of width 6 from different places along the
£»

T-axis, there will probably on the average per segment fall a mass TrS

from the k-th sloped line. The more smoothly the primary investment is

distributed according to durability, the greater is the probability that a

randomly chosen segment .(of width 5) will have a mass on the k-th sloped

line approximately equal to r & .

The same kind of smoothing which results from the law of large numbers

when we consider a certain sloped line (the k~th) and a number of different

segments of width 5, will also result when we consider a certain segment of

width 6 and a number of different sloped lines which cut this segment. And

the smoothing will be the better, the smaller are the class intervals of

the distribution of the primary investment. The total mass inside a segment
1

of width 5 is approximately 5 < Err 'where Z is extended to all k's corrss-
JTv

ponding to the numbers of the sloped lines which cut the segment. If we

therefore compare two different segments of width &, the difference between

the total masses of the segments can only be explained by Z 7- being different

for the two segments. As the class interval gets smaller and smaller, however,

1
kthe relative difference between E r for two different segments will disappear.
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For an arbitrarily chosen segment T to Tp we have in fact

i a 1
T: = L •£ where M and N are two positive integers which are determined by

k=M

•£- § M < -~ -f- 1 -~ - 1 < N £ -T- •

Z is the class interval and b the greatest durability which occurs, both

designated in. years.

The relationship between S T for two different segments T- * to Tp'

and T" to T" is thus

where the limits of summation are determined by inequalities analogous to

those given for M and N. When now I -» Q, this relationship becomes

L.m_logjF_ ^ lo6Tg» - log i

leg N" log T2" - log I

As the class intervals of the distribution of the primary investment

become smaller and smaller^ the relative difference between the total

masses inside two arbitrary segments of equal width will therefore become

smaller and smaller and at last it will disappear. Consequently the rela-

tionship between the annual reinvestment and the average reinvestment is

constant (= 1}> when the primary investment is distributed sufficiently in

the bottom rows of Table 1 (reproduced as percentages in Table 2 and Figure 1)

are therefore a phenomenon which cannot be assigned any economic significance.

I have treated this phenomenon in such great detail because numerical

examples are a much used means of demonstration in theoi'etical economic

analyses, and because it could lead to incorrect conclusions if this method



is applied uncritically to the problem under consideration.

If the distribution is not uniform, there is a certain fluctuation

that does not disappear even if the class interval of the primary invest-

ment becomes small. This phenomenon (the phenomenon of distribution) is

best analyzed by assuming a continuous distribution of the primary invest-

ment.

3. Capital Objects with a Continuous Durability Distribution.

The Phenomenon of Distribution.

Let f(v) be the distribution function for the continuous distribution

of the primary investment. There is then a quantity of capital objects

between the durabilities v and v + dv equal to f (v) dv.

The distribution f (v) can be interpreted as the density in point v for

a continuous mass distribution along the line AB in Figure 2. We must,

however, think of the line AB as extended ad infinitum for it to represent

any distribution. If, in a special case, the durability of the capital

objects has an upper limit b, this can be interpreted by putting f(v) = 0

for v > b.

The primary investment occasions reinvestments which are represented

by mass distributions along the sloped lines in Figure 2. (The sloped lines

are to be extended ad infinitum together with AB.) The question is now what

the density is (per unit of time) along these sloped lines.

Let us consider durabilities between two arbitrary limits v.. and v?.

These durabilities are represented by a horizontal segment of width

(vp - v.). It is easy to see that the total mass between the durability

limits v.. and vp is the same along all sloped lines, t,nd in fact equal to

the total mass which is contained in the primary investment between these
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durability limits. The sura of all first-time reinvestment of capital objects

"between v- and v must be equal to the sum of all capital objects which are

contained in the primary investment between v1 and vg. And this is also the

case for the second-time reinvestment, etc.
• • • . «»

This mass, which is equal for all sloped lines, is distributed along

the k-th sloped line over an interval of time of length (vg - v̂ k. In

the primary investment this same mass is distributed ever an interval of

iurabilits ' of length (vg - v.,). It is then obvious that the average density

in the interval of durability v, to v£ along the k-th sloped line is equal

to - of the average density in the same interval of durability in the jri-
1C

raary investment. This holds for arbitrary limits of durability. It also

holds if we let the length of the interval of durability, i.e. the difference

(v - vj decrease towards zero. Then the average density in the interval

of durability will be the density of a point, i.e. the point v towards which

v., and v2 converge. The density (per unit of time) in the point with dura-

bility v on ithe k-th sloped line is then ̂  of the density in the corresponding

point (i.e. for the same durability) in the primary investment, i.e. equal

to £jbd y jftis formula is the analogous formula for discrete distributions.

Tne capital objects which are on the k-th sloped line at time T have

Ta durability v = jr. The density (per unit of time) at time T on the k-th

1 T
sloped line is then equal to •£ f (—£•*). I.e. the quantity, of capital ob.lects

which.. i.s_. reinvested between t ha points of time T and T * dT for the k-th .

i. -P/...T ...... \m
line equals ;k v k J .

Let now qff denote the total reinvestment (reckoned per year) at time T,

so that the total reinvestment between T and T + dT is <p(T)dT. This reinvest-

ment is evidently the sum of the reinvestments between T and T + dT for all
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of the sloped lines (k = 1, 2, ... etc)

i.e.

(3) <p(T) - f (-£-).

This expression shows how the reinvestment (reckoned per year) at a

given point of time T is derived from the durability distribution f (v) of

the primary investment.

In Figure 3 a geometric illustration is given of the relationship which

exists according to (3) between the reinvestment o(T) and the durability

distribution f(v) of the primary investment.

¥e have first drawn the distribution curve f(T), T now being used as

abscissa instead of v. This gives the element corresponding to k = 1 in

formula (3) (the element corresponding to first-time reinvestment). Then

another curve is drawn which is derived from the first one by halving the

ordinate and doubling the abscissa. This gives the element corresponding

to k = 2 (second-time reinvestment). Then a third curve is drawn which is

derived from the first one by reducing the ordinate to one third and making

the abscissa three times as large. This gives the element corresponding to

k = 3, and so on ad infinitum. The curves for k = 1, 2} 3, ...., etc, we may

call the partial reinvestment curves or the -partial curves.
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We now construct the resultant curve for the partial curves. By this

we mean the curve, the ordinate of which for every point of time T is the

sum of the ordinates of the partial curves. The resultant curve "being con-

structed in this way, is then the reinvestment curve <p(T).

We can now see that the course of f(v) near v = 0 is of considerable

significance for the course of «?(T), and this is not only the case for

points of time close to T = 0, but also for subsequent ones. Even if T

is large> subsequent elements in the formula for cp(T), i.e. the elements

for large k's, will depend upon the magnitude of f(v) for small v's. The

farther out in the number of the elements we get, the smaller is the v on

which the magnitude of the element depends, because subsequent elements

in the formula (subsequent partial curves) are derived from f(v) by stretch-

ing the abscissa of f(v) more and more. Because the number of these subse-

quent elements is infinitely large, they will have a diminishing influence

on the magnitude of tp(T) provided f (v) does not decrease very quickly as

v -> 0. We can also express the relationship in this way: The quantity of

short-lasting capital objects in the primary investment is of considerable

importance even for the more distant reinvestment, since the short-lasting

capital objects recur frequently, and the more frequently the more short-

lasting they are.

The influence of the short-lasting capital objects on the reinvestment

is evident when we consider the average reinvestment. For discrete distri-

butions (section 2) the average annual reinvestment was defined as

n f
a = 2 J , set where n is the highest class of durability. The expression

v=1 v
CO

n

can also be written as a = £ y , when we put f = 0 for v > n. By analogy
v=1 v v

we define the average reinvestment per annum when the primary investment has
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a continuous durability distribution f(v) as

(4) a = j" f (v) dv
0 v

We can see that we must have f(0) =0 for the average reinvestment to

be finite. And this is not the only condition, but as v -* 0, f(v) must

also decline so much that the integral converges. The durability distribu-

tion of the primary investment must in other words be such that the quantity

of capital objects of a certain durability declines strongly as we consider

smaller and smaller durabilities. In the transition to the continuous

durability distribution which was analyzed in section 2, the durability

distribution was such that the integral did not converge. This did not,

however, prevent the relative fluctuations in the annual reinvestment to

become finite.

The future reinvestment1 is another concept which plays a certain part

in the analysis of the continuously distributed primary investment. By

this we mean the annual reinvestment which will result when a longer time

has elapsed (T -* "») from the point of time when the primary investment was

injected. If Lim <p(T) exists, the future reinvestment equals this limit.

&ne of the main purposes of the analysis in this section is in fact to show

that this limit exists. I will show that as time elapses, the fluctuations

in the annual reinvestment are damped. The reinvestment approaches a certain

The adjective "future" cannot be claimed to belong to common usage,
but I have not been able to find a commonly used word which rendered the
exact meaning. By using the expression the asymptotic reinvestment we
would a_gj2ori have indicated that the future reinvestment really has a
definite limit, which is obviously unjustified. Under the phenomenon of
distribution the reinvestment certainly has a definite limit (see the proof
in the text) but this is not always the case with the r.ore general phenom-
enon treated in section 5.
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constant normal level. And this level is equal to the magnitude of which

is defined above. The future reinvestment, is thus equal to the average

reinvestment. This statement we will call the law of distribution.

The damping which we consider now (which occurs as time elapses) is

evidently a phenomenon of a completely different kind than the one which

was treated in section 2, (which occurred by diminishing the class interval

in the durability distribution of the primary investment).

The correctness of the law of distribution can be seen in the following

way:

Let T = 4 , x, = k 5 = ̂  (k = 1, 2, 3, ..., «>)
K jL

thus

K,~* ' K* X

Then we get

(s) ,<„ . z i tffr .. 8 = I (1 f(I), (
k=i k=1

When T -» «, so that 5 -* 0 and consequently (x - x ) -* 0 then the last

expression becomes

o o
This follows directly from the definition of the integral,

We have thus
C

(6) Lim <p(T) =
T-*- 0

It follows not only from (5) that the annual reinvestment e>(T)
03

ultimately approaches a constant level (on the assumption that J •^p- d"v

converges);, but also an important consequence concerning the ̂ way in which

the fluctuations in tp(T) are damped. We can immediately see from the

formula that the deviation of the annual reinvestment at time T from the

When the definition of the integral is taken in classical form of
Riemann.
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average reinvestment per year is simply equal to the remaining magnitude

which we get when the integral of the function x f(x) "between 0 and »

is approximated by mechanical quadrature according to the rectangle method

with interval equal to ™r.

This illuminates in an interesting way the nature of the damping of

the fluctuations of the annual reinvestment which emerges as time elapses.

The damping is of the same nature as the decline in the remaining magnitude

by a mechanical quadrature.

According to this we will expect that, if the durability distribution

of the primary investment is unimodal (as in the example in Figure 3),

the deviation of the primary investment from the average is large when T

has a magnitude near the magnitude of v, for which the distribution func-

tion f(v) has a maximum. And the effect must be the stronger, the more

"peaked" is the distribution i.e. the more densely the capital objects in

the primary investment are clustered around the typical durability. This

can also be seen from Figure 3. If the durability distribution f(v)

which represents the first partial curve (k = 1) is pronounced "peaked",

this must express itself in the resultant curve <p(T).

To show how different degrees of "peakedness" in the distribution

function f(v) result in different degrees of fluctuation in the resultant

curve cp(T), I have given three different examples in Table 3 and Figure 4.

These examples need an explanation. On account of the above mentioned

circumstance concerning the effect of the course of f(v) for small v's,

it is impossible to draw an arbitrary curve and then derive graphically

the resultant curve <p(T) from this. We must as an example start from a

distribution function f(v), the analytical expression of which we know,

and then derive <p(T) "by formula (3). We must choose as distribution curve
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f(v) a curve which is truncated to the left, because no capital objects

have negative durability. f(v) must also be a function for which the sum

according to formula (3) can be given in closed form. Finally the func-

tion should have parameters to vary its "peakedness". A distribution func

tion which satisfies these requirements is:

a+1 j3
fa ~ vvv/ e

(7) f (v) =

where a and £ are parameters which determine the shape of the curve, r(a)

is the ordinary gamma function. The property of the function as a distri-
co

bution function is characterized by J f (v) dv = 1. Furthermore f (0) =
0

f («) = o, f (v) increases monotonicially from v = 0 to a maximum for
Q

v = ~ , and decreases from there monotonically to v = CD. The curve has

points of inflection at v = v ' v (1 - '" ..- - -~) i.e. in equal distance be-
a •*• ' /a + 2

fore and after the maxitnuir point. If {3 = a + 1 is chosen, the maximum

(i.e. the typical durability) is at v = 1. This has been done in the ex-

amples. It will now be easier to compare the curves in the three examples.

As the unit of time can be chosen arbitrarily, the choice of £ = (X + 1 does

not mean that the typical durability is set equal to 1 year. This would

compare badly to the real circumstances. It only means that, if the type

of curve which we consider here is to be applied to statistical data, the

unit of time must be chosen equal to the typical durability. For £ = a + 1,

G____™ -
the maximum of f (v) is approximately equal to r~—~,—-—— provided a is a

%/2it (a 4- 1)
positive integer. The distribution curve will thus be the more "peaked51
V

the greater is a. The aversge reinvestment (consequently also the future

one) will be eqtial to — .
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When f (v) is chosen according to formula (7) and a is a positive

integer, the expression for cp(T) can be given in closed form.

We have
A1 CM-1 -0k p a+1

M ? (*> ^ -^ ? .**<p(T) = L _ ___ _ = _ L k x

where x = e . For ~- positive, |x| < 1, and the series is thus convergent.

For 0! > 0 the lower limit of summation can be extended to k = 0, i,e.

/ \^
/_\m\ii
(8) cp(T) = ~V- L k x

^ k=0

As Q: is now assumed to be a positive integer, we have

ka - Z A1 0* ({)
i=0

where A 0 are the differences of zero.

Now, however

xr» /k\i / X i \r I I ! ^ i
t-> \ z l X ~~ M -sr' IX '

fc=0

thus
01

<P(T) = xO-x) .? Al°a ̂ ' - x^

which is the expression which we seek.

T have chosen the following three examples

(I) a •» 3, p = 4

(II) a = 7, p = 8

(III) a = 11, p = 12

It is these examples which are given in Table 3 and Figure 4. The

numerical calculations have been performed by actuary Andersen. I will

take this opportunity to express my best thanks to him for this work.
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For each of the three resultant curves <p(T) in Figure 4 there is given

the corresponding distribution curve f(T). The figure illustrates plainly

the fact that, when the "peakedness" of the distribution curve is small

(as with (l)), the damping in the fluctuations of the reinvestment occurs

very quickly. Already the first wave in the reinvestment is small. By (l)

for example the fluctuations in the reinvestment are so small that they

become almost imperceptible on the scale in which the curve is drawn.

The course is practically that the reinvestment curve ascends monotonically

to its average level, from then on to follow this. We have to look at the

figures in Table 3.to get an impression of the wave-like motion by (l).

There is also a small first wave with maximum near T = 1.74.



- 29 -

If on the other hand, "peakedness" in the distribution curve is more

pronounced, as by (ll) and still more by (ill), the wa,ves in the reinvest-

ment will also become more pronounced. By (ill) the first wave is very
a

marked. For the first reinvestment wave in (III)/maximum is reached after

a time (T = approx. 1.1) which is somewhat greater than the typical dura-

bility. This is a general phenomenon which will always occur? provided

the distribution curve of the primary investment increases monotonically

up to the typical durability.

For all three cases there is a damping of the wave-motion as time

elapses. By III the second wave (the maximum of which is reached at

T = approx. 2.9) is far more pronounced than the first one. Compared with

the first wave, the second wave appears only as a slack and lengthened ele-

vation of the curve. The subsequent waves by (ill) are imperceptible. By

(l) and (ll) already the second wave is imperceptible. By (l) there is

even no minimum after the first maximum. The reinvestment declines from

the first maximum point monotonically down towards the normal level (0.75)

which is given by the average reinvestment. By T.1,there is certainly a

minimum after the first wave (at approx. 2.3), but there is no complete

wave after the minimum at 2.3. The reinvestment increases monotonically

from this minimum point up towards the normal level (0.875) given by the

average reinvestment. These examples illustrate the various alternatives

which there can be. If the "peakedness" in the durability distribution of

the primary investment is not particularly pronounced, the reinvestment

will only show one, at most two waves, before the damping occurs. For

the distribution curves which we will find in the real economic world we

will probably not commit a large error by substituting the exact expression

for the annual reinvestment (formula (3)) with the expression for the
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average reinvestment determined by the simple formula (4), after a time

equal to Is' to 2 times the typical durability.

This phenomenon of damping does not deprive the reinvestment fluctu-

ations which we consider here of their economic significance. This is

particularly the difference between the distribution phenomenon and the

numerical theoretical phenomenon. The decisive fact from a theoretical

viewpoint of crises is evidently whether there exists, a pronounced first

wave or not.

A more exact analysis of the consequences of the theory of crises which

can be deduced from the phenomenon which we have demonstrated here, would

therefore require a statistical investigation of the degree of "peakedness"

in the durability distribution of newly invested capital objects which

really exists in economic life. We mentioned in the introduction., however*

that it is outside the framework of this article to enter into a discuss-

ion of the consequences of the theory of crises. I will therefore only

mention this circumstance.

4. Capital Objects with Equal Durability,

The Repetition Phenomenon.

In the preceding sections I have analyzed the effects of a single

primary investment having a certain durability distribution and being

injected at a certain point of time. In this section I am going to treat

the case where a continuous primary investment takes place, and all capi-

tal objects have one and the same durability v.

Let t denote the point of time for the primary investment and T the

point of time for the reinvestment. We assume the course of the primary

investment to be given by a continuous function g(t) which designates the

primary investment (per unit of time) at time t. Between time t and



- 31 -

t + dt there will then be injected a primary investment g(t) dt.

A primary investment g(t) dt between t a-nd t + dt must evidently

occasion a reinvestment of equal magnitude g(t) dt, in the first place

between time t -t- v and t -f- v + dt and in the second place between time

t + 2v and t + 2v + dt etc.

Conversely: Between time T and T + dT there is a first- time reinvest-

ment of the capital objects which were initially invested between T - v

and T - v + dT; the quantity of these is g(T - v) dT. Between T and T + dT

there is moreover a second-time reinvestment of the capital objects which

were initially invested between T - 2v and T - 2v 4- dT; the quantity of

which is g(T - 2v) dT etc. There is then a total reinvestment between T

and T + dT equal to
CO

Z g(T - kv) dT.
k=i
If the reinvestment (reckoned per unit of time) is denoted ty(T), so

that there is a reinvestment between T and T + dT of magnitude ̂ (T dT,

then we have
69

(10) t(T) = I g(T - kv).
k=1

If we now consider the reinvestment which is due to primary investments

injected, after a time t _ « we have only to put g(t) = 0 for t < tQ. The

summation over k in (10) will then have a finite limit. In this case the

relationship between primary investment and reinvestment which is expressed

in formula (10) can be illustrated geometrically in the way which is indi-

cated in Figure 5.

In Figure 5, tQT is the time axis (compare Figure 2), tQ is the point

of time from which the primary investment starts. From t~ we draw a down-

xvard sloping line at an angle of 45°. This line is cut by horizontal lines

at distances v, 2v, 3v, etc. from the time axis. The first-time reinvestment
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Utirae

'••-„.2* time

is given by a curve which is identical with the primary investment curve

(which starts in t~)j but displaced a time interval equal to v to the

right (so that it starts in t + v). The second-time reinvestment will

be given by a curve which is also identical with the primary investment

curve;, but displaced a time interval equal to 2v to the right etc. The

partial reinvestment curves thus appear by repeating the primary investment

curve every v-th year in the future. Therefore the name repetition phenom-

enon. There is a difference between the partial curves of the repetition

phenomenon and those of the distribution phenomenon: that the last ones

become successively more and more deformed, but not the first ones.

Compare Figure 5 with Figure 3.

The reinvestment curve \V(T) of the repetition phenomenon will be the

resultant curve of the partial curves in Figure 5, i.e. the curve the

ordinate of which at any time T is the sum of the ordinates of the partial

curves. An. analogous geometrical representation applies when the primary

iwestment is not restricted to the time after t_, but the number of par-

tial curves will then become infinite.
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With the repetition phenomenon the reinvestment curve will not approach

a constant level as with the distribution phenomenon as time passes. On

the contrary the reinvestment curve will largely increase with time. The

reinvestment will contain a secular movement which constantly elevates

the level around which the possibly occuring periodical fluctuations take

place. This level is the analogous concept to the average reinvestment

which was defined under the analysis of the distribution phenomenon. While

the average reinvestment is a constant with the distribution phenomenon,

it is a function of time with the repetition phenomenon.

The precise definition of the average reinvestment of the repetition

phenomenon can be stated in the following way: The primary investment

which is injected between t and t + dt occasions every v-th year a reinvest-

ment of magnitude g(t)dt, i.e. ——- per year. This expression integrated

up to time T gives the average reinvestment at time T. Denote this by b(T),

and we will have

T T
b(T) = ̂  J g(t) dt = ̂  .}' g(t) dt

%
because g(t) =0 for t < to.

Suppose there is a single wave in the course of the primary investment

and that the primary investment is fairly constant before and after this

wave (as in Figure 5). In this case there will also be a damping with the

repetition phenomenon in the sense that the relative fluctuation in the rein-

vestment is smoothed with time, as we now have

The damping will take place the quickeij the flatter is the reinvestment

wave and the smaller is the durability v of the capital objects in relation

to the width of the primary investment wave. "By the width of the primary
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investment wave is meant the distance in time between the point before and

after the wave from which the primary investment is fairly constant. This

is obviously not a precise definition of the term wave-width. It is only

a geometrical illustration of the concept. I think, however, that it is

sufficiently exact for the following analysis.

Figures 5 and 6 give an impression of the importance of the wave-

width for the fluctuations in the reinvestment and for the damping of these

f luc t uat ion s.

In Figure 5 the wave-width is only a fraction of the durability v of

the capital objects. The result is a marked periodicity in the reinvest-

ment. The secular movement appears also distinctly. As time passes, the

t(T)relative fluctuations, i.e. the fluctuations in the ratio , /"( will be

damped. This would be easier to see if the reinvestment curve in Figure 5

had been drawn on logarithmic scales.

In Figure 6 the wave-width is several times the durability of the capi-

tal objects. Besides the wave is slacker. The consequence is that the

damping of the fluctuations of the reinvestment sets in practically immedi-

ately. In return the secular movement is the more pronounced.

If the wave-width decreases towards zero at the same time as the primary

investment becomes zero outside the area of the wave, there will result as

a limiting case the phenomenon which we called the pure repetition phenomenon

in the introduction.

5. The General Problem

In the preceding sections I have investigated en the one hand the effect

of a single primary investment taking place at a certain time and having a

certain durability distribution, and on the other hand the effect of a .-



continuous primary investment of capital objects of one and the same durability.

The general problem is to investigate the effects of a continuous primary in-

vestment having in each moment of time a certain durability distribution, which

may change with time.

In this case the variations in the reinvestment are a composed phenomenon,

where both the distribution phenomenon and the repetition phenomenon assert

themselves.

I am not going to analyze in detail the fluctuations in the reinvestment

in this general case. I will be content to give the basic formulas for the

relationship between primary investment, reinvestment and capital mass. It

will hardly be possible to go deeper into the general problem, theoretically

or statistically, without taking these formulas as the starting point.

With the distribution phenomenon where we were only concerned about illus-

trating the durability distribution of a single primary investment being in-

jected at a certain point of time, the primary investment could be represented

by a mass distribution along the straight line AB in Figure 2 (as we could

imagine AB being extended ad infinitum). With the composed phenomenon the

primary investment is to be represented by a mass distribution in the plane.

This is to be understood in the following way: For every point (tv) in

the plane (Figure 7) there is a certain density P(tv). We assume that P(tv)

is continuous so that the mass in the plane segment dt dv is P(tv) dt dv.

This means that between time t and t + dt there is injected a primary invest-

ment of capital objects P(tv) dt dv, which has a durability between v and

v + dv.

This primary investment will occasion a first-time reinvestment of the same

magnitude P(tv) dt civ., but distributed between time t + v and t + v + dt + dv,

and a k-th time reinvestment of the same magnitude, but distributed between
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time t + kv and t +• kv + dt + kdv. See Figure 7 where the primary investment

is double shaded, the reinvestment single shaded. The way in which the rein-

vestment is distributed between t + kv and t -t- kv + dt + kdv is represented

by the trapeziums in the part of the Figure which is above the time axis.

This part of the plane is to be imagined as a vertical plane clapped down

in the plane of the Figure. In this vertical plane the reinvestment curve

is to be represented in the same way as in Figures 3., 5, and 6. If we for a

moment consider dt and dv not as infinitesimal but as finite magnitudes and

assume that P(tv) is constant inside the rectangle dtdv, but zero outside of

this, the trapeziums above the time axis will correspond to the partial curves

in Figures 3, 5, and 6; Figure 7 gives then a representation of the way in

which the reinvestment behaves when there is injected between t and t + dt

a constant primary investment which in every moment is continuous and equally

distributed over the durabilities between v and v + dv. This is the most

simple form of the composed phenomenon. At the beginning the reinvestment

will show periodic fluctuations represented by the trapeziums. The resultant

curve will only contain one partial curve to begin with (one trapezium).

As time passes the amplitude of the oscillations is damped: the trapeziums

become flatter and more lengthened. At last the trapeziums will begin to

work into each other (the resultant curve is going to contain several partial

curves), which in addition contributes to dampen the fluctuation in the annual

reinvestment. The trapeziums start to work into each other the sooner, the

greater dv is in relation to v.

It is interesting to compare the composed phenomenon with the distribution

phenomenon and the repetition phenomenon. The trapeziums resemble the partial

This example is due to Dr. Schoenheyder. Dr. Schoenheyder has for one
thing emphasized the rhombic shape of the reinvestment figures.
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curves of the distribution phenomenon in the sense that they gradually become

more flattened^ but there is a difference in so far as the partial curves of

the distribution phenomenon are rectangle contours when the primary investment

is uniformly distributed between the durabilities v and v + dv. The trape-

ziums in Figure 7 resemble the partial curves of the repetition phenomenon

only in the sense that there is a certain accordance in the distance of time

between two succeeding partial curves (trapeziums). In other respects there

are differences. Thus with the repetition the partial curves would be rec-

tangle contours, and these would gradually not become flattened. We jmay there-

foresay that the distribution phenomenon contributes to a greater extent than
)

the repetition phenomenon to mark the composed phenomenon.

I return now to consider dt and dv as infinitesimal magnitudes. Above

(Figure 7) I investigated how the effect of an element of primary investment

propagated itself forward in time. To derive the general formula for the

relationship between primary investment and reinvestment we must make the

converse consideration (Figure 8).

Between T and T + dT there is reinvested for the k-th time a certain

quantity of capital objects of durability between v and v + dv. These capital

objects were initially invested between T - kv - kdv and T - kv + dT. See

Figure 8 where the primary investment is still double shaded, and the reinvest-

ment single shaded. The magnitude of the reinvestment is consequently equal
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to P(T - kv, v) dT dv. Let R(Tv) denote the reinvestment of v-year capital

objects at time T, so that there is reinvested between T and T + dT a quantity

R(Tv) dT dv of capital objects of durability between v and v + d'v, and hence

CO

(11) R(Tv) = £ P(T - kv, v) .
k=1

If the primary investment starts at time t.,, we must put P(tv) = 0 for t < t,.,.

The total reinvestment at time T of capital objects of all durabilities is

00 CO CO

(12) R(T) = f E(Tv) dv = E J P(T - kv, v) dv .

0 k=1 °

The same expression can also be derived by another method of reasoning -

(Figure 7). The capital objects which are initially invested between t and t + dt

and being reinvested for the k-th time between T and T + dT, have a dura-

T - t — dt T — t + dTbility between - • - and - - - . The quantity of these capital
K K-

T — i"
objects is P(t, — r — ) times the content of the shaded area in Figure 9.

This content is — : - . This is obviously the same for the area element to
JK

the left (the primary investment element) as for the one to the right (the

reinvestment element). The quantity of capital which we consider, is there-

fore equal to

1 P(t, £•—&•) dt dT'

The total quantity of capital which is initially invested between t and t + dt
O3

1 T — t
and being reinvested between T and T + dt is thus equal to dt dT £ k̂ '̂ — p — )

k=1

i.e. the total reinvestment at time T,

CO f£ CO 00

(13) B(T) = Z J P(t, ) dt = E J p(T - kv, v) dv
k=1 -co K K k=1 o

which is the expression we have derived earlier.

The average reinvestment is defined by a line of argument analogous to

the one used above. The primary investment element P(tv) dt dv recurs every
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v-th year, which gives an average annual reinvestment of •*--' — .

This expression, integrated over all occurring durabilities v and for all

points of time t up to T of primary investment, gives the average reinvest-

ment per year at time T. Let this be denoted A(T) and we have

T ^
A(T) - ,) dt J' dv £&*! .

-«9 0

The total capital mass existing at time T can be determined, in the fol-

lowing way. Let C(Tv) dv denote the quantity of capital objects existing at

time T having a durability between v and v + dv. The quantity of v-year capi-

tal objects at time T is evidently the sum of all primary investment of v-year

capital objects which has taken place up to time T, because the capital objects

that once have entered into the capital mass will be maintained according to

our assumption. We have then

T
(U) C(Tv) = J P(tv) dt.

_co

The quantity of capital objects being built as v-year ones and whose age

at time T is T must on the other hand be equal to the total investment (primary

investment plus reinvestment) of v-year capital objects that took place at

time T - T, provided T = v.

If total investment is denoted o(tv) = P(tv) 4- H(tv), then there is at

time T a quantity 0,(T - r, v) dv dt of capital objects which are built with a

durability between v and v + dv and whose age at time T is between T and

T + dr (r = v). At time T there is then a total quantity of capital objects

being built with a durability between v and v + dv equal to

v T
dv J Q (T - T, v) dr = dv / Q(tv) dt.

0 T - v
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Hence we have
T T T

(15) C(Tv) = .f Q(tv) dt = J P(tv) dt + J E(tv) dt.
T-v T-v T-v

If this expression is compared with (14) we see that we will have

T-v T
/ P(tv) dt = f R(tv) dt.

-co X-V

Or when T (which is arbitrary here) is substituted by T + v

T T+v
(16) / P(tv) at » j B(tv) dt.

_03

T

The total primary investment of v-year capital objects that has taken

place up to an arbitrary point of time T is thus equal to the total reinvest-

ment of v-year capital objects which takes place from T to T + v. That ex-

pression (16) is correct ca:i also be seen directly from the fact that every

element of v-year capital objects which is initially invested up to time T

must recur once and only once between T and T + v. The expression follows

also from (11), as

T+v
l(tv) dt =

k=1 T k=1 T-kv -«

C+v «> T+v °° T-(k~l)v T
J R(tv) dt = Z / P(t - kv, v) dt = Z J P(tv) dt = J P(tv) dt

k=1 T k=1 T-kv -<°

It follows then from (16) that the capital mass C(Tv) must be equal to

T+v
(17) b(Tv) = | R(tv) dt.

T

The quantity of v-year capital objects which exists at time T can thus be

expressed in three different ways; either by the primary investment, or by

the reinvestment or by the total investment. First it is equal to the sun of

all primary investment of v-year capital objects which has taken place up to

time T (formula (14))> secondly it is equal to the sum of the reinvestment of
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v-year capital objects which will take place between time T and T + v (formula

(17)), thirdly, it is equal to the sum of the total investment of v-year capi-

tal objects which has taken place between T - v and T (formula (15)).

The total quantity of capital objects of all durabilities which exists

at time T can analogously be expressed in the following three ways:

T co T+v °° T ®
(18) C(T) = J dt J dv P(tv) = J dt J dv R(tv) = J dt J dv Q(tv) .

-» 0 - T O T-v 0

In conclusion I will indicate how the distribution phenomenon and the

repetition phenomenon each in their way can be thought of as a limiting case

of the composed phenomenon.

The mass distribution in the (tv) plane represents the distribution

of the primary investment according to time (horizontally) and according to

durability (vertically). Imagine that the whole mass distribution is com-

pressed horizontally (retaining the vertical distribution), so that the whole

mass is concentrated in the segment to to t,, + dt. We can choose the zero

point of time so that t- = 0. The segment which we consider, is then the

segment from 0 to dt. When the sass is compressed, the density inside the

segment becomes inversely proportional to the width of the segment. Inside

the segment (i.e. for 0 S t ~ dt) we have then,
/ \°

P(tv) ~̂p where f (v) = f p (tv) dt
a"c _<x>

and P(tv) is the original density distribution. Outside the segment we have

P(tv) = 0.

If this is inserted in (13) we get

« dt , f(T ~& ) »
R(T) = Z / i-1-!̂  at - E(f)

k=i b k dt k=i K
which is .just the formula (2) of the phenomenon of distribution.
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If we on the other hand imagine the mass distribution in the (tv)

plane "being compressed vertically (retaining the horizontal distribution),

so that all mass is concentrated in the segment v to v + dv, then P(tw)

inside the segment (i.e. for v = w = v + dv) is equal to ̂ ' where
CO

g(t) = J P (tv) dv. Outside the segment P(tw) = 0.
0

Insert this in (13) to get

R(T)» 2 / ^ f ^ 2
k=1 v av k=1

which is just the formula (10) of the repetition phenomenon.
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