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In the following lines the problem of linear correlation will
be considered from the point of view of quadratic forms and linear
transformations. The vector and matrix notation is found to be
of great advantage, so it will be used extensively. I shall first
define the notations used and state some classical facts from the
algebra of matrices. The application to statistical variables of
this algebraic tool will lead in a simple and most natural way
to various results, some of wich are known, and others which
are new so far as [ am aware.

I, STATEMENT OF SOME FACTS FROM THE ALGEBRA OF MATRICES.
1. VECTORS.

A set of n quantities z, ..., is called a vector and denoted by
a small heavy faced letter X = (z,...2,). The quantities z, ...z,
are called the components of the vector. The ¢-th component of
the vector X is also denoted (X), In distinction to vectors, scalar
quantities will be denoted by ordinary (not heavy faced) letters.

For n = 2,3 X is represented geometrically by a directed straight
line from origin to the point (2, 2,) or (; @, Zs) respectively. For
the sake of convenience the geometric language is used for any
n. For our purpose it is immaterial if we think of X as represent-
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ing the point (z,...z,) or the straight line from origin to this

oint. Sometimes it is convenient to speak of ‘“the point Xx*
instead of ‘“the vector x‘.

The equation X = 0 means that each component of X is zero.
The product ¢-X, or shorter cx, of the scalar ¢ and the vector
x is defined as the vector obtained by multiplying each com-
ponent of X by e. The sum of two vectors X and y is defined
a5 the vector whose ¢-th component is the sum of the 7-th com-
ponent of X and the ¢th component of y. Evidently cx = Xc
and X+y=Y+X. The product X-y, or shorter Xy, is defined
as the scalar x,y, + -+ 2,9, Evidently Xy =yx. The scalar
x:‘x] = 4+ Vxx is called the modulus or the length of x. The
convexe angle (Xy) between the two vectors X and y is defined
by cos (xy) = Xy/zy. Two vectors X and y are orthogonal to
each other when, and only when Xy = 0. Two vectors X and y
have the same (the opposite) direction when, and only when
Xy = +ay (Xy = —axy). The vector X/« is the unit vector (i. e.
the vector of length 1) in the direction X.

The product ax can be looked upon as a linear form in
;- @, with coefficients a, - a,, The equation a,+-ax = 0 repre-
sents a plane in (z, . ..®,) space. The unit vector a/a is the normal
of this plane. The plane goes through the origin of X when, and
only when a, = 0. The plane itself is defined indiscriminately either
by the equation @,+ax =0 or by the equation —a, —ax =0.
Fixing one of these two equations by convention means defining
a positive and a negative side of the plane. If such a convention
is made, the distance (measured perpendicularly) from a given
point X to the plane a,+ax =0 is equal to (a,+ ax)/a.

2. MATRICES.

A set of »* quantities ay (3,7 =1,2---n) is called a matriz and
denoted by a heavy faced capital letter

[
ay ... O1n
afn] ~--a7in

The quantities a; are called the elements of the matrix. The
7zj-th element of the matrix A is also denoted (A);.

The diagonal containing the elements a; .. .a,, is called the
principal diagonal of A. The elements in the principal diagonal
are called the diagonal elements of A. The vectors a;=(a;, . - )
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are called the direct (vector) components, and the vectors
éj=(aij. .. a,;) the transposed (vector) components of A.

The matrix obtained from A by interchanging rows and columns,
is called the transposed of A and denoted A =(dij), where dy = ay;.

If ay=a; A is called symmetric. A matrix with real elements
1...0

is called a real matrix. E=< ---- 1) is called the unit matrix.
0...

'The equation A =0 means that each element of A is zero. The

product ¢-A or shorter cA of a scalar ¢ and a matrix A is de-

fined as the matrix obtained by multiplying each element of A ?
by ¢. The sum of two matrices A and B is defined as the matrix
whose 4j-th element is the sum of the #j-th element of A and the

7j-th element of B. Evidently ¢cA=Ac and A-B=B--A.

The determinant value of the matrix A is called the modulus &}
of A and denoted 4 =|A| The matrix (determinant) obtained by * §
picking out g rows and g columns (1Z¢Zn) from A, is called ;]
a g rowed submatrix (¢ rowed minor) of A; ¢ is the order of the |
submatrix (minor). A submatrix (minor) whose diagonal elements '
are diagonal elements of A, is called a principal submatrix (principal i’
minor) of A. A is said to be of rank ¢ (1Z9Zn—1) if it con- *
tains at least one ¢ rowed minor which is different from zero, °
while all higher rowed minors vanish. A is said to be of rank

#, or to be non singular if 4 0. Otherwise A is called singular,
If A=0, A is said to be of rank 0. A necessary and sufficient
condition for a symmetric matrix to be of rank p, is that it cont-
ains at least one o rowed primeipal minor, which is different
from zero, while all higher rowed principal minors vanish.

A real symmetric matrix is called positive definite if all its
principal minors (of all orders) are non negative. The case A = 0
being however excluded. In this case A might de called zero de-
finite. If a positive definite matrix is non singular, all its princi-
pal minors are positive, not zero. Hence the determinant value
of a positive definite matrix which contains a vanishing prinei-
pal minor, must be equal to zero. A mnecessary and sufficient
condition for a real symmetric matrix A to be positive definite
(respectively positive definite and non singular) is that all the »
principal minors
a11 12 a1 ... B '

all] PR
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are non negative (respectively positive, not zero).
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In a positive definite matrix all principal §up1natrice§ (of all
orders) are positive definite. If A is pos?ti.ve defln'lte, ——A is called
negative definite. If A is positive deflnlte., .cA is pos'ltlve, nega-
tive or zero definite according as ¢ is positive, negatlve OT Z€ro.
In distinction to definite matrices, all other matrices are called
indefinite. _ . s

The product of two matrices AB (taken in this order)bls defined
as the matrix whose ¢j-th element is (AB); =2, a;b,;. This formula

'is analogous to the formula for multiplication of determinants.

Hence the determinant of a product of two matrices is equal to
the product of the determinants of the factors. A product of se-
veral matrices is associative but not commutative. A produc't of
sums of matrices is distributive if account is taken of the diffe-
rence between pre and post multiplication. The transposeq of a
product is equal to the product of the transposed taken in the
reversed order. The rank of a product is never greater thar{ the
rank of any of the factors. The rank of a product of two matrices,
one of which is non singular, is equal to the rank of the othe.r
matrix. If A has one of the properties of being definite, posi-
tive definite, definite and non singular etc., the matrix CAC has
the same property, provided C is non singular. .

If A is any matrix, AA is a symmetric matrix because it is a
matrix which is equal to its transposed. A matrix O suc'h t;hat
00=E, that is 2,040, is equal to O or 1 according as ¢==j or
i=j, is called an orthogonal matrix. The determinant of‘ an ort?o—
gonal matrix must be equal to 41 or —1, for ]0|-|0]:]0| =
=|E|=1

1|9 Ifactors A is denoted A? (p=1), A° is defined as e.q.ual to E
Let f(A)=23,a,4* be a polynomial in A.. From the deflnltlons? laid
down follows that B=f(A) is a uniquely determined matrix. B
is called a polynomial matrix in the argument A. If f(2)=g(4)- h(2)
identically in 4, g and h being polynomials, then f(A)= 9(A) -.h(A).
A polynomial matrix in a symmetric argument@is symmetrlc._ If
A is any matrix, there exists a polynomial in A of degree p<mn,
which vanishes if 1 is replaced by A. The polynomial a(4) of
lowest degree such that a(A)=0, is called the typical polynf)n-aial
for A. By convention (1) is determined so that the eoefflcle-nt
of the highest power of 1 is equal to 1. Only one polynomial
a(2) exists for a given A. 4

The polynomial in A, A(,%)=|A——/”LE] is called the secular (or
characteristic) polynomial for A, and the equation A(1)=0 is called
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the secular equation for A. The roots of the secular equation for
A are called the characteristic numbers for A. The secular equa-
tion for a real, symmetric matrix has only real roots, in parti-
cular it has the root 2=0 of multiplicity #—p when and only
when the matrix is of rank g. A real, symmetric matrix is posi-
tive (negative) definite when and only when all the roots of the
secular equation are non negative (non positive).

A fundamental fact from the theory of matrices is that the
typical polynomial a(4) is a divisor of the secular polynomial
A(4). Hence the secular polynomial vanishes when A is replaced
by A. Furthermore, the two polynomials a(4) and A(2) vanish for
exactly the same values of A The only difference being that
some of the zeros might occur whith a higher multiplicity in A(4)
than in 4(4).

The cofactor of a; in A is defined as (—)*/ times the minor
of A which is obtained by omitting the row and column which
intersect at ay, that is the i-th row and the jth column. Let dy;
be the cofactor of a; in A (note the reversed order of the sub-
scripts). The matrix ﬁ:(dij) is called the adjoint of A. If A is
non singular, the matrix A/4 obtained by dividing each element
of A by A::]A], is called the reciprocal of A and denoted A~
Any matrix has an adjoint, but only non singular matrices have
a reciprocal. If A is of rank ¢=n, g=n—1, o<mn—2, the adjoint
A is of rank m, 1 and 0 respectively. The adjoint (the recipro-
cal) of a product is equal to the product of the adjoints (of the
reciprocals) taken in the reversed order. The adjoint (the reci-
procal) of the transposed is equal to the transposed of the adjoint
(of the reciprocal), so that the notation A~ is unambiguous. The
adjoint of the transposed is denoted A. The adjoint (the recipro-
cal) of symmetric matrix is symmetric. And the adjoint (the reci-
procal) of a positive definite matrix is positive definite.

A simple application of the definition of a product shows that
AE=EA=A and AA"'=A~'A=E. If A is non gingular, the
linear matrix equation AX=B is therefore solved by premultipli-
cation with A~ wich gives X=A"'B. From this we infer
|A"*|=|A|"" and |A|=4" |[A~Y|=4""2,

p factors A~'! is denoted A—?. Thus all integer powers of a
matrix (with positive, negative or zero exponents) are defined,
negative powers however being subject to the condition that the
matrix shall be non singular. If p is any integer, EF=E.

It is also possible to introduce fractional exponents. Here we
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shall only consider square roots. VA = At is defined as a matrix
B such that B*=A. By the fundamental theorem that the typical
polynomial is a divisor of the secular polynomial, it is easy to
prove that matrices B with the property B’=A always exist if A
is non singular. If further A is positive definite, there even exist
real matrices B such that B®=A. In fact, the typical polynomial
a(d) for A has a constant term different from zero, because A(4)
has a constant term different from zero, namely |A|. Therefore a(4)
can be written in the form a@=(g?—A1)/h where g and h are polyno-
mials in 2. Since a(A)=0, B=g(A) is a matrix such that B?=A.
If further A is positive definite, all the zeros of a(l) are real
and positive, and in this case g(1) might be chosen with real

coefficients. The elements of B are consequently real.
d...0
A matrix P = (01 cee > which is of the same type as E, having
»“n,

however d, ...d, as its diagonal elements instead of 1,...1, is called
a diagonal matrix. A diagonal matrix is evidently symmetric and
its determinant value is equal to the product of its diagonal
elements. A diagonal matrix is of rank ¢ if o of its diagonal
elements are different from zero. The adjoint (the reciprocal)
of a diagonal matrix is a diagonal matrix. The product of two
diagonal matrices D' and D" is a diagonal matrix whose diagonal
elements are the products of the corresponding elements in D’ and
D’. A diagonal matrix is raised to a (positive, negative or zero)
power p, by raising each of its diagonal elements to the power
p. If any matrix A is premultiplied (postmultiplied) by a diagonal
matrix D, the effect is to multiply each row (column) of A by
the corresponding element of D. ,

If A is any matrix whose diagonal elements are different from
zero and of the same sign, the matrix obtained by dividing all
the elements a; by + Vayay, is called the diagonally normalized
matrix of A, or shorter the normalized of A, The normalized

. @y ...0

of A can be expressed as D~*AD~? where D= (O - ), Dis
s o A,
called the diagonal matrix of A. In any normalized matrix the
elements of the principal diagonal are all equal to 1. The nor-
malized of A is equal to the normalized of D'AD’, where D' is
an arbitrary non singular diagonal matrix whose diagonal ele-
ments are all of the same sign.
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8. MATRICES MULTIPLIED BY ONE VECTOR.

The product Ax is defined as the vector y whose 7-th compo-
nent is y;=(AX);=Z,242;. The product xA is defined as the vector
y whose j-th component is y,=(xA)=3,za,. Evidently xA=Ax
and Ex=x.

A product of several matrices and one vector is associative if
the vector stands either before or after all the matrices. An ex-
pression like ABCX is therefore unambiguous. But (Ax)B will in
gejnera.l be different from A(xB). By introducing the transposed ma-
trices it is always possible to carry the vector to one end of the
product and thus make the product associative. For instance
(AX)B=xAB=BAx.

The vector y=Ax can be looked upon as representing » linear
forms y;=2a;z; If the components of y are given, while those
of X are unknown, the equation Ax=y may be looked upon as
a system of linear equations. If A is non singular, the system
is solved by premultiplication with A~?, which gives x=A"ly.

The equation X'=Ax can be looked upon as representing a
homogeneous linear transformation, whereby the set of variables
X=(@,...x,) is replaced by the set X'=(2;...2)). A is called the
matrix and A4 the modulus of the transformation. A transforma-
tion is called non singular, orthogonal ete. according as A has
these properties.

If we have two sets of variables x and Yy, and both sets are
subject to the same transformation X =Ax and y'=Ay, x and
y are called cogredient sets. If x'=Ax while Ay'=y, x and y
are called contragredient sets.

4. MATRICES MULTIPLIED BY TWO VECTORS.

The notation XAy is unambiguous because X(Ay) and (xA)y
according to the definitions laid down in the preceeding sections,
both represent the same thing, namely a scalar, the bilinear form
XAy =32 @y, If x=y, we have the quadratic form xAx — z
Evidently xAy =yAx and xEy=xy.

. A product of several matrices and two vectors is associative,
if one vector stands before and the other after the string of
matrices. The explicit formula for a product like XABCy isb

iy L

XABCy = zij zkhxiaikbkhchjyj
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This is a bilinear form with the 7j-th coefficient equal to Z,; a;b;, ¢,
By introducing the transposed matrices it is always possible to
carry one vector to each end of the product and thus make the
product associative. For instance (Ax)- (By)C]=xACBy.

One of the advantages of the notations and rules laid down in this
and the preceeding sections, is that bilinear forms themselves
and transformations performed on such forms may be considered
from the same point of view. The notions of operand and opera-
tor thus become equivalent, much in the same way as multipli-
cand and multiplicator are equivalent notions in ordinary algebra.
The following is a simple illustration. If we perform the trans-
formations x=Px  and y=Qy on the variables in the bilinear
form xAy, the form into which XAy is carried, is simply de-
termined by introducing for x and y, rearranging the factors and
multiplying out the matrix product obtained: xAy=(Px)A(Qy’)=
=x(PAQ)y’. In particular, if X and y are cogredient, i. e, if the
transformations are X=Px and y=Py', we get xAy=x(PAP)y".
If x and y are contragredient, i. e. if the transformations are
x=0Qx, y=Q~'y, we have xAy=x(QAQ )y’

In the case of a quadratic form it does not restrict generality
if we assume A to be symmetric. In the following this assumption
is always to be understood when quadratic forms are discussed.
The quadratic form XAx is called real if A is real.

A real quadratic form XAx is called definite if it keeps a
constant sign for all possible real values of the variables (the
form eventually vanishing for certain sets of values of the
variables). A definite form is called positive (negative) definite
if its constant sign is non negative (non positive). A definite
form is called zero definite if it vanishes identically in X. This
is the case when and only when A =0 (i. e. when the rank of
A is o=0). A definite form is called definite and non singular
if it does not vanish for any other set of values of the variables
than x=0 (i. e. z,=...=2,=0). )

In distinction to definite forms all other real, quadratic forms
are called indefinite. An indefinite form is therefore a real,
quadratic form which for certain real values of the variables is
positive, not zero, and for certain other real values of the vari-
ables is negative, not zero.

A quadratic form is definite, positive (negative) definite, definite
and non singular etc. according as its matrix has these properties.
Criteria for these cases have been given in Section 2. In parti-
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cular, if A is a positive definite and non singular matrix, the
form XAX is positive, not zero, for all real values of the variables,
except x=0.

A classical fact from the theory of quadratic forms is that if
XAx is any real, quadric form, there exists a real and non singular
transformation Xx=Px' which carries the given form over into a
sum of squares. That is

XAx = x(PAP)X = Dx’

where D=PAP is a diagonal matrix. There even exists an infinity
of such transformations P. In particular there exists a real ortho-
gonal P. Whatever the particular form of P might be, the number
of diagonal elements in D which are positive, negative and zero
respectively, is always the same and determined by the nature
of A. In particular the number of diagonal elements in D which
are equal to zero is m—p, where p is the rank of A. This simply
follows from the fact that if P is non singular, A and D must
have the same rank. A diagonal element in D might be called
effective or ineffective according as it is different from zero or
equal to zero. All the diagonal elements in I are non negative (non
positive) when and only when A is positive (negative) definite.
The number of diagonal elements in D which are positive, not
zero, is called the index of A. A positive definite matrix is
therefore a matrix whose index is equal to its rank. A conse-
quence of the facts stated above, is that if C denotes an arbitrary
non singular matrix, the matrix CAC has the same rank and the
same index as the matrix A. In fact, putting @=C~'P and
B=CAC, we have QBQ=D.

5. MAXIMA AND MINIMA OF A FUNCTION OF n VARIABLES.

The essential facts regarding maxima and minima of a func-
tion of several variables can be stated in a very simple way by
using the vector and matrix notation.

Let f(x;,...®,) or shorter f(x) be a real function of the set of
n independent, real variables Xx=(x,...x,). We assume that f(x)
in a certain domain of (z,...x,) space has continuous partial
derivatives up to the highest order involved in the following
argument,.

d 62 ‘ - jllr .. -fln
Let fi—_:&{;» ﬂj:_a_x;{;j and put f=(f,...f,) F:<fmf,m>

CORRELATION AND SCATTER IN STATISTICAL VARIABLES 45

In order to indicate that the components of £ and the elements
of F are functions of the variables in the set X, we use the
notation

f=1(x) F=F(x).

Now, let X be a fixed point, and consider the distribution of
the values of f in the vicinity of x. Let h=(h, ... h,) where &, is
a small increment to the variable x; The vector h represents the
total displacement from x. The Taylor expansion of f in terms
of the increments h,, can be written

f(x+h)—f(x):f(xl)!'h+h'F§!‘)'h+ ..... N

The analogy between this formula and the formula for a function
of a single variable is obvious.

Now, if X shall be either a maximum point or a minimums
point for f, it is necessary that

I(x)=0.

In fact, if one (or more) of the components of f=£(x) were==0,
we could choose h in such ways that the term fh (which for a
sufficiently small |h| determines the sign of the right hand side
of the expansion) assumed first a positive and next a negative
value. The difference f(x+h)—f(x) would consequently not keep a
constant sign in the vicinity of X. The eventually existing points
where f attains a maximum or a minimum, must therefore be
found among the solutions x of f(x)=0.

[f any such solution shall actually furnish a maximum or a
minimum depends on the nature of the matrix F=F(x). This
matrix namely determines the distribution of the values of hFh.
And when f=0, hFh will be the sign determining term in the
right hand side of the expansion. The following cases are possible.

(L) F is zero definite. In this case the rank of F is o=0, i.e.
each element of F is zero. The quadratic form hFh therefore
vanishes identically in h. This is the case which can not be decided
upon by the properties of F alone, but where the higher partial
derivatives of f must be taken into account.

(2) F ds negative definite. In this case the quadratic form hFh
can never assume a positive value, so long as h is real. We
therefore immediately infer that the point X now is a maximum
point in the broad sense that there are no points in the vicinity
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of X where f assumes a greater value than in x. In a narrower
sense however, X might not be a maximum point. We have to
distinguish between the following two cases: (a) There exist points
in’ the vicinity of x where f assumes a value as large as f(x).
In this case x is called an improper maximum point. (b) In all
points in the vicinity of X, the value of f is less than f(x). In
this case x is called a proper maximum point.

Criteria for these two cases are readily derived from F. If
F is of rank o, there exists an n—g dimensional plane through
%, such that in this plane (in the vicinity of x), f is constantly
equal to f(X). Anywhere else in the vicinity of % the value of
S is less than f(x). The vicinity of X is assumed infinitesimal of
the second order. If infinitesimal increments of higher order than
the second are taken.into account, the n—o dimensional variety
where f is constant, can in general not be looked upon as a
plane.

To prove the above criterion let us performe a non singular
real transformation h=Ph’ which carries the form hFh over into
hFh=h'Dh’, where D=PFP is a diagonal matrix with n—g of its
diagonal elements ineffective, i. e. equal to zero, and the remaining
¢ diagonal elements effective, i. e. different from zero. These Q0
effective diagonal elements of D must be negative since F ig
negative definite. In order that hFh shall be equal to zero it is
therefore necessary and sufficient that the o components of h’ which
correspond to effective diagonal elements in D, are zero. Putting
these ¢ components of h' equal to zero in the expression h=Ph’ we
obtain an expression for h where there remain n—o arbitrary
parameters. This expression represents an n—o dimensional plane
in which f is constantly equal to f(X) (a part from infinitesimal
increments of higher order than the second). In any point outside
this plane (and in the vicinity of X)  must be less than S(x)
because any such point corresponds to a vector h' such that
h'Dh’ is negative, not zero.

In particular we see that X is a proper maximum point when
and only when g=n, i. e. when and only when the matrix F
is negative definite and non singular. If o=n—p, the minimum
might be called p-fold improper. If the highest part of a surface
has the shape, not of a peak, but of an horizontal edge, any point
on this edge represents an improper maximum point. In this
~case we have n=2 and g=1. The straight line which, in a given
point, is tangent to the curve obtained by projecting the edge
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on to a horisontal plane, represents the p=1 dimensional "plane”
where f(X) is constant (a part from infinitesimal increments of
higher order than the second).

(3) F is positive definite. In this case X is always a minimum
point in the broad sense of the word. The minimum point is
proper or improper according as F is non singular or singular.
The discussion is perfectly similar to the discussion in the
case (2).

(4) F 15 indefinite. In this case X is neither a maximum point
nor a minimum point. In certain sections of the vicinity of x f
is less than f(x), and in certain other sections of the vicinity f is
greater than f(x). The quadratic form hFh will namely now be
negative, not zero, for certain vectors h, and positive, not zero,
for certain other vectors h.

The cases (1), (2) and (3) correspond to the cases where the
second derivative of a function of a single variable is zero, nega-
tive and positive respectively. For a function of a single variable
there exists no analogon to the case (4). A matrix consisting of a
single element is namely always definite.

II. STATISTICAL VARIABLES.
1. THE MOMENT MATRIX.

Suppose there is made a certain number w of statistical observa-
tions, each observation being characterized by the values of =
quantitative attributes 2, ...2,. These quantities might be inter-
preted as the components of a vector z=(z, . ..#,). For the follow-
ing analysis it is immateriel if the observations are thought of
as ordered in time or simply as elements in a statistical popula-
tion. We assume the observations ordered in time z(t)=(z,(t) . . 2,(t))
simply for the sake of convenience of expression. Thus summa-
tion over time Z, only means summation over all the ¢, observa-
tions. The variables measured from their means will be denoted
X=(z,...2,), so that 2x(t)=0, that is Z,2,(t)=0 (¢=1,2...n). The
variables z and X here considered will be called observational
variables as distinguished from certain symbolic variables which
will be introduced later. The set z, respectively the set x, will
be called an » dimensional (observational) set. Most of the time
we shall consider the set x instead of z. If each actual observa-
tion (i. e. for each value of ¢) is represented by a point in =
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dimensional space, we obtain a swarm of observation points called
the scatter diagram.

The product moments m, (taken about the means) are defined
a8 the quantities m;="Zx(f)z,f). The symmetric matrix

M » mln)

M= (m,)= <

Mp1 ..« Man

will be called the moment matriz of the set x. Some of the most
essential features of the statistical material at hand, are revealed
by the properties of this matrix.

The ¢-th diagonal element m, of M is the sum square of the
variable 2, hence non negative; 6,=+Vm,/w is the standard
deviation of 2, An observational variable (which is measured
from its mean) is identically zero when and only when its standard
deviation is zero. A variable might be called effective or in-
effective according as its standard deviation is different from zero
or equal to zero. If all the variables are effective, the set might
be called an effective set. If no statement to the contrary is made,
we shall agsume the set considered to be an effective set. In this
case the diagonal matrix of M, namely

(mu ..... )
D=|. .. ... ...
0..... M
is non singular.
The set
(1.1) =VwD™ x Le y=x/0,

obtained from the effective set x by dividing each variable by
its standard deviation, may be called the standardized set of ¥,
y are the standard coordinates of X, the set y is obtained by
standardizing the set x.

The ¢ rowed principal submatrix M,  , formed by the ¢
rows «...p and the ¢ columns «...p from M is the moment
matrix of the subset x,...2,. The determinant values of the
moment matrices will be denoted

M=|n| My =My .. 5

M will be called the adjoint moment matrix.
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T shall now consider some of the properties of M. I shall first
show that M is positive definite.
In fact My, . .., is a Gram-ian determinant. Hence we have

the expresasﬂon1

(1.2) My, ...

where the ¢ summation subscripts ¢, ...¢,(1<¢<mn) independently
of each other run through all the w values of {. From this ex-
pression we see that I itself and all its principal minors (of all
orders) are non negative. Hence M is positive definite. '

In particular we see that M=0 when and only when the de-
terminant

vanishes identically in ¢,...%4,, i. e, when and only when there
exists identically in ¢ at least one linear relation

(1.3) ax()+ ... Fa,x,(t)=0

where the coefficients a,...a, are independent of ¢ and not all
equal to zero. In Sections 6 and 7 the question of linear de-
pendencies in the set X will be analyzed more closely.
I shall next show that the determinant value of a positive de-
finite matriz 1s at most equal to the product of its diagonal elements.®.
From this it will follow that

(1.4) 0<MImy ...my,

Let S be a positive definite matrix. If S is singular, the proposi-
tion is trivial. Therefore let S be non singular, hence all the
$;>0. Liet us consider one of the real square roots @ of S, that
is one of the real matrices @ such that Q*=S$. Since S is posi-
tive definite and non singular, such a matrix always exists, and
it can be constructed as a polynomlal in S. Being a polynomial
in a symmetric argument, -@ is symmetric, therefore Equk_s,_i‘_

1 Kowalewski: Determinantentheorie, Lelpzlg 1909, .p. 321 ,
2 Comptes rendus de PAcadémie des Sc1ences Parls Séance du 5 dé
cembre 1927.

AT o MY TN Y - "
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Applying Hadamard’s theorem of determinants to the real de-
terminant @=|Q|, we get @*<sy...s,,. But @®=.S, hence
S<8yy . Sy

Now let us consider the effect on M of a homogeneous linear
transformation performed on the observational variables. If the
observational variables are subject to a homogeneous linear trans-
Jormation, the moment matriz M is transformed as the matriz of
the quadratic form XMX where the symbolic variables X are contra-
gredient to the observational variables.

In fact, suppose that the observational set x is subject to the
transformation X'=CxX. The mean values of the new observatio-
nal variables X' will evidently be zero (since the mean values
of the original variables X are zero). Let M’ be the moment
matrix of the new observational set X. We have z;=23,¢,,, hence

! ? ! !
(M )= My = zzxixj =2 zteikxkxhehj = 2ichcz‘kmkhahj‘

This shows that if the observational set X with the moment
matrix M, is subject to the transformation x'=Cx, the moment
matrix M’ of the new observational set X will be

(1.5) M =CMC.

But this is just the matrix of the quadratic form x'M'x’ into
which xMx is carried when the symbolic variables X are subject
to the transformation x=C'x’ which is the transformation contra-
gredient to the transformation performed on the observational
variables.

Instead of studying linear transformations on the observatio-
nal variables we can therefore simply study linear transforma-
tions of the positive definite quadratic form XMx. This remark
will prove to be very useful.

2, THE CORRELATION MATRIX AND THE COEFFICIENT OF COLLECTIVE SCATTER.

If the set x of observational variables is an effective set, we
may consider the normalized of M. This matrix

(2.1) R=D ‘MD*

where D is the diagonal matrix of M, has as its elements the
simple correlation coefficients
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mij
2.2 ' == == ra=1
(2.2) T Vimamg
The matrix
711+.+71n
R = (7-2]) F==1 AP
Tnl+ v Von

will be called the correlation matriz of the set X. The determi-
nant value of R is equal to

M
Myy oo Man

2.3) R=

The positive square root of R
(2.4) s=+VR

will be called the collective scatter coefficient for the set X, or
shorter the collective scatter in x. To break monotony s might
also be called the coefficient of scatter. The quantity

(2.5) r=-+V1-R

will be called the collective correlation coefficient for the set X, or
shorter the collective correlation in x. For n=2 the collective
correlation coefficient reduces to the simple correlation coefficient,
if the appropriate sign is attributed to the square root.

The collective scatter and the collective correlation are related
by the formula

(2.6) rr4sf=1.

If the simple correlation coefficients were not sometimes called
total correlation coefficients, it would have been more natural
to call » the total correlation coefficient and s the total scatter
coefficient. As it is, it will probably be safer to introduce a new
adjective like collective. The significance of s as a scatter coeffi-
cient can be visualized in the following way.

Let z={#, ... 2, be a point in » dimensional space. If there
is given »+ 1 points z(t,), 2(¢,) . . .2(t,), these points may be taken
as defining a corner, the n -+ 1 vertices of which are the points
z(t,). For n=2 the corner is a triangle, for n=23 a tetraedron.
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The volume of the corner defined by these -+ 1 points is
equal to

1 1 ... 1
|*1 to t1 1t
(2- 7) V= zzgto; zzg ; :’2&3

nl Zn(to) 37&(11) f/'n(tn)

If we introduce the coordinates measured from zt), that is if
we put X(t;) =z(t;) — 2(f,), the formula (2.7) reduces to

Z. 1 (tl) xl(t'n)
xn(tl) xn(tn)

Now suppose we have given a scatter diagram, that is w points
X(t), where ¢ runs through ¢=1,2...4. The components of X(f)
are the » attributs of the #th observation, each attribut being
measured from its mean. If we pick out any set of » observation
points X(¢,)...X(#,) and construct the corner on these » points
and the mean of all observations as an (n+ 1)th point, then the
volume of this corner is given by (2.8). Fig. 1 shows 3 such
corners constructed in an »=2 dimensional scatter diagram.

(2.8) == /

Za,

1

Fig. 1.

If there exists identically in ¢ a relation of the form (1.3), that
is if the w observation points are rigorously lying in a plane in

CORRELATION AND SCATTER IN STATISTICAL VARIABLES 53

the » dimensional scatter diagram, the volume (2.8) will be zero
for any set of m observation points we might choose. If the w
observation points are not lying rigorously in a plane, the volume
(2.8) will be different from zero for some of the sets (perhaps
for all of them). The magnitude of the volume (2.8) for any
get of » points, offers a measure of how far the corner constructed
on these » points, is from being flattened down to the shape
of a plane.

The idea therefore naturally presents itself to adopt the average
value of all these volumes, taken over all possible sets of » points,
as a Imeasure of how far the swarm of observation points is from
lying in a plane. The formula (2.8) gives a volume which may
be either positive or negative, the sign of the volume being
defined by a convention as to the sequence of the axes. In order
not to have positive and negative volumes cancelled out, we taLe
the square mean ¢ defined by
1 2
nlo™

(2.9) o=

...............

a;n(tl) v xn(tn)

oty

where the n summation subscripts ¢,...%, independently of each
other run through all the w values of ¢ and the square root is
taken positive. The quantity o defined by (2.9) might be called
the collective standard deviation in the set X. For n=1, ¢ reduces
to the ordinafy standard deviation on a single variable.

The coefficient ¢ is an absolute quantity in the sense that it
depends on the units with which the variables are meaured. More
precisely: if any of the variables is multiplied by a constant, ¢
is multiplied by that same constant. A relative meagure of the
lack of linearity in the set X will therefore be obtained if ¢ is
divided by the product of the standard deviations of the indivi-

dual Varlables This ratio s=—— is nothing else than the

. On
scatter coefﬁment s defined by1 (2.4). This simply follows from
(1.2) and (2.3). ;

In this and the following sections we shall establish other pro-
perties of s, which makes it further plausible to adopt the close-
ness of s to zero as a measure of how close the set X comes to
being linearly dependent.

The adjoint R of R vill be called the adjoint correlation matriz,

and the positive square root+\/ﬁ_ﬁ of the 7-th diagonal element
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intR will be called the coefficient of linear tmportance of x, in the
set X.

Taking the adjoint of (2.1) we get

rnt
(2.10) fo DMDT
mll mnn
that is
(2.11) 7 :Mm

where the square root is taken positive.

The ¢ rowed principal submatrix Rye. ..y formed by the ¢ rows
@...y and the ¢ columns a...y from R, is the correlation matrix
and the positive square root of its determinant value is thej

gcatter coefficient for the subset z,,. .. Zy. This determinant value
is equal to

— JMq[a .o Q"_L

Meoogs o o myy

2. 12) Ryo...y

- The mgtrix N=wR is the moment matrix of the standardized
set.y. Since wR is the moment matrix for a set of statistical
Varlables, wR and hence R is positive definite, and being positive
definite, it has a determinant value at most equal to the product
of its diagonal elements. Therefore ! i

(2. 13) 0<R<1 and 0Zs<1.

Since Ry, ...y has the same significance for the set z,...x, as
R has for the set »,...z,, it is seen that any principalaminojxf* in
R has a value between 0 and 1.
. We even have the following proposition: Any principal minor
in R zs.gr?ater than or at least equal to R. More generally: If R’
i a proncipal minor in R, then any principal mz'nor-ﬁcontm:ned n
R zs'greater than or at least equal to R

It is understood that any of the principal minors considered
shall .be formed by picking out g different rows (and the corre-
sp.ondmg q columns) from R. If we would consider a principal
minor formed by picking out any row (andsthe corres ondiIr)l
co%umn‘) of R, twice or several times, we shaisia have to CIZ)m ar%
this minor with the determinant obtained from R by couni)in
the row (and column) in question just as many times as it i{::
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counted in the minor. This is, however, a trivial case, since in
this case both the minor and the determinant in question would
be zero.

Our proposition will be proved if we can prove the lemma
that any ¢ rowed principal minor R, in R is greater than or
at least equal to the (¢4 1) rowed principal minor obtained by
adding an arbitrary row (and the corresponding column) to R,

For the sake of brevity let the principal minor which is formed
by the g rows « ...y and the g columns «...y from R, be detoned
[...y). From a fundamental theorem regarding the relations
between the minors in a matrix we have

ooy}l =l ) Loyl = A D

where A is the determinant obtained by adding the i-th row
and the jth column to [« ...y]. Since R is symmetric and real,
Ay Nig= Ny>0. We therefore have

(2.14) oy fe oyl Sle ) fa. gl

Now our lemma is evidently true for g=1 (because r;=1 is
not less than 1—73), and from (2.14) it follows that if the lemma
is true for ¢, it is also true for g+ 1. In fact if it is true for g,
we have [¢...y]>[a...7j] (j=1,2...n), and lLence from (2.14)
if [ ... y]is different from zero: [a...yd> [e.. .79, (5,j=12...7%).
The last relation also holds good if [¢...y]=0. For in this case
[«...71 and [«...y7], being positive definite determinants with
a vanishing principal minor, must both be zero.

Therefore any (g4 1) rowed principal minor is greater than or
at least equal to the (¢+2) rowed principal minor obtained by
adding an arbitrary row (and the corresponding column) to it.
This establishes our proposition.

The last proposition can also be stated thus: The coefficient of
scatter for a set of variables is mever greater than the coefficient
of scatter for a subset contained in the set. The more variables we
take into account, the greater is therefore the possibility that the
variables shall come close to being linearly dependent, the sense of
coming close to” being defined by the magnitude of the scatter
coefficient.

An interesting application of the preceding proposition is to
compare R with its two rowed principal minors. This gives

1-2SR )
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If 7, is any of the simple correlation coefficients in the set X,
‘we therefore always have

(2.15) NrsREVISR=r %),

That i, the collective correlation in the set X is never less than
the abso.lute value of any of the simple correlations in the set.

We might also consider the collective correlation in any subset
Too - By, And we would have the proposition that the collective
correlation in a set is mever less than the collective correlation in a
subset contained in the set.

The discussion of the following sections is formulated in terms
of the scatter coefficient, but it would have been equally possible
to formulate it in terms of the collective correlation coefficient.

3. UNCORRELATED VARIABLES AND ORTHOGONAL TRANSFORMATIONS.

The n variables ,...x, are called uncorrelated or orthogonal
when all the product moments my (taken about the means) are
egual to zero for 4=j, i. e. when the moment matrix M is a
d1ag9na1 matrix. This formulation of the definition makes it
(a_fpphcable also to the case where some of the variables are
‘identically zero.

g If none of the variables are identically zero, i. e. if all the
variables are effective, the préceding definition is equivalent with
the following: The ‘variables z, ..., are uncorrelated when
'.etll the simple correlation coefficients 7y (¢==j) are equal to zero
1. e. when the correlation matrix R is equal to the unit matrix E’

 The n effective vhn’ables @1 ... %, are uncorrelated when and only
when the correlation matriz is_orthogonal. In other words: R is
ort.hogonal when and only when R=E. In fact if R—E R is
eyldegtly Qr’ghqgopal.ﬂ Inversely if RR =E, we must have 2412-’; =1
which is ‘\c‘)n;I;}‘r‘ 'p?s'sjibl'e when 7;=0 (¢<7), hence R=E. S
Thé.n e]jf’e'ctitge,vaﬂablés' 2. . X are unéowélated;when a-ﬁd only
wh'en the cocfficient of scatter s is equal to 1. For if R=E. we
ey]dently' have R=1. Inversely if. R= !, we must have r')-=0
(i=7) by virtue of (2. 15). Hence R—=E. . . . °~ ’

1. The notion of non eorrelation should be distinguished from the mnotion
of independence. The # yariables @, .., x, may be called independenf if the
frequency function Pz, -++ @) is of the form P, .. -, )#P (@y)...Px)
where the P, are functions of a single variable, Inaepgndentlv;riz;l.)l.esn a;Le
always uncorrelated, but the inverse is not_true.
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From the two preceding propositions follows:

The correlation matrix R is orthogonal when and only when the
coefficient of scatter s is equal to 1.

We shall further establish a property of the coefficient of scatter
which relates this coefficient to the mutual inclination of the nor-
mals on the n regressionplanes. We shall make use of the following
propositions which will be established in Sections 4 and 6: There
exist » distinct regression planes when and only when R=0.
If the » regression planes exist, the normal on the ¢:th regression
plane is a vector whose components are proportional to the
elements in the 4-th row of the adjoint moment matrix H (which
is now non singular). Using this we have the proposition:

The n regression normals are miutually orthogonal when and only
when the coefficient of scatter s is equal to 1, i. e. when and only
when the n variables x; . ...z, are uncorrelated.

Since the ¢-th regression normal is a vector whose components
are proportional to the elements in the ¢-th row of ﬂ, the re-
gression normals are mutually orthogonal when and only when
MM =82 is a diagonal matrix. In this case M must also be a
diagonal matrix. In order to prove this, we shall establish the
proposition:

The square of a positive definite and non singular matriz S is a
diagonal matriz when and only when S ilself is a diagonal matriz.

If S is diagonal, S* is evidently also diagonal. Inversely suppose
that S? is a diagonal matrix. Since 8 is positive definite, we have
8<s;...8, Further the determinant value of the diagonal
matrix $§° is equal to the product of its diagonal elements.
Hence we must have

2 |Q2] = 2 2= 2. 2
S —|S |.—2k31k...stnk<sn...sm

where mnone of the s, are zero (since S is non singular). But
this is only possible if s; =0 (= j). Therefore S must be a diago-
nal matrix. -

The = regression normals are therefore mutually orthogonal
when and only when M is diagonal, that is when and only when
M is diagonal, hence when and only when R=E.

In some cases it may be of interest to reduce a set of statisti-
cal variables to an uncorrelated form by means of a non singular
linear transformation. If this is done, the correlation between the
actually "observed variables may be looked upon as due to the
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fact that each of the observed variables is a linear combination
of certain underlying elementary variables, that are uncorrelated?.

Such a reduction is always possible and in an infinity of ways.
In fact the moment matrix M for a set of observational variables
is transformed as the matrix of the quadratic form xMx, where
the symbolic variables X are contragredient to the -observational
variables. The problem is therefore only to determine a real and
‘non singular matrix € such that CMC is a diagonal matrix. If
C has this property, the transformation x'= Cx performed on the
given observational “set x will yield a set of uncorrelated vari-
ables X

Now, if B+ O (hence M non singular), the existence of a real
and non singular C such that CMC =E, simply follows from the
fact th?t M, being positive definite and non singular, has a real square
root M2, which is also symmetric and non singular. This being so
€ =M~*is such that CMC=E, for we have CMC = M-I M—} =,

More generally, the problem here considered, is simply the
problem of reducing -the real quadratic form XMx to a sum of
squares by means of a real and non singular linear transformation.
And from the theory of quadratic forms we know that this is
always possible. It is even possible to find a real orthogonal
(and hence non singular) matrix 0 such that OMO is a diagonal
matrix. The elements of this diagonal matrix will be the roots
of .the secular equation for M. These are all non negative since
M is positive definite. The number of these roots which are equal
to zero, 18 m— g, where g is the rank of M. Hence n—o of the
‘variables in the uncorrelated set must have a standard deviation
equal to zero, and therefore be identically zero (since they are
measured from their means). The same holds good generally, not
only for orthogonal transformations. For let M be of rank 0
and. C a non singular matrix. The product CMC is also of rank 0.
If it is a diagonal matrix, n--o of its diagonal elements must
‘therefore be zero. Hence we have the proposition:

If a set of statistical variables is reduced to an umcorrelated set
by means of a non singular linear transformation, then this uncorre-
Zaffed set will contain exactly o effective variables (i. e. ¢ variables
with a standard deviation different from zero), where o is the rank
of the moment matriz M of the original set.

Now suppose we have determined a non singular transformation

1 This point of view was suggested to me by Professor 7. L. Kelley of
Stanford University.
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x'=Cx which carries the given observational set X over into

d;...0
the uncorrelated set x'. Then CMC is a diagonal matrix <01 w >

Let d, ...d, be the n—o diagonal elements in this matrix, which
are equal to zero. If in the expression x = C~'x" we put the n—¢
variables x;x;, identically equal to zero, we obtain a ¢-para-
metric expression for the observational variables X, which holds
good identically in #, the ¢ parameters being uncorrelated. The
set of these ¢ parameters, that is the set obtained from the set x
by omitting . ... x;, might be called a parameter set for the set

X. If we further standardize the ¢ variables in the parameter set, we
obtain a set which might be called an elementary set for the set X.
Thus an elementary set for X is a set obtained by omitting the in-
effective and standardizing the effective variables in any uncorre-
lated set obtained from X by a non singular linear transformation.

There exists an infinity of elementary sets for any given set
x: Any o dimensional set obtained from an elementary (and therefore
o dimensional) set by means of an arbitrary orthogonal transformation
(im o variables) 1s also an elementary set.

In order to prove this let us consider the n dimensional set
Yy =(y,...y,) obtained from the observational set X' by leaving
the variables ..., unchanged, and standardizing the other ¢
variables in the set. The set y' can be looked upon as being
obtained from X and hence from X by a non singular linear
transformation in » variables.

The n rowed moment matrix N’ for the set y' is N=owE,
where E' is the » rowed matrix obtained from the unit matrix
E by replacing the n—¢ diagonal elements nos. « ...y by zeros.

Let us consider an » rowed matrix of the following type: The
elements in the n—g rows ¢...y and the n—¢ columns «...y
shall consist exclusively of zeros, with exception of the diagonal
elements in these rows and columns; these diagonal elements
are put equal to 1. The elements of the remaining ¢ rows and
o columns, taken by themselves, shall form an arbitrary ¢ rowed
orthogonal matrix. The n rowed matrix thus formed is also an
orthogonal (and hence non singular) matrix 0. Now let us per-
form on the observational set y the transformation y = Oy’
By this transformation we have ¥ =y . y:/ :y;, and the
remaining o variables, taken by- themselves, are transformed
orthogonally. Furthermore, the # dimensional set ¥" can be looked
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upon as, being obtained from the given set X by a non sineu
laﬂr tran,sformation. The moment matrix N’ for the get y"gi- i
N'=0N0=w0E0. Now itis evident from the way 0 and E' ar:
for;ned, that OE'O=E’, hence N'=N' The ¢ dimensional set
which remains when y;y; are omitted from the set y’, is |
th:reg)re bot.h an uncorrelated and a standardized 0 dimensiollal
Is)io.pOSii?o(ﬁ ,1t s an elementary set for x. Thig establishes the

One method of actually performing the reduction of a given
set to an uncorrelated form, is the following, which is a ligcabl s
whenever the coefficient of scatter s is different from szo .

Let us Qonsider the sequence of matrices R® — ) (6,5=1 2 ;
v=1,2.._.n), defined by the recurrence formulaq , e

(v—1 '
= =)
(v:n,n—l,...2; Li=1,2...v)

n
”Ej)-_—%‘

where 7, are the simple correlation coefficients in the given set

X. The matrix R® is v rowed and symmetric,

AHNE}\;V put w; =79 and consider the » rowed matrix U= (u;).

P e elements_ of U below the principal diagonal are zero. Zif
0, the matrix U solves the problem of reducing the set x

to an uncorrelated form. We have the proposition:

i f{f the coefﬁcwnt. of scatt¢ Jor a set of statistical variables 18
erent from zero, the matrin U, defined above, is non singular

and all ﬂ'ze elements of its principal diagonal are Dositive, not zero’

_Let the given set be reduced to standard coordinates y I],” the set :

s expressed linearly in terms of the set 'y’ by the rela't'éons Yy

y=Uy

then the observational set yv' i
Y will be an uncorrelated
standard deviation of Y; will be equal to o oo and the

1
_— =
_—
V“i‘i'uz‘—l-l,i—l-l---unn

fy :—“Z'U Y: 7'8’)%
v=12.. .1m)
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f, is a quadratic form involving only the » variables g, ...¥,.
The variables are now symbolic, not observational.
Let us put
?/;=2j 7'9}) Y;
v=12...n)
This is equivalent with
y' =0y

y, is a linear form involving 6n1y the » variables y,...4,.
By introducing the expression for y, it is easily seen that the

equation
(3.1) Uyy vv:?/;z +fo

holds good identically in all the variables involved.

The equation (3.1) shows that if f, is a positive definite and
non singular form (hence w,, > 0), f,_; must be the same. For
suppose f,_, were not. By a real and non singular transforma-
tion performed on its »—1 variables ¥, ...y,_; we could write
f,—1 as a sum of »—1 squares, and at least one of these squares
would have a non positive coefficient. Hence f, would be written
as a sum of v squares, at least one coefficient of which is non
positive. Furthermore, this expression for f, can be looked upon
as being obtained by a real and non singular transformation
performed on its » variables p ...y, In fact the expression
considered would be obtained by a transformation whose » rowed
matrix is of the following form: The last element of its princi-
pal diagonal is w,, > 0. The rest of the elements in the »th
column are zero, and the rest of the elements in the »-th row
are the quantities . Further the elements of the first v—1 rows
and columns, taken by themselves, is the matrix of the real and
non singular transformation performed on the »—1 variables in
f,—1- The determinant value of this v—1 rowed matrix is different
from zero. Hence the transformation performed on f, is real and
non singular. This shows that f,_, must be positive definite
and non singular when f, has these properties.

Since in our case (i. e. R=0) the quadratic form f, =yRy is
positive definite and non singular, it follows that all the forms
f, are positive definite and non singular. Hence all the principal
minors of all the matrices R* are positive, not zero. In parti-
cular all the elements of their principal diagonals, and therefore
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all the quantities U1y Ungy - - - Upy 8T POSitive, not zero. Since the
determinant ]U,:uu...u,m is positive, we see that U is non
singular,

From equation (3.1) follows
‘2

R TR SR DR

Introducing the matrix N =oR, we can state the result thus:
The transformation y = Uy performed on the symbolic variables
in the quadratic form YNy carries this form over into g sum of
squares, the 4-th coefficient in the sum being equal to

(3.2) I

Wiz o oo Uny

In other words U-INU-! ig a diagonal matrix whose ¢-th
diagonal element is equal to (3.2). Now N is the moment matrix
of the observational set Y. On account of the contragredience
between the symbolic and the observational variables we there-
fore have: If the transformation y=Uy is performed on the
standardized observational set ¥, whose moment matrix is N,
we obtain an observational set ¥ whose moment matrix N —
=U"'NU"! is a diagonal matrix, the ¢-th diagonal element of
which is (3.2). This establishes our proposition.

From the possibility of reducing any observational set x to
an uncorrelated form by means of a rea] and non singular trang-
formation, follows that if R0, itis always possible to increase
R by a real and non singular transformation. It is even possible
to make R rigorously equal to 1.

Inversely: If R0, it is always possible to lower R by a real
and non singular transformation. It 1s even possible to bring R
as near to zero as we please. But it is not possible by a non
singular transformation to make R rigorously equal to 0. In fact,
if the transformation x'= Cx is performed on the observational
set X, the coefficient of scatter for the set X', will be given by

R ="y

’ 7
My ...y,

where m; and my are the diagonal elements in the moment
matrices M and M’ of x and x' respectively, and C=|C| is the
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modulus of transformation. If € is non singular, In_one‘of th(;
factors in the expression for R is zeror. Hence R is differen

from zero. But it is possible to bring R‘ as near to zero as we
please. For there exists an infinity of singular transformahgns
which reduce R’ to zero. In fact, under t}'1e tr.fflnsformatlon
x' =Cx, we have m;;=¢Me, where e, is the -th direct (vectlc)r)
component of C. Since m;; is a positive definite ,an.d non singular
quadratic form in the = variables ¢;...c,,, m; is always pos(li-
tive, not zero, except for cu:...zcmz'o. A necessary anf
sufficient condition that none of the diagonal elements 0l
M’ shall be zero, is therefore that none of the rows of C shal
consist exclusively of zeros. And it is evidently p.oss1ble tohco;l-
struct a singular C, where none of th@7 rows consist exclusively
of zeros. Any such € would reduce R to O.

4. THE REGRESSION EQUATIONS,

The regression equations are usually defined as the » homo-
geneous linear equations

(1=12...n)

which are obtained by expressing in turn each. ?f the variables
z; in terms of the other variables, and determining the constant
c;efﬁcients by (¢#J) so as to minimize the sum square of the

deviations ,
Zt{zjszxj(t)]
(t=12...n)

Introducing the matrix

where b;=—1

the regression equations (4.1) may be written
(4.2) Bx=0.

This should not be interpreted as a system of linealj equations
in X. In fact if |B|=|=O, the system would have no solution, except
x=0; (4.2) is only a symbolic way of expressing the n re-
gression equations. :
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The coefficients by are restricted by the conditions b= — 1.

If. a general analysis is to be made, it is desirable to adopt a
slightly different definition of the regression equations so as to

remove ‘t}ie'cohdition bs=—1. This is done by writing the re-
gression equations in the form S

(4.'3) : Zjaz.jxj =0

. s - (=12...n)

where ‘the @y are constants later to be disposed of (not to be [ i
determined by the minimizing conditions). The difference between : 4

the regression systems (4. 1) and (4.8) is not only formal. It

might happen that the minimizing conditions satisfied by the.

@y (7','=l=j), makes it impossible to put a;=—1. But if this is
possible, the systems (4.1) and (4.8) will be equivalent.
Introducing the matrix

A1y . Oin
A-:_(al.j):<..,... )

anl...amq,

the regression equations (4.3) may be written
(4.4) Ax=0.

Wh.en I use the expressions regression matrix and regression
equations, without further specification, I always refer to the
Ipatrix A and the equations AX=0. The matrix B and the equa-
tions BXx=0 will be referred to as the reduced regression matrix
and the reduced regression equations.

If A is known and all the a; =0, we can eviden
;== 0, tly pass back
from A to B by the formula ’ P e

(4:. 5) bz] - aﬁ/aﬁ.

The problem of the regression equations is to determine the

matrix A. This problem is very easily-solved by the elementary
rules of matrix algebra. - '

In fact, the necessary minimizing conditions are

0 Li[Zrana(t))? L
that is . ' . :
2y =0 (G=7). - o -, .
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Therefore if we dispose of the constants @; in such a way that

2kaﬂcmk¢ =M (Z' = 1,2 e n)
the minimizing conditions will be
AM = ME.

If M is non singular, we can solve for A by postmultiplica-
tion with M™%, which gives :

A

(4.6) A=M

where M is the adjoint moment matrix. If the minimizing pro-
blem has a solution, the » regression equations must therefore be
(4. 7) ijﬁwj = O c ('i = 1,2 e ").

That this really furnishes a solution of the minimizing problem,
is seen by the following argument. The »-th regression equation
(that is the equation (4.7) for 7= ») is determined by minimi-
zing the function

Iy = 2L 24,15 0)] = i,

where a,,...(except a,)...a, are considered as »—1 inde-
pendent variables, and a,, as a constant. The relation by which
we have disposed of the constant a,,, should be looked upon as
a relation introduced after the derivations have been performed.
The relation in question does therefore not define a,, as a func-
tion of the »—1 independent variables. That is, we have
0f/da,,=0 and of./0a,;,=23a,m, (i<v). And consequently

R .

A part from the positive factor 2, the (n—1) rowed matrix of
the second order partial derivatives of f, is therefore simply the
matrix obtained from M by omitting the »-th row and the »<th
column. This matrix is always positive definite. And it is further-
more non singular if M is non singular. Fach of the regressions
(4.7) will therefore always correspond to a minémum of the sum
square in question. And furthermore correspond to a proper

N.8.T. Bd8 ) 5
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minimum if M is non singular, which is the assumption under 4

which (4.6) was derived. In the last part of this section we
shall see that the formulae (4.6) and (4.7) actually hold good
under a more general condition. The » regressions (4.7) might
be called the elementary regressions in distinction to certain other
types. of regressions which will be discussed later. In particular
the Z-ﬂ.l regression in (4.7) might be called the i-th elementary
regression.

If'R=¢=O (i. e M non singular), the » regression planes de-
termmgd by A are all different. In fact the normals on the
regression planes are the directions of the direct (vector) com-
ponents of M. If two (or more) of these directions should coincide
M and hence M would be singular. ’

It M Is non singular, B exists and is given by (4.5). It should
be noticed that the regression matrix A is symmetric, while the
reduced.matrix B is in general not symmetric. 7

By virtue of (2. 10) the regressions Mx =0 can be written

Bn—te A . .
RD™?x =0, where R is the adjoint correlation matrix. Introducing

frf)m (1.1), we see that the regressions in standard coordinates y
will be |

Ry=o0
that is

(4.8) L7y0=0 =12...n).

Smcje'th‘e ~th elementary regression is the regression obtained
b?r m‘mlm%zing the deviations from linearity, measured in z,
dlre'ctlon, 1t can be looked upon as the regression obtained b};
attributing the actual lack of agreement with the postulated
analytic relation, exclusively to the variation of Z;.  Apart from
any special significance the » regressions (4.7) might have in the
case o'f a normal distribution, the difference between these
regressm.ns is therefore essentially a difference in assumption
namely in the assumption regarding the nature of the variabilit :
of the variables involved. ¢

I would like to emphasize this point because the real signifi-
cance of the difference between the s elementary regressions is
not alw.ays kept sufficiently clear, it seems to me, when it comes
to practical applications. This is particulary true, I think regardin
applications in the economic field. , ¢

he i
When one of the variables, say a, for one reason or another,
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happens to have attracted a particular attention in the setting of
the problem, the investigator frequently has a tendency to think
of the regression in question as written with z; on the left hand
side, and the other variables on the right hand side of the
equation sign. And having this form of the regression in mind,
he often draws the conclusion that the regression which should
be chosen, is the regression of z; on the other variables, that is
the #-th regression in the system (4.7). Most of the time there
is perhaps not even question of a conscious conclusion. The
second step: picking out the ¢-th elementary regression, follows
mechanically as soon as the attention of the investigator for one
reason or another, has ben focussed upon the variable ;.

Such a principle for choosing one particular of the regressions
(4.7) is- fallacious, it seems to me. The procedure of determining
statistically an analytic relation between #» variables, and the
procedure of rearranging the terms in a statistically determined
relation between the variables, are two things which should be
kept distinctly separated. The choice of regression essentrally represents
a problem by tself, and should not be confused with the choice of
a particular form in which to write the regression chosen. Nor
can we limit the problem to concern a choice between the »
alternatives in (4.7). In fact, a great number of regression pro-
blems is of such a nature that none of the regressions (4.7) can
be accepted as plausible. This is particularly true in the economic
field. Here the nature of the problem is most frequently such
that it is out of the question (or ought to be out of the question)
to adopt a regression procedure which treats the variables un-
symmetrically to the extent of attributing all deviations from
linearity (or from some other analytic relation) to one particular
of the variables. What we need in these cases is some kind of
a mean regression plane.

Without pretending to go into an extensive and systematic
analysis of this important problem, I shall venture a few remarks
on some points of the theory. In the present section I shall con-
sider two particular forms of mean regressions, namely first the
orthogonal mean regression, that is the mean regression plane de-
termined by minimizing the sum squares measured perpendi-
cularly to the plane, and second, a certain type of mean regres-
sion which might be called the diagonal mean regression. In the
next section, adopting a more general point of view, I shall con-
sider the problem of invariance of regression planes, and con-
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struct two regressions which are invariant for a general linear
homogeneous transformation.

The equation of a mean regression plane in its general form
can be written
go+glzl+"’+gnzn:0
or shorter

(4.9) 9o+8z2=0

where g=(g,...g,). The coefficients 9091+ - - 9, are constants in-

dependent of #; z=(z,...2,) are the observational variables mea.
sured from the origin.

The orthogonal mean regression is by definition a regression

of th(? for.m (4.9) where the constant coefficients are determined
by minimizing the function

Ll9,+g 2(t)*/9?

V{here 9=|g|=+Vgg, and all the coefficients 9691 - - - g, are con-
sidered as independent variables.

A derivation with respect to 9o shows that we must have
290+ &-2(t)] = 0.

Hence, the o‘rthogonal mean regression goes through the mean
of all observations. We can therefore at once simplify the pro-
blem by writing the regression

(4.10) ax =0

wher(.a X=(2,...,) are the variables measured from their re-
spect'1ve means, and the coefficients a=(a,...a,) are to be de-
termined by minimizing the function

4.11 = fla)= 2/q2 — 2Ma
( ) L =f(a)=3[Saz ()" a = am

Where a:lal=+}/ﬁ, and all the coefficients a,...a, are con-
sidered as independent variables.

From (4.11) we get after a simple reduction

of 2
(4.12) : fi= oa; Eﬁzk(m'z‘k — Aeg)ay
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)

where eij—{l (=)
A has the value given by (4.11).

For the vector f=(f,...f,) we therefore have the expression

are the elements of the unit matrix E, and

a?

5 =(M—1E)a.

Now, the necessary condition for a minimum of f(a) is f=0.
The necessary conditions which & must satisfy, is therefore

(4.18) (M—A1Eja=0.

If there shall exist a solution of (4.13) other than the trivial
a=0, the determinant |M— AE| must vanish. That is,2 must be
one of the characteristic numbers of the moment matrix M. This
result regarding the regression coefficients a has first been obtained
by Karl Pearson in his well know memoir ”"On lines and planes...”
(Phil. Mag, 1901).

If 2; is any of the » characteristic numbers of M, the corre-
sponding vector a; is simply determined by solving the linear
system obtained from (4.13) by putting A = ,. Inversely if a; is any
solution of (4.13) which is not=0, the corresponding value of 2 must
a;Ma;

necessarily be equal to A= This simply follows from

X0
(4.13) by premultiplication with a,;.

This being so, the essential question in the problem of the
orthogonal mean regression is therefore: Will any of the charac-
teristic numbers of M, introduced in (4.13), furnish a solution a
for which the function f{a) actually attains a minimum? And, if
so, which one (or which ones) of the characteristic numbers of
M has this property?! The answer to this question is given by
the following proposition.

It ), is the smallest of the characteristic numbers of the moment
matrizc M (5. e. 2, =0 if M is singular), and a, is any solution of
(M—4,E)a =0, which is not =0, then the function fla)= aaﬂf
is equal to A, for a=a,, and greater than i, for any other argu-
ment a (not=0) which 1s not a solution of (M—2;E)a=0.

1 A rigorous distinction between maxima and minima is usually not made
when the orthogonal mean regression is discussed. It is for instance generally
assumed without further analysis that the extremum point where the value
of f(a) is less than in, any other extremum point, is a minimumn point of f(a).
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From (4.12) we get by derivation with respect to a;

0%f 2
T9= 3am0a; = i Mo = hey) — (@ify + o)
. 11.. -fln
For the matrix F = f ----- f of the second order partial deri-
nle s o fnn

vatives, we therefore have in any point where f=0

(4.14) %21? = (M — 1E).

an?)equently: 4 solution a; (not=0) of (4.13) for A=12 18 a
mnimum point for f(a) when and only when (M — 2,E) 4s a posi-
z.fwe definite matriz. In particular we see that it will be a p-fold
Improper minimum point if (M— 2,E) is positive definite and of
rank n—p. The case where any minimum point is p-fold improper
according to the criterion (4.14), is the very same case in which
the totality of all minimum points form a p dimensional variety
according to (4.13).

.Si'nce the rank of (M— 2,E) is at most equal to »—1, any
minimum point of f(a) must be at least one-fold improper. This
is but another expression for the nature of our problem, as a
problem in the direction, not in the length of a. By the defini-
tion (4.11) a change in the length of a has no influence on the
value of f(a).

.This being so, in order to prove our proposition it is suffi-
clent to prove the lemma that (M — AE) 4s a positive definite matriz
wh?n.ami’ only when 1< 1, where ), is the smallest of the charac-
teristec numbers of M.

From this will namely follow that among the points a (not = 0)
Where =0, no other points than solutions of (M— 2,E)a =0 can
give a minimum point for f(a), and that these solutions actually
do correspond to a minimum of fla).

. Now, to prove the lemma let us perform on the set of observa-
tional ,variables X an orthogonal transformation X = 0x such
that X' becomes an uncorrelated set, i. e. such that M = OMO is

. . ’ ll LRI O
a diagonal matrix M =<O ----- l) From the theory of quadratic

forms we know that such a transformation 0 always exists. Further-
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more, the diagonal elements of M’ will be the characteristic num-
pers of M, hence all real. Since 0 is orthogonal, that is 00 = E,
we have .

O(M — AE)0 = (0MO — 10EQ) = (M' — 1E)
hence

Ay=As ... 0
(4.15) oM — 2E)0 :<.O. .......... )

A necessary and sufficient condition for the right hand side
matrix in (4.15) to be positive definite, is that all the diagonal
elements are non negative, i. e. 2 <2,, where A, is the smallest
of the characteristic numbers 4, ... 24,. But O(M— AE)0 is positive
definite when and only when (M— AE) is positive definite. This
simply follows from the fact that if A is any matrix, CAC has
the same rank and the same index as A, provided only that C
is non singular. Hence (M—AE) is positive definite when and
only when 2<2,. This establishes our proposition. Incidentally,
a similar argument shows that (M— AE) is negative definite when
and only when 1,< A, where 1, is the greatest of the characteristic
numbers of M. The argument evidently holds good without any
agsumption as to M being definite. or not.

Summing up, we can state the following rule for determining
the orthogonal mean regression: First find the smallest of the
characteristic numbers for the moment matrix M, that is the
smallest of the # (necessarily real and non negative) roots of the
secular equation |M— ),E|:O. Let if be 2,. Next solve the linear
equation (M—4,E)a=0 with respect to a. The vector a being
thus determined,

(4.16) ax=20

is the orthogonal mean regression.
For the numerical computation of 2, the following limitation

will be useful:
(4.17) 0< L<my,
where m,, is the-smallest of the » sum squares my=2Z, [2{t)"

This formula is readily verified by noticing that m,; is one of
the values which f(a) can assume. In fact, for a,=...=¢,=0
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and a; arbitrary we have f(@)=my;. The minimum of f(a), that |

'ljs‘ )y can therefore never be greater than my. More generally:
he same argument shows that if M, is any p rowed principai

submatrix in M (1<p<n), and A1, 18 the smallest characteristic
number for M,, then we have the limitation

02, < Ay

In the secular polynomial [M—AE| the coefficient of A"~ is
equal to (—)”—1”2]![1,, where £, is the sum of all the ( “) p-rowed
P

principal I'ninors in M. Since all the characteristic numbers are
non negative, we therefore also have the limitations

(4.18) 02 (1’;) w23,
(p=12...n)

I.f the.matrix S = (M —,E) is exactly of rank n—1, the vector
a is ur%lquely determined, apart from a scalar facto’r. In this
case a is obtained by simply putting the components of a pro-
portional t.o the elementsAof any row (not consisting exclusivel
-of zeros) in the adjoint S of S. If the characteristic number /'Ly
is c.omputed exactly, all the rows of § will be rigorously ro{
por.tlona'l, so it does not matter which row of § is picked f))ut
This x?mght not hold good rigorously if Ay is determined by a:
numerical approximation method. In this case it will be better
to determine only the signs of the components a, . ..a, from

the rows of S, and then determine the
’ absolut
by the formula sotute Valqes ofag,...a,

(4.19) EEXS

where 3§, is the 7-th diagonal element in S, hence non negative
because S is positive definite. The formula 4.19) is proved thus,
The rank of the symmetric and positive definite matrix S is:
never greater than »# — 1, and in the present case it is by assump-
thI.l ex.actly n—1. Hence there is a diagonal element 3,, in g
whlch Is positive, not zero. And the quantities @, are prg})ortio-,
nle to the quantities 3, But 8% = 8,8, because Z§ is of rank 1
Smce 8= 0, we can therefore put |a;| =+ Vsa. '

The following is the explicit formula for the case n=2, 1If
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Mgy = My — Mgy = 0, that is if the two variables are uncorrelated
and have the same standard deviation, the problem is not de-
terminate. Any straight line through the mean of all observations
will in this case satisfy the conditions for the orthogonal mean
regression line. In any other case the orthogonal mean regression
is uniquely determined and its equation is

(4.20) Vp+q o —eVp—g #=0

where b= \/miz +¢* g = (myy —my)/2

and all the square roots are taken positive. Since the moment
matrix is positive definite, we always have p?lql. ¢ is put
equal to 41 or —1 according as m,, is positive or negative. If
my, =0, it does not make any difference which one of the two.
values +1 and —1 is attributed to & From (4.20) follows in
particular that if the variables are uncorrelated and have diffe-
rent standard deviations, the orthogonal mean regression is a
straight line parallel to the axis of the variable which has the
largest standard deviation.

Tt is readily seen that the mean regression determined by
minimizing the sum square of the deviations measured under a
certain fixed angle (== 0) with the regression plane, coincides with
the orthogonal mean regression, regardless of the magnitude of the
fixed angle. But a regression determined by minimizing the sum
square of the deviations measured under certain fixed angles
with the axes of the variables, will depend on the magnitude
of these angles. :

1 shall now consider a mean regression which is not determined
directly by least squares, but by a principle more similar to the
principle of formula (4.19).

The expression (4.6) for the regression matrix was developped
under the assumption that M is non singular. The expression
(4.6) still holds good, however, in the case where M is of rank
n—1. In fact, in this case there exists identically in ¢ at least
one linear relation of the form (1.3). Multiplying (1.3) by %;
and performing a summation over f, we see that the vector
a=(a,...a,) must be a solution of

(4.21) ' Ma = 0.

If M is of rank n—1, the equation (4.21) has a solution a
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which ig determined uniquely, except for an arbitrary scalar factor, .4
Apart from an arbitrary factor of proportionality, only one
equation of the form (1.3) can therefore oxist when M is of rank
7 —1. This equation which holds good identically in ¢ when M o

rank #n—1, might be called the perfect regression,

The solution a of (4. 21) is obtained by putting the compo-

nents a,...a, proportional to the elements in any row of the
adjoint moment matrix M, which is such that the diagonal ele-

exists since the symmetric matrix M is of rank 1 when M is of
rank n — 1. v :

But this is exactly the system of regression coefficients which
are furnished by the formula (4.6). For if M is of rank 1, all
the rows of M are proportional to one of them, say the %-th,
which is such that My, = 0. All the regression equations determined
by (4.6) will therefore coincide and coincide with the perfect
regression. Some of the regressions furnished by (4.6) may
however be trivial, all the regression coefficients being equal to
zero. That is, some of the rows of I (not the k-th, however)
might consist exclusively of zeros. These rows can be looked
upon as being obtained by multiplying the %-th row by 0.

When M is of rank 1 we have m,fj:mkkmﬁ (/=12...n), where
My == 0. The perfect regression which exists when M is of rank
n—1, can therefore bhe written

(4.22) Sieymy - 2;=0
or in standard coordinates Y=/ 0,
(4.23) Zigi\/ Py y; =0

where the square roots are taken positive, and &=+1 is the
sign of the 4-th element in the %th row of I, & can be chosen
arbitrarily provided My = 0. The formula (4.23) shows the signi-

ficance of \/ Py as a coefficient of linear Importance for the
variable z,.

Now, if the signs in the rows of M are compatible, the equation
(4.22), respectively (4. 23), is a well defined equation, which can
be computed even though M is non singular. In the case of
compatible signs in the rows of H, the equation (4.22), respec-
tively (4.23), may therefore be used as g mean regression. Since
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irs coefficients are derived from the dl‘agonal elements (S)i'm,
tespectively of R, it might be called the diagonal mean regre few.
II; connection with the regression equat10n§ I sha{flﬁn?a :SaThe
remarks on the partial and multiple correlatlciln coe 01e1t1 n.latrix
he normalized of the momen
formula (2.1) shows that t : Thons et
i i he simple correlation co nts 7y
M is the matrix R of t e C ' 4
Similarly the normalized of the adjoint momejnt matrilx M ;zlial
the sign reversed) is the matrix R of the highest order p
correlation coefficients 7, (in professor If’ules n;;i:,m; g;jcﬁptsf
Y i in the string of secon .
here ¢ is not written in t . n{ :
" The pjartial correlation coefficients ,; are sometimes expressed

by the formula

7= Yby by

where b, are the elements of the reduced regrlessionI matgli fo
; i i i n orde
i however incomplete.
this form the expression is
f]ilake it complete we have to show that bij'and by;, are al;vaays
of the same sign, sgn b;=sgnb;, and then write the formu

(4.24) 7= sgn by /by by

is taken positive. ‘
here the square root is ta . ' .
" That sgn b;=sgnb;; follows from (4.5) because A is symmetri

and all the a, are positive, not zero, when M is non s1ngu§%r
Y ay : ar
(which has toZ be assumed when the partial correlation coe

i 7, are considered). .
me%flse ;L(J)rmula (4.24) is somewhat artificial. The formula becomes

p rms -

i i 5= — sgn a;, we have
gression coefficients ;. Since sgn by Sgn ay,
' P b "y
. D ‘i._ B 7] 3 Au
%) ’ \/“u' % ‘\/mu s

; taken positive.
here the square roots are e. ‘
WTf we preqfer, we can also express —R as the normalized of

R. In fact the normalized of M must be equal t(.> the'nOI.‘nlalahzefi
of‘ R, for by (2.10) there exists a fliagolnAal ’matrlx D with posi
tive ,diagonal elements, such that R=DHMD. Hence

(4.26) ry=— o
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In pumerical work a uniform exactitude to a given number
of decimals is more easily obtained from (4.26) than from (4.25)

In .exactly the same way the lower order partial correlation 3
coefficients can be expressed by normalizing the adjoints of

the various principal submatrices in R.
For the multiple correlation coefficients 7; (in Professor Yule's
notation R where ¢ i i i i
W12 . . ) 1s not written in the st
subscripts) we have ring of secondary

w b\ i

T3

There is a certain analogy between this formula and the formula

r=+Vi-R

for the ctollective correlation coefficient. The collective, multiple
and ptartlfal 1;301*1relat10n coefficients can be looked upon as forming
a sort of hi i i

0 lerarchic order. The number of their subscripts is
bThe absolute value of an element in R is never less than the
a solut'e value of the corresponding element in R, for the ele-
ments' In R are obtained by dividing the elements of R by the
qu:emtltles. 7ii75 and these quantities are never greater than
ufmty. This follows. from the fact that each 7 18 itself the square
of a scatter coefficient (namely the scatter coefficient for the set
obtained from x by omitting z,).

It is further 'easily seen that not only is the absolute value of
each element in R less than or equal to unity but even the
abs_olute value of each element in R is less than or equal to
;Lmty. .Fo.r .R (ar'ld hence R) is positive definite. Therefore all

e I.)rmclp?al mmors of R and particularly all the two rowed
principal minors of R are non negative. That is

o~

PaTyy > Ty Gj=12...n)

<

We therefore have

(4.28) O?I@j[?]ﬂ,,?l ¢j=12...n)
The preceding formulae for the multi i
. tiple and partial correlati
coefficients only hold good if R+0. In this case al] ?:l?elc;n

i
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are positive, not zero, because they are principal minors in a
positive definite and non singular matrix. The case R=0 is
discussed in Sections 6 and 7.

5. THE PROBLEM OF 1INVARIANCE.

I shall now consider the effect on the regression equations
which is produced by a linear transformation performed on the
observational variables.

Let z=(z ...2,) be the observational variables measured from
the origin. If e is an arbitrary vector and C a non singular
matrix, the general non singular linear transformation may be

written

(5.1) Z =c¢+Cz

The following are some special cases:

A translation, 1. e. a change of origin, is the transformation
7' =z - ¢, obtained from (5.1) by puttig C=E.

A stretch, i. e. a change of scales, is the transformation z’ = Dz,
where D is a diagonal matrix.

A distance preserving transformation is the transformation z' = 0z
where O is an orthogonal matrix.

A homogeneous tramsformation is the transformation z’ = Cz,
obtained by putting ¢=0 in (5.1). C is assumed non singular
but otherwise arbitrary. A homogeneous linear transformation
includes all types of linear transformations except translations.

The equation of any regression can be written in the form
9o+ 82=0, where g, and g are determined from the totality of
the observations by a certain rule or law, which is characteristic
for the regression method in question. If we perform on the
observational set z a transformation of the form (5.1), the set
z' will also be an observational set, in which we may determine
the regression by the rules of the regression method in question.
Let the regression in the set z' be g,-+ g7z =0. If we introduce
in this equation the expression (5.1) for z’ in terms of z, we
obtain a regression g,-+ g'z=0 which now involves the original
set z. This equation might be called the regression in z deter-
mined via z'. If the equation g;-+g'z=0 is the same as the
equation g,+ gz=0, that is, if the coefficients of the two equa-
tions are proportional, then the particular type of regression con-
sidered is called ¢nvariant under the transformation (5.1). In this
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case 1t does not make any difference if the regression in z ig

determined directly or via z.

It is readily seen that the elementary regressions (4.7) are in- .
variant for a translation. Both the moment matrix M and the 2
set X of variables measured from thejr respective means, are

namely unchanged under a translation.
If a horr.logeneous linear transformation z'= Cz is performed
the regression matrix A ig replaced by ’

(5 2) A/ — CAC — 02C—1Ac~1‘

In fact, from z'=Cz we get x'=Cx and therefore M'= CM¢
Taking the adjoint of this equation we get (5. 2). Formula (5 2).
can be stated thus: Apart from a constant factor (which is t‘he
square of the modulus of transformation) the regression matrix
A is tre?,nsformed as the matrix in the quadratic form XAX, where
the variables are cogredient with the observational varia’bles.
Now, .let us go back from x' to the original set X, this time
performing the transformation on the variables in the, regression

equatifns. Introducing x"= Cx in the regression system CACx = 0
we ge ,

(5.8) CAx=0

W’hlch is the system of regression equations in x determined via
X = Cx. This system is equivalent with the system Ax — 0 if Cisa
diagonal m?,trix, in which case the transformation x'=Cx is 4
.stretcb, which simply means changing the scales of the variables
If C is not diagonal, the new regression system will, in general.
pe dlﬁerent from the original (and it will certainly ,be different’
if 'IVI 18 non singular). The formula (5.3) even shows that by g
su1'ta,ble choice of the set X' via which the regression systemyin
X ig dete?mined, We can get any regression system in X we want
In fact, if AX=0 is the regression system in X determined di-.
rectly, and we want to obtain the regression system Px =0 we
only have to determine the regression system in x via X':I;Ax
The orthogonal mean regression is invariant for a translation‘
and also for a general orthogonal transformation. That it is invariant
for a translation simply follows from the fact that it goes through
.the mean'of all observations and the coefficient vector a in (4 1g6)
Is determined by the elemeénts of the moment matrix M 'amd
these are not changed by a translation. S
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That the orthogonal mean regression is invariant for an orthogo-
nal transformation, is proved thus. Let X = 0%, hence M'= OMO
and consequently O(M — AE)0 = (M' — AE), since 00 = E. By taking
the determinant on both sides, we see that |M — AE|=|M'— AE| for
any value of 1. The secular polynomial for M is therefore identic-
al with the secular polynomial for M. The set of » characteri-
stic numbers will therefore coincide for M’ and M, in particular
the smallest of the characteristic numbers, namely A,, will be the
same for M’ and M.

Now, the coefficient vectors a and a’ for the orthogonal mean
regressions in the set X and X respectively are determined by

the equations
(M~ 2,Eja=0 and (M — },E)a’=0.

The equation for a’ can be written O(M — 2,E)0a’=0. Since 0
is non singular, this is equivalent with (M — 2,E)0a’=0. 0a’' and
a are thus solutions of the same equation. If a runs through all
solutions of the equation for a, the vector Oa will run through
all solutions of the equation for a’. If we let a and a' denote
general solutions of the two equations above, we therefore have
a'=0a. Now, a'x =0 is the orthogonal mean regression in the
set X. Introducing in this equation the expression for X', namely
x = 0x, we get (0a)0x)=0, hence a00x =0, that is ax = 0, which
is the orthogonal mean regression determined directly in the set x.

The diagonal mean regression (4.22) has the property of being
invariant for translation and stretch but not for a general linear
transformation.

The fact that the regressions here considered are only invariant
under rather special forms of transformations, gives rise to a
serious difficulty.

In a great number of cases, we have no absolute a prior:
criterion to guide us in the choice of variables. This is parti-
cularly true in the case of a differential analysis of time series.
For instance: Shall we determine a regression between succes-
sive differences or shall we determine a regression between conse-
cutive ordinates? In fact, it was precisely this problem which led
me to consider linear correlation from the point of view of linear
transformations.

So far as practical application is concerned, it is not in all
cases necessary (and it might not even be desirable) to introduce




a méan regression plane which is invariant. for an.ajbsolutely .{
general linear transformation. In some cases the ortgin of the 3
set of variables contained in the original dats might be in a
sense fixed by the nature of the problem, so that it is not particu-
larly necessary that the mean regression plane should be invariant 4
for a translation (i. e. for g change of origin). What we want in 3
this type of problem is a mean regression plane which is in 3
variant for a homogencous linear transformation of the variables i
measured from the origin. T now proceed to an analysis of thig .
problem. .
In the case of a homogeneous linear transformation, the variables 3
measured from the origin, i. e. the set z, and the variables mea-
sured from the means, i.e. X, are cogredient. In fact, if z'= Cz,
then x' = Cx. The inverse also holds good if the convention ig
made that under g homogeneous linear transformation of x, the
vector whose components are the means of the variables, shall be
cogredient with x. This convention being adopted, the expressiong
"a homogeneous linear transformation of the observational vari-
ables” and "a vector cogredient with the observational variables”
are unambigeous without specifying if X or z is meant,
Let &, =23z(f) and k=(k...k,), so that kK/w is the vector
whose components are the means of the variables. Further let

by = ztzi(t)zj(t); 50 that
Kz(. .“......?.)
Eni...kuy

is the moment matrix taken about the origin. XK =]K] is the
determinant value of K.

If u and X are arbitrary constants (not necessarily #+0) and
P, 4, U and Vv are vectors cogredient with the observational vari-
ables; but otherwise arbitrary, then the two scalar quantities

ud + yK

and pﬁq + uRv

are both covariants of weight two. That is, if a homogeneous }
linear transformation is performed on the observational vari- &
ables, the only effect on the two scalars considered, is that they 4
are multiplied by the square of the modulus of transformation,
In fact, if we perform the transformation z' — Cz, that is x' = Cx,
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we have M'=CMC and K'=CKC, consequently M = CH¢ and
g’ = CKC. Hence

5.4 uM' + 4K = C(uM + )

and

(5.5) pM'q' +uK'v'=pCCMCCq + uCCKECY = C(piq+-ukv).

The equation of a regression plane for the variables z can
be written
(5.6) 9o+82=0

i fici stants in-
here g=(g,...9,). The coefficients 9091+ - -9, are con
Z{Vependent 01% A b?lt depending on the totality of the obser}va-
tions. In order to indicate this explicitly we use the notation
90 = 9,(2) g =g(2).
The regression g, -+gz =0 is invariant for a homogeneous linear
transformation of the observational variables when, and onl?J when
go and g are such that for an arbitrary wnon singular matriz C.

(6.7) 94(C2) = 7 gz) and g(Cz)=,C" . g(2)

where y =0 s a scalar (which may depend on the observations
he elements of C).

an?no?ajt, if the transforn)aation z =Cz is performed on the set
of observational variables z with the ,mome‘nt matrix K, the
moment matrix for the set z' will be K'=CKC. If 9o and g are
of the form stated, the mean regression (determm'ed directly)
in the set z, namely g,(z)+g(z) -z’ =0, can be written go(z)+
+ g(z)- €'z’ = 0. Going back to the va}riables Z, now perforn,nng
the transformation on the variables in thg regression for z we
consequently obtain g,(z) + g(z)- z =0, which is t'he mean regression
determined directly in the set z. Inversely it is rea(.illy seen that
the specified conditions are also necessary for the invariance of
the mean regression plane. .

If x is an arbitrary constant (not necessarily == O),_ and p,q.and r
are vectors which are cogradient with the observational variables,
but otherwise arbitrary, then

6
N.5.T. Bd8
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Jo=xK Lo g=prR

9% =pRq: . g —rk

are two formg of the set (gog)

(6.7). It 5/
k CgC'ﬂ; =0z, we namely 1,

which satisfy the invarig
= : ve g =rK = rOCRE
and furthermore by (5. 4) and (5. 5)KCN

If the relat
ot . _Cre, ation (5.;6). shall, be, not only

gé:OQ

invar

brocedyye,

th: fsillig n;vg shqw how g 1

o L " t}(l e, f)_ and another mean regression plane
- the form (5.9) can pe constructed by leagt g

: res in case where not i
from the origin) have a megp equal %cl; Zthe rerieble
€ first notice the  followip T

Quare fitting
S (measured

determinges e g useful relatj
2 and K i Py
forms Ky bl and the algebraic value of th:tzszgr::; ’
k. c
(5.10) M=, Mg o.My 76:17;6111” ZIZ
e ) B I IR, m— e »
e o .knn.l,k. “wK~kKk
(6.11) ok , b .. 7517;! ;:1]:;11 . 715?”
=Wl e m
7177;1 e kmz kn Mina mnnl wM+ kMk

- © Ior an
ubtract from o s usd.
econ

1/, next subtract from th
e

and 5o on, By virtue
by = my - kikj/ )

the determinant thus obtaineq will be

Nce condition’
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(5.11) is proved in a similar way. The formule (5.10) and (5. 11)
can be looked upon -as the generalization to # variables of the
formule B

oM=K~k 1.k

oK =oM+k-1-%
which hold good for a single variable whose mean is k/w and
whose sum  square about the mean and about the origin is M
and K respectively. (5.10) and (5.11) can also be written o

(5.12) o(K — M)= kRk = kilk.

The value of K (and its principal -minors) is given by the
formula obtained from (1.2) by changing M to K and z to 2.
Therefore, K is always non negative. And K is equal to zero
when and only when there exists identically in ¢ a relation of

the form..
(5.13) g+ Haal)=0

where the coefficients g; are independent of ¢ and not all equal

. to zero. If such a relation holds good, we get by performing a

summation over ¢
glk1+'+gnkn=0

and consequently
9:1%5(8) + - - -+ utn(t) = 0.

If K is equal to zero, M must therefore also be equal to zero
(although the inverse is not true). This fact also follows from
(5.12) by noticing that kKK is a positive definite quadratic form,

and therefore
0< MK

By an argument similar to that used in establishing (5. 10)
we obtain the formuls

12 ...2%n lzy ... 2,

(5.14) 3y efig o |2 M) (b K)o
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0wy ...0 Owv ...9,

and kymys ... My kykyy kg
kumny Mipn bonteny Fenn

that is

(5. 15) kRv = kilv

where v=(,...v,) is an arbitrary vector. Since v is arbitrary,
we must further have

(5.16) k(K —M)=0.
Incidentally, (5.16) shows that we always have
R —H|=0

and similarly for any subset of ¢ subscripts (12 qZ n) picked
from the set 1,2...n. ple (1 <g<n) picke
_ Now, a regression with coefficients of the form (b. 8) is obtained
simply by minimizing the sum square

29, + g z(t)?

where g, O'is considered as an arbitrary fixed constant (not
to be determined by the minimizing conditions). This leads to
the equation in g

(5.17) - gk+gK=0.

We' may assume K==0, otherwise there would exist identic-
ally in ¢t a relation of the form (5.13) and the problem of a
regression plane would be trivial. We can therefore solve for g
which gives the regression ’

‘ This is a regression with coefficients satisfying (5.8). In fact
if no translation is involved, k will be cogredient with the1
obs'ervational variables. The regression (5.18) is therefore in-
var}ant for a homogeneous linear transformation of the obser-
vational variables.

By (5.14) the equation (5.18) can also be written
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(3.19) kiix = I
or in determinant form

1 X, Xn
(5. 20) klmll "o mln

We may improve on (5.18) by writing it
H—-kRz=0
and determining H by the least square condition
3 H—XkK-z(t)? a minimum,
This gives the regression
(5.21) kRk/w —kKz=0

the coefficients of which are of the form (5.9). The regression (5.21)
is therefore also invariant for a homogeneous linear transforma-

tion of the observational variables.
By virtue of (5.15) and (5.16) the equation (b.21) reduces to

(5.22) kfiix =0

or in determinant form

(5.23)

Tt is interesting to notice that the invariant regression (5.23)
can be looked upon as the regression obtained by taking the
weighted arithmetic average of the coefficients in the » elementary
regressions, the weights being the » means of the variables,
(5.28) might therefore be called the composite mean regression.
Generally (5.23) will give a better fit to the observations than
(5.20). The regression (5.28) goes through the mean of all observa-
tions, while this is not true of (5.20)".

1 After having constructed the type of invariant regression which is consi-
dered in the present section, I learned from Dr. C. F. Roos of the important,

not yet published, work which he and Dr. A. Oppenheim have been doing on
invariant regressions. Roos and ‘Oppenheim consider the case where the
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6. COLLINEAR SETS AND PERFECT CORRELATION

In i i .
OW proceed to a discussion of the extreme cages .of linear -§

}itep‘endeney and perfect correlation between statistical variables.
1s true that these extreme cases are not the ones which are:

most likely to occur in practical applications. Nevertheless as I

fssei;;ratdis.cussifon }(l)f these extreme cases is essential for g rational
etation of what is really involved in the not
i . tion of correlati
In several variables, and particula intery ; et
' ) rly for the interpretation of i
a,nlc'i muiﬁlple? correlation coefficients which are close to uni’cypartm1
Theozi Itn ;1 ::;1mplel correlation coefficient the cage is clear en'ough
e correlation coefficient between t i i |
e s Wo variables is equal
Oth:;nty v‘}rlhen fadnd onl}f when one variable is proportional toqthe
e If:ac variable belyg measured from its mean). Geometric-
ungrt Wt;fpreted: The simple correlation coefficient is close to
o tywo dien aqd only when .the swarm of observation points in
o o nlllenl;slona_l scatter diagram is clustering around a straight
e hug the origin. For partial and multiple correlation coeffi-
n S, however, the case is not quite so clear
diffesznim;;; ezha:; tvlvotva'riables we have to distinguish between
| clusiering. For three variables for i i
might happen that the swar oints in the theor
. . m of observation points i
. A : points in the thre
t ﬁzniiilgnalbscatter d}agram 1s clustering around a plane througﬁ
g0, but are highly scattered within this plane!. The plane

regression coefficients are det
Z,/(z) where f(z):f(zl.
The minimizing proe
cofficient initi i
e sr:syul (tiseflizltz}c;nt a.rfe imposed to' satisfy a side relation. One of their
sl soliotant sne av i -the regression shall be invariant, the necessary
an arbitrary exponen;o: (‘iN g et a1 ﬂa:lgo o e 1
e T exponE Nd 999y - -9, are the regression coefficients, Further-
3 relation must of course also be invariant. The Roos-Oppenheim

criterion will certainl
Y prove to be a most in
new types of invariant regressions. pomertul tool in the researeh of

erml'ned by minimizing a function of the type
-+2,) is a funetion of the observational variables.

At the ti m : .
actually ‘i:lllzltiuzfe?y con'versa.tlon with Dr. Roos, the authors had not yet
50 will probably be 3;11Y invariant ‘regression. The main difficulty in doing
relation ik S},;alle] odconstruct 11'1variant side relations. A type of side
formulae (5.8) and " tO regressions other than those contained in the
! For th ) 2nd (59) above, will probably not be very simple.
not all g1 & sa}ke of brevity I use the expression »>within the plane» allthough
a, e points (perhaps none of them) are rigorously lying in the plane

The meaning is that th i
€ point, ] : . .
to the plane, bolnts are highly scattered in directions parallel
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‘may be far from. containing any of the axes. Or it may be a

plane containing say the z, axis, that is a plane perpendicular
to the z,»; plane. Again it might happen that the swarm of
observation points is clustering not only around a plane .but
even around a straight line in this plane. For several variables
the number of different cases is of course much greater. And
each one of these various cases has a very definite significance.

A rigorous analysis of these various cases is however usually
neglected. And the practical application of the theory is often
limited to the mechanical use of computation formulae under some
simple assumptions, for instance the assumption that the partial
correlation coefficient for the pair of variables x; means the
same thing as the simple correlation coefficient-for zx; would
have meant if the material had been, not what it actually is,
but a material where all the other variables had been constants.
(Which assumption is reasonably plausible only if the distribu-
tion of the variables is normal.)

The reason for not analyzing the various types of clustering
by the classical methods of correlation is easily understood. It
will presently appear that the partial and multiple correlation
coefficients and other classical correlation parameters become
undefined in those cases of linear dependency which illustrate the
various types of clustering. And in practical cases which app:oa-
che these extreme cases, the classical correlation parameters lose
their real significance.

The scatter coefficient and the coefficients of linear importance
always preserve a sense. These notions will be employed here
for the discussion and classification of the various cases of linear
dependency and the corresponding types of clustering. This ana-
lysis of types of clustering does not, of course, in itself exhaust
the subject of correlation. What it does, is to furnish a logical
and, in my mind, necessary supplement to the classical methods.

In the present section the rigorous algebraic point of view will
be adopted. The statistical interpretation of the algebraic criteria
is discussed in the following section. The methods to be used
are rather simple. In fact, they are only based on the elementary
properties of Gram-ian matrices. This is another reason why a
rigorous analysis of linear dependencies and the corresponding
types of clustering should not be neglected in the study of correla-
tion between statistical variables. From the discussion in this
section and the next it will immediately follow in which cases
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the definition- of the classical correlation parameters preserves g
sense,

Supposing the variables to be measured from their means. we
lay down the following definitions. ,

The n dimensional set of observational variables 2y ..., is said
.to be. hneaI-‘Iy dependent, or to be a collinear set if there exists
identically in ¢ at least one linear relation of the form

(6.1) .2, +. . .+ a,x, ) =0

:Z;Lzrle tthe coef;ifcients a...a, are independent of ¢ and not all
' 0 zero. lf no such relation exists, the set is called li
independent or non collinear. e finearly
; If there .exists identically in ¢ exactly p (0<p<m) distinet
n;;ar relations of the form (6. 1), the set is said to be p-fold
go mear or go-fnld flattened. By p distinct linear relations of the
t}(;rm (6. l)b 1sdmeant » linear relations, such that not one of
em can be derived as a linear combinati Wi
comstan ooy Ination of the others, with
. F%‘om the theory of linear equations it follows that this de-
Anltlon .of a Z?-fold collinear set is equivalent whith the following:
thn n d%mensmnal set is p-fold collinear when and only when
' ere ex1st§ at least one (n—p) dimensional subset 2 ... s which
13 non coll?near and such that each of the remaininzr p variables
ldentically in ¢, can be expressed as a linear combination of z .. oc(;
SETEY

with constant coefficients. Evidently, if the remaining p variables
can be expressed as a linear combination of z ...zs with constant
coefﬁcien'ts, any of the » variables ...z, ca!;. A pfold collinear
n d1mens10n'al set is therefore a set, which by a non singular linear
tral?sformatlon can be transformed into a set where » of the
variables are ineffective and ¢ =mn— p of the variables are gffective
' Geometrically interpreted a p-fold collinear » dimensional sei;
1s'a set for which the swarm of observation points in # dimension-
al space are (rigorously) crowded in a certain ¢ =# —p dimension-
al plane through the origin (but not in a lower dimensional
plane). This ¢ dimensional plane is called the perfect regressz'ok
plcme.for the set, o=n—p is called the rank or the unfoldin
capactty of the set, p is called the flattening of the set ’
It p=0, that is if the rank of the set is equal to its .dimensio-
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nality, the observation points are scattered in » dimensional space.
There is no flattening, and the set is non collinear.

If p=1, that is if there exists exactly one linear relation of
the form (6.1), the set is called simply collinear. In this case the
flattening is 1, and the rank is exactly one less than the dimen-
sionality of the set. There exists a perfect (r—1) dimensional
regression plane.

If p>1, the set is called multsply collinear or multiply flattened.
There now exists a perfect regression plane of lower dimen-
sionality than (n—1).

A simply collinear » dimensional set ..., is called a closed
get if all the » coefficients a,...a, in the linear relation which
holds good for the set, are different from zero. This definition
of a closed set is equivalent with the following: An » dimensional
get is closed if there exists at least one relation of the form (6.1)
involving all the » variables (i. e. all the coefficients ... a,%0)
and no relation of the form (6.1) involving less than n variables.
In fact, from this definition follows that the set must be simply
collinear. For if there exist two (or more) distinct relations of
the form (6.1), we can eliminate one variable and obtain a
relation involving at most (n—1) variables.

Geometrically interpreted a closed n dimensional set z, ..., 18
a simply collinear set, the perfect (n—1) dimensional regression
plane of which does not contain any of the axes z,...z,. In
this case each one of the variables in the set can be expressed
in terms of the others.

I shall now consider necessary and sufficient criteria for the cases
defined above. I consider the » dimensional set X = (1. ..x), but
the argument is identical for any g dimensional subset z, ... 2,
the ¢ rowed matrices My,.. ., and Rg,...,] then taking the

place of the » rowed matrices M and R.

I shall assume the set X to be an effective set, i. e. none of
the variables is identically zero. In this case each minor contained
in M is equal to or different from zero according as the correspon-
ding minor of R is equal to or different from zero. In particular
M and R have the same rank.

From the purely algebraic point of view one is only concerned
with the cases where the set X has rigorously the property of
being collinear, closed etc. Criteria for these cases may be derived
either from the properties of M or from the properties of R.
From the statistical point of view (which will be discussed in
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the next section) we have however to take account alse of Casesﬁ,
where the set x only “comes near” to having the properties in

question, the sense of "coming near to” being defined by the
values (close to zero or close to unity) - of the determinant‘
_R:]R] and its minors. It is therefore preferable to state also
" the rigorous algebraic propositions in' terms of the properties -of
R. It should be noticed that in order to ascertain the rank of R
it is sufficient to inspect its principal minors, for R is symmetrie,
We have already seen that the set X is collinear when and
only when R=0. A generalization of this is the following pro:
positition: .The observational set x is of rank ¢ (i. e. its flattening is
P=n~—0) when and only when the correlation matriz R is of rank 0.
For if the set is of rank ¢, there exist identically in ¢ exactly
bp=mn—g distinct linear relations between the variables ;... zy.
Therefore, given any (o+1) dimensional subset, we can always
by elimination obtain a linear relation which involves at mogt
these (9+1) variables, and which is satisfied identically in ¢ All
the (¢+1) rowed determinants of the form

(6.2)

where «...y are (e+1) arbitrary numbers from the sequence
12...n must therefore vanish identically in ti...tp 1. And the
same holds good a fortiori for the higher rowed determinants of this
form. Hence by (1. 2) all (9+1) and higher rowed principal minors
of R must vanigh. Furthermore, it the set x is of rank g, there
exists at least one ¢ dimensional subset 2 ...2¢ for which no

DY ﬂ
linear’ relation holds good identically in ¢. The determinant

(6.3)

can therefore not vanish identically in t;...%. There must be at
least one set of values t;...té, for which (6.3) is different from
zero.. The sum square of (6.3) must therefore be positive, not
zero, if the summation subscripts ty ...t independently of each
other -run through all values of ¢. Hence the ¢ rowed principal
minor Re[.u .. 9] in R must be different from zero. Therefore, R

being symmetric, must be of the rank o.
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Inversely, if the symmetric matrix R is of rank g, i.t must
contain at least one o rowed principal minor By, .. g different

from zero. Hence the set By is linearly independent. There
must consequently exist at least one set of values ¢,...t, for
which (6.3) has a value @ different from zero. ].Sut -a,ll‘(q +1)
rowed determinants of the form (6.2) must vanish 1deptlcally

in ¢ ...te + .- In particular the (¢4 1)rowed determinant
1 1

where ¢ is any of the numbers 1,2...%, must vanish identically
in ¢. Developping this determinant after the last co}umn we see
that there must exist identically in ¢ a linear relation

aiﬂx‘u(t) + .k g 2gt)Fazt) =0

where the coefficients are independent of ¢, and at le.ast one of
them, namely @, is different from zero. Incidentally, since all the
variables are assumed effective, there must even be at least two
coefficients in the last equation, which are different from zero.
If R is of rank o, each of the variables in .the set X can therefor.e,
identically in %,  be expressed linearly in terms of a certalp
linearly independent ¢ dimensional subset. Hence the set x is
of rank o, ‘ '

In order to find a linearly independent o dimensional _suk.)set
contained in the set X, we have to inspect the o rowe(.i pl*.lnmpal
minors of R, Any subset Zyee g such that RQ[”M g 18 different
from zero, is a ’linearly independent set and can be used for
expressing all the variables in the set x.

If the number » of variables is equal to number w of 9_4bserva~
tions, the set is always collinear. More generally: If w<n, tl?e
rank of the set is at most equal to w—1, i. e. its flattening is
at least equal to »—w<1. This simply follows .from the. fact
that w points x(1)...X(w) between which there ex1.sts the linear
relation Z;X(#)=0 (or any homegeneous linear relation), must. ne-
cessarily lie in an w—1 dimensional plane. through the origin
(and they might even lie in a lower dimensional plane).

This fact is also revealed by the rank of R. The general term
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...............

(6.4)

in the formula for the w rowed principal minor Ry, . . y] in Ris
namely zero if two or more of the t; are equal. And if none of
¢; are equal, the set of values t ...ty must be exactly the set
of w different values which represent the  observations. Adding
to any column in (6.4) all the other columns we therefore get
a determinant where one column consists exclusively of zeros
(since the variables are measured from their means). Hence all
the w rowed principal minors of R are zero. That all the higher
rowed principal minors of R must be zero, simply follows from
the fact that in the expression for any of these principal minors
each term is a determinant with at least two equal columns.

From the preceding proposition we immediately infer the
following: 4 necessary and sufficient condition for a set x to be
somply collinear is that R=0 and that at least ome of the diagonal
elements 7, in the adjoint correlation motriz R 4s different from zero,

If an » dimensional set is simply collinear, it is always possible,
at least in one way, to pick out a subset of (n—1) variables in
terms of which the one remaining variable can be expressed
linearly. But it is by no means certain that any of the variables can
thus be expressed in terms of the others. The variable z, in o
simply collinear set can be expressed linearly in terms of the other
variables when and only when #,=0. For Z; can evidently be
expressed in terms of the other variables when and only when z;
occurs in the one existing relation which holds good for the
simply collinear set, that is, when and only when the remaining
(n—1) variables do not by themselves from a collinear set, i. e. when
and only when #,=:0. This fact can also be inferred from (4.23).

From this we further conclude: A mecessary and sufficient con-
dition for a set x to be g closed set is that R=0 and gl the

diagonal elements Py of the adjoint correlation matriz are dyfferent
Jrom zero.

In a simply collinear set, a given row (column) of the adjoint
moment matrix M will consist exclusively of zeros when and
only when the diagonal element in this row (column) is equal to
zero. For if M is of rank 1, we have My = g (s. J=12...n),
where at least one of the My; 18+ 0. The same rule holds good
for the adjoint correlation matrix.
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The least relation also shows that in a simply collinear.se.t,
a given element 7; of R will vanish when gnd onl}‘f jfrhen :izt
least one of the two quantities 7, and 7, Yamshes. I't elglerf Py
or #; {or both) vanishes, the partial correlation c?efﬁme;nt 7y w}llll
consequently be of the undefined 0/0 form. If 7, vamshes,‘ t e:
multiple correlation coefficient »; will be of thef form 0/0 He?ce.
If all the partial (or all the multiple). correlation coejf}ic?ents 4 2
simply collinear set shall have a meaning, the set must be a clos_e_
set. From (4.25) and (4.27) is seen that in a closed' set all the 7
and all the »; have an absolute value equal to unity. The case
of & closed set might therefore also be designated as the case of
perfect correlation. . . "

If the simply collinear set is not closed,.all those‘ partial correla
tion coefficients 7; will be undefined which are situated in R 1;
a row (or a column) whose corresponding diagonal element in |
is zero. . '

If the set is multiply collinear, the indeterminateness is even
greater. In this case R is of rank 0, and tl?erefore egch anq all
of the partial and multiple correlation coefficients of highest order

undefined.
7. TYPES OF CLUSTERING AND NON SIGNIFICANT CORRELATIONS.

The discussion of the present section will concern t'he stati-
stical interpretation of the notion of t.ypes. of clustering, and
particulary the significance of this potion in the procedu're of
fitting lines and planes to a given scatter dlagr?,m. Tl.le p01n13 of
view which will be adopted is thus the regression p.omt of view
as distinguished from the frequency distribut.lon point of view,
although one or two occasional references will be made to the
frequency aspect of the problem. N .

The procedure of determining an analytic relation between a
certain number of statistical variables, has a concept.ual back-
ground somewhat like this. We have in our mind a certain pattern,
according to which variations in statistical variables can be of
three kinds. Accidental variations are variations due to thfa fact
that a great number of variables has been overlooked, conscmgsly
or unconsciously, each of the variables being however of minor
importance. Disturbances are variations due to. th'e fact tha‘t one
single, or a certain limited number of highly 31gn1fic.an't varlab}es
have been overlooked. Systematic variations are var1at101.15 wh.lch
show a certain regularity (in time or space), this regularity being
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taken as a criterion that no really relevant variable has been &
overlooked. - .

This “clagsification does not pretend to be anything like satis-
facto'ry from a philosophical point of view. A eritical reader will
'for Instance find the troublesome problem of causality hidden
in practically every line of the definitions. Furthermore the distine-
t1.<)n' between what shall be considered as accidental variations and
disturbances, is not sharp. To some extent the distinction depends‘
on the c?mplexity of the problem and on the relative perfection.
(<'>r _deﬁc.lency) of the empirical and rational tools of investiga- 3
tion which are at present at our disposal. Thus, in economics 3
we.are'actua,lly often forced to throw so much into the bag of
accidental variations that this kind of variations comes‘ very near
to take on the' character of disturbances. In such cases it would |
perhaps' .be more rational to introduce an hierarchic order of types
of variations, each type corresponding to the overlooking of variab-
les of a certain order of importance.

Nevertheless, I think the rough three-fold distinction which has
b}?e? made above, will be sufficient for our purpose, so that it
(sli:;3 IIISSI;EI:J | be necessary to enter upon a lengthy philosophical

When we proceed to the determination of an analytic relation
!oetw.ee'n a certain number of statistical Vvariables, we' assume
implicitly or explicitly, that if the considered set of variables:
rea%ly forms a complete set of relevant variables, and if the
a.cmfiental. variations could be eliminated, so that 01711y the syste-
matlc. varlations were left, then the variables would satisfy a certain
f}mctlonal relation (anyhow for some limited time or space con-
s_1derred). In fact, this assumption is really involved in the defini-
tlor} <.)f systematic variations as distinguished from accidental
varlgtlon.s ‘and disturbances. The character of this functional
?elatlon Is an important feature in any statistical problem, and
n many problems it is the one important thing in Whi(‘,’h we
are 1I}terested.’ A statistical fitting procedure, performed with a
tc'ant:fttlve analytic formula, is an attempt to get rid of the non-
significant accidental variations and thus obtain some idea of
the character of the functional relation which exists between the
systematic variations.

As T see it, any statistical fitting procedure can be considered
fro.m this point of view. This interpretation seems rather natural
It is not, however, the only one which has been advanced. The.
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set of n elementary regressions (4.7) is sometimes considered as
a unity, and as such contrasted with the unique regression
obtained by some kind of mean regression method. It is contended
that in principle only a regression of the latter type represents
an ‘approximation to the functional relation between the systema-
tic variations, and that the set of # elementary regressions
represents an entirely different notion, namely the notion . of
stochastic relation, the stochastic relation being not a unique
relation such as the functional relation, but a plurality of
relations, namely as many relations as there are variables. It
is claimed that this distinction is fundamental and characteristic
for the distinction between the mechanical and the statistical
conception of "law”. '

‘In my mind this interpretation is fallacious. As pointed out
in Section 4, the difference between the various conceivable
regressions is a difference in assumption as to how the accidental
element has actually manifested its presence in the material at
hand, this difference in assumption entailing a difference in the
technique by which the regression coefficients are determined.
In the case of a mean regression the assumption and the technique
is more symmetric in the variables than in the case of the
elementary regressions. In a certain type of problems the technic-
ally best approximation to the functional relation. between the
variables will therefore be furnished by a mean regression, in
another type of problems it will be furnished by one particular
of the elementary regressions. It is only in this technical sense
that a mean regression is “mean”. Otherwise there is no diffe-
rence between a mean regression and one particular of the ele-
mentary regressions. And it does not seen plausible to pick out
in the infinity of possible techniques, that particular kind of
technique which leads to the system of elementary regressions,
and erect it into a principle, the conceptual importance of which
should be comparable with the basic importance of the idea of
functional relationship. There certainly does exist a difference
between the conceptual schemes of a mechanical and a statistical
law, but not in the sense that the first is something unique, the
second something pluralistic. The difference, as I see it, is that
the first is a law conceived so as to admit of no exceptions, the
second a law which really admits of exceptions, just because the
accidental variations are thought of as being superimposed on
the systematic variations.
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hgnother point which should be noticed in connection with
the conception of regression and functional relation, is that the
partial and multiple correlation coefficients (and the generalizations

of these parameters to curvilinear regression) are not primarily §8
descriptive of the character of the systematic variations, but are
essentially indicators of the presence of accidental variations and /28

disturbances. In the exaggerated importance which in recent years
has been attributed to the computation of partial and multiple
correlation coefficients, one has lost of sight to some extent, it
seems to me, the fact that one of the essential things we are
after, is the character of the regressional relation itself.

After these preliminary remarks we may turn to the notion
of types of clustering. Let a statistical material covering w observa-
tions on n variables be given. And suppose we want to investigate
the character of the systematic variations in the variables, by
assuming as a tentative analytic formula the linear function.

In all practical cases the moment matrix, and hence the correla-
tion matrix will be non singular. This in itself does not, however,
tell us very much from the statistical point of view. The essential
question from the statistical point of view is if the deviation of
R from zero is significant or not, that is, if the deviation of R
from zero is really descriptive of the systematic variations in
the variables. Even if the systematic variations of the variables
are such that they would give rigorously R=0, the slightest
amount of aceidental variation introduced would at once make R
positive, not zero. If R is considered from the sampling point
of view, assuming the jdeal universe in question to have ‘R
rigorously equal to zero, the mathematical expectation of an
actually observed R would not be zero but some positive quantity.
And the probability of an observed R=0 would be virtually zero.
An actually observed value of R has therefore to be viewed in
the light of some criterion of the significance of its deviation
from zero. And similarly for the other scattor parameters, that
is, for the principal minors of R, respectively the square roots
of B and its principal minors.

For a rigorous analysis it would be highly desirable to have
an exact criterion for the significance of the observed magnitude
of the scatter parameters, in the form of formulae for the mathe-
matical expection and standard deviations on these quantities, or
better ‘still: in the form of complete theoretical distributions. At

present I have no such formulae to offer. But nevertheless we
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have a rough criterion by which to judge the scatter par.a_meters
closeness to zero, namely the fact that all these quantities are
lying between O and 1 and are limited by the f(?rmulae and
propositions of Section 2. We are thus virtually in the same
position with regard to judging the magnitude of the scatter para-
meters as we are with regard to judging the magnitude of those
classical correlation parameters for which mathematical expecta-
tions, standard deviations or complete theoretical distributions are
not available at present. This sort of criterion is certainly not
ideal. But if it is used with care, I believe it is far better than no
criterion at all. And it is perhaps not vain to hope that it shall ulti-
mately be possible to derive the necessary formulae for giving a
more definite meaning to the scatter parameters closeness to zero.

In view of the algebraic facts indicated in Section 6 it is clear
that the notions of simply collinear sets and closed sets must be
important from the statistical point of view. _

Suppose for instance that the scatter coefficient s= VR for an
n dimensional set is found to be not significantly different from
zero, indicating that the observation points in the » dimensional
scatter diagram come close to lying in a plane. This in itself is
not sufficient to make it a plausible procedure to pick out one
of the variables, say z; and compute the regression of z; on
the remaining (»—1) variables. This procedure would have no
meaning if \/}; is not significantly different from zero, while at
least one other diagonal element in R is significantly different
from zero. For in this case the (»— 1) dimensional plane around
which the observation points are clustering is ot significantly
different from a plane which contains the x; axis, the points being
highly scattered within this plane. The regression which would
have a meaning would therefore be a regression between (all or
some of) the remaining (» — 1) variables, not a regression involving
@;. The variable x; has nothing to do in the linear regression
system. From the point of view of linear regression #; is a super-
fluous variable drawn into observation. The # dimensional set
is not a closed set. If we would compute the regression of z; on,
the other variables in this case, the whole system of regression
coefficients b; would be artificial. Computing the regression of @
on the other variables would namely now mean forcing the quanti-

ty \/?_u (whose deviation from zero is non-significant) into the
coefficients b; as a denominator.

N.8.T. Bds . 7
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The guestion may arise: Is not this exactly the kind of thing 4
which would show up in the multiple and partial correlation -
coefficients? If the actual distribution of the observations is such ‘
that the variable z; is a superfluous variable in the above sense, §
would not the partial correlations 7y and the multiple correlation 5
7; necessarily have small numerical values? The answer is: T hey ' §
would not. On the contrary, the definition of the partial and
multiple correlation coefficients is such that when the remaining
(n— 1) variables taken by themselves come close to forming a colli-
near set, the partial correlations 7‘2.3- between the superfluous vari- -
able #; and any of the remaining variables, respectively the mul- #&
tiple - correlation 7»; between z, and the set of the other (n—1) 3
variables, may assume any value, in particular these parameters
might come close to unity, thus making it appear perfectly legitimate *
to compute the regression of x; on the other variables.

I shall take the case n=3 as an illustration. Let 7,,, 715 and 7,5 be
the simple correlation coefficients in the set (z,zqz;). We put 7, =ph,
ris=gh and ryp=¢/1—3% (1), where ¢ is the sign of 7,
and the square root is taken positive. Now consider », q and h
as arbitrary quantities. The consistency condition which cha-
racterizes the case where ry,, 7, and 7, are correlation coeffi-
cients for a set of real variables is

0L R=h1—[p"— e 2pqV1 = h? + ¢)).
By studying the two conics in (p, g}-coordinates
r—e 2pVI—h+¢*=1
e=+1

which have the shape indicated in Fig. 2, we see that the con-
sistency condition is certainly satisfied for all values of hZ1
if the point (p,q) is sitnated in the inner square of the figure,
that is if

(7.1) [p|+]e]| 21

In terms of p,q and h we have (using Professor Yule's nota-
tion for the partial and multiple correlation coefficients)

Ti0.5= (0 — eqV1—12)/V1— g2
Tige2 = (0 — epV1—22)/V1 = ph2 ;
By =\/p"— - 2pgV1— 12 +¢° ;
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Fig. 2.

where all the square roots are taken positive. Further the standard
error of estimate of x, as a linear function of z, and =z, is

01.23 = 01\/1 - Rf(z?))

where ¢, is the simple standard deviation of =z,. )

Therefore, if p and ¢ are chosen as two arbitrary numbers
independent of » and satisfying (7.1), we have at the limit for
h—= 0. '

Tio.g=P—¢&q
T13.2=q—&p
R1(23) = I]’ - 8_‘1[-
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Now, the limiting process h—> 0 means that we construct a
case where the observation points in the three dimensional scatter
diagram (z,2,%;) come close to lying in a plane containing the
x,-axis (1. e. a plane perpendicular to the z,z, plane). But in this

plane the observation points are highly scattered. The observa- i
tion points are far from clustering around a straight line in this
plane. In other words, we construct a case where the set (z,2,7;) ]

comes as near as we want to being a simply collinear but not a

closed set, namely a set where there exists a linear relation

between xz, and x, taken by themselves, but where there is no
approach whatsoever to a linear relation between x, and the
other variables. The case is one where z; is a superfluous vari-
able drawn into observation.

Nevertheless we can specify the case by disposing of p and
q in such a way that for a sufficientlv small & any of the partial
correlation coefficients between the superfluous variable z, and
one of the other variables, for instance the partial correlation
coefficient »;,., comes as near as we please to any number between
—1 and + 1. Or the multiple correlation coefficient R, can be
brought as near as we please to any number between 0 and 1. For
7y positive we may for instance choose p=—¢=1. At the limit
for h—>0 we get ryy 3 =+1, 75, =—1, Ry =1and ;.55 =0.
Choosing p=g=1 we get 7, ,=7,.,=0 etec.

The case p=—g=} is particularly illustrative. All criteria seem
to indicate that it would be perfectly legitimate to compute the
regression of z; on the two other variables. We have maximum
partial and multiple correlation and minimum standard error of
estimate. And still such a regression would have no sense.

If we had computed the scatter coefficient s and the coefficients
of linear importance

s=+V?=h\/1—(p2—a-2pq 1-1W+4)
Vim=\1—0'
Vim=\T— 7

where all the square roots are taken positive, the real character
of the relation between the variables would at once have been
revealed, for we have at the limit for A— 0
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s=\/¢_11=0 and \/@= %1‘— 1

s=0 means that there exists at least one linear relation between
the three variables, \/7p, =1 (or \/7g;=1) means that there does

not exist more than one such relation, and §/7, =0 means that

the one existing relation is a relation between z, and ;.

It is easy to construct numerical examples which illustrate this
type of clustering. I constructed for instance three series x,2,%;
where =, was a combination of words in english, each letter being
attributed a value according to its place in the alphabet, z, consisted
of digits picked at random in a logarithmic table, and =, was
nearly a linear function of z,. This case happened to give a
high negative value for 7, ; and high positive values for r;,

and R,y But the value of \/rn (and therefore necessarily the
value of s) turned out to be comparatively small, while \/7”22 and

\/73; were significantly different from zero, indicating the presence

of a linear relation between =, and x, and the lack of a linear
relation involving x;.

The conclusion is that before proceeding to the computation
of the classical correlation parameters, it will be advisable to
take a general survey of the type of clustering, using the scatter
coefficient and the coefficients of linear importance, and if ne-
cessary the scatter coefficients for the lower dimensional subsets.

In particular it is essential to determine if the set (assumed
approximately collinear) comes near to being a closed set, and
if not to pick out those subsets which come near to being closed.
It is only for the approximately closed subsets thus determined
that the classical correlation parameters have a real significance.
In particular it is only for a rigorously closed set the term perfect
correlation has a meaninng.

The following might serve as a general scheme for the analysis.
First compute the simple correlation coefficients, i. e. the elements
of the correlation matrix R. If the scatter coefficient s=-VR,
where R=|R|, is close to unity, there is no use trying to express
any of the variables linearly in terms of the others.

If s is reasonably close to zero, the diagonal elements 7; in
the adjoint correlation matrix should be computed. If none of

the quantities \/r_m are very small, the set may be considered
as a closed set and if desired the regression coefficients and other
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classical correlation parameters computed in the usual way. If
& mean regression is wanted, one of the forms (4.16), (4.22) or §
(5.22) may be tried.

If some of (but not all) the quantities \/7?“ are very small, the i
set may still be considered as a simply collinear but no longer .;;"‘:

as a closed set. Those variables x, for which \/a is very :
small, might be left out and the rest of the variables treated as g
closed set. If it is desired not to leave the variables 2, out comple- §
tely, one might compute the regressions in the usual way, however j
not compute the regression of any of the z, on the other variables, .

If all the quantities VE are very small, the set should be

considered as multiply collinear. In this case there will exist at least
two subsets which may be considered as closed sets and treated 4
separately. These closed subsets are determined by an inspection |
of the (#—2) rowed and eventually the lower rowed principal
minors of the correlation matrix R. If there exists at least one
¢ rowed principal minor of R, the positive square root of which
is not a very small quantity, while the positive square roots of
all the higher rowed principal minors of R are very small, then
the given » dimensional set should be considered as p=n—oy
fold collinear (p-fold flattened). There now exist exactly p closed
subsets which may be treated separately. These p subsets are deter-
roined in the following way. Pick out the ¢ dimensional subset
L,y which is such that Re[u ) is the greatest of all o rowed
principal minors in R. This ¢ dimensional subset might be called
the basis sef. The basis set is the ¢ dimensional subset which
comes nearest to being an uncorrelated set. Now consider in turn
the p (o-+1) dimensional subsets obtained by adding to the basis
set one of the variables which are not in the basis set. Each of
these p subsets comes close to being a simply collinear set and
might be analysed as such. In particular the set might be redu-
ced to a closed set by omitting all those variables #, which
are such that the square root of the corresponding diagonal
element in the (o+1) rowed adjoint correlation matrix for the
subset, is a very small quantity. The variables which will eventu- !
ally be omitted by this rule, are necessarily variables occuring

in the basis set. The one variable which is added to the basis

set, will never be omitted.

RaeNar Friscm
pro tem New York City, February 1928

INTERPOLATION I STATISTIKEN.

Udgiverens Onske om et Bidrag vedrerende Interpolation
i Statistiken har jeg opfattet som et Onske om .‘s‘a-adam.le .Be-
merkninger, der vil ligge den praktisk ud.avende Statlstllger
nermest; ogsaa paa Grund af den f-orh‘oldsvrs.' begrensede Tldf
der har vaeret stillet til min Raadighed, har jeg mere maa‘m.t‘t-ei
legge Vagten paa den praktiske end paa f:lren teoretiske Side
af Sagen og derfor mere maattet soge at give Eksempler p-a,aLf
hvorledes man kan beere sig ad overfor de Vapskehghede-r, i
hvilke Statistiken paakalder interpolatorisk Hjeelp, end pa.a,
at undersoge, i hvilken Udstreekning Metoderne kan taenkes
t hav ldighed eller Veerdi. )
" §:tVZanyu gins.kew vist mere en Talemaade end reln.R'eah;t‘-e-t,
naar man i denne Forbindelse fremhaever den p.raktlske Side
paa Teoriens Bekostning eller omvendt. I Virkehghed'en ladgr
disse to Sider sig ikke adskille; de folgende Be-maerkmngzer' vil
formentlig give et Indtryk af Hensigten med denne Adskillelse.

1.

Indskrenker vi os forelebigt til den iFormen_simple)s-tg
Interpolationsopgave, nemlig ud {fra Ke.ndskabet til visse 41
Reglen forholdsvis faa) Funktionsverdier (Tabelvaerdierne)
at beregne andre (muligvis vilkaarlig mange), maa ‘det som
karakteristisk for denne Opgave fpemhaevleAS, at det i Hoved-
sagen skal vere ud fra de givne Tabelverdier der drages .Slut-
ning om Funktionens Verdi for andre Argume:njuer, hvlorlmold
en Beregning, der direkte folger den Vej, Funkt’}onens Defini-
tion anviser, ikke kommer i Betragtning som “en Inter'pvolar
tion». Ved tilstreekkelig Therdighed kan man eksempelvis be-
regne Veerdien af 3;‘/% med forud forlangt Nejagtighed alene
ved den Regningsart (Potensopleftning), hvorved Roduddrag-
ning defineres, og det er derved ga,nske_upa‘a.kraevet at kende

i Y4 Y5 3 Kender man imidler-
Verdierne f. Eks. af ]/4, VD, 1/6 og 3/7. e
tid Veerdien af disse fire Storrelser, er det, at man uden for-
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