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'Changing Harmonics and Other General Types of
Components in Empirical Series.

By Ragnar Frisch (Oslo).

The method outlined in the present article is an attempt
to approach the general problem of components in empirical
series by a principle less rigid than the principle of analytical
formulae with constant parameters, on which the usual methods
‘of curve fitting, harmonic. analysis etc. are based. The main
points of the method were first set forth in April 1927 in an
article: The Analysis of Statistical Time Series, mimeographed
for private circulation. The inethod is actually worked out
" with cousiderably more details than here given. Numerical
applications are also. under way. I hope that a full account
of the method, accompanied by extensive numerical apphcd-
tions, may be published some time next year.

1. vFunctional Moments.

. Consider quite generally a function w () which, according
to a certain principle, can be expressed as the sum of n other
functions |

w (t)'zglx(t)+ T +yn(t)-

"The functions ¢, -y, will be called the components of w.” For
convenience the variable ¢ may be considered as time.

Let @, be a functional operation, depending on the pzu‘w
meter &, and having the following two properties:
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(I). If » and v are functions of #, and « and b are
constants, then

‘O, (¢w+ bv) shall be equal to a@yu+bd,v _
(II) " @y shall be equal to ¢! ((=1,2...n)

where g; is some function of ¢ (independent of %) and 1, is a
known function of y; (independent of £), such that the inverse
function, .i. e. y; as a fanction of 7;, is uniquely determined,
the uniqueness eventually being established by some additional
condition ‘as to y; (fer instance the condition that y; shall be
rveal, or lying between certain limits'ete.). The factor g; will
be called the principal factor of yi. As a special case y; may
depend on a certain parameter, the princepal parameter «;, in .
such a way that the principal factor g¢; is a known funetion
of «; (eventually independent. of ¢}, and the inverse function,
i. e. «; as a function of ¢;, is uniquely determined (eventually
through some additional condition as to ).
The function of ¢ '

Ly = Ouw=gly+ o+l

will be called the Ath order functional moment of the set of
functions y; ...yn. While the ordinary moments characterize
the values asstimed by a function in a set of points, the func-

tional moments characterize theé nature of a set of functions.

The following are some examples of types of functions
y: and operations @, satisfying the above conditions.
Let the components be of the periodic form

(1.2) : yi=Agerit+ Biemrit ((=1,2...n)

Ai, B; and p; being arbitrary constants (no assumption being
made as to the commensurability -of the p;). The only reason
for considering the form (1.2) instead of the form

i = C; sin (ai + o t),
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is to take care of the case where one of the constants A4; and
B; is zero. In any other case nothing is gained in generality
by infroducing cosine terms beside the sine terms.

If the components are of the form (1.2), we may for
instance take as @, one of tlie following operations: 1) The
derivative D" of order 2h, which gives n=y;, 0/=pi. 2) The
finite central difference of order 24, i. e. 42" defined by

Ju(t) = 1¢(i+ 0) — 2u(f) + u(t — ),

which gives

Ni =Y 0T (2 sin Qf%)“,

‘where' a; = pﬂ"/v—hl. 3) The symmetric moving total L* de-
fined by ‘ '

t+1 Ca .
Lu (t)=fw(t—'r)u(r) dr=fw(g‘)(u(t+§)+u(t—§))d§

t—2 - 0 V

 (£) being a weight function satisfying w (§)=w (—&). This gives
0= 1Yi gi=2‘/w(§)pos akdE '
0
If
p .
2fw(§)d§=1 o -

0 [ 4

we have a moving average. 4) The symmetric moving total
A" defined by '
/_. :
Au(t) = wgu(t)+ D wj{u(t+706)+ul(t—jd),
. j=1
which gives

2
N =i, 0= w,+ 2 D wjcosjda;.
. _ =




In the case of equal weights, wj==1, we get

0;=sin (22 +1) ‘52“ / sin df‘ .

&

5) The composite operation @,= D2+t L&'+ where ¢, q’, b, )
are non negative integers. This gives

2b b

ni=p2e% Y, or=po,

‘where ¢, designates the expression for ¢/ in the example (3).
6) The composite operation @ = g2@+b1 4a'+0'% which gives

m= g0l yn o= d,

where ¢, and ¢, designate the expressions for ¢: in the examples
(2) and (4) respectively. T) @, — 40Fbh goctbeh A FOh
where A, ... 4, are z different types of moving totals. This
operation contains as a special case the operation (6), for 2
(and more generally #*") can be looked upon as a special case
of A (namely a .4 with some of the weights negative). In
all the cases 1—7) the p; (or the «) may be cons1dered as the
principal parameters. .

If y:= A:t?:, we might take @, ==6" where 0 is the

d .o

operation 0 = ¢ T This gives n: =w:, 0: = pu.

If the y; are normal distributions

A .
g = — g t—mpnoy

O‘[V?TC

with the same mean s, we might take as @, the operation
of replacing ¢ by t+d, where d=—(t—m)+V (t—m)*+ 4 + Bh.
4 and B being two arbitrary functions of ¢ (independent of A).
This gives 5;=e 2%y, g, = ¢ 529  In the last example g; -
is a function of ¢, Whlle in the other examples ¢; is indepen-
dent of ¢. ' :
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Let p,q...r and 9, q ... " be two sets of v arbitrary
non negative integers. And let 7,7...% be a set of » integers
picked from the set 1,2...7n. Let p,q...r,s and 4,7...4,1
be similar sets of »+1.integers. We introduce the following
notations. ) ’ ‘

H . i
Uptp' s 7/'p+7-'5§

1.3 dpoon=1. ... ... L Ao = e
-3 607 o e = Ay
: Ur+p' 7/r+'i i
4 el
1.4 Dipooomy =1 . ’
(1 4) Gop
|epei. ..o
x o} e e;
‘ n - 3 i
(1.5 (.()‘:Qd‘ Lersy T H . .
(1.5) ¢ ({)A,) %@%Q,@...Q}L,%m
| 9;'0?5

The quantity Qs is a residuum in the sense that it does
not contain any of the terms #;.... More precisely: it does
not contain any term whose principal factor is equal to. one
of the quantities g;...gr. This holds good for arbitrary non
negative integers p,q...r, 5. If all the different values o
which occur in the set g,...0n are repreéented in the set
0i...0r, then @Qy==0 for all non negative p...r, s. Putting
vy =1, we see in particular that we always.h;wé (Q,y(p (2,-,,;,3)20'

LNy

identically in ¢. o
The expansion of (1.3) in terms of #,...7. is

(1- 6) -Z/(p’...r’): Ezk sz;;)l)( L. ‘)775---771;

plort
pP...r ik

the summation being extended to combinations without repe-.
tition of the v integers ¢...% picked from the set 1,2...xn
For v ==n we get in particular -

(.7 - Aw-y= Doy Dty e
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Formula (1.6} is proved thus: VIntro'du«,in(r the expression
(1.1) for the quantities v in ‘the first row of d( ) and:

p...T
‘using the ordinary rule for summation- of determinants which
are identical except for the elements of one row, we get

< v+ op+q +r' ]

T AN o §

| < lqu+]) Ugtq' - 'Uq—§—r'§
T A i

U S |

§@r+11' Urtq' o0 Er—}-r'i

Repeating the process on the second row in the last
determinant, and so on, we finally get

n+p’ 41!
Z I .. Q?

If at least two of the » mteoels ...k are equal, the
coefficient of N . ..nmk in the - last formula vanishes. The

determinant zl(,, ) can therefore be written in the form
P

& A g ... where the summation is extended to’ com-
blnatlons without repetition, and the coefﬁmems 4 are inde-
pendent of the quantities 7. -

) This being so, we can determine one pmtlcular of the

coefficients 4, say A4;..x by putting ip=---=m=1 and all

the other quantities 7 equal to 'zer.,o.‘ The determinant ob-

tained frbm d(g;) by this specialization is exactly the value

of 4; .. Hence, by the ordinary rule of determinant multi-
plication, di..x==Dpy..y Diyr... .
We further have the formula

ed] el
g P n i Yy
| | — -
g 2l
iv,,. -mi 195’...@;?
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which is readily proved either by conclusion from v to v-+1
or directly by using the rule for summation of determinants
which are identical except for the eclements of one row.

Let ¢ be an arbitrary non negative integer. Changing
p to p+d, q to g+ d ete. in the last formula, we get
‘ (1 8) D]) Up+d + -k Ds’U.‘H—J: (L)J

»

b

where @y is defined by (1.5), and D,...D, designate the
coefficients of the polynomial in ¢

N

Lo
(1.9) D (e) = o QZ§=D1;0”+-- + Dyg*
ey

In particular we have Ds.: ])<,,_”,.). For »=# the right
ik '

hand side of (1. 8) vanishes identically. in ¢ for all non nega-
tive values of . :

-

2. The Principal Equation and the Determination of the
Individual Components.

Suppose that the function « and the number 1 of com-
ponents are known. ~Furthermore . suppose * that we know
operations @, and the corresponding functions v, = @, at
least for h=a,a+1...a+n; 3,8+1...8+n;...p,y+1...y+n,
where «,8...y are » given non mnegative integers such that
.. vanishes at most in discrete points. The following
argument refers to points. where A, 1+ 0. From (1.7) is
seen that in such a point all the principal factors ¢ must be
different, and none of them can be equal to zero unless «=0.

Let pg...nys, p'yq’ .. .#',s and 4,7...% have the same
significance as before. Supposing D(?.,,;):PO we shall con-
sider the polynomial 'in ¢ s

N
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|8
~1

Vptp! Up+q' cee Ut 0P )

Vyt p' Yyt q' Tq+ A 0" ‘
(2.1) dlo) =1 .. ..

Vrdp' - (P L Vpgr! o"

17::—;-1)’“—}?2)' VUs+q' _I{q' e L‘s+.'r"—R,-'Qs

where [y = QJ/])(,',.;_ o (s being defined by (1.5). For v =21y
. .. K

the quantities I in the last row of (2. 1) vanishes identically in ¢.

A part from a factor which is independent of ¢ the
polynomial #(g) is identical with the polynomial D (o)
defined by (1.9). More precicely we have

(2 2) D(p;)d(@)zd(p’r’)])(())
. i...k DT,

In fact, multiply the last row of 7 (¢) by D,. This being
done, add to the last row the first row multiplied by D,, the
second row multiplied by D, etc. In the determinant thus .
obtained all the elements in the last row are zero by virtue
of (1.8), except the last element in the last row, which by
(1.9) is equal to D(g)." L

Since D(g) vanishes for ¢;...¢r and (2.2) holds good
identically in ¢;... g, we see that the polynomial A (g) defined
by (2. 1) vanishes for 0 =o; ... 0. :

If o] .. .lor| are great as compared with the other |o],
and the smallest of the integers p’...#»" is >0, the quantities
R may as an approximation be dropped in the las:c row of
(2.1). Therefore, if we put p=0, g==1,...s=7» and, for
convenience, drop the primes on p’,q ..., we see that, if
dp. .0, the v roots of the equation '

VpTUpt+1 .. .VUpsa

Cqlg41 .. Ugtw

VrUr+t ... Urgw

1 ¢ ... g
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may be taken as an approximation to the » principal factors
which have the largest modules. For »=1,2... (2.3) gives
successive approximations. For » =5 the prineipal factors are
rigorously determined as the n roots of (2.3). (even if the
smallest of the non negative integers p...r is equal to zero).
The equation (2.3) may be called the principal equation of
degree v. . .

Let @ be any of the » integers 7...% and consider the
formula obtained from (1.8) by leaving the integer « out of
the set 7...% and the integer s out of the set p...7,s.

If Joi]...|oc] are great as compared with the other |ol,-
and the smallest of the integers p...» is > 0, the term con-
taining 7, will be the principal term on the right hand side
of the formula. We may therefore put as an approximation

ey e .
5 o
3 | ,H;’QZ')' Qllg , .....
(2 4) QH% A . i Ne = \1’1)4-()‘} {UH—J}
. %91‘ . (); | I PP
- : . N
where {} designates that the row g2...¢” has been replaced -

by the row vpig...0m4s. If v=mn, i, e., if the set 7...%k is
the set 1,2...%, the formula (2.4) is rigorous (even if the
smallest of the integers p...7» is equal to zero). "

3. Criteria for the Number of Components.

In a point ¢ where the set of principal factors g ... on
contains at most m distinct values (m=#), all m +1 and’

higher rowed determinants of the type d(pr,,,r') must vanish.
p...7T

This follows immediately from (1. 6), the determinants I now
being (m+ 1) rowed and consequently ‘vanishing. In particular
all #+1 and higher rowed determinants of the type d(p',‘,,rv)

p...Tr
are always = 0 identically in ¢ .
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If m <<u at most in discrete points, the components
i yn might be called distinguishable (under the operation’
@,). This terminology is justitied by the following two facts:
First, if two (or more) of the components, éav y: and y;, have
principal faectors wluch are identical over a certain finite
interval, the sum ?/-» yi + 7, behaves in this interval as a .
sir ;le component under the operation @;. In fact, putting -
0 =0;=9; and 5 =1; + 7, we have @,y=o"x.

Second,' consider. the 7 rowed determinant

Tp Vp+1l .o« Uptan—i

- Tp+1 Vpt+a...Uptn
pn—

Tptn—1Uptn .. . Uptan—2

By virtue of (1. 7) we have

(3.1) Apn="(0,...02)" H (9‘6,‘—@,,).2 Sy

f>u
_where § runs through #=2,5...#% and « through
a=1,2...ﬂ——l.‘ ‘

The last formula shows that #,, can at most vanish in
discrete points if the components are distinguishable and the
quantities 7, ..., are at most vanishing in discrete points.
The only exception is when one of the principal factors say
0: is equal to zero identically in ¢, and p > 0. In this case
¥ 1s equivalent under the operation @, with a non existing
component. This is also revealed by the fact that now 4, ,—r
by (1.6) is equal to

(91-- anH 1...[171'}...77”

A>a

([ ] designating »exclusion of»), and consequently at most

vanishing in discrete points. The preceeding propositions
furnish a lower limit for the number of ‘components. In
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certain important special cases it is possible to develop exact
scriteria. ) ) .
‘If there exists no linear relation with constant coefficients

(not all zero) between the E< :) functions obtained by forming

all products of » factors picked from the set " ... 7, the set
. ..na will be called linearly independent of order ». If the
pl’inc‘ipal factors are constants independent of ¢ and the
quantities 7, ...#. are linearly independent of "all orders
r=1,2..., then by (1. 6) none of the lower rowed determinants

J(‘,',,,',J) (v =n) can vanish identicaily in t. In this case the
p...r .

knowledge of any sequence of determinants 4(,,',/)‘ J(,,',,',J) ete.
Py par .

furnish a necessary and sufficient criterion for the number of
components, the number being equal to » when and only when
the first determinant which vanishes identically in ¢ is n+1
rowed. This criterion is for instance applicable in the case
where the components are sine functions with different (but
otherwise arbitrary) periods, and the operation @, is any of
the operations mentioned in Section 1 in connection with
periodic components. ; ’

4." The Principle of Moving Fit. Cuarvvefitting without
o Parameters. ‘ '

4 Let w({) be an empirically known function. The usual
methods of curvefitting, such as least squares, method of mo-
ments, harmonic analysis etc. are all tof«l methods in the
sense that the totality of the values assumed by w is taken
into account in order to determine the values of the paraweters
which occur inthe analytic formula adopted. The introduction
of these parameters and the assumption that they are con-
stants, is the very essence of the total methods of curvefitting.

The facts indicated in Sections 2 and 3 suggest a prin-
ciple of a different kind, namely the principle of specializing
the nature of the fitted components (the fitted curve itself if
there is only one component), not by assuming some type of
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rigid formula with constant’ parameters, but by assuning that
the components bchave appr ommateh/ @ a certuin way under a
certain type of operations @ -

If analytical formulae with constant parameters intervene’
in this type of ecurvefitting, it is only in order that their
properties under the operations @, may serve ‘as conceptual
patterns to suggest plausible assumptions regarding the approxi- .
mate effect of @, on the cowmponents of the given curve in
the vicinity of a point. From this point of view the method
here considered may also be characterized as a differential
method or a method of moving fit. » o

The following example will illustrate the plmcxple Sup-
pose we have a chain of #» pendula. To a long pendulum with
a great mass is attached a much shorter pendulum with a
much smaller mass, and 'so on. Suppose the whole system is
in movement in a field of gravitation whose intensity is slowly
changing. - The length of the individual pendula may also be
“slowly changing. The fluctuations of the lowest pendulum .
meastired from the vertical throﬁgh the point of suspension
of the system, is given. The- problem is to determine the
individual components i. e., determine the fluctuations of each
pendulum measured from the vertical through its own point
of suspension. :

If the interval of observation is long enough to cover a
considerable total change in the intensity of the field or in
the length of the pendula, no kind of curvefitting with con-
stant period sine functions would be successful. In particular
the harmonic components determined by ordinary harmonie
analysis will have no %eal significence: But in the vicinity of
a point of time the components y; will approximately satisfy
a relation of the form @ng:=o!y: and this vs sufficient to
‘detez mene approximately the ordinates of the 7espectne componcnfs
in -the point considered. , »

Since the process may be repeated in any point (where

«... = 0), the time series representing the individual com-
ponents may be traced approximately. Components of this
type might be called changing harmonics.
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The great generality of the operation @, makes it possible
to try different assumptions and procedures in different cases.
In practice it will be necessary to adopt an operation @, which
do not amplify but rather smoothes out the erratic fluctuations
of the given series «. For instance instead of using iterated
differences alone, it will be better to use such an operation
superposed on a moving average. Or one might simply use
iterated moving averages alone. The -choice of operation @,
in particular the length of the moving average which even-
tually enters into @, has to.be decided upon in each case.
The choice will depend on one side on- the amount of erratic
element present and on the other side on the rapidity with
which the underlying . »harmonic» components are changing.

As is well known, practically any function with »observ-
able» properties (such as a finite number of maxima, minima
and discontinuities over a finite interval eté.) can be developped
in a convergent Fourler series. The procedure of computing
successive harmonic components and considering them as terms
of an infinite series, will therefore often lead away from that
which is the essential point in the analysis of empirical time
series, namely to discover if there should be one or a limited
number of components which are really significan} for. the
phenomenon at hand.

A definite answer to the question of knowing wether a
component is significant or not, can evidently not be given
by formal operations on the empirical data. Some informa-
tions in this respect may, however, be obtained, I believe, from
the results of Section 3. In pr@c’cice where a inore or less
erratic element is present, none of the determinants .7 can be
expected to be rigorously equal to zero for all values of {.
The important question in practice is if the deviation of the
A’s from zero is significant or not.

' Consider the sequence of determinants J(pr ,,">, z/(,,f.,,' ") ete. -
Apa par
Suppose that the (n+1) rowed determinant of this sequence - -
changes sign irregularily and frequently, say in points between
which there is only one or some few points of observation.
Further suppose that: there can be traced quite distinctly cer-
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tain intervals where the n rowed determinant of the sequence
is essentially positive, and other intervals where it is essentially
negative.. If this is the case, the number of significant con-
ponents may be taken equal to . Anything over and above
this should be considered as non significant. The number of
the components being given, the determination of the individual
components might be performed by the method of Section 2.

The principle of moving fit has also an application in
mechanical smoothing. In ordinary mechanical smoothing
“with a central moving-average a great difficulty is encountered
by the fact that such an average has a tendency not only to
eliminate the erratic element, but also to »cut corners», that
is, to dampen the fluctuations of the underlying ctirve, the
true shape of which it is precisely the object to bring
forth. -

Let v, be a h times iterated moving average of the given
‘curve. The elimination of the erractic element is most satis-
factory in the moving averages of high order (i. e., with a
large /). But these averages of high order are exactly the
ones where the troublesom dawmping effect is heaviest. The
problem is therefore to combine the quantities v, (for compara-
tively large values of h) into an expression which is itself not
subject to the damping effect.

Let p...» and p'...7" be two sets of » positive integers.
If the number of underlying components in the given curve
is », and each component is of the changing harmonic type, we
have approximately 0 ,, )-—O identically in ¢ By this

equation the original, undamped curve, i. e! 7, is explessed
in terms of the higher order moving averages. This expression,
namely

; ,
- LU
' | e pir |
N C P Upr
I A b |
. 0 = N
. A N
z § ! Trip o .. Urir' |
iUr Ur+p' oo Ur+r’%

may therefore be adopted as a smoothing formula.
16—28531. Skandinavisk Aktuarietidskrift 1928;
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A consequence of our ‘theoretical assumption is that if
there exist zeros of the denominator in (4. 1), these points will
also be zeros of the numerator. In practice this might not
hold good rigorously, so that the computation of v, according
to (4.1) will be uncertain in the v1e1mty of the zeros of the
denowminator.

This difficulty might be overcome by wusing short interval
interpolation instead of direct computation in the vicinity of
the zeros of the denominator. Or one might use the following
procedure: Instead of a sihgle set of integers p...» and
P07, let us consider sevéral sets. Let N, N,... and DD, ...
be the corresponding values of the numerator and denominator
respectively in (4.1). The absolute value of the erdinate of
the smoothed curve may then be taken as the square root of

the expression (N;-+N;+ - )/(Di+D;+---). Or one might
~adopt any other average of the ratios N,/D; which is such
that the denominator of the average can only vanish if all
the D); vanish separately. :

5. Graphie Approximation to Changing Harmonies.. The
Method of Normal Points.

Consider a 2/ times iterated finite difference operation
superposed on a moving average. Let v, be the result of this
operation performed on the given curve. Suppose that the
components are of the nature of changing harmonies. And
suppose that [g;| is large as compared with all the other
principal factors, over the entire ¢ interval comsidered. This
means that the curvature of the other components is negligible
as compared with the curvature of y; (except in the vicinity
of the points where y, changes curvature). The other ¢om-’
ponents will therefore be practically eliminated in v, and the
higher va. The zeros of vn (hR=1) well consequently coincide
approximately with the zeros of v,.

This suggests the following graphic approximation to y,:
Pick out the inflexion points of the smoothed curve w. These
points may be called be normal points (because it is approxi-
mately in the vicinity of these points that y, passes its nor-
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mal). Join every two consecutive normal points by a straight
line, or" draw a Ath degree parabola through /+1 consecutive
normal points, or use any other plausible method of interpo-
lation. The series S; thus obtained represents approximately
the residuwm of « after elimination of y,, and w— S, repre-
sents approximately #,. It should be noticed that the error
in locating the zeros of y, by this method is always in the
direction of damping the oscillations of the residuum .

If it is further plausible to assume that |g,| is large as
compared with the rest of the principle factors, the series S,
may be treated in the-same way, thus eliminating , and so
forth. This method might be called the method of normal points.

The normal points for y;, may also be located, by iterated
moving averages. Let v, be a h times iterated moving average
of the empirically given curve. If the curvature of the other
components is negligible as compared with the curvature of
iy (except in the vicinity of the points where ¥, changes cur-
vature), then .y, passes zero. appi oxzmatelv/ i the pomto where
vy and v, tutersect.

The essential point in the methods here considered, is the
fact .that the operation @, considered (iterated differences’ or
iterated moving averages) intensifies the relative importance
of oue particular term of the sum %, 4+, + ---. That is to
say, one particular of these terms is multiplied by a factor
which is large as compared with the factors with which the
other terms are multiplied. The idea therefore naturally pre-
sents itself to generalize the method of normal points in the
following way: Let v, be a linear, functional operation de-
pending on the parameter x and being performed, not with
respect to f, as the operation @, but with respect to h. Let
wy be the effect of vy, performed on wv,. . being linear, we
have ° . ‘

Wy == Z3 00k 1
where

Oix = w% QZL ‘

By a suitable choice of 1. we might secure a very great ratio

between o1, angd the other oix, even if the ratio between ¢
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" and the other ¢ is not particularly great.  If, for instauce
U, is a finite difference operation of order x and interval d,
1. ey W, =d* A% being defined by A wp=wusis—ur, we have

010 == 0" (0! — 1)*.

If the components are of the nature of changing harmonies,
and @, is an iterated moving -average, o; will be all the closer
to unity, the longer the waves of the component in question.
The relative importance of the component with the shortest
wave, say y,, will therefore be strougly intensified by tle -
operation 1, @, provided we .choose - just large enough to -
eliminate the erratic element (eventually 2==0) and choose x

as a relatively large positive integer; ¢ might be put =1 (or
" larger). If h, x and 0 are disposed of in this way, the func-
tion of time

4

We=d" vy = Z‘, (=P () vrror

k=0 ’ . .

Y

will pass zero approximately in the same points as y,. For
increasing x we get successive approximations. If the location
of ohe particular normal point of y; is practically unaffected
by a further increase in #, the approximation may be.taken
as satisfactory. The 'approximation will of course be-all the
better the closer the length of the moving average is to covering -
just one wave of y,. ‘
' ‘A final correction may be obtained by considering the
points where an n-rowed determinant of the type (1. 3) van-
ishes. By (1.7) thesewoints -are exactly the points where at
least one of the compomnents vanishes. o
The method of normal points may be refined, in another
direction, as. follows. Consider any of the operations @, and
let g;...o¢ be the » principal factors which have the greatest-
modules. If the set o;...¢r is determined approximately as
the solution of (2.3) and then introduced in the right hand
side of (2.4), we get an expression which passes zero approxi-
mately in the same points as 7,.




