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In the following lines the problem of linear correlation will be considered from the 

point of view of quadratic forms and linear transformations. The vector and matrix 

notation is found to be of great advantage, so it will be used extensively. I shall first 

define the notations used and state some classical facts from the algebra of matrices. 

The application to statistical variables of this algebraic tool will lead in a simple and 

most natural way to various results, some of which are known, and others which are 

new so far as I am aware. 

I. STATEMENT OF SOME FACTS FROM THE ALGEBRA OF MATRICES. 

1. VECTORS. 



A set of n quantities x1 . . . xn is called a vector and denoted by a small heavy faced 

letter x = (x1 . . . xn). The quantities x1 . . . xn are called the components of the vector. 

The i-th component of the vector x is also denoted (x)i. In distinction to vectors, 

scalar quantities will be denoted by ordinary (not heavy faced) letters. 

For n = 2, 3 x is represented geometrically by a directed straight line from origin to 

the point (x1 x2) or (x1 x2 x3) respectively. For the sake of convenience the geometric 

language is used for any n. For our purpose it is immaterial if we think of x as 

representing / the point (x1 . . . xn) or the straight line from origin to this point. 

Sometimes it is convenient to speak of “the point x” instead of “the vector x”. 

The equation x = 0 means that each component of x is zero. The product cx , or 

shorter cx, of the scalar c and the vector x is defined as the vector obtained by 

multiplying each component of x by c. The sum of two vectors x and y is defined as 

the vector whose i-th component is the sum of the i-th component of x and the i-th 

component of y. Evidently cx = xc and x + y = y + x. The product x · y, or shorter 

xy, is defined as the scalar x1y1 + . . . + xnyn. Evidently xy = yx. The scalar 

x  x + xx  is called the modulus or the length of x. The convex angle (xy) 

between the two vectors x and y is defined by cos (xy) = xy/xy. Two vectors x and y 

are orthogonal to each other when, and only when xy = 0. Two vectors x and y have 

the same (the opposite) direction when, and only when xy = + xy (xy = – xy). The 

vector x/x is the unit vector (i. e. the vector of length 1) in the direction x. 

The product ax can be looked upon as a linear form in x1 . . . xn with coefficients a1 . . 

. an, The equation a0 + ax = 0 represents a plane in (x1 . . . xn) space. The unit vector 

a/a is the normal of this plane. The plane goes through the origin of x when, and only 

when a0 = 0. The plane itself is defined indiscriminately either by the equation a0 + 

ax = 0 or by the equation – a0 – ax = 0. Fixing one of these two equations by 

convention means defining a positive and a negative side of the plane. If such a 



convention is made, the distance (measured perpendicularly) from a given point x  to 

the plane a0 + ax = 0 is equal to (a0 + a x )/a. 

2. MATRICES. 

A set of n2 quantities aij (i, j = 1, 2 . . . n) is called a matrix and denoted by a heavy 

faced capital letter 
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The quantities aij are called the elements of the matrix. The ij-th element of the 

matrix A is also denoted (A)ij. 

The diagonal containing the elements a11 . . . ann is called the principal diagonal of A. 

The elements in the principal diagonal are called the diagonal elements of A. The 

vectors ai = (ail . . . ain) / are called the direct (vector) components, and the vectors *
ja  

= (a1j . . . anj) the transposed (vector) components of A. 

The matrix obtained from A by interchanging rows and columns, is called the 

transposed of A and denoted * *( )
ij

aA , where *
ij jia a . If aij = aji, A is called 

symmetric. A matrix with real elements is called a real matrix. 
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 is called 

the unit matrix. 

The equation A = 0 means that each element of A is zero. The product c · A or 

shorter cA of a scalar c and a matrix A is defined as the matrix obtained by 

multiplying each element of A by c. The sum of two matrices A and B is defined as 

the matrix whose ij-th element is the sum of the ij-th element of A and the ij-th 

element of B. Evidently cA = Ac and A + B = B + A. 

The determinant value of the matrix A is called the modulus of A and denoted A = 

|A|. The matrix (determinant) obtained by picking out q rows and q columns 



(1 )q n   from A, is called a q rowed submatrix (q rowed minor) of A; q is the order 

of the submatrix (minor). A submatrix (minor) whose diagonal elements are diagonal 

elements of A, is called a principal submatrix (principal minor) of A. A is said to be 

of rank ρ (1 1)n    if it contains at least one ρ rowed minor which is different 

from zero, while all higher rowed minors vanish. A is said to be of rank n, or to be 

non singular if A ≠ 0. Otherwise A is called singular. If A = 0, A is said to be of rank 

0. A necessary and sufficient condition for a symmetric matrix to be of rank ρ, is that 

it contains at least one ρ rowed principal minor, which is different from zero, while 

all higher rowed principal minors vanish. 

A real symmetric matrix is called positive definite if all its principal minors (of all 

orders) are non negative. The case A = 0 being however excluded. In this case A 

might be called zero definite. If a positive definite matrix is non singular, all its 

principal minors are positive, not zero. Hence the determinant value of a positive 

definite matrix which contains a vanishing principal minor, must be equal to zero. A 

necessary and sufficient condition for a real symmetric matrix A to be positive 

definite (respectively positive definite and non singular) is that all the n principal 

minors 
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are non negative (respectively positive, not zero). / 

In a positive definite matrix all principal submatrices (of all orders) are positive 

definite. If A is positive definite, – A is called negative definite. If A is positive 

definite, cA is positive, negative or zero definite according as c is positive, negative 

or zero. In distinction to definite matrices, all other matrices are called indefinite. 

The product of two matrices AB (taken in this order) is defined as the matrix whose 

ij-th element is (AB)ij = ∑k aik bkj. This formula is analogous to the formula for 



multiplication of determinants. Hence the determinant of a product of two matrices is 

equal to the product of the determinants of the factors. A product of several matrices 

is associative but not commutative. A product of sums of matrices is distributive if 

account is taken of the difference between pre and post multiplication. The 

transposed of a product is equal to the product of the transposed taken in the reversed 

order. The rank of a product is never greater than the rank of any of the factors. The 

rank of a product of two matrices, one of which is non singular, is equal to the rank 

of the other matrix. If A has one of the properties of being definite, positive definite, 

definite and non singular etc., the matrix *CAC  has the same property, provided C is 

non singular. 

If *A  is any matrix, *AA  is a symmetric matrix because it is a matrix which is equal 

to its transposed. A matrix O such that * OO E , that is ∑k oik ojk is equal to 0 or 1 

according as i ≠ j or i = j, is called an orthogonal matrix. The determinant of an 

orthogonal matrix must be equal to +1 or –1, for  
2

= = =1.O O O E k 

p factors A is denoted ( 1)p p A , A0 is defined as equal to E. Let f(λ) = ∑k ak λ
k be a 

polynomial in λ. From the definitions laid down follows that B = f(A) is a uniquely 

determined matrix. B is called a polynomial matrix in the argument A. If f(λ) = 

g(λ)·h(λ) identically in λ, g and h being polynomials, then f(A)=g(A)·h(A). A 

polynomial matrix in a symmetric argument is symmetric. If A is any matrix, there 

exists a polynomial in λ of degree p n , which vanishes if λ is replaced by A. The 

polynomial a(λ) of lowest degree such that a(A) = 0, is called the typical polynomial 

for A. By convention a(λ) is determined so that the coefficient of the highest power 

of λ is equal to 1. Only one polynomial a(λ) exists for a given A. 

The polynomial in λ, A(λ) = |A – λE| is called the secular (or characteristic) 

polynomial for A, and the equation A(λ) = 0 is called / the secular equation for A. 

The roots of the secular equation for A are called the characteristic numbers for A. 



The secular equation for a real, symmetric matrix has only real roots, in particular it 

has the root λ = 0 of multiplicity n – ρ when and only when the matrix is of rank ρ. A 

real, symmetric matrix is positive (negative) definite when and only when all the 

roots of the secular equation are non negative (non positive). 

A fundamental fact from the theory of matrices is that the typical polynomial a(λ) is a 

divisor of the secular polynomial A(λ). Hence the secular polynomial vanishes when 

λ is replaced by A. Furthermore, the two polynomials a(λ) and A(λ) vanish for exactly 

the same values of λ. The only difference being that some of the zeros might occur 

with a higher multiplicity in A(λ) than in a(λ). 

The cofactor of aij in A is defined as (–)i+j times the minor of A which is obtained by 

omitting the row and column which intersect at aij, that is the i-th row and the j-th 

column. Let âij be the cofactor of aji in A (note the reversed order of the subscripts). 

The matrix Â = (âij) is called the adjoint of A. If A is non singular, the matrix Â/A 

obtained by dividing each element of Â by A=|A|, is called the reciprocal of A and 

denoted A–1. Any matrix has an adjoint, but only non singular matrices have a 

reciprocal. If A is of rank ρ = n,  ρ = n – 1, 2n   , the adjoint Â is of rank n, 1 and 

0 respectively. The adjoint (the reciprocal) of a product is equal to the product of the 

adjoints (of the reciprocals) taken in the reversed order. The adjoint (the reciprocal) 

of the transposed is equal to the transposed of the adjoint (of the reciprocal), so that 

the notation *Â  is unambiguous. The adjoint of the transposed is denoted A
(

. The 

adjoint (the reciprocal) of a symmetric matrix is symmetric. And the adjoint (the 

reciprocal) of a positive definite matrix is positive definite. 

A simple application of the definition of a product shows that AE = EA = A and 

1 1  AA A A E  If A is non singular, the linear matrix equation AX = B is therefore 

solved by premultiplication with A–1 which gives X = A–1B. From this we infer 

11  A A  and  1 1 = n nA A Â A . 



p factors A–1 is denoted A–p. Thus all integer powers of a matrix (with positive, 

negative or zero exponents) are defined, negative powers however being subject to 

the condition that the matrix shall be non singular. If p is any integer, Ep = E. 

It is also possible to introduce fractional exponents. Here we / shall only consider 

square roots. 1/2A A  is defined as a matrix B such that B2 = A. By the 

fundamental theorem that the typical polynomial is a divisor of the secular 

polynomial, it is easy to prove that matrices B with the property B2 = A always exist 

if A is non singular. If further A is positive definite, there even exist real matrices B 

such that B2 = A. In fact, the typical polynomial a(λ) for A has a constant term 

different from zero, because A(λ) has a constant term different from zero, namely |A|. 

Therefore a(λ) can be written in the form a = (g2 – λ)/h where g and h are 

polynomials in λ. Since a(A) = 0, B = g(A) is a matrix such that B2 = A. If further A 

is positive definite, all the zeros of a(λ) are real and positive, and in this case g(λ) 

might be chosen with real coefficients. The elements of B are consequently real. 
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 which is of the same type as E, having however d1 . . . dn as 

its diagonal elements instead of 1, . . . 1, is called a diagonal matrix. A diagonal 

matrix is evidently symmetric and its determinant value is equal to the product of its 

diagonal elements. A diagonal matrix is of rank ρ if ρ of its diagonal elements are 

different from zero. The adjoint (the reciprocal) of a diagonal matrix is a diagonal 

matrix. The product of two diagonal matrices D′ and D″ is a diagonal matrix whose 

diagonal elements are the products of the corresponding elements in D′ and D″. A 

diagonal matrix is raised to a (positive, negative or zero) power p, by raising each of 

its diagonal elements to the power p. If any matrix A is premultiplied 

(postmultiplied) by a diagonal matrix D, the effect is to multiply each row (column) 

of A by the corresponding element of D.  



If A is any matrix whose diagonal elements are different from zero and of the same 

sign, the matrix obtained by dividing all the elements ija  by + ii jja a , is called the 

diagonally normalized matrix of A, or shorter the normalized of A, The normalized 

of A can be expressed as 
1 1

2 2
 D AD  where 
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, D is called the diagonal 

matrix of A. In any normalized matrix the elements of the principal diagonal are all 

equal to 1. The normalized of A is equal to the normalized of D′AD′, where D′ is an 

arbitrary non singular diagonal matrix whose diagonal elements are all of the same 

sign. / 

3. MATRICES MULTIPLIED BY ONE VECTOR. 

The product Ax is defined as the vector y whose i-th component is 

( )i i k ik ky a x Ax . The product xA is defined as the vector y whose j-th 

component is ( )j j k k kjy x a  xA . Evidently *xA A x  and Ex = x. 

A product of several matrices and one vector is associative if the vector stands either 

before or after all the matrices. An expression like ABCx is therefore unambiguous. 

But (Ax)B will in general be different from A(xB). By introducing the transposed 

matrices it is always possible to carry the vector to one end of the product and thus 

make the product associative. For instance * *( )  Ax B xA B B Ax . 

The vector y = Ax can be looked upon as representing n linear forms i j ij jy a x   If 

the components of y are given, while those of x are unknown, the equation Ax = y 

may be looked upon as a system of linear equations. If A is non singular, the system 

is solved by premultiplication with A–1, which gives x = A–1y. 

The equation ’x Ax  can be looked upon as representing a homogeneous linear 

transformation, whereby the set of variables x = (x1 . . . xn) is replaced by the set 



1
’ ’ ( . . . )’ nx xx . A is called the matrix and A the modulus of the transformation. A 

transformation is called non singular, orthogonal etc. according as A has these 

properties. 

If we have two sets of variables x and y, and both sets are subject to the same 

transformation ’x Ax  and ,’y Ay  x and y are called cogredient sets. If ’x Ax  

while * ’A y y , x and y are called contragredient sets. 

4. MATRICES MULTIPLIED BY TWO VECTORS. 

The notation xAy is unambiguous because x(Ay) and (xA)y according to the 

definitions laid down in the preceding sections, both represent the same thing, 

namely a scalar, the bilinear form = ij i ij jx a yxAy . If x = y, we have the quadratic 

form = ij i ij jx a xxAx . Evidently *xAy yA x  and xEy = xy. 

A product of several matrices and two vectors is associative, if one vector stands 

before and the other after the string of matrices. The explicit formula for a product 

like xABCy is 

 = ij kh i ik kh hj jx a b c y xABCy  / This is a bilinear form with the ij-th coefficient equal 

to kh ik kh hja b c . By introducing the transposed matrices it is always possible to carry 

one vector to each end of the product and thus make the product associative. For 

instance   * *( ) [ ] Ax By C xA C By . 

One of the advantages of the notations and rules laid down in this and the preceding 

sections, is that bilinear forms themselves and transformations performed on such 

forms may be considered from the same point of view. The notions of operand and 

operator thus become equivalent, much in the same way as multiplicand and 

multiplicator are equivalent notions in ordinary algebra. The following is a simple 

illustration. If we perform the transformations ’x Px  and ’y Qy  on the variables 

in the bilinear form xAy, the form into which xAy is carried, is simply determined by 



introducing for x and y, rearranging the factors and multiplying out the matrix 

product obtained:      *  ’ ’’ ’ xAy P A Q x P AQ yx y . In particular, if x and y are 

cogredient, i. e, if the transformations are x = Px’ and y = Py’, we get xAy = 

 *’ ’x P AP y . If x and y are contragredient, i. e. if the transformations are * ’x Q x , y 

= Q–1y’, we have xAy = x’ (QAQ–1)y’. 

In the case of a quadratic form it does not restrict generality if we assume A to be 

symmetric. In the following this assumption is always to be understood when 

quadratic forms are discussed. The quadratic form xAx is called real if A is real. 

A real quadratic form xAx is called definite if it keeps a constant sign for all possible 

real values of the variables (the form eventually vanishing for certain sets of values 

of the variables). A definite form is called positive (negative) definite if its constant 

sign is non negative (non positive). A definite form is called zero definite if it 

vanishes identically in x. This is the case when and only when A = 0 (i. e. when the 

rank of A is ρ =0). A definite form is called definite and non singular if it does not 

vanish for any other set of values of the variables than x = 0 (i. e. x1 = . . . = xn = 0). 

In distinction to definite forms all other real, quadratic forms are called indefinite. An 

indefinite form is therefore a real, quadratic form which for certain real values of the 

variables is positive, not zero, and for certain other real values of the variables is 

negative, not zero. 

A quadratic form is definite, positive (negative) definite, definite and non singular 

etc. according as its matrix has these properties. Criteria for these cases have been 

given in Section 2. In / particular, if A is a positive definite and non singular matrix, 

the form xAx is positive, not zero, for all real values of the variables, except x = 0. 

A classical fact from the theory of quadratic forms is that if xAx is any real, 

quadratic form, there exists a real and non singular transformation x = Px’ which 

carries the given form over into a sum of squares. That is 



xAx = x’ ( *P AP)x’ = x’Dx’ 

where D = P AP  is a diagonal matrix. There even exists an infinity of such 

transformations P. In particular there exists a real orthogonal P. Whatever the 

particular form of P might be, the number of diagonal elements in D which are 

positive, negative and zero respectively, is always the same and determined by the 

nature of A. In particular the number of diagonal elements in D which are equal to 

zero is n – ρ, where ρ is the rank of A. This simply follows from the fact that if P is 

non singular, A and D must have the same rank. A diagonal element in D might be 

called effective or ineffective according as it is different from zero or equal to zero. 

All the diagonal elements in D are non negative (non positive) when and only when 

A is positive (negative) definite. The number of diagonal elements in D which are 

positive, not zero, is called the index of A. A positive definite matrix is therefore a 

matrix whose index is equal to its rank. A consequence of the facts stated above, is 

that if C denotes an arbitrary non singular matrix, the matrix *C AChas the same rank 

and the same index as the matrix A. In fact, putting Q = C–1P and B = * C AC , we 

have *Q BQ = D. 

5. MAXIMA AND MINIMA OF A FUNCTION OF n VARIABLES. 

The essential facts regarding maxima and minima of a function of several variables 

can be stated in a very simple way by using the vector and matrix notation. 

Let f(x1 . . . xn) or shorter f(x) be a real function of the set of n independent, real 

variables x = (x1 . . . xn). We assume that f(x) in a certain domain of (x1 . . . xn) space 

has continuous partial derivatives up to the highest order involved in the following 

argument. 
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In order to indicate that the components of f and the elements of F are functions of 

the variables in the set x, we use the notation 

f = f(x)  F = F(x). 

Now, let x be a fixed point, and consider the distribution of the values of f in the 

vicinity of x. Let h = (h1 . . . hn) where hi is a small increment to the variable xi. The 

vector h represents the total displacement from x. The Taylor expansion of f in terms 

of the increments hi, can be written 

 

 

The analogy between this formula and the formula for a function of a single variable 

is obvious. 

Now, if x shall be either a maximum point or a minimum point for f, it is necessary 

that 

f(x) = 0. 

In fact, if one (or more) of the components of f = f(x) were ≠ 0, we could choose h in 

such ways that the term fh (which for a sufficiently small h  determines the sign of 

the right hand side of the expansion) assumed first a positive and next a negative 

value. The difference f(x+h) – f(x) would consequently not keep a constant sign in 

the vicinity of x. The eventually existing points where f attains a maximum or a 

minimum, must therefore be found among the solutions x of f(x) = 0. 

If any such solution shall actually furnish a maximum or a minimum depends on the 

nature of the matrix F = F(x). This matrix namely determines the distribution of the 

values of hFh. And when f = 0, hFh will be the sign determining term in the right 

hand side of the expansion. The following cases are possible. 

(1) F is zero definite. In this case the rank of F is ρ = 0, i. e. each element of F is 

zero. The quadratic form hFh therefore vanishes identically in h. This is the case 

1! 2!
f f

  
  

f(x) h h F(x) h
(x + h) (x)= K K



which can not be decided upon by the properties of F alone, but where the higher 

partial derivatives of f must be taken into account. 

(2) F is negative definite. In this case the quadratic form hFh can never assume a 

positive value, so long as h is real. We therefore immediately infer that the point x 

now is a maximum point in the broad sense that there are no points in the vicinity / of 

x where f assumes a greater value than in x. In a narrower sense however, x might 

not be a maximum point. We have to distinguish between the following two cases: 

(a) There exist points in the vicinity of x where f assumes a value as large as f(x). In 

this case x is called an improper maximum point. (b) In all points in the vicinity of x, 

the value of f is less than f(x). In this case x is called a proper maximum point. 

Criteria for these two cases are readily derived from F. If F is of rank ρ, there exists 

an n – ρ dimensional plane through x, such that in this plane (in the vicinity of x), f is 

constantly equal to f(x). Anywhere else in the vicinity of x the value of f is less than 

f(x). The vicinity of x is assumed infinitesimal of the second order. If infinitesimal 

increments of higher order than the second are taken into account, the n–ρ 

dimensional variety where f is constant, can in general not be looked upon as a plane. 

To prove the above criterion let us perform a non singular real transformation h = 

Ph’ which carries the form hFh over into hFh = h’Dh’, where D = *P FP is a 

diagonal matrix with n – ρ of its diagonal elements ineffective, i.e. equal to zero, and 

the remaining ρ diagonal elements effective, i. e. different from zero. These ρ 

effective diagonal elements of D must be negative since F is negative definite. In 

order that hFh shall be equal to zero it is therefore necessary and sufficient that the ρ 

components of h’ which correspond to effective diagonal elements in D, are zero. 

Putting these ρ components of h’ equal to zero in the expression h = Ph’ we obtain 

an expression for h where there remain n – ρ arbitrary parameters. This expression 

represents an n – ρ dimensional plane in which f is constantly equal to f(x) (a part 

from infinitesimal increments of higher order than the second). In any point outside 



this plane (and in the vicinity of x) f must be less than f(x) because any such point 

corresponds to a vector h’ such that h’Dh’ is negative, not zero. 

In particular we see that x is a proper maximum point when and only when ρ = n, i. e. 

when and only when the matrix F is negative definite and non singular. If  ρ = n–p, 

the minimum might be called p-fold improper. If the highest part of a surface has the 

shape, not of a peak, but of an horizontal edge, any point on this edge represents an 

improper maximum point. In this case we have n = 2 and ρ = 1. The straight line 

which, in a given point, is tangent to the curve obtained by projecting the edge / on to 

a horisontal plane, represents the p = 1 dimensional “plane” where f(x) is constant (a 

part from infinitesimal increments of higher order than the second). 

(3) F is positive definite. In this case x is always a minimum point in the broad sense 

of the word. The minimum point is proper or improper according as F is non singular 

or singular. The discussion is perfectly similar to the discussion in the case (2). 

(4) F is indefinite. In this case x is neither a maximum point nor a minimum point. In 

certain sections of the vicinity of x f is less than f(x), and in certain other sections of 

the vicinity f is greater than f(x). The quadratic form hFh will namely now be 

negative, not zero, for certain vectors h, and positive, not zero, for certain other 

vectors h. 

The cases (1), (2) and (3) correspond to the cases where the second derivative of a 

function of a single variable is zero, negative and positive respectively. For a 

function of a single variable there exists no analogon to the case (4). A matrix 

consisting of a single element is namely always definite. 

II. STATISTICAL VARIABLES. 

1. THE MOMENT MATRIX. 

Suppose there is made a certain number ω of statistical observations, each 

observation being characterized by the values of n quantitative attributes z1 . . . zn. 

These quantities might be interpreted as the components of a vector z = (z1 . . . zn). 



For the following analysis it is immaterial if the observations are thought of as 

ordered in time or simply as elements in a statistical population. We assume the 

observations ordered in time z(t) = (z1(t) . . zn(t)) simply for the sake of convenience 

of expression. Thus summation over time 
t  only means summation over all the ω 

observations. The variables measured from their means will be denoted x = (x1 . . . 

xn), so that ( ) 0t t x , that is ( ) 0 ( 1,2 )t ix t i n   K . The variables z and x here 

considered will be called observational variables as distinguished from certain 

symbolic variables which will be introduced later. The set z, respectively the set x, 

will be called an n dimensional (observational) set. Most of the time we shall 

consider the set x instead of z. If each actual observation (i. e. for each value of t) is 

represented by a point in n / dimensional space, we obtain a swarm of observation 

points called the scatter diagram. 

The product moments mij (taken about the means) are defined as the quantities 

( ) ( )ij t i jm x t x t  . The symmetric matrix 
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will be called the moment matrix of the set x. Some of the most essential features of 

the statistical material at hand, are revealed by the properties of this matrix. 

The i-th diagonal element mii of M is the sum square of the variable xi, hence non 

negative; /i iim    is the standard deviation of xi. An observational variable 

(which is measured from its mean) is identically zero when and only when its 

standard deviation is zero. A variable might be called effective or ineffective 

according as its standard deviation is different from zero or equal to zero. If all the 

variables are effective, the set might be called an effective set. If no statement to the 



contrary is made, we shall assume the set considered to be an effective set. In this 

case the diagonal matrix of M, namely 

11 ..0
 = ..

0 .... nn

m
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 
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is non singular. 

The set 

(1.1) 
1

2 = 


y D x  i.e. /i i iy x   

obtained from the effective set x by dividing each variable by its standard deviation, 

may be called the standardized set of x, y are the standard coordinates of x, the set y 

is obtained by standardizing the set x. 

The q rowed principal submatrix [ ]q  M K  formed by the q rows α . . . γ and the q 

columns α . . . γ from M is the moment matrix of the subset xα . . . xγ. The 

determinant values of the moment matrices will be denoted 

[ ] [ ]| | | |q qM M     M MK K  

M̂ will be called the adjoint moment matrix. / 

I shall now consider some of the properties of M. I shall first show that M is positive 

definite. 

In fact Mq[α . . . γ] is a Gram-ian determinant. Hence we have the expression1 

1 Kowalewski: Determinantentheorie, Leipzig 1909, p. 321. 
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where the q summation subscripts 1  (1 )qt t q n K  independently of each other run 

through all the ω values of t. From this expression we see that M itself and all its 

principal minors (of all orders) are non negative. Hence M is positive definite. 



In particular we see that M = 0 when and only when the determinant 

1 1 1

1

( ) ( )

( ) ( )

n
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x t x t

x t x t

K
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vanishes identically in t1 . . . tn, i. e. when and only when there exists identically in t 

at least one linear relation 

(1.3) 
1 1( ) ( ) 0n na x t a x t  K  

where the coefficients a1 . . . an are independent of t and not all equal to zero. In 

Sections 6 and 7 the question of linear dependencies in the set x will be analyzed 

more closely. 

I shall next show that the determinant value of a positive definite matrix is at most 

equal to the product of its diagonal elements.2 

2 Comptes rendus de l′Académie des Sciences, Paris. Séance du 5 décembre 1927. 

From this it will follow that 

(1.4) 
110 nnM m m  K  

Let S be a positive definite matrix. If S is singular, the proposition is trivial. 

Therefore let S be non singular, hence all the sii>0. Let us consider one of the real 

square roots Q of S, that is one of the real matrices Q such that Q2 = S. Since S is 

positive definite and non singular, such a matrix always exists, and it can be 

constructed as a polynomial in S. Being a polynomial in a symmetric argument, Q is 

symmetric, therefore 2
iik ik

q s  . / Applying Hadamard′s theorem of determinants to 

the real determinant Q =│Q│, we get 
2

11 nnQ s s K .i  But Q2 = S, hence 
11 nnS s s K . 

Now let us consider the effect on M of a homogeneous linear transformation 

performed on the observational variables. If the observational variables are subject 

to a homogeneous linear transformation, the moment matrix M is transformed as the 

matrix of the quadratic form xMx where the symbolic variables x are contragredient 

to the observational variables. 



In fact, suppose that the observational set x is subject to the transformation x’ = Cx. 

The mean values of the new observational variables x’ will evidently be zero (since 

the mean values of the original variables x are zero). Let M’ be the moment matrix of 

the new observational set x’. We have 
i k ik ix c x   , hence  

* *( ) = =’ ’ ’ ’ij ij t i j kh t ik k h hj kh ik kh hjm x x c x x c c m c   M . 

This shows that if the observational set x with the moment matrix M, is subject to the 

transformation x’=Cx, the moment matrix M’ of the new observational set x’ will be 

(1.5) *’M CMC  

But this is just the matrix of the quadratic form x’M’x’ into which xMx is carried 

when the symbolic variables x are subject to the transformation * ’x = C x  which is 

the transformation contragredient to the transformation performed on the 

observational variables. 

Instead of studying linear transformations on the observational variables we can 

therefore simply study linear transformations of the positive definite quadratic form 

xMx. This remark will prove to be very useful. 

2. THE CORRELATION MATRIX AND THE COEFFICIENT OF COLLECTIVE 

SCATTER. 

If the set x of observational variables is an effective set, we may consider the 

normalized of M. This matrix 

(2.1) 
1 1

2 2 = 
 

R D MD  

where D is the diagonal matrix of M, has as its elements the simple correlation 

coefficients / 
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will be called the correlation matrix of the set x. The determinant value of R is equal 

to 

(2.3) 
11 nn

M
R

m m


K
 

The positive square root of R 

(2.4) s R  

will be called the collective scatter coefficient for the set x, or shorter the collective 

scatter in x. To break monotony s might also be called the coefficient of scatter. The 

quantity 

(2.5) 1r R   

will be called the collective correlation coefficient for the set x, or shorter the 

collective correlation in x. For n = 2 the collective correlation coefficient reduces to 

the simple correlation coefficient, if the appropriate sign is attributed to the square 

root. 

The collective scatter and the collective correlation are related by the formula 

(2.6) 2 2   1r s  . 

If the simple correlation coefficients were not sometimes called total correlation 

coefficients, it would have been more natural to call r the total correlation coefficient 

and s the total scatter coefficient. As it is, it will probably be safer to introduce a new 

adjective like collective. The significance of s as a scatter coefficient can be 

visualized in the following way. 

Let z = (z1 . . . zn) be a point in n dimensional space. If there is given n + 1 points 

z(t0), z(t1) . . . z(tn), these points may be taken as defining a corner, the n + 1 vertices 



of which are the points z(ti). For n = 2 the corner is a triangle, for n = 3 a 

tetrahedron./ 

The volume of the corner defined by these n + 1 points is equal to 

(2.7) 
1 0 1 1 1
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If we introduce the coordinates measured from z(t0), that is if we put x(ti) = z(ti) – 

z(t0), the formula (2.7) reduces to 

(2.8) 
1 1 1
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Now suppose we have given a scatter diagram, that is ω points x(t), where t runs 

through t = 1,2 . . . ω. The components of x(t) are the n attributes of the t-th 

observation, each attribute being measured from its mean. If we pick out any set of n 

observation points x(t1) . . . x(tn) and construct the corner on these n points and the 

mean of all observations as an (n + 1)-th point, then the volume of this corner is 

given by (2.8). Fig. 1 shows 3 such corners constructed in an n = 2 dimensional 

scatter diagram. 

If there exists identically in t a relation of the form (1.3), that is if the ω observation 

points are rigorously lying in a plane in / the n dimensional scatter diagram, the 

volume (2.8) will be zero for any set of n observation points we might choose. If the 

ω observation points are not lying rigorously in a plane, the volume (2.8) will be 

different from zero for some of the sets (perhaps for all of them). The magnitude of 

the volume (2.8) for any set of n points, offers a measure of how far the corner 

constructed on these n points, is from being flattened down to the shape of a plane. 

The idea therefore naturally presents itself to adopt the average value of all these 

volumes, taken over all possible sets of n points, as a measure of how far the swarm 



of observation points is from lying in a plane. The formula (2.8) gives a volume 

which may be either positive or negative, the sign of the volume being defined by a 

convention as to the sequence of the axes. In order not to have positive and negative 

volumes cancelled out, we take the square mean σ defined by 

(2.9) 
1

2

1 1 1
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where the n summation subscripts t1 . . . tn independently of each other run through 

all the ω values of t and the square root is taken positive. The quantity σ defined by 

(2.9) might be called the collective standard deviation in the set x. For n = 1, σ 

reduces to the ordinary standard deviation on a single variable. 

The coefficient σ is an absolute quantity in the sense that it depends on the units with 

which the variables are measured. More precisely: if any of the variables is 

multiplied by a constant, σ is multiplied by that same constant. A relative measure of 

the lack of linearity in the set x will therefore be obtained if σ is divided by the 

product of the standard deviations of the individual variables. This ratio 
1 n

s


 


K
 

is nothing else than the scatter coefficient s defined by (2.4). This simply follows 

from (1.2) and (2.3). 

In this and the following sections we shall establish other properties of s, which 

makes it further plausible to adopt the closeness of s to zero as a measure of how 

close the set x comes to being linearly dependent. 

The adjoint R̂  of  R will be called the adjoint correlation matrix, and the positive 

square root îir  of the i-th diagonal element / in R̂  will be called the coefficient of 

linear importance of xi in the set x. 

Taking the adjoint of (2.1) we get 
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that is 

(2.11) 
11

ˆ ˆ
ii jj

ij ij

nn

m m
r m

m m


K
 

where the square root is taken positive. 

The q rowed principal submatrix Rq[α . . . γ] formed by the q rows α . . . γ and the q 

columns α . . . γ from R, is the correlation matrix, and the positive square root of its 

determinant value is the scatter coefficient for the subset xα . . . xγ. This determinant 

value is equal to 

(2.12) 
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The matrix N = ωR is the moment matrix of the standardized set y. Since ωR is the 

moment matrix for a set of statistical variables, ωR and hence R is positive definite, 

and being positive definite, it has a determinant value at most equal to the product of 

its diagonal elements. Therefore 

(2.13) 0 1 and 0 1.R s     

Since Rq[α . . . γ] has the same significance for the set xα . . . xγ as R has for the set x1 . . . 

xn, it is seen that any principal minor in R has a value between 0 and 1. 

We even have the following proposition: Any principal minor in R is greater than or 

at least equal to R. More generally: If R′ is a principal minor in R, then any principal 

minor contained in R′ is greater than or at least equal to R′. 

It is understood that any of the principal minors considered shall be formed by 

picking out q different rows (and the corresponding q columns) from R. If we would 

consider a principal minor formed by picking out any row (and the corresponding 

column) of R, twice or several times, we should have to compare this minor with the 



determinant obtained from R by counting the row (and column) in question just as 

many times as it is / counted in the minor. This is, however, a trivial case, since in 

this case both the minor and the determinant in question would be zero. 

Our proposition will be proved if we can prove the lemma that any q rowed principal 

minor Rq in R is greater than or at least equal to the (q + 1) rowed principal minor 

obtained by adding an arbitrary row (and the corresponding column) to Rq. 

For the sake of brevity let the principal minor which is formed by the q rows α . . . γ 

and the q columns α . . . γ from R, be denoted [α . . . γ]. From a fundamental theorem 

regarding the relations between the minors in a matrix we have 

[ ] [ ] [ ] [ ] ij jii j ij            K K K K  

where Δij is the determinant obtained by adding the i-th row and the j-th column to [α 

. . . γ]. Since R is symmetric and real, 2 0ij ji ij     . We therefore have 

(2.14) [ ] [ ] [ ] [ ].i j ij         K K K K  

Now our lemma is evidently true for q = 1 (because rii = 1 is not less than 21
ij

r ), and 

from (2.14) it follows that if the lemma is true for q, it is also true for q + 1. In fact if 

it is true for q, we have [ ] [ ] ( 1,2 )j j n    K K K , and hence from (2.14) if [α . 

. . γ] is different from zero: [ ] [ ],  ( , 1,2 )i ij i j n    K K K . The last relation also 

holds good if [α . . . γ] = 0. For in this case [α . . . γi] and [α . . . γij], being positive 

definite determinants with a vanishing principal minor, must both be zero. 

Therefore any (q+1) rowed principal minor is greater than or at least equal to the (q + 

2) rowed principal minor obtained by adding an arbitrary row (and the corresponding 

column) to it. This establishes our proposition. 

The last proposition can also be stated thus: The coefficient of scatter for a set of 

variables is never greater than the coefficient of scatter for a subset contained in the 

set. The more variables we take into account, the greater is therefore the possibility 



that the variables shall come close to being linearly dependent, the sense of “coming 

close to” being defined by the magnitude of the scatter coefficient. 

An interesting application of the preceding proposition is to compare R with its two 

rowed principal minors. This gives 

21 ( ).ijr R i j   / 

If rij is any of the simple correlation coefficients in the set x, we therefore always 

have 

(2.15) | | 1 ( ).ijr R r i j      

That is, the collective correlation in the set x is never less than the absolute value of 

any of the simple correlations in the set. 

We might also consider the collective correlation in any subset xα . . . xγ. And we 

would have the proposition that the collective correlation in a set is never less than 

the collective correlation in a subset contained in the set. 

The discussion of the following sections is formulated in terms of the scatter 

coefficient, but it would have been equally possible to formulate it in terms of the 

collective correlation coefficient. 

3. UNCORRELATED VARIABLES AND ORTHOGONAL 

TRANSFORMATIONS. 

The n variables x1 . . . xn are called uncorrelated or orthogonal when all the product 

moments mij (taken about the means) are equal to zero for i j , i. e. when the 

moment matrix M is a diagonal matrix. This formulation of the definition makes it 

applicable also to the case where some of the variables are identically zero.1 

1 The notion of non correlation should be distinguished from the notion of 

independence. The n yariables x1 . . . xn may be called independent if the frequency 

function P(x1 . . . xn) is of the form P(x1 . . . xn) = P1(x1) . . .Pn(xn) where the Pi are 



functions of a single variable. Independent variables are always uncorrelated, but the 

inverse is not true. 

If none of the variables are identically zero, i.e. if all the variables are effective, the 

preceding definition is equivalent with the following: The n variables x1 . . . xn are 

uncorrelated when all the simple correlation coefficients rij i j  are equal to zero, 

i.e. when the correlation matrix R is equal to the unit matrix E. 

The n effective variables x1 . . . xn are uncorrelated when and only when the 

correlation matrix is orthogonal. In other words: R is orthogonal when and only 

when R = E. In fact if R = E, R is evidently orthogonal. Inversely if RR E , we 

must have 2 1j ijr  , which is only possible when 0   ( )ijr i j  , hence R = E. 

The n effective variables x1 . . . xn are uncorrelated when and only when the 

coefficient of scatter s is equal to 1. For if R = E, we evidently have R = 1. Inversely 

if R = 1, we must have rij = 0 i j  by virtue of (2. 15). Hence R = E. 

/ From the two preceding propositions follows: 

The correlation matrix R is orthogonal when and only when the coefficient of scatter 

s is equal to 1. 

We shall further establish a property of the coefficient of scatter which relates this 

coefficient to the mutual inclination of the normals on the n regression planes. We 

shall make use of the following propositions which will be established in Sections 4 

and 6: There exist n distinct regression planes when and only when R ≠ 0. If the n 

regression planes exist, the normal on the i-th regression plane is a vector whose 

components are proportional to the elements in the i-th row of the adjoint moment 

matrix M̂  (which is now non singular). Using this we have the proposition: 

The n regression normals are mutually orthogonal when and only when the 

coefficient of scatter s is equal to 1, i. e. when and only when the n variables x1 . . . xn 

are uncorrelated. 



Since the i-th regression normal is a vector whose components are proportional to the 

elements in the i-th row of M̂ , the regression normals are mutually orthogonal when 

and only when M̂ M
(

 = M̂ 2 is a diagonal matrix. In this case M̂  must also be a 

diagonal matrix. In order to prove this, we shall establish the proposition: 

The square of a positive definite and non singular matrix S is a diagonal matrix 

when and only when S itself is a diagonal matrix. 

If S is diagonal, S2 is evidently also diagonal. Inversely suppose that S2 is a diagonal 

matrix. Since S is positive definite, we have 
11 nnS s s K . Further the determinant 

value of the diagonal matrix S2 is equal to the product of its diagonal elements. 

Hence we must have 

2 2 2 2 2 2

1 11| | k k k nk nnS s s s s    S K K  

where none of the sii are zero (since S is non singular). But this is only possible if sij 

= 0 (i ≠ j). Therefore S must be a diagonal matrix. 

The n regression normals are therefore mutually orthogonal when and only when M̂  

is diagonal, that is when and only when M is diagonal, hence when and only when R 

= E. 

In some cases it may be of interest to reduce a set of statistical variables to an 

uncorrelated form by means of a non singular linear transformation. If this is done, 

the correlation between the actually observed variables may be looked upon as due to 

the / fact that each of the observed variables is a linear combination of certain 

underlying elementary variables, that are uncorrelated.1 

Such a reduction is always possible and in an infinity of ways. In fact the moment 

matrix M for a set of observational variables is transformed as the matrix of the 

quadratic form xMx, where the symbolic variables x are contragredient to the 

observational variables. The problem is therefore only to determine a real and non 

singular matrix C such that *CMC  is a diagonal matrix. If C has this property, the 



transformation x’= Cx performed on the given observational set x will yield a set of 

uncorrelated variables x’. 

1 This point of view was suggested to me by Professor T. L. Kelley of Stanford 

University. 

Now, if R ≠ 0 (hence M non singular), the existence of a real and non singular C 

such that *CMC = E, simply follows from the fact that M, being positive definite and 

non singular, has a real square root 
1

2M , which is also symmetric and non singular. 

This being so, C = 
1–

2M  is such that *CMC = E, for we have *CMC  

1 1 1 1
2 2 2 2

 = .
 

M M M M E  

More generally, the problem here considered, is simply the problem of reducing the 

real quadratic form xMx to a sum of squares by means of a real and non singular 

linear transformation. And from the theory of quadratic forms we know that this is 

always possible. It is even possible to find a real orthogonal (and hence non singular) 

matrix O such that *OMO  is a diagonal matrix. The elements of this diagonal matrix 

will be the roots of the secular equation for M. These are all non negative since M is 

positive definite. The number of these roots which are equal to zero, is n –ρ, where ρ 

is the rank of M. Hence n – ρ of the variables in the uncorrelated set must have a 

standard deviation equal to zero, and therefore be identically zero (since they are 

measured from their means). The same holds good generally, not only for orthogonal 

transformations. For let M be of rank ρ and C a non singular matrix. The product 

*CMC  is also of rank ρ. If it is a diagonal matrix, n – ρ of its diagonal elements must 

therefore be zero. Hence we have the proposition: 

If a set of statistical variables is reduced to an uncorrelated set by means of a non 

singular linear transformation, then this uncorrelated set will contain exactly ρ 

effective variables (i. e. ρ variables with a standard deviation different from zero), 

where ρ is the rank of the moment matrix M of the original set. 



Now suppose we have determined a non singular transformation / x’ = Cx which 

carries the given observational set x over into the uncorrelated set x’. Then CMC   is 

a diagonal matrix 
1 0

0 . n
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d
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K
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K
. Let dα . . . dγ be the n – ρ diagonal elements in this 

matrix, which are equal to zero. If in the expression x = C–1x’ we put the n – ρ 

variables ’ ’x x K  identically equal to zero, we obtain a ρ-parametric expression for 

the observational variables x, which holds good identically in t, the ρ parameters 

being uncorrelated. The set of these ρ parameters, that is the set obtained from the set 

x’ by omitting ’ ’x x K  might be called a parameter set for the set x. If we further 

standardize the ρ variables in the parameter set, we obtain a set which might be 

called an elementary set for the set x. Thus an elementary set for x is a set obtained 

by omitting the ineffective and standardizing the effective variables in any 

uncorrelated set obtained from x by a non singular linear transformation. 

There exists an infinity of elementary sets for any given set x: Any ρ dimensional set 

obtained from an elementary (and therefore ρ dimensional) set by means of an 

arbitrary orthogonal transformation (in ρ variables) is also an elementary set. 

In order to prove this let us consider the n dimensional set 1’ ( )’ ’ny y y K  obtained 

from the observational set x’ by leaving the variables ’ ’x x K  unchanged, and 

standardizing the other ρ variables in the set. The set y’ can be looked upon as being 

obtained from x’ and hence from x by a non singular linear transformation in n 

variables. 

The n rowed moment matrix N’ for the set y’ is N’ = ω E’, where E’ is the n rowed 

matrix obtained from the unit matrix E by replacing the n – ρ diagonal elements nos. 

α . . . γ by zeros. 



Let us consider an n rowed matrix of the following type: The elements in the n – ρ 

rows α . . . γ and the n – ρ columns α . . . γ shall consist exclusively of zeros, with 

exception of the diagonal elements in these rows and columns; these diagonal 

elements are put equal to 1. The elements of the remaining ρ rows and ρ columns, 

taken by themselves, shall form an arbitrary ρ rowed orthogonal matrix. The n rowed 

matrix thus formed is also an orthogonal (and hence non singular) matrix O. Now let 

us perform on the observational set y’ the transformation y’’ = Oy’. By this 

transformation we have y y y y       K  and the remaining ρ variables, taken by 

themselves, are transformed orthogonally. Furthermore, the n dimensional set y’’ can 

be looked / upon as being obtained from the given set x by a non singular 

transformation. The moment matrix N  for  the set y’’ is    * *N ON O OE O . 

Now it is evident from the way O and E’ are formed, that ’ ’*OE O E , hence N  = 

N’. The ρ dimensional set which remains when y y  K  are omitted from the set y’’, 

is therefore both an uncorrelated and a standardized ρ dimensional set. Hence it is an 

elementary set for x. This establishes the proposition. 

One method of actually performing the reduction of a given set to an uncorrelated 

form, is the following, which is applicable whenever the coefficient of scatter s is 

different from zero. 

Let us consider the sequence of matrices ( ) (( ) ( , 1,2 ; 1,2 ),v v

ijr i j v v n  R K K  

defined by the recurrence formula 

( 1) ( ) ( ) ( ) ( )

( )

( , 1, 2;  , 1,2 )

v v v v v

ij vv ij iv vj

n

ij ij

r r r r r

v n n i j v
r r

    

  


K K  

where rij are the simple correlation coefficients in the given set x. The matrix R(v) is v 

rowed and symmetric. 



Now put ( )j

ij iju r  and consider the n rowed matrix U = (uij). All the elements of U 

below the principal diagonal are zero. If R ≠ 0, the matrix U solves the problem of 

reducing the set x to an uncorrelated form. We have the proposition: 

If the coefficient of scatter for a set of statistical variables is different from zero, the 

matrix U, defined above, is non singular, and all the elements of its principal 

diagonal are positive, not zero. Let the given set be reduced to standard coordinates 

y. If the set y is expressed linearly in terms of the set y’ by the relations 

y = Uy’ 

then the observational set y’ will be an uncorrelated set, and the standard deviation 

of 
iy  will be equal to 

1, 1

1
.

 . . . ii i i nnu u u 
 

In order to prove this we shall consider the sequence of quadratic forms 

( )

( 1,2 )

v

v ij i ij jf y r y

v n

 

 K
 /  

ƒv is a quadratic form involving only the v variables y1 . . . yv. The variables are now 

symbolic, not observational. Let us put 

( )’

( 1,2 )

v

v j vj jy r y

v n

 

 K
 

This is equivalent with 

*’y U y  

vy  is a linear form involving only the v variables y1 . . . yv. 

By introducing the expression for 
vy  it is easily seen that the equation 

(3.1) 
2

1vv v v vu f y f 
   

holds good identically in all the variables involved. 



The equation (3.1) shows that if ƒv is a positive definite and non singular form (hence 

uvv > 0), fv–1 must be the same. For suppose ƒv–1 were not. By a real and non singular 

transformation performed on its v–1 variables y1 . . . yv–1 we could write ƒv–1 as a sum 

of v–1 squares, and at least one of these squares would have a non positive 

coefficient. Hence ƒv would be written as a sum of v squares, at least one coefficient 

of which is non positive. Furthermore, this expression for ƒv can be looked upon as 

being obtained by a real and non singular transformation performed on its v variables 

y1 . . . yv. In fact the expression considered would be obtained by a transformation 

whose v rowed matrix is of the following form: The last element of its principal 

diagonal is uvv > 0. The rest of the elements in the v-th column are zero, and the rest 

of the elements in the v-th row are the quantities ( )v

vjr . Further the elements of the first 

v–1 rows and columns, taken by themselves, is the matrix of the real and non 

singular transformation performed on the v–1 variables in ƒv-1. The determinant value 

of this v–1 rowed matrix is different from zero. Hence the transformation performed 

on ƒv is real and non singular. This shows that ƒv-1 must be positive definite and non 

singular when ƒv has these properties. 

Since in our case (i. e. R ≠ 0) the quadratic form ƒn = yRy is positive definite and non 

singular, it follows that all the forms ƒv are positive definite and non singular. Hence 

all the principal minors of all the matrices R(v) are positive, not zero. In particular all 

the elements of their principal diagonals, and therefore / all the quantities u11, u22,  . . 

. unn are positive, not zero. Since the determinant 
11| | = nnu uU K  is positive, we see 

that U is non singular. 

From equation (3.1) follows 

2

1
1. 1

’
= .

 . . .

n
i

n
i

ii i i nn

y
f

u u u
 

 yRy  



Introducing the matrix N = ωR, we can state the result thus: The transformation 

*’y U y  performed on the symbolic variables in the quadratic form yNy carries this 

form over into a sum of squares, the i-th coefficient in the sum being equal to 

(3.2) .
ii nnu u



K
 

In other words 
–1 * 1

U NU
-

is a diagonal matrix whose i-th diagonal element is equal to 

(3.2). Now N is the moment matrix of the observational set y. On account of the 

contragredience between the symbolic and the observational variables we therefore 

have: If the transformation y = Uy’ is performed on the standardized observational 

set y, whose moment matrix is N, we obtain an observational set y’ whose moment 

matrix N’ = 
–1 * 1

U NU
-

 is a diagonal matrix, the i-th diagonal element of which is 

(3.2). This establishes our proposition. 

From the possibility of reducing any observational set x to an uncorrelated form by 

means of a real and non singular transformation, follows that if R ≠ 0, it is always 

possible to increase R by a real and non singular transformation. It is even possible to 

make R rigorously equal to 1. 

Inversely: If R ≠ 0, it is always possible to lower R by a real and non singular 

transformation. It is even possible to bring R as near to zero as we please. But it is 

not possible by a non singular transformation to make R rigorously equal to 0. In 

fact, if the transformation x′ = Cx is performed on the observational set x, the 

coefficient of scatter for the set x′, will be given by 

 211

11

...

...

nn

nn

m m
R C R

m m
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where mii and iim¢  are the diagonal elements in the moment matrices M and M′ of x 

and x′ respectively, and C= C  is the / modulus of transformation. If C is non 

singular, none of the factors in the expression for R′ is zero. Hence R′ is different 



from zero. But it is possible to bring R′ as near to zero as we please. For there exists 

an infinity of singular transformations which reduce R′ to zero. In fact, under the 

transformation x′ = Cx, we have ii i im c Mc¢ = , where ci is the i-th direct (vector) 

component of C. Since iim¢  is a positive definite and non singular quadratic form in 

the n variables ci1 . . . cin, iim¢  is always positive, not zero, except for 
1 ... 0i inc c= = = . 

A necessary and sufficient condition that none of the diagonal elements of M′ shall 

be zero, is therefore that none of the rows of C shall consist exclusively of zeros. 

And it is evidently possible to construct a singular C, where none of the rows consist 

exclusively of zeros. Any such C would reduce R′ to 0. 

4. THE REGRESSION EQUATIONS. 

The regression equations are usually defined as the n homogeneous linear equations 

(4.1) 
0 1

( 1,2... )

ij i iij
b x b

i n

= = -

=

å
 

which are obtained by expressing in turn each of the variables xi in terms of the other 

variables, and determining the constant coefficients bij (i ≠ j) so as to minimize the 

sum square of the deviations 

 

2

( )

( 1,2... ).

ij jt j
b x t

i n

é ù
ê úë û

=

å å  

Introducing the matrix 
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n
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n nn
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the regression equations (4.1) may be written 

(4.2) Bx = 0. 

This should not be interpreted as a system of linear equations in x. In fact if 



|B| ≠ 0, the system would have no solution, except x = 0; (4.2) is only a symbolic 

way of expressing the n regression equations. / The coefficients bij are restricted by 

the conditions bii = 1- . If a general analysis is to be made, it is desirable to adopt a 

slightly different definition of the regression equations so as to remove the condition 

bii = 1- . This is done by writing the regression equations in the form 

(4.3) 
0

( 1,2... )

ij jj
a x

i n

=

=

å
 

where the aii are constants later to be disposed of (not to be determined by the 

minimizing conditions). The difference between the regression systems (4.1) and 

(4.3) is not only formal. It might happen that the minimizing conditions satisfied by 

the aij (i ≠ j), makes it impossible to put aii = 1- . But if this is possible, the systems 

(4.1) and (4.3) will be equivalent. 

Introducing the matrix 

 

11 1

1 ...

...

( ) ...............

n

ij

n nn

a a

a

a a

A
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÷ç ÷ç ÷ç ÷= = ç ÷ç ÷ç ÷ç ÷÷çè ø

 

the regression equations (4.3) may be written 

(4.4) Ax = 0. 

When I use the expressions regression matrix and regression equations, without 

further specification, I always refer to the matrix A and the equations Ax = 0. The 

matrix B and the equations Bx = 0 will be referred to as the reduced regression 

matrix and the reduced regression equations. 

If A is known and all the aii ≠ 0, we can evidently pass back from A to B by the 

formula 

(4.5) .ij ij iib a a= -  



The problem of the regression equations is to determine the matrix A. This problem 

is very easily solved by the elementary rules of matrix algebra. 

In fact, the necessary minimizing conditions are 

 

2

( )
0 ( )

kt k ik

ij

a x t
i j

a

é ù¶ ê úë û = ¹
¶

å å
 

That is 

 0 ( ).kjk ik
a m i j= ¹å  

/ Therefore if we dispose of the constants aii in such a way that 

 ( 1,2... )ik kik
a m M i n= =å  

the minimizing conditions will be 

AM = ME. 

If M is non singular, we can solve for A by postmultiplication with M–1, which gives 

(4.6) ˆ  =A M  

where M̂  is the adjoint moment matrix. If the minimizing problem has a solution, the 

n regression equations must therefore be 

(4.7) ˆ 0 ( 1,2... ).ij jj
m x i n= =å  

That this really furnishes a solution of the minimizing problem, is seen by the 

following argument. The v-th regression equation (that is the equation (4.7) for i = v) 

is determined by minimizing the function 

 
2

( )v vk k vk kh vht k kh
f a x t a m aé ù= =ê úë ûå å å  

where av1. . .(except avv). . .avn are considered as n 1-  independent variables, and avv 

as a constant. The relation by which we have disposed of the constant avv, should be 

looked upon as a relation introduced after the derivations have been performed. The 

relation in question does therefore not define avv as a function of the n–1 independent 



variables. That is, we have 0 and 2 ( )v vv v vi vk kik
f a f a a m i v¶ ¶ = ¶ ¶ = ¹å . And 

consequently 

 
2

2 ( , ).v
ij

vi vj

f
m i v j v

a a

¶
= ¹ ¹

¶ ¶
 

Apart from the positive factor 2, the (n-1) rowed matrix of the second order partial 

derivatives of ƒv is therefore simply the matrix obtained from M by omitting the v-th 

row and the v-th column. This matrix is always positive definite. And it is 

furthermore non singular if M is non singular. Each of the regressions (4.7) will 

therefore always correspond to a minimum of the sum square in question. And 

furthermore correspond to a proper / minimum if M is non singular, which is the 

assumption under which (4.6) was derived. In the last part of this section we shall see 

that the formulae (4.6) and (4.7) actually hold good under a more general condition. 

The n regressions (4.7) might be called the elementary regressions in distinction to 

certain other types of regressions which will be discussed later. In particular the i-th 

regression in (4.7) might be called the i-th elementary regression. 

If R ≠ 0 (i. e. M non singular), the n regression planes determined by A are all 

different. In fact the normals on the regression planes are the directions of the direct 

(vector) components of M̂ . If two (or more) of these directions should coincide, M̂  

and hence M would be singular. 

If M is non singular, B exists and is given by (4.5). It should be noticed that the 

regression matrix A is symmetric, while the reduced matrix B is in general not 

symmetric. 

By virtue of (2.10) the regressions M̂ x = 0 can be written 
1

2ˆ 0
-

=RD x where R̂ is the 

adjoint correlation matrix. Introducing from (1.1), we see that the regressions in 

standard coordinates y will be 



 ˆ 0=Ry  

that is 

(4.8) ˆ 0 ( 1,2... ).ij jj
r y i n= =å  

Since the i-th elementary regression is the regression obtained by minimizing the 

deviations from linearity, measured in xi direction, it can be looked upon as the 

regression obtained by attributing the actual lack of agreement with the postulated 

analytic relation, exclusively to the variation of xi.. Apart from any special 

significance the n regressions (4.7) might have in the case of a normal distribution, 

the difference between these regressions is therefore essentially a difference in 

assumption, namely in the assumption regarding the nature of the variability of the 

variables involved. 

I would like to emphasize this point because the real significance of the difference 

between the n elementary regressions is not always kept sufficiently clear, it seems to 

me, when it comes to practical applications. This is particularly true, I think, 

regarding applications in the economic field. 

When one of the variables, say xi, for one reason or another, / happens to have 

attracted a particular attention in the setting of the problem, the investigator 

frequently has a tendency to think of the regression in question as written with xi on 

the left hand side, and the other variables on the right hand side of the equation sign. 

And having this form of the regression in mind, he often draws the conclusion that 

the regression which should be chosen, is the regression of xi on the other variables, 

that is the i-th regression in the system (4.7). Most of the time there is perhaps not 

even question of a conscious conclusion. The second step: picking out the i-th 

elementary regression, follows mechanically as soon as the attention of the 

investigator for one reason or another, has been focused upon the variable xi. 



Such a principle for choosing one particular of the regressions (4.7) is fallacious, it 

seems to me. The procedure of determining statistically an analytic relation between 

n variables, and the procedure of rearranging the terms in a statistically determined 

relation between the variables, are two things which should be kept distinctly 

separated. The choice of regression essentially represents a problem by itself, and 

should not be confused with the choice of a particular form in which to write the 

regression chosen. Nor can we limit the problem to concern a choice between the n 

alternatives in (4.7). In fact, a great number of regression problems is of such a 

nature that none of the regressions (4.7) can be accepted as plausible. This is 

particularly true in the economic field. Here the nature of the problem is most 

frequently such that it is out of the question (or ought to be out of the question) to 

adopt a regression procedure which treats the variables unsymmetrically to the extent 

of attributing all deviations from linearity (or from some other analytic relation) to 

one particular of the variables. What we need in these cases is some kind of a mean 

regression plane. 

Without pretending to go into an extensive and systematic analysis of this important 

problem, I shall venture a few remarks on some points of the theory. In the present 

section I shall consider two particular forms of mean regressions, namely first the 

orthogonal mean regression, that is the mean regression plane determined by 

minimizing the sum squares measured perpendicularly to the plane, and second, a 

certain type of mean regression which might be called the diagonal mean regression. 

In the next section, adopting a more general point of view, I shall consider the 

problem of invariance of regression planes, and construct / two regressions which are 

invariant for a general linear homogeneous transformation. 

The equation of a mean regression plane in its general form can be written 

 
0 1 1 ... 0n ng g z g z+ + + =  

or shorter 



(4.9) 
0 0g + =gz  

where g = (g1 . . . gn). The coefficients g0g1. . .gn are constants independent of t; z = 

(z1 . . . zn) are the observational variables measured from the origin. 

The orthogonal mean regression is by definition a regression of the form (4.9) where 

the constant coefficients are determined by minimizing the function 

 [ ]
2 2

0 ( )
t

g t g+ ×å g z  

where g = =g + gg , and all the coefficients g0g1 . . . gn are considered as 

independent variables. 

A derivation with respect to g0 shows that we must have 

 [ ]0 ( ) 0.
t

g t+ × =å g z  

Hence, the orthogonal mean regression goes through the mean of all observations. 

We can therefore at once simplify the problem by writing the regression 

(4.10) ax = 0 

where x = (x1 . . . xn) are the variables measured from their respective means, and the 

coefficients a = (a1 . . . an) are to be determined by minimizing the function 

(4.11) ( )
2

2( ) kt k k
f a x t aé ùl = = =ê úë ûå å

aMa
a

aa
 

where a = =a + aa , and all the coefficients a1 . . . an are considered as 

independent variables. 

From (4.11) we get after a simple reduction 

(4.12) 
2

2
( )i ik ik kk

i

f
f m e a

a a

¶
= = - l
¶

å  

/ where 
0 ( )

1 ( )
ij

i j
e

i j

ì ü¹ï ïï ï= í ý
ï ï=ï ïî þ

are the elements of the unit matrix E, and λ has the value 

given by (4.11). 



For the vector 
1( ... )nf f=f  we therefore have the expression 

 
2

( ) .
2

a
= - lf M E a  

Now, the necessary condition for a minimum of f(a) is f = 0. The necessary 

conditions which a must satisfy, is therefore 

(4.13) (M–λE)a = 0. 

If there shall exist a solution of (4.13) other than the trivial a = 0, the determinant 

M E-  must vanish. That is, λ must be one of the characteristic numbers of the 

moment matrix M. This result regarding the regression coefficients a has first been 

obtained by Karl Pearson in his well know memoir “On lines and planes . . .” (Phil. 

Mag, 1901). 

If λi is any of the n characteristic numbers of M, the corresponding vector ai is simply 

determined by solving the linear system obtained from (4.13) by putting λ = λi. 

Inversely if ai is any solution of (4.13) which is not = 0, the corresponding value of λ 

must necessarily be equal to λ i i

i i

a Ma

a a
= . This simply follows from (4.13) by 

premultiplication with ai. 

This being so, the essential question in the problem of the orthogonal mean 

regression is therefore: Will any of the characteristic numbers of M, introduced in 

(4.13), furnish a solution a for which the function f(a) actually attains a minimum? 

And, if so, which one (or which ones) of the characteristic numbers of M has this 

property?1 The answer to this question is given by the following proposition. 

1 A rigorous distinction between maxima and minima is usually not made when the 

orthogonal mean regression is discussed. It is for instance generally assumed without 

further analysis that the extremum point where the value of f(a) is less than in, any 

other extremum point, is a minimum point of f(a). 



If λ1 is the smallest of the characteristic numbers of the moment matrix M (i. e. λ1 = 0 

if M is singular), and a1 is any solution of (M–λ1E)a = 0, which is not = 0, then the 

function ( )f =
aMa

a
aa

is equal to λ1 for a = a1, and greater than λ1 for any other 

argument a (not = 0) which is not a solution of (M–λ1E)a = 0. /  

From (4.12) we get by derivation with respect to aj 

 
2

2

2
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For the matrix
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F  of the second order partial derivatives, we therefore 

have in any point where f = 0 

(4.14) 
2

( ).
2

a
λF M E= -  

Consequently: A solution ai (not = 0) of (4.13) for λ = λi is a minimum point for f(a) 

when and only when (M – λiE) is a positive definite matrix. In particular we see that 

it will be a p-fold improper minimum point if (M – λiE) is positive definite and of 

rank n – p. The case where any minimum point is p-fold improper according to the 

criterion (4.14), is the very same case in which the totality of all minimum points 

form a p dimensional variety according to (4.13). 

Since the rank of (M – λiE) is at most equal to n – 1, any minimum point of f(a) must 

be at least one-fold improper. This is but another expression for the nature of our 

problem, as a problem in the direction, not in the length of a. By the definition (4.11) 

a change in the length of a has no influence on the value of f(a). 

This being so, in order to prove our proposition it is sufficient to prove the lemma 

that (M – λE) is a positive definite matrix when and only when 
1λ λ£ , where λ1 is the 

smallest of the characteristic numbers of M. 



From this will namely follow that among the points a (not = 0) where f = 0, no other 

points than solutions of (M – λiE)a = 0 can give a minimum point for f(a), and that 

these solutions actually do correspond to a minimum of f(a). 

Now, to prove the lemma let us perform on the set of observational variables x an 

orthogonal transformation x' Ox such that x'  becomes an uncorrelated set, i.e. 

such that *  M OMO  is a diagonal matrix 

1......0

' ..........

0...... n

λ

λ

M
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. From the theory of 

quadratic forms we know that such a transformation O always exists. Furthermore, / 

the diagonal elements of M  will be the characteristic numbers of M, hence all real. 

Since O is orthogonal, that is O *O  = E, we have 

 ( )* * *( ) ( ' )λ λ λO M E O OMO OEO M E- = - = -  

hence 

(4.15) 

1

*

...0

( ) ............

0... n

λ

λ

λ

O M E O
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A necessary and sufficient condition for the right hand side matrix in (4.15) to be 

positive definite, is that all the diagonal elements are non negative, i.e.  

1λ λ£  where λ1 is the smallest of the characteristic numbers λ1 . . . λn. But O(M – 

λE) *
O  is positive definite when and only when (M – λE) is positive definite. This 

simply follows from the fact that if A is any matrix, CA *C  has the same rank and the 

same index as A, provided only that C is non singular. Hence (M – λE) is positive 

definite when and only when 
1λ λ£ . This establishes our proposition. Incidentally, a 

similar argument shows that (M – λE) is negative definite when and only when 

nλ λ£ , where λn is the greatest of the characteristic numbers of M. The argument 

evidently holds good without any assumption as to M being definite or not. 



Summing up, we can state the following rule for determining the orthogonal mean 

regression: First find the smallest of the characteristic numbers for the moment 

matrix M, that is the smallest of the n (necessarily real and non negative) roots of the 

secular equation |M – λE| = 0. Let if be λ1. Next solve the linear equation (M – λ1E)a 

= 0 with respect to a. The vector a being thus determined, 

(4.16) ax = 0 

is the orthogonal mean regression. 

For the numerical computation of λ1 the following limitation will be useful: 

( ) 1 114.17 0 λ m£ £  

where m11 is the smallest of the n sum squares ( )
2

.ii t im x té ù= ë ûå  This formula is 

readily verified by noticing that m11 is one of the values which f(a) can assume. In 

fact, for a2=. . .=an=0 / and a1 arbitrary we have f(a)=m11. The minimum of f(a), that 

is λ1, can therefore never be greater than m11. More generally: The same argument 

shows that if Mp is any p rowed principal submatrix in  (1 )p nM £ £ , and λ1p is the 

smallest characteristic number for Mp, then we have the limitation 

 1 10 .pλ λ£ £  

In the secular polynomial λ-M E  the coefficient of 
n pλ -

is equal to 

( ) Σn p

pM-- , where Σ pM is the sum of all the 
n

p

æ ö
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 p-rowed principal minors in M. 

Since all the characteristic numbers are non negative, we therefore also have the 

limitations 

(4.18) 
10

( 1,2... )

p

p

n
λ M

p

p n
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=
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If the matrix S = (M – λ1E) is exactly of rank n – 1, the vector a is uniquely 

determined, apart from a scalar factor. In this case a is obtained by simply putting the 

components of a proportional to the elements of any row (not consisting exclusively 

of zeros) in the adjoint Ŝ of S. If the characteristic number λ1 is computed exactly, all 

the rows of Ŝ will be rigorously proportional, so it does not matter which row of Ŝ is 

picked out. This might not hold good rigorously if λ1 is determined by a numerical 

approximation method. In this case it will be better to determine only the signs of the 

components a1 . . . an from the rows of Ŝ, and then determine the absolute values of 

a1 . . . an by the formula 

(4.19) ˆ iiia s= +  

where îis  is the i-th diagonal element in Ŝ, hence non negative, because S is positive 

definite. The formula (4.19) is proved thus. The rank of the symmetric and positive 

definite matrix S is never greater than n – 1, and in the present case it is by 

assumption exactly n – 1. Hence there is a diagonal element k̂k
s  in Ŝ, which is 

positive, not zero. And the quantities ai are proportional to the quantities ˆ
ki

s . But 

2ˆ ˆ ˆ
ki kk iis s s= because Ŝ is of rank 1. Since ˆ 0kks ¹ , we can therefore put ˆ iiia s= + . 

The following is the explicit formula for the case n = 2. If / m12=m11–m22=0, that is if 

the two variables are uncorrelated and have the same standard deviation, the problem 

is not determinate. Any straight line through the mean of all observations will in this 

case satisfy the conditions for the orthogonal mean regression line. In any other case 

the orthogonal mean regression is uniquely determined and its equation is 

( ) 1 2

2 2

12 22 11

4.20 ε 0

where ( ) / 2

p q x p q x

p m q q m m

+ × - - × =

= + = -
 

and all the square roots are taken positive. Since the moment matrix is positive 

definite, we always have εp q³ ×  is put equal to +1 or – 1 according as m12 is 



positive or negative. If m12 = 0, it does not make any difference which one of the two 

values + 1 and – 1 is attributed to ε. From (4.20) follows in particular that if the 

variables are uncorrelated and have different standard deviations, the orthogonal 

mean regression is a straight line parallel to the axis of the variable which has the 

largest standard deviation. 

It is readily seen that the mean regression determined by minimizing the sum square 

of the deviations measured under a certain fixed angle (≠ 0) with the regression 

plane, coincides with the orthogonal mean regression, regardless of the magnitude of 

the fixed angle. But a regression determined by minimizing the sum square of the 

deviations measured under certain fixed angles with the axes of the variables, will 

depend on the magnitude of these angles. 

I shall now consider a mean regression which is not determined directly by least 

squares, but by a principle more similar to the principle of formula (4.19). 

The expression (4.6) for the regression matrix was developed under the assumption 

that M is non singular. The expression (4.6) still holds good, however, in the case 

where M is of rank n – 1. In fact, in this case there exists identically in t at least one 

linear relation of the form (1.3). Multiplying (1.3) by xj and performing a summation 

over t, we see that the vector a=(a1. . .an) must be a solution of 

(4.21)        Ma=0. 

If M is of rank n – 1, the equation (4.21) has a solution a / which is determined 

uniquely, except for an arbitrary scalar factor. Apart from an arbitrary factor of 

proportionality, only one equation of the form (1.3) can therefore exist when M is of 

rank n – 1. This equation which holds good identically in t when M rank n – 1, might 

be called the perfect regression. 

The solution a of (4. 21) is obtained by putting the components a1. . .an proportional 

to the elements in any row of the adjoint moment matrix M̂ , which is such that the 



diagonal element in this row is different from zero. At least one such row exists since 

the symmetric matrix M̂  is of rank 1 when M is of rank n – 1. 

But this is exactly the system of regression coefficients which are furnished by the 

formula (4.6). For if M̂  is of rank 1, all the rows of M̂  are proportional to one of 

them, say the k-th, which is such that ˆ 0kkm ¹ . All the regression equations 

determined by (4.6) will therefore coincide and coincide with the perfect regression. 

Some of the regressions furnished by (4.6) may however be trivial, all the regression 

coefficients being equal to zero. That is, some of the rows of M̂  (not the k-th, 

however) might consist exclusively of zeros. These rows can be looked upon as 

being obtained by multiplying the k-th row by 0. 

When M̂  is of rank 1 we have 2ˆ ˆ ˆ ( 1,2... ),kj kk jjm m m j n= =  where ˆ 0kkm ¹ . The 

perfect regression which exists when M is of rank n – 1, can therefore be written 

(4.22) ˆε 0i ii ii
m x× =å  

or in standard coordinates σ .i i i
y x=  

(4.23) ˆε 0iii ii
r y× =å  

where the square roots are taken positive, and ɛi=±1 is the sign of the i-th element in 

the k-th row of M̂ , k can be chosen arbitrarily provided ˆ 0kkm ¹ . The formula (4.23) 

shows the significance of îir  as a coefficient of linear importance for the variable xi. 

Now, if the signs in the rows of M̂  are compatible, the equation (4.22), respectively 

(4.23), is a well defined equation, which can be computed even though M is non 

singular. In the case of compatible signs in the rows of M̂ , the equation (4.22), 

respectively (4.23), may therefore be used as a mean regression. Since / these 



coefficients are derived from the diagonal elements of M̂ , respectively of R̂ , it 

might be called the diagonal mean regression. 

In connection with the regression equations I shall make a few remarks on the partial 

and multiple correlation coefficients. The formula (2.1) shows that the normalized of 

the moment matrix M is the matrix R of the simple correlation coefficients rij. 

Similarly the normalized of the adjoint moment matrix M̂  (with the sign reversed) is 

the matrix R  of the highest order partial correlation coefficients ijr  (in Professor 

Yule′s notation rij. 12. . .n where ij is not written in the string of secondary subscripts). 

The partial correlation coefficients ijr are sometimes expressed by the formula 

 
ij ij jir b b=  

where bij are the elements of the reduced regression matrix B. In this form the 

expression is however incomplete. In order to make it complete we have to show that 

bij and bji, are always of the same sign, sgn bij=sgn bji, and then write the formula 

 

(4.24)  
ij ij ij jir sgnb b b=  

   

where the square root is taken positive. 

That sgn bij=sgn bji follows from (4.5) because A is symmetric and all the aij are 

positive, not zero, when M is non singular (which has to be assumed when the partial 

correlation coefficients ijr  are considered). 

The formula (4.24) is somewhat artificial. The formula becomes simpler and more 

rational when expressed in terms of the regression coefficients aij. Since sgn bij = – 

sgn aij, we have  

(4.25) 
ˆ

ˆ ˆ

ij ij

ij

ii jj ii jj

a m
r

a a m m
= - = -  



where the square roots are taken positive. 

If we prefer, we can also express  – R  as the normalized of R̂ . In fact the normalized 

of M̂  must be equal to the normalized of R̂ , for by (2.10) there exists a diagonal 

matrix D'  with positive diagonal elements, such that R̂ = D' M̂ D' . Hence 

(4.26)  
ˆ

ˆ ˆ

ij

ij

ii jj

r
r

r r
= - / 

In numerical work a uniform exactitude to a given number of decimals is more easily 

obtained from (4.26) than from (4.25). 

In exactly the same way the lower order partial correlation coefficients can be 

expressed by normalizing the adjoints of the various principal submatrices in R̂ . 

For the multiple correlation coefficients ri (in Professor Yule′s notation Ri(12. . .n) where 

i is not written in the string of secondary subscripts) we have 

(4.27) 1
ˆ

i

ii

R
r

r
= + -  

There is a certain analogy between this formula and the formula 

 1r R= + -  

for the collective correlation coefficient. The collective, multiple and partial 

correlation coefficients can be looked upon as forming a sort of hierarchic order. The 

number of their subscripts is 0, 1, 2. 

The absolute value of an element in R  is never less than the absolute value of the 

corresponding element in R̂ , for the elements in R  are obtained by dividing the 

elements of R̂  by the quantities ˆ ˆ
ii jjr r , and these quantities are never greater than 

unity. This follows from the fact that each 
îir  is itself the square of a scatter 

coefficient (namely the scatter coefficient for the set obtained from x by omitting xi). 



It is further easily seen that not only is the absolute value of each element in R̂  less 

than or equal to unity but even the absolute value of each element in R  is less than or 

equal to unity. For R (and hence R̂ ) is positive definite. Therefore all the principial 

minors of R̂  and particularly all the two rowed principal minors of R̂  are non 

negative. That is 

 2ˆ ˆ ˆ ( , 1,2... )ii jj ijr r r i j n³ =  

We therefore have 

( ) ˆ4.28 0 1 ( , 1,2... )ij ijr r i j n£ £ £ =  

The preceding formulae for the multiple and partial correlation coefficients only hold 

good if R ≠ 0. In this case all the 
îir / are positive, not zero, because they are principal 

minors in a positive definite and non singular matrix. The case R = 0 is discussed in 

Sections 6 and 7. 

5. THE PROBLEM OF INVARIANCE. 

I shall now consider the effect on the regression equations which is produced by a 

linear transformation performed on the observational variables. 

Let z = (z1 . . .zn) be the observational variables measured from the origin. If c is an 

arbitrary vector and C a non singular matrix, the general non singular linear 

transformation may be written 

(5.1) z  = c + Cz. 

The following are some special cases: 

A translation, i.e. a change of origin, is the transformation z  = z + c, obtained from 

(5.1) by putting C = E. 

A stretch, i.e. a change of scales, is the transformation z  = Dz, where D is a 

diagonal matrix. 



A distance preserving transformation is the transformation z  = Oz, where O is an 

orthogonal matrix. 

A homogeneous transformation is the transformation z  = Cz, obtained by putting c 

= 0 in (5.1). C is assumed non singular but otherwise arbitrary. A homogeneous 

linear transformation includes all types of linear transformations except translations. 

The equation of any regression can be written in the form g0 + gz = 0, where g0 and g 

are determined from the totality of the observations by a certain rule or law, which is 

characteristic for the regression method in question. If we perform on the 

observational set z a transformation of the form (5.1), the set z  will also be an 

observational set, in which we may determine the regression by the rules of the 

regression method in question. Let the regression in the set z  be 0g  +  g z  = 0. If we 

introduce in this equation the expression (5.1) for z  in terms of z, we obtain a 

regression 0g  + g z  = 0 which now involves the original set z. This equation might 

be called the regression in z determined via z′. If the equation 0g  + g z  = 0 is the 

same as the equation g0 + gz = 0, that is, if the coefficient of the two equations are 

proportional, then the particular type of regression considered is called invariant 

under the transformation (5.1). In this / case it does not make any difference if the 

regression in z is determined directly or via z . 

It is readily seen that the elementary regressions (4.7) are in, variant for a translation. 

Both the moment matrix M and the set x of variables measured from their respective 

means, are namely unchanged under a translation. 

If a homogeneous linear transformation z′ = Cz is performed, the regression matrix A 

is replaced by 

(5.2) 2ˆ C  *-1 -1A CAC C AC
(

 

In fact, from z′ = Cz we get x′ = Cx and therefore M′ = CM *C . Taking the adjoint 

of this equation we get (5.2). Formula (5.2) can be stated thus: Apart from a constant 



factor (which is the square of the modulus of transformation) the regression matrix A 

is transformed as the matrix in the quadratic form xAx, where the variables are 

cogredient with the observational variables. 

Now, let us go back from x′ to the original set x, this time performing the 

transformation on the variables in the regression equations. Introducing x′ = Cx in 

the regression system ˆCAC
(

x′ = 0, we get 

(5.3) C
(

Ax = 0 

which is the system of regression equations in x determined via x′ = Cx. This system 

is equivalent with the system Ax = 0 if C is a diagonal matrix, in which case the 

transformation x′ = Cx is a stretch, which simply means changing the scales of the 

variables. If C is not diagonal, the new regression system will, in general, be 

different from the original (and it will certainly be different if M is non singular). 

The formula (5.3) even shows that by a suitable choice of the set x′ via which the 

regression system in x is determined, we can get any regression system in x we want. 

In fact, if Ax = 0 is the regression system in x determined directly, and we want to 

obtain the regression system Px = 0, we only have to determine the regression system 

in x via  .*
x PA x¢=

(
 

The orthogonal mean regression is invariant for a translation and also for a general 

orthogonal transformation. That it is invariant for a translation simply follows from 

the fact that it goes through the mean of all observations and the coefficient vector a 

in (4.16) is determined by the elements of the moment matrix M, and these are not 

changed by a translation. / 

That the orthogonal mean regression is invariant for an orthogonal transformation, is 

proved thus. Let x′ = Ox, hence M′ = OM *O  and consequently O(M – λE) *O =(M′ 

– λE), since O *O  = E. By taking the determinant on both sides, we see that |M – 

λE|=|M′ - λE| for any value of λ The secular polynomial for M′ is therefore identical 



with the secular polynomial for M. The set of n characteristic numbers will therefore 

coincide for M′ and M, in particular the smallest of the characteristic numbers, 

namely λ1, will be the same for M′ and M. 

Now, the coefficient vectors a and a′ for the orthogonal mean regressions in the set x 

and x′ respectively are determined by the equations 

 (M – λ1E)a = 0 and (M′ - λ1E)a′ = 0. 

The equation for a′ can be written O(M – λ1M) *O a′ = 0. Since O is non singular, 

this is equivalent with (M – λ1E) *O a′ = 0. *O a′ and a are thus solutions of the same 

equation. If a runs through all solutions of the equation for a, the vector Oa will run 

through all solutions of the equation for a′. If we let a and a′ denote general solutions 

of the two equations above, we therefore have a′ = Oa. Now, a′x′ = 0 is the 

orthogonal mean regression in the set x′. Introducing in this equation the expression 

for x′, namely x′ = Ox, we get (Oa)(Ox) = 0, hence a *O Ox = 0, that is ax = 0, which 

is the orthogonal mean regression determined directly in the set x. 

The diagonal mean regression (4.22) has the property of being invariant for 

translation and stretch but not for a general linear transformation. 

The fact that the regressions here considered are only invariant under rather special 

forms of transformations, gives rise to a serious difficulty. 

In a great number of cases, we have no absolute a priori criterion to guide us in the 

choice of variables. This is particularly true in the case of a differential analysis of 

time series. For instance: Shall we determine a regression between successive 

differences or shall we determine a regression between consecutive ordinates? In 

fact, it was precisely this problem which led me to consider linear correlation from 

the point of view of linear transformations. 

So far as practical application is concerned, it is not in all cases necessary (and it 

might not even be desirable) to introduce / a mean regression plane which is invariant 

for an absolutely general linear transformation. In some cases the origin of the set of 



variables contained in the original data might be in a sense fixed by the nature of the 

problem, so that it is not particularly necessary that the mean regression plane should 

be invariant for a translation (i.e. for a change of origin). What we want in this type 

of problem is a mean regression plane which is invariant for a homogeneous linear 

transformation of the variables measured from the origin. I now proceed to an 

analysis of this problem. 

In the case of a homogeneous linear transformation, the variables measured from the 

origin, i.e. the set z, and the variables measured from the means, i.e. x, are 

cogredient. In fact, if z′= Cz, then x′= Cx. The inverse also holds good if the 

convention is made that under a homogeneous linear transformation of x, the vector 

whose components are the means of the variables, shall be cogredient with x. This 

convention being adopted, the expressions «a homogeneous linear transformation of 

the observational variables» and «a vector cogredient with the observational 

variables» are unambiguous without specifying if x or z is meant. 

Let ki = Σtzi(t) and k = (k1. . . kn), so that k/ω is the vector whose components are the 

means of the variables. Further let kij = Σtzi(t)zj(t), so that 
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is the moment matrix taken about the origin. K = |K| is the determinant value of K. 

If μ and χ are arbitrary constants (not necessarily ≠ 0) and p, q, u and v are vectors 

cogredient with the observational variables, but otherwise arbitrary, then the two 

scalar quantities 

μ χ

ˆ ˆand

M K

qpM + uKv

+
 

are both covariants of weight two. That is, if a homogeneous linear transformation is 

performed on the observational variables, the only effect on the two scalars 



considered, is that they are multiplied by the square of the modulus of 

transformation. In fact, if we perform the transformation z′ = Cz, that is x′ = Cx, / we 

have M′ = CM *C  and K′ = CK *C , consequently ˆˆ ˆ M CMC
(

 and ˆˆ ˆK = CKC
(

. Hence 

(5.4) 2( )μM χK C μM χK¢ ¢+ = +  

and 

(5.5) p′M̂ ′q′+u′K̂¢v′=p *C ČM̂ĈCq+u *C ČK̂ĈCv=C2( ˆ ˆpMq +uKv ). 

The equation of a regression plane for the variables z can be written 

(5.6) g0 + gz = 0 

where g = (g1. . .gn). The coefficients g0g1. . .gn are constant independent of t, but 

depending on the totality of the observations. In order to indicate this explicitly we 

use the notation 

 g0 = g0(z) g = g(z). 

The regression g0 + gz = 0 is invariant for a homogeneous linear transformation of 

the observational variables when, and only when g0 and g are such that for an 

arbitrary non singular matrix C. 

(5.7) g0(Cz)=γ g0(z) and g(Cz)= γ * 1C  ·g(z) 

where γ ≠ 0 is a scalar (which may depend on the observations and on the elements 

of C). 

In fact, if the transformation z′ = Cz is performed on the set of observational 

variables z with the moment matrix K, the moment matrix for the set z′ will be 

K′=CK *C . If g0 and g are of the form stated, the mean regression (determined 

directly) in the set z′, namely g0(z′) + g(z′) · z′ = 0, can be written g0(z) +  g(z) · C-1z′ 

= 0. Going back to the variables z, now performing the transformation on the 

variables in the regression for z′ we consequently obtain g0(z) + g(z) · z = 0, which is 

the mean regression determined directly in the set z. Inversely it is readily seen that 



the specified conditions are also necessary for the invariance of the mean regression 

plane. 

If χ is an arbitrary constant (not necessarily ≠ 0), and p, q and r are vectors which are 

cogradient with the observational variables, but otherwise arbitrary, then / 

( )

( )

0

0

ˆ5.8

and

ˆ ˆ5.9

g χK

g

g rK

pKq g rK

= =

= =

 

are two forms of the set (g0g) which satisfy the invariance condition (5.7). If z′ = Cz, 

we namely have g′ = r′K̂ ′ = r *C ČK̂Ĉ = C2 * 1C  · (rK̂ ) = C2 * 1C g, and furthermore 

by (5.4) and (5.5) 0g  = C2 g0. 

If the relation (5.6) shall be, not only invariant, but also such that it can be considered 

the equation of a regression plane, the coefficients must be determined by some kind 

of fitting procedure. 

I shall now show how a regression plane with coefficients of the form (5.8) and 

another mean regression plane with coefficients of the form (5.9) can be constructed 

by least square fitting procedures in the case where not all the variables (measured 

from the origin) have a mean equal to zero. 

We first notice the following useful relation between the determinants M and K and 

the algebraic value of the quadratic forms kM̂ k and kK̂ k. 
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and similarly for any subset of q variables, i.e. for any set of q subscripts picked from 

the set 1,2. . .n. (5.10) is proved thus: In the right hand side determinant subtract from 

the second row the first row multiplied by k1/ω, next subtract from the third row the 

first row multiplied by k2/ω, and so on. By virtue of the formula 

 kij = mij + kikj/ω 

the determinant thus obtained will be 
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(5.11) is proved in a similar way. The formulae (5.10) and (5.11) can be looked upon 

as the generalization to n variables of the formulae 

 
    1

    1

ωM ωK k k

ωK ωM k k

= - × ×

= + × ×
 

which hold good for a single variable whose mean is k/ω and whose sum square 

about the mean and about the origin is M and K, respectively. (5.10) and (5.11) can 

also be written 

(5.12) ˆ ˆ( )    .Mω K kKk kMk- = =  

The value of K (and its principal minors) is given by the formula obtained from (1.2) 

by changing M to K and x to z. Therefore, K is always non negative. And K is equal 

to zero when and only when there exists identically in t a relation of the form. 

(5.13) g1z1(t) +. . .+gnzn(t) = 0 

where the coefficients gi are independent of t and not all equal to zero. If such a 

relation holds good, we get by performing a summation over t 

 g1k1 + . . . + gnkn = 0 

and consequently 

 g1x1(t) +. . .+gnxn(t) = 0. 



If K is equal to zero, M must therefore also be equal to zero (although the inverse is 

not true). This fact also follows from (5.12) by noticing that kK̂ k is a positive 

definite quadratic form, and therefore 

 0 .M K£ £  

By an argument similar to that used in establishing (5.10) we obtain the formulae 

(5.14) 
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that is 

(5.15) ˆ ˆkKv KMv=  

where v = (υ1. . . υ n) is an arbitrary vector. Since v is arbitrary, we must further have 

(5.16) ˆ ˆ( ) 0- =k K M  

Incidentally, (5.16) shows that we always have 

 ˆ ˆ 0- =K M  

and similarly for any subset of q subscripts (1 q n£ £ ) picked from the set 1,2 . . . n. 

Now, a regression with coefficients of the form (5.8) is obtained simply by 

minimizing the sum square 

 ( ) 2

0Σ [  ]t g t+ ×g z  

where g0 ≠ 0 is considered as an arbitrary fixed constant (not to be determined by the 

minimizing conditions). This leads to the equation in g 

(5.17) g0k + gK = 0. 



We may assume K ≠ 0, otherwise there would exist identically in t a relation of the 

form (5.13) and the problem of a regression plane would be trivial. We can therefore 

solve for g, which gives the regression 

(5.18) ˆ 0.K   kKz- =  

This is a regression with coefficients satisfying (5.8). In fact, if no translation is 

involved, k will be cogredient with the observational variables. The regression (5.18) 

is therefore invariant for a homogeneous linear transformation of the observational 

variables. 

By (5.14) the equation (5.18) can also be written /  

(5.19) ˆ   MkMx =  

or in determinant form 

(5.20) 
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We may improve on (5.18) by writing it 

 ˆ 0H   kKz- =  

and determining H by the least square condition 

 ( )
2

ˆΣ  a minimum.t H té ù- ×ê úë û
kK z  

This gives the regression 

(5.21) ˆ ˆ 0ωkKk kKz- =  

the coefficients of which are of the form (5.9). The regression (5.21) is therefore also 

invariant for a homogeneous linear transformation of the observational variables. 

By virtue of (5.15) and (5.16) the equation (5.21) reduces to 

(5.22) ˆ 0kMx=  



or in determinant form 

(5.23) 
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It is interesting to notice that the invariant regression (5.23) can be looked upon as 

the regression obtained by taking the weighted arithmetic average of the coefficients 

in the n elementary regressions, the weights being the n means of the variables, 

(5.23) might therefore be called the composite mean regression. Generally (5.23) will 

give a better fit to the observations than (5.20). The regression (5.23) goes through 

the mean of all observations, while this is not true of (5.20)1. 

1 After having constructed the type of invariant regression which is considered in the 

present section, I learned from Dr. C. F. Roos of the important, not yet published, 

work which he and Dr. A. Oppenheim have been doing on invariant regressions. 

Roos and Oppenheim consider the case where the regression coefficients are 

determined by minimizing a function of the type Σtf(z) where f(z)=f(z1. . .zn) is a 

function of the observational variables. The minimizing process is considered in the 

form where the regression coefficients by definition are imposed to satisfy a side 

relation. One of their beautiful results is that if the regression shall be invariant, the 

necessary and sufficient condition which f must satisfy, is ( ) 0  
α

f g= +z gz  where a 

is an arbitrary exponent and g0g1. . .gn are the regression coefficients. Furthermore, 

the side relation must of course also be invariant. The Roos-Oppenheim criterion will 

certainly prove to be a most powerful tool in the research of new types of invariant 

regressions. 

At the time of my conversation with Dr. Roos, the authors had not yet actually 

constructed any invariant regression. The main difficulty in doing so will probably be 



to construct invariant side relations. A type of side relation which shall lead to 

regressions other than those contained in the formulae (5.8) and (5.9) above, will 

probably not be very simple. / 

6. COLLINEAR SETS AND PERFECT CORRELATION. 

I now proceed to a discussion of the extreme cases of linear dependency and perfect 

correlation between statistical variables. It is true that these extreme cases are not the 

ones which are most likely to occur in practical applications. Nevertheless, as I see it, 

a discussion of these extreme cases is essential for a rational interpretation of what is 

really involved in the notion of correlation in several variables, and particularly for 

the interpretation of partial and multiple correlation coefficients which are close to 

unity. 

For the simple correlation coefficient the case is clear enough. The simple correlation 

coefficient between two variables is equal to unity when and only when one variable 

is proportional to the other (each variable being measured from its mean). 

Geometrically interpreted: The simple correlation coefficient is close to unity when 

and only when the swarm of observation points in the two dimensional scatter 

diagram is clustering around a straight line through the origin. For partial and 

multiple correlation coefficients, however, the case is not quite so clear. 

For more than two variables we have to distinguish between different types of 

clustering. For three variables for instance it might happen that the swarm of 

observation points in the three dimensional scatter diagram is clustering around a 

plane through the origin, but are highly scattered within this plane1. The plane / may 

be far from containing any of the axes. Or it may be a plane containing say the x1 

axis, that is a plane perpendicular to the x2x3 plane. Again it might happen that the 

swarm of observation points is clustering not only around a plane but even around a 

straight line in this plane. For several variables the number of different cases is of 



course much greater. And each one of these various cases has a very definite 

significance. 

1 For the sake of brevity I use the expression »within the plane» although not all the 

points (perhaps none of them) are rigorously lying in the plane. The meaning is that 

the points are highly scattered in directions parallel to the plane. 

A rigorous analysis of these various cases is however usually neglected. And the 

practical application of the theory is often limited to the mechanical use of 

computation formulae under some simple assumptions, for instance the assumption 

that the partial correlation coefficient for the pair of variables xixj means the same 

thing as the simple correlation coefficient for xixj would have meant if the material 

had been, not what it actually is, but a material where all the other variables had been 

constants. (Which assumption is reasonably plausible only if the distribution of the 

variables is normal.) 

The reason for not analyzing the various types of clustering by the classical methods 

of correlation is easily understood. It will presently appear that the partial and 

multiple correlation coefficients and other classical correlation parameters become 

undefined in those cases of linear dependency which illustrate the various types of 

clustering. And in practical cases which approach these extreme cases, the classical 

correlation parameters lose their real significance. 

The scatter coefficient and the coefficients of linear importance always preserve a 

sense. These notions will be employed here for the discussion and classification of 

the various cases of linear dependency and the corresponding types of clustering. 

This analysis of types of clustering does not, of course, in itself exhaust the subject of 

correlation. What it does, is to furnish a logical and, in my mind, necessary 

supplement to the classical methods. 

In the present section the rigorous algebraic point of view will be adopted. The 

statistical interpretation of the algebraic criteria is discussed in the following section. 



The methods to be used are rather simple. In fact, they are only based on the 

elementary properties of Gram-ian matrices. This is another reason why a rigorous 

analysis of linear dependencies and the corresponding types of clustering should not 

be neglected in the study of correlation between statistical variables. From the 

discussion in this section and the next it will immediately follow in which cases / the 

definition of the classical correlation parameters preserves a sense. 

Supposing the variables to be measured from their means, we lay down the following 

definitions. 

The n dimensional set of observational variables x1. . .xn is said to be linearly 

dependent, or to be a collinear set if there exists identically in t at least one linear 

relation of the form 

(6.1) a1x1(t)+. . .+anxn(t) = 0 

where the coefficients a1. . .an are independent of t and not all equal to zero. If no 

such relation exists, the set is called linearly independent or non collinear. 

If there exists identically in t exactly p (0 p n£ £ ) distinct linear relations of the 

form (6.1), the set is said to be p-fold collinear or p-fold flattened. By p distinct 

linear relations of the form (6.1) is meant p linear relations, such that not one of them 

can be derived as a linear combination of the others, with constant coefficients. 

From the theory of linear equations it follows that this definition of a p-fold collinear 

set is equivalent with the following: An n dimensional set is p-fold collinear when 

and only when there exists at least one (n – p) dimensional subset ....μ δx x  which is 

non collinear and such that each of the remaining p variables, identically in t, can be 

expressed as a linear combination of ....μ δx x  with constant coefficients. Evidently, if 

the remaining p variables can be expressed as a linear combination of ....μ δx x  with 

constant coefficients, any of the n variables x1. . .xn can. A p-fold collinear n 

dimensional set is therefore a set, which by a non singular linear transformation can 



be transformed into a set where p of the variables are ineffective and ρ = n – p of the 

variables are effective. 

Geometrically interpreted a p-fold collinear n dimensional set is a set for which the 

swarm of observation points in n dimensional space are (rigorously) crowded in a 

certain ρ = n – p dimensional plane through the origin (but not in a lower 

dimensional plane). This ρ dimensional plane is called the perfect regression plane 

for the set, ρ = n – p is called the rank or the unfolding capacity of the set, p is called 

the flattening of the set. 

If p=0, that is if the rank of for the set is equal to its dimensionality, / the observation 

points are scattered in n dimensional space. There is no flattening, and the set is non 

collinear. 

If p = 1, that is if there exists exactly one linear relation of the form (6.1), the set is 

called simply collinear. In this case the flattening is 1, and the rank is exactly one less 

than the dimensionality of the set. There exists a perfect (n-1) dimensional regression 

plane. 

If p > 1, the set is called multiply collinear or multiply flattened. There now exists a 

perfect regression plane of lower dimensionality than (n 1- ). 

A simply collinear n dimensional set x1. . .xn is called a closed set if all the n 

coefficients a1. . .an in the linear relation which holds good for the set, are different 

from zero. This definition of a closed set is equivalent with the following: An n 

dimensional set is closed if there exists at least one relation of the form (6.1) 

involving all the n variables (i.e. all the coefficients a1. . .an ≠ 0) and no relation of 

the form (6.1) involving less than n variables. In fact, from this definition follows 

that the set must be simply collinear. For if there exist two (or more) distinct relations 

of the form (6.1), we can eliminate one variable and obtain a relation involving at 

most (n-1) variables. 



Geometrically interpreted a closed n dimensional set x1. . .xn is a simply collinear set, 

the perfect (n-1) dimensional regression plane of which does not contain any of the 

axes x1. . .xn. In this case each one of the variables in the set can be expressed in 

terms of the others. 

I shall now consider necessary and sufficient criteria for the cases defined above. I 

consider the n dimensional set x = (x1. . .xn), but the argument is identical for any q 

dimensional subset ...α γx x , the q rowed matrices 
[ ] [ ]... ...

 and 
q α γ q α γ

M R  then taking the 

place of the n rowed matrices M and R. 

I shall assume the set x to be an effective set, i.e. none of the variables is identically 

zero. In this case each minor contained in M is equal to or different from zero 

according as the corresponding minor of R is equal to or different from zero. In 

particular M and R have the same rank. 

From the purely algebraic point of view one is only concerned with the cases where 

the set x has rigorously the property of being collinear, closed etc. Criteria for these 

cases may be derived either from the properties of M or from the properties of R. 

From the statistical point of view (which will be discussed in / the next section) we 

have however to take account also of cases where the set x only “comes near” to 

having the properties in question, the sense of “coming near to” being defined by the 

values (close to zero or close to unity) of the determinant R = |R| and its minors. It is 

therefore preferable to state also the rigorous algebraic propositions in terms of the 

properties of R. It should be noticed that in order to ascertain the rank of R it is 

sufficient to inspect its principal minors, for R is symmetric. 

We have already seen that the set x is collinear when and only when R = 0. A 

generalization of this is the following proposition: The observational set x is of rank 

ρ (i.e. its flattening is p = n – ρ) when and only when the correlation matrix R is of 

rank ρ. 



For if the set is of rank ρ, there exist identically in t exactly p = n – ρ distinct linear 

relations between the variables x1 . . . xn. Therefore, given any (ρ + 1) dimensional 

subset, we can always by elimination obtain a linear relation which involves at most 

these (ρ + 1) variables, and which is satisfied identically in t. All the (ρ + 1) rowed 

determinants of the form 

(6.2) 

1 1

1 1

( ) ... ( )

.........................

( ) ... ( )

α α ρ

γ γ ρ

x t x t

x t x t

+

+

 

where α . . .γ are (ρ + 1) arbitrary numbers from the sequence 1,2. . .n must therefore 

vanish identically in t1. . .tρ + 1. And the same holds good a fortiori for the higher 

rowed determinants of this form. Hence by (1.2) all (ρ + 1) and higher rowed 

principal minors of R must vanish. Furthermore, if the set x is of rank ρ, there exists 

at least one ρ dimensional subset xμ . . .xδ for which no linear relation holds good 

identically in t. The determinant 

(6.3) 

1

1

( ) ... ( )

.........................

( ) ... ( )

μ μ ρ

δ δ ρ

x t x t

x t x t

 

can therefore not vanish identically in t1 . . . tρ. There must be at least one set of 

values 1... ρt t¢ ¢for which (6.3) is different from zero. The sum square of (6.3) must 

therefore be positive, not zero, if the summation subscripts t1 . . . tρ independently of 

each other run through all values of t. Hence the ρ rowed principal minor Rρ[μ . . . δ] in 

R must be different from zero. Therefore, R being symmetric, must be of the rank ρ. 

/ 



Inversely, if the symmetric matrix R is of rank ρ, it must contain at least one ρ rowed 

principal minor Rρ[μ. . .δ] different from zero. Hence the set xμ. . . xδ is linearly 

independent. There must consequently exist at least one set of values 
1. . .t t   for which 

(6.3) has a value a different from zero. But all (ρ + 1) rowed determinants of the form 

(6.2) must vanish identically in t1 . . . tρ + 1 In particular the (ρ + 1) rowed determinant 
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1

1
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where i is any of the numbers 1, 2 . . . n, must vanish identically in t. Developing this 

determinant after the last column we see that there must exist identically in t a linear 

relation 

 ( ) ... ( ) ( ) 0iμ μ iδ δ iα x t α x t αx t+ + + =  

where the coefficients are independent of t, and at least one of them, namely a, is 

different from zero. Incidentally, since all the variables are assumed effective, there 

must even be at least two coefficients in the last equation, which are different from 

zero. If R is of rank ρ, each of the variables in the set x can therefore, identically in t, 

be expressed linearly in terms of a certain linearly independent ρ dimensional subset. 

Hence the set x is of rank ρ. 

In order to find a linearly independent ρ dimensional subset contained in the set x, we 

have to inspect the ρ rowed principal minors of R. Any subset xμ. . . xδ such that Rρ[μ. 

. . δ] is different from zero, is a linearly independent set and can be used for 

expressing all the variables in the set x. 

If the number n of variables is equal to number ω of observations, the set is always 

collinear. More generally: If ω n£ , the rank of the set is at most equal to ω–1, i. e. 



its flattening is at least equal to n – ω + 1. This simply follows from the fact that ω 

points x(1) . . . x(ω) between which there exists the linear relation Σtx(t) = 0 (or any 

homogeneous linear relation), must necessarily lie in an ω – 1 dimensional plane 

through the origin (and they might even lie in a lower dimensional plane). 

This fact is also revealed by the rank of R. The general term / 

(6.4) 

2

1

1

( ) ... ( )

.........................

( ) ... ( )

α α ω

γ γ ω

x t x t

x t x t

 

in the formula for the ω rowed principal minor Rω[α . . . γ] in R is namely zero if two or 

more of the ti are equal. And if none of ti are equal, the set of values t1 . . . tω must be 

exactly the set of ω different values which represent the ω observations. Adding to 

any column in (6.4) all the other columns we therefore get a determinant where one 

column consists exclusively of zeros (since the variables are measured from their 

means). Hence all the ω rowed principal minors of R are zero. That all the higher 

rowed principal minors of R must be zero, simply follows from the fact that in the 

expression for any of these principal minors each term is a determinant with at least 

two equal columns. 

From the preceding proposition we immediately infer the following: A necessary and 

sufficient condition for a set x to be simply collinear is that R = 0 and that at least 

one of the diagonal elements 
îir  in the adjoint correlation matrix R̂  is different from 

zero. 

If an n dimensional set is simply collinear, it is always possible, at least in one way, 

to pick out a subset of (n – 1) variables in terms of which the one remaining variable 

can be expressed linearly. But it is by no means certain that any of the variables can 

thus be expressed in terms of the others. The variable xi in a simply collinear set can 

be expressed linearly in terms of the other variables when and only when 
îir  ≠ 0. For 



xi can evidently be expressed in terms of the other variables when and only when xi 

occurs in the one existing relation which holds good for the simply collinear set, that 

is, when and only when the remaining (n – 1) variables do not by themselves from a 

collinear set, i.e. when and only when 
îir  ≠ 0. This fact can also be inferred from 

(4.23). 

From this we further conclude: A necessary and sufficient condition for a set x to be 

a closed set is that R = 0 and all the diagonal elements 
îir of the adjoint correlation 

matrix are different from zero. 

In a simply collinear set, a given row (column) of the adjoint moment matrix M̂  will 

consist exclusively of zeros when and only when the diagonal element in this row 

(column) is equal to zero. For if M̂  is of rank 1, we have ˆ ˆ ˆ ( . 1,2... ),ij ii jjm m m i j n= =  

where at least one of the ˆ
iim is ≠ 0. The same rule holds good for the adjoint 

correlation matrix. / 

The least relation also shows that in a simply collinear set, a given element 
îir  of R̂  

will vanish when and only when at least one of the two quantities 
îir  and ĵjr  vanishes. 

If either 
îir  or ĵjr  (or both) vanishes, the partial correlation coefficient ijr  will 

consequently be of the undefined 0/0 form. If 
îir  vanishes, the multiple correlation 

coefficient ri will be of the form 0/0. Hence: If all the partial (or all the multiple) 

correlation coefficients in a simply collinear set shall have a meaning, the set must 

be a closed set. From (4.25) and (4.27) is seen that in a closed set all the ijr  and all 

the ri have an absolute value equal to unity. The case of a closed set might therefore 

also be designated as the case of perfect correlation. 



If the simply collinear set is not closed, all those partial correlation coefficients ijr  

will be undefined which are situated in R  in a row (or a column) whose 

corresponding diagonal element in R̂  is zero. 

If the set is multiply collinear, the indeterminateness is even greater. In this case R̂  is 

of rank 0, and therefore each and all of the partial and multiple correlation 

coefficients of highest order undefined. 

7. TYPES OF CLUSTERING AND NON SIGNIFICANT CORRELATIONS. 

The discussion of the present section will concern the statistical interpretation of the 

notion of types of clustering, and particularly the significance of this notion in the 

procedure of fitting lines and planes to a given scatter diagram. The point of view 

which will be adopted is thus the regression point of view as distinguished from the 

frequency distribution point of view, although one or two occasional references will 

be made to the frequency aspect of the problem. 

The procedure of determining an analytic relation between a certain number of 

statistical variables, has a conceptual background somewhat like this. We have in our 

mind a certain pattern, according to which variations in statistical variables can be of 

three kinds. Accidental variations are variations due to the fact that a great number of 

variables has been overlooked, consciously or unconsciously, each of the variables 

being however of minor importance. Disturbances are variations due to the fact that 

one single, or a certain limited number of highly significant variables have been 

overlooked. Systematic variations are variations which show a certain regularity (in 

time or space), this regularity being / taken as a criterion that no really relevant 

variable has been overlooked. 

This classification does not pretend to be anything like satisfactory from a 

philosophical point of view. A critical reader will for instance find the troublesome 

problem of causality hidden in practically every line of the definitions. Furthermore 



the distinction between what shall be considered as accidental variations and 

disturbances, is not sharp. To some extent the distinction depends on the complexity 

of the problem and on the relative perfection (or deficiency) of the empirical and 

rational tools of investigation which are at present at our disposal. Thus, in 

economics we are actually often forced to throw so much into the bag of accidental 

variations that this kind of variations comes very near to take on the character of 

disturbances. In such cases it would perhaps be more rational to introduce an 

hierarchic order of types of variations, each type corresponding to the overlooking of 

variables of a certain order of importance. 

Nevertheless, I think the rough three-fold distinction which has been made above, 

will be sufficient for our purpose, so that it shall not be necessary to enter upon a 

lengthy philosophical discussion. 

When we proceed to the determination of an analytic relation between a certain 

number of statistical variables, we assume, implicitly or explicitly, that if the 

considered set of variables really forms a complete set of relevant variables, and if 

the accidental variations could be eliminated, so that only the systematic variations 

were left, then the variables would satisfy a certain functional relation (anyhow for 

some limited time or space considered). In fact, this assumption is really involved in 

the definition of systematic variations as distinguished from accidental variations and 

disturbances. The character of this functional relation is an important feature in any 

statistical problem, and in many problems it is the one important thing in which we 

are interested. A statistical fitting procedure, performed with a tentative analytic 

formula, is an attempt to get rid of the nonsignificant accidental variations and thus 

obtain some idea of the character of the functional relation which exists between the 

systematic variations. 

As I see it, any statistical fitting procedure can be considered from this point of view. 

This interpretation seems rather natural. It is not, however, the only one which has 



been advanced. The / set of n elementary regressions (4.7) is sometimes considered 

as a unity, and as such contrasted with the unique regression obtained by some kind 

of mean regression method. It is contended that in principle only a regression of the 

latter type represents an approximation to the functional relation between the 

systematic variations, and that the set of n elementary regressions represents an 

entirely different notion, namely the notion of stochastic relation, the stochastic 

relation being not a unique relation such as the functional relation, but a plurality of 

relations, namely as many relations as there are variables. It is claimed that this 

distinction is fundamental and characteristic for the distinction between the 

mechanical and the statistical conception of “law”. 

In my mind this interpretation is fallacious. As pointed out in Section 4, the 

difference between the various conceivable regressions is a difference in assumption 

as to how the accidental element has actually manifested its presence in the material 

at hand, this difference in assumption entailing a difference in the technique by 

which the regression coefficients are determined. In the case of a mean regression the 

assumption and the technique is more symmetric in the variables than in the case of 

the elementary regressions. In a certain type of problems the technically best 

approximation to the functional relation between the variables will therefore be 

furnished by a mean regression, in another type of problems it will be furnished by 

one particular of the elementary regressions. It is only in this technical sense that a 

mean regression is “mean”. Otherwise there is no difference between a mean 

regression and one particular of the elementary regressions. And it does not seen 

plausible to pick out in the infinity of possible techniques, that particular kind of 

technique which leads to the system of elementary regressions, and erect it into a 

principle, the conceptual importance of which should be comparable with the basic 

importance of the idea of functional relationship. There certainly does exist a 

difference between the conceptual schemes of a mechanical and a statistical law, but 



not in the sense that the first is something unique, the second something pluralistic. 

The difference, as I see it, is that the first is a law conceived so as to admit of no 

exceptions, the second a law which really admits of exceptions, just because the 

accidental variations are thought of as being superimposed on the systematic 

variations. / 

Another point which should be noticed in connection with the conception of 

regression and functional relation, is that the partial and multiple correlation 

coefficients (and the generalizations of these parameters to curvilinear regression) are 

not primarily descriptive of the character of the systematic variations, but are 

essentially indicators of the presence of accidental variations and disturbances. In the 

exaggerated importance which in recent years has been attributed to the computation 

of partial and multiple correlation coefficients, one has lost of sight to some extent, it 

seems to me, the fact that one of the essential things we are after, is the character of 

the regressional relation itself. 

After these preliminary remarks we may turn to the notion of types of clustering. Let 

a statistical material covering ω observations on n variables be given. And suppose 

we want to investigate the character of the systematic variations in the variables, by 

assuming as a tentative analytic formula the linear function. 

In all practical cases the moment matrix, and hence the correlation matrix will be non 

singular. This in itself does not, however, tell us very much from the statistical point 

of view. The essential question from the statistical point of view is if the deviation of 

R from zero is significant or not, that is, if the deviation of R from zero is really 

descriptive of the systematic variations in the variables. Even if the systematic 

variations of the variables are such that they would give rigorously R = 0, the 

slightest amount of accidental variation introduced would at once make R positive, 

not zero. If R is considered from the sampling point of view, assuming the ideal 

universe in question to have R rigorously equal to zero, the mathematical expectation 



of an actually observed R would not be zero but some positive quantity. And the 

probability of an observed R = 0 would be virtually zero. An actually observed value 

of R has therefore to be viewed in the light of some criterion of the significance of its 

deviation from zero. And similarly for the other scatter parameters, that is, for the 

principal minors of R, respectively the square roots of R and its principal minors. 

For a rigorous analysis it would be highly desirable to have an exact criterion for the 

significance of the observed magnitude of the scatter parameters, in the form of 

formulae for the mathematical expectation and standard deviations on these 

quantities, or better still: in the form of complete theoretical distributions. At present 

I have no such formulae to offer. But nevertheless we / have a rough criterion by 

which to judge the scatter parameters closeness to zero, namely the fact that all these 

quantities are lying between 0 and 1 and are limited by the formulae and propositions 

of Section 2. We are thus virtually in the same position with regard to judging the 

magnitude of the scatter parameters as we are with regard to judging the magnitude 

of those classical correlation parameters for which mathematical expectations, 

standard deviations or complete theoretical distributions are not available at present. 

This sort of criterion is certainly not ideal. But if it is used with care, I believe it is far 

better than no criterion at all. And it is perhaps not vain to hope that it shall 

ultimately be possible to derive the necessary formulae for giving a more definite 

meaning to the scatter parameters closeness to zero. 

In view of the algebraic facts indicated in Section 6 it is clear that the notions of 

simply collinear sets and closed sets must be important from the statistical point of 

view. 

Suppose for instance that the scatter coefficient s R= for an n dimensional set is 

found to be not significantly different from zero, indicating that the observation 

points in the n dimensional scatter diagram come close to lying in a plane. This in 



itself is not sufficient to make it a plausible procedure to pick out one of the 

variables, say xi, and compute the regression of xi on the remaining (n – 1) variables. 

This procedure would have no meaning if îir is not significantly different from zero, 

while at least one other diagonal element in R̂  is significantly different from zero. 

For in this case the (n – 1) dimensional plane around which the observation points 

are clustering is not significantly different from a plane which contains the xi axis, the 

points being highly scattered within this plane. The regression which would have a 

meaning would therefore be a regression between (all or some of) the remaining (n – 

1) variables, not a regression involving xi. The variable xi has nothing to do in the 

linear regression system. From the point of view of linear regression xi is a 

superfluous variable drawn into observation. The n dimensional set is not a closed 

set. If we would compute the regression of xi on the other variables in this case, the 

whole system of regression coefficients bij would be artificial. Computing the 

regression of xi on the other variables would namely now mean forcing the quantity 

îir (whose deviation from zero is non-significant) into the coefficients bij as a 

denominator. / 

The question may arise: Is not this exactly the kind of thing which would show up in 

the multiple and partial correlation coefficients? If the actual distribution of the 

observations is such that the variable xi is a superfluous variable in the above sense, 

would not the partial correlations ijr and the multiple correlation ri necessarily have 

small numerical values? The answer is: They would not. On the contrary, the 

definition of the partial and multiple correlation coefficients is such that when the 

remaining (n – 1) variables taken by themselves come close to forming a collinear 

set, the partial correlations ijr between the superfluous variable xi and any of the 

remaining variables, respectively the multiple correlation ri between xi and the set of 

the other (n – 1) variables, may assume any value, in particular these parameters 



might come close to unity, thus making it appear perfectly legitimate to compute the 

regression of xi on the other variables. 

I shall take the case n = 3 as an illustration. Let r12, r13 and r23 be the simple 

correlation coefficients in the set (x1x2x3). We put r12 = ph, r13 = qh and 

2 2

23 1 ( 1)r ε h h= - £  where ε is the sign of r23 and the square root is taken positive. 

Now consider p, q and h as arbitrary quantities. The consistency condition which 

characterizes the case where r12, r13 and r23 are correlation coefficients for a set of 

real variables is 

 ( )2 2 2 20 1 2 1 .R h p ε pq h qé ù£ = - - × - +ê úë û
 

By studying the two conics in (p, q)-coordinates 
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which have the shape indicated in Fig. 2, we see that the consistency condition is 

certainly satisfied for all values of 2 1h £ if the point (p,q) is situated in the inner 

square of the figure, that is if 

(7.1) 1.p q+ £  

In terms of p, q and h we have (using Professor Yule′s notation for the partial and 

multiple correlation coefficients) 
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/ where all the square roots are taken positive. Further the standard error of estimate 

of x1 as a linear function of x2 and x3, is 

 
2

123 1 1(23)1σ σ R× = -  



where σ1 is the simple standard deviation of x1. 

Therefore, if p and q are chosen as two arbitrary numbers independent of h and 

satisfying (7.1), we have at the limit for 0h® . 
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Now, the limiting process 0h® means that we construct a case where the 

observation points in the three dimensional scatter diagram (x1x2x3) come close to 

lying in a plane containing the x1-axis (i.e. a plane perpendicular to the (x2x3 plane). 

But in this plane the observation points are highly scattered. The observation points 

are far from clustering around a straight line in this plane. In other words, we 

construct a case where the set (x1x2x3) comes as near as we want to being a simply 

collinear but not a closed set, namely a set where there exists a linear relation 

between x2 and x3 taken by themselves, but where there is no approach whatsoever to 

a linear relation between x1 and the other variables. The case is one where x1 is a 

superfluous variable drawn into observation. 

Nevertheless we can specify the case by disposing of p and q in such a way that for a 

sufficiently small h any of the partial correlation coefficients between the superfluous 

variable x1 and one of the other variables, for instance the partial correlation 

coefficient r12∙3 comes as near as we please to any number between –1 and + 1. Or the 

multiple correlation coefficient R1(23) can be brought as near as we please to any 

number between 0 and 1. For r23 positive we may for instance choose  p = –q= 1/2. 

At the limit for 0h®  we get r12∙3 = + 1, r13∙2 = –1, R1(23) = 1 and σ1∙23 = 0. Choosing  

p = q= 1/2 we get r12∙3 = r13∙2 = 0 etc. 

The case p = –q= 1/2 is particularly illustrative. All criteria seem to indicate that it 

would be perfectly legitimate to compute the regression of x1 on the two other 



variables. We have maximum partial and multiple correlation and minimum standard 

error of estimate. And still such a regression would have no sense. 

If we had computed the scatter coefficient s and the coefficients of linear importance 
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where all the square roots are taken positive, the real character of the relation 

between the variables would at once have been revealed, for we have at the limit for 

0h®  / 

 11 22 33
ˆ ˆ ˆ0 and 1s r r r= = = =  

s = 0 means that there exists at least one linear relation between the three variables, 

22
ˆ 1r =  (or 33

ˆ 1r = ) means that there does not exist more than one such relation, 

and 11
ˆ 0r = means that the one existing relation is a relation between x2 and x3. 

It is easy to construct numerical examples which illustrate this type of clustering. I 

constructed for instance three series x1x2x3 where x1 was a combination of words in 

English, each letter being attributed a value according to its place in the alphabet, x2 

consisted of digits picked at random in a logarithmic table, and x3 was nearly a linear 

function of x2. This case happened to give a high negative value for r12∙3 and high 

positive values for r13∙2 and R1(23). But the value of 11r̂  (and therefore necessarily the 

value of s) turned out to be comparatively small, while 22r̂  and 33r̂  were 

significantly different from zero, indicating the presence of a linear relation between 

x2 and x3 and the lack of a linear relation involving x1. 



The conclusion is that before proceeding to the computation of the classical 

correlation parameters, it will be advisable to take a general survey of the type of 

clustering, using the scatter coefficient and the coefficients of linear importance, and 

if necessary the scatter coefficients for the lower dimensional subsets. 

In particular it is essential to determine if the set (assumed approximately collinear) 

comes near to being a closed set, and if not to pick out those subsets which come 

near to being closed. It is only for the approximately closed subsets thus determined 

that the classical correlation parameters have a real significance. In particular it is 

only for a rigorously closed set the term perfect correlation has a meaning. 

The following might serve as a general scheme for the analysis. First compute the 

simple correlation coefficients, i. e. the elements of the correlation matrix R. If the 

scatter coefficient s R= + , where R = |R|, is close to unity, there is no use trying to 

express any of the variables linearly in terms of the others. 

If s is reasonably close to zero, the diagonal elements 
îir  in the adjoint correlation 

matrix should be computed. If none of the quantities îir  are very small, the set may 

be considered as a closed set and if desired the regression coefficients and other / 

classical correlation parameters computed in the usual way. If a mean regression is 

wanted, one of the forms (4.16), (4.22) or (5.22) may be tried. 

If some of (but not all) the quantities îir are very small, the set may still be 

considered as a simply collinear but no longer as a closed set. Those variables xα for 

which α̂αr is very small, might be left out and the rest of the variables treated as a 

closed set. If it is desired not to leave the variables xα out completely, one might 

compute the regressions in the usual way, however not compute the regression of any 

of the xα on the other variables. 



If all the quantities îir are very small, the set should be considered as multiply 

collinear. In this case there will exist at least two subsets which may be considered as 

closed sets and treated separately. These closed subsets are determined by an 

inspection of the (n – 2) rowed and eventually the lower rowed principal minors of 

the correlation matrix R. If there exists at least one ρ rowed principal minor of R, the 

positive square root of which is not a very small quantity, while the positive square 

roots of all the higher rowed principal minors of R are very small, then the given n 

dimensional set should be considered as p = n – ρ fold collinear (p-fold flattened). 

There now exist exactly p closed subsets which may be treated separately. These p 

subsets are determined in the following way. Pick out the ρ dimensional subset xμ . . 

.xδ which is such that Rρ[μ . . . δ] is the greatest of all ρ rowed principal minors in R. 

This ρ dimensional subset might be called the basis set. The basis set is the ρ 

dimensional subset which comes nearest to being an uncorrelated set. Now consider 

in turn the p (ρ +1) dimensional subsets obtained by adding to the basis set one of the 

variables which are not in the basis set. Each of these p subsets comes close to being 

a simply collinear set and might be analysed as such. In particular the set might be 

reduced to a closed set by omitting all those variables xα which are such that the 

square root of the corresponding diagonal element in the (ρ +1) rowed adjoint 

correlation matrix for the subset, is a very small quantity. The variables which will 

eventually be omitted by this rule, are necessarily variables occurring in the basis set. 

The one variable which is added to the basis set, will never be omitted. 

RAGNAR FRISCH 

pro tem New York City, February 1928 / 

                                                 
i The reference is to Ragnar Frisch : « Sur le théorème des déterminants de M. Hadamard », Comptes rendus des 

séances de l'Académie des Sciences, Séance du 5 décembre 1927, Paris, Tome 185, 1244-1245, available on 

http://www.sv.uio.no/econ/om/tall-og-fakta/nobelprisvinnere/ragnar-frisch/published-scientific-work/1926-1930.html  


