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Introduction.

Sowe years ago, in the course of an analysis of upper
and lower lTimits for incomplete moments of statisticeal distribu-
tions I established an elementary summation formula! which
proved rather useful for the purpose I had in view. Sub-
sequently the formula was generalized by professor StErrbx-
sEN, who showed® that the formula in question could be
looked apon as giving the first term of an expansion in a
certain type of series.  Professor Srurruxsex established re-

' Sar les semi-invariants et moments employés dans Uétude des distri-
bution statistiques. Skrifter utg. av Det Norske Videnskaps- Akademi i
Oslo. 1926, p. 26. Formula {42 a\.

® On the Sum or Tntegral of a Product of two Functions. This Jour-
nal 1927, p. 44---70.

9— 20438, Shandinavisk  Ahinaric fedshrigt 1929,
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currence formulue tor the coefficients of the series and com-
puted the second, third and fourth term and the corresponding
remainders', but did not arrive at a general, explicite expres-
sion for the coefficient of the si-th term and the corresponding
remainder. A year later T found these expressions aceidentally
while I was working on some other problen. I also discovered
the real nature of the procedure in uestion which proved to
be a certain kind of least square fitted polynomial approxima-
tion. I didnot, however, at the time publish the result. Taking
the question up again later 1 found that the whole problem
could be considerably generalized. The type of generaliza-
tion in (uestion is analogous to the generalization from poly-
nomials to arbitrary functions.

Also in this general case can the remainder be brought on
a form analogous to the form which professor STEYFENSEN
had considered. This transformation is rvendered possible by
the eeneral mean value theorem oxpressed in formula (1 1).
This theorem is rather interesting in itself a purt from the
particular use which is presently made of if. It seems to
be susceptible of a rather wide application in various sorts
of practical problems involving the evaluation of a remainder.
The formula in question contains for instance as a very special
case the mean value formula for divided differences. My de-
monstration of this formula was first outlined in the Comples
rendus, Paris.® Shortly afterwards I received a letter from
professor Ponva who Jrew my attention to the fact that the
essence of the mean value theorem in (uestion iz contained
in his paper in the Transactions of the American Mathematical
Society, Vol. 24 (1922) (published 1924) p. 325 Formula (1. 1)
itself, which is the formula that has to be used in numerical
applications, is not given by professor PoLya. But it can be
deduced from Pdénya’s formula in the following way.

With the notation of Section 1 of the present paper
Pérya's formula is '

Yloe, ity p. 98,

f Academie des Reiences. Scéance du 22 avril 1929,
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must be different from zero by virtue of Pdnya’s formula. It

is therefore possible {o determine 2 {as o function of i)
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in such o way that the left hand side determinant in (0. 1)

vanishes.  We simiply have to put
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The right hand side determinant in (0. 1) must consequently
also vanish. which gives 4 == [v"'(g)~
. . - ) 1,1(5}
.smus for 7 we gct (1.1). This demonstration of (1.1) was
indicated to e by professor Pduya in bis letter :1,1‘1'(‘211(]/\' re-
ferred to. o
My own demonstration proceeds on different lines and
.contains some points which are not discussed by Pdnva, tor
instance formula (1. 9) which may be looked up(;u @43 gene-
ralization of (1.1) to the case where the numerator and geno-
minator are coustructed by two different sets of functions
wle), afz). o and byle). b(x).. .. T have therefore found it
worth  while to give my own demonstration in full. This is
done in Section 1. | |

Eqnating the two expres-
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The value formula (1.1) can be connected with a

generalization of the

mealn
notion of ditference operation, which
to a method of decomposing a given
This aspect of the pro-

leads amongst others
determinant in élmuentury factors.
blem is analvzed in Section d.

The expansion of the integral of o product which is ob-
tained by the method of the present article has an interesting
application to the damping problem discussed by professor
Mmipgrn., This problem is considered in Section 7.

1. A General Mean Yalue Theorem.
Let ayle), al2). ..
the real variable @, possessing derivatives wp 1o the order v, and

Surther sucl that the WRONSKIANS
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do not vanish in a certain intervall (i).  Let flx) be a Jction
possessing  dervvatives wup to the order n in (7). Iindlly let
@y ... n be a system of (n+1) walues of @ in (7). There ecist
at least one value w==E& i () such that

anlr) be « sequence of veal functions of

The denviinator of the left hand side of (1. 1) s different from
zero provided the values vy oo

In order to establish this let us put
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By convention we put [ =/ and Ay=a,.
Finally we shall consider the determinants
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Similarly  let 577—};(!/.)"';7/,;_7;) be the determinant obtained
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from @,—i(y, - yn—r) by replacing a, by /. In particular we
have

(1 2) CC/O(JJ) :D\a) n g‘ = @n-
)

¢

I shall first show that we have the explicit formulae

(1.3) @i = % (h=0,1 - n)
<L
(1.4) = f}" (=01 (n—1))
Ay
e i A 01—
(1.5) wp= = T (k=0,1 (1—1))

where by convention _;=1.
Tn fact, supposing that fhese formulae are exact for by

we get

f’lk I‘Vk

d LF}\vl d I”k“

Prrr day P dop Ay &pde Ay A i

Now, if a & rowed determinant whose elements are functions
of a certain variable is differentiated with respect to this variable,
the result can be written as the sum of the % determinants
obtained by first differentiating the elements in the first row
(lenving the other elements unchanged), next differentinting
the elements in the sccond vow {leaving the other elements

unchanged) ete. If we consider a determinant of the type /%
we therefore have

la, et

! r A
, Ao 1]
) (l I' I
_1' ,: e (/.E fotaniy - . . . ,,- 1-\) . .
& (et =) g 1y
A=ty S

1) CAR LIS
S L / 1)
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that is, I is differentiated simply by raising the differential
exponent of the last row one unit. Similarly for A’k Both
F’, and A’p ave consequently minors in I;;. By virtue of
SyLvestEr's theorem on the minors in a determinant we
therefore have

} A I l"/;

. . = l J—1 J'VI:TI
AT

and hence @1 = !i»!f*l\ which is (1.3) for (A--1). Since (1.4)
i P

is the special case f=a;+1 of (1.3), (1.4) also holds good for
(k+1). Consequently

VI P
Ty
, degi d Ay :'1’1;+1 Arr
gy == 7y =R, 0 T e T
(/:L ([(L‘ ,'17;4_1 ;h'+1

Since the last expression by Synvesrir's theorem is equal to

x‘l ~,’l R :
: :1 "% we see that also (1.5) holds good for {k+1). Since
Af+1
I, ;A d, . -
Py = 1 and o) = El the formulae (1.3)—(1.5) hold good
generally.

By virtue of (1.5) all the derivatives ¢y are finite and
different from zero in the intervall (7). That is, all the
functions «; are monotonic in ().

Besides the set of functions a,(x) - a.(x) flx), let us con-
sider another set b,(a) b, () glr) satisfying the same condi-
tions as the fivst set. Lot 3o, 5 D ((/‘”,; cote. be the functions
corresponding  to wr, g, Ap oetel, and et /)‘;-;\,r_v he the
operation corresponding to Dy .

We introduce the notations

I)H——-k(!/’o Co j/n—/;) = C{’,';_l (‘1/0) . a’/,»_l (l/l) Co ({’};__1 (.[/“—k>
Ottty - ttr—t) =31 (o) - B lyr) - e (i)

In what follows we shall have to consider several sets of
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arguments y, ¥, -, YooY ', #.4, - etc. For shortnes we
write

Pvl—k:P11~I:<?/() T ]/)z—-/:\, P,n—%—l:])n—k—l (;7/’() co f/,n~/.'—l),

I = oy, ) eter And similarly

B e ] "

——

o

. CZ ([’ ’
N1 Fy—i—1 (7/ o Y n—l:—l) ete.

Assuming w, <y, < -
tion of y

< u—i we shall consider the fune-

( 9;—1\'>1/0=1/ : grz—k'—( Q’Il—}\'):l/.)-:]/ . STﬂ-—/\"

This function vanishes for y=y, (because the minuend and
subtrahend then become equal), and for y=y, (because two
rows in the determinants then become identical). There must
consequently exist a value y', between 7, and y, such that

> () ‘oj:—k 2 7 (& e —
(1 . ()) ( 1 ) 9‘ll—k = ',/ ) - e
Yo STw=v' o oot

Next, consider the function of #

0 971-—L Ca d Q)I—k Py
) P T LSk T Ty T CF e
Yo Twe=u's Yo Jw=u,

"=y =y

This function vanishes for y=y, (by virtue of (I.6)) and for
y=vy, (because two rows become identical). There must con-
sequently exist a value ', between 4, and #,, such that

N 9 Fr, 9% Gy _
(1. ‘) ( """ - k) , ’ Qn—/{ = ( ij L) : y}lv»l'.
Yo o o Ul

Ay, dy, P _}/0 iy,

Y=y YBi=1Ua
If we continue in this way we get an equation where on the
left hand side each row in the determinant &,_;, with excep-
tion of the last, is differentiated with respect to its argument,
and on the right hand side each row in the determinant Qn_k,
with exception of the last, is differentiated with respect to its
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argument. At the same time, the argument in each row
(with exception of the last) is replaced by another argument
situated between the original argument of the row in question
and the mnext following. The last row in the determinants
&y _ and ((/‘7,,_/‘ are left unchanged.

The (uantities iu the fivst column of &, being

, i e : le—
Do r i d (-I)((z), 1 fﬂ) . (= =1,

wy  dp— (ty ey

s ) d
we see that, when the differentiations ',’i)"> ,( o
dy, dy, O Yr—i—1

are performed on &,_;, there are only zeros left in the first
column, except the last element in the first column, which is
equal to unity. The determinant in question therefore reduces
to an (n—#4) rowed determinant, which does not contain ex-
plicitely the argument #,—; (although the effect of this argu-
ment is still present because the arguments y” depend on y,—p).
In the (n—£F) rowed determinant thus obtained let us take
the quantity «’1(y'y) #=0 out of the first row, the (uantity
«'v(i;) == 0 out of the second row ... and finally the quantity
& 1y —1—1)=F O out of the last row. A part from the sign (—)* %,
the resulting determinant is nothing else than

Vvl
pa

ekl G o Y i)

Taking the quantity 3:(y',) out of the first row, the quantity
#'r(y’')) out of the second row, ete. on the right hand side we
get the equation

(1 8) Pln,kl:—l : “/‘, ’ (C/Dn-‘l; - (L),/z‘l;‘l : gﬁ ,_I;—l ' ‘@/7—}

n—h—1 g n
Next, let us cousider the function of ¥

g N L (F — () e A <7
Pt ( (j71~/.'—1>]/’0::_,/ gﬂ"i (L) n—k—1 ( 9’)1~I:~1)j/'(,:]/ k-
This function vanishes for y=y', (by virtue of (1.8)) and for
y=y'; (because two rows become identical). There must
consequently exist a value y, between %', and %', such that
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Repeating the process we get

4 ' eIV G in—k o) .
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In particular if we put 4=0 and make a slight change
in the notation of the arguments, we finally get by {1.2) and
(1.3) the following formula:

(]'9) —Bn(g)' )01)1
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¢ being u value between §, and §,, §, a value between &,
and &, and &, a value between &, and £, and so on, finally
Everov Sui1 Seru—1 & set of values separating the values
Lok A

It we pub belw)=at, glz)=2" and flx)=a,(z), that is

o ort- (k=11 +1)! G
Bley= -~ 0Tl (/I—U'/v cx=(k+ 1),

and consequently Frle)=k+1, we see from (1.9) that

3

”u('"(i‘ ”/1\(’51») 1

(’Mn"u) Uy ‘\"III)

cannot vanish if the arguments -y ave distinet. This
being so, we get (1.1) by putting bi(x)=ar(x) and glz)=a.(x)
in {1.9).

Formula (1.1} therefore holds good if the arguments are
distinet, and by a limiting process we see that it must also
be true it some of the arcuments coincide, the numerator and
the denominator of the left hand side of (1.1) then taking
on a form with one or more rows differentiated a certain
number of times.

The essential point in the formula (1.1) is that it is
sufficient to consider a single value & If we introduce {1+ 1)
values &8, &, we can formulate the following proposition:

Let a,(z) - an(z) and by(z) - balx) be two sequences of
functions satisfving the condition

A,=0, 4, =0 4,150 and By =0, B, =0 DI,=0

in the interval (/)
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If @, r - wn is a system of values in (/), there also exist
a system 5,8 - &, in (/) such that

) (%) o <~'fo) &y (50) iy (S(,)
ay () - an () alo &) o' ()
ay (20) - anlen) | __|a (5) @’ (E)

O TN R WA A PN AR AR

bo (:TE{} b (:c,‘) b'o (§,) b (51)

by () -+ bl |00 B ()

In fact, let
gy o L)
> : ag(z,) - an ()
& = @ (.150 @y ) =
Vag () - an ()

and let e® = ek (xy2, ) be the analogous determinant
for the sequence by(x), b, (x)---

Let w, -z, be a system of (n+1) distinct values in the
interval (/) and consider the fanction of «

(@)oo o — (0B )y &

This funetion vanishes for w=wz, z, - x.. Its n-th derivative
consequently vanishes in a point &. That is, we have

(ané?)d Y (()—Ji) @

Jdx Jdat

Next, consider the function of =

o & . e -

e Coff — L@,
& Ey=3) o

day
This function vanishes for z=w,, @5 - .. Its (—1)th deri-
vative consequently vanishes in a point §,.—,. If we continue

*n
W=

141

in this way, we get (1.10). We see that we may put &,
in this formula equal to any of the arguments wry - uy.
The formula (1.10) contains as a special case the formula
of Scawawrz.'

2. The Expansion of the Integral of a Product in a Series
containing a Sequence of Arbitrary Functions,

Let /() and g{x) be two functions of the variable .c.
Our problem is to evaluate the integral

2.1 / Sy gle) d.

o

In order to do so we shall take as our point of departure
Teunnyennrr's idea of approximating the mean of a product
by the product of the means. This amounts to putting

3 It l’f

(2.2) /'/4(‘.‘1,‘) glryda - ! " /./'(,r} d. J gleyde + .

7
70 Saaned
i

@ [22 [22
The explicite expression for the remainder I7 in this formula is

s 3
28 B=gl [ e [ ape- =g,

(64 [¢3

The formula (2.3) is proved by simply multiplying out
the product (/tx)—f{n) (g{x)—g()) and integrating each term
separately. The formula (2.2) with the remainder (2.3) is
the elementary summation (integration) formula referred to
in the Introduction. From this formula we immediately deduce
Tourpycusrr's inequality for integrals.

U H. AL Scinwary: Verallgemeinerung eines analytischen Fundamental-
satzes.  Ges. Mathem. Abh. 2, 1880, p. 301,
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The remainder (2.3) can also be written in the form

3

2.4 R:fuw~mmm—%wx

[£4

3
where f, = j—_]_;f fle)dx is the mean of fla) over the inter-
1 {«°
val (¢, ) and similarly g, is the mean ot gle) The formula
(2.4) can also be proved by simply multiplying out the inte-
grand and integrating each term separately.
If we introduce the deviation factors p and ¢ detined by

3

p= [ sz

and the coefficient of correlation between the two functions
flz) and g(x) over the interval (e, §)

v
y :]7(/ / (flz)= 1) (glx) —go) d

(%3
we can write (2.4) in the torm
(2.5) R =pqgr.

This shows that Tenmpyensre's inequality tor integrals can
be generalized into the following proposition: The mean of u
product is greater or less than the product of the means according
as the two variables are positively or negatively correlated. If
they are wncorrelated the mean of the product s equal to the
product of the means. Since 7 is a coefficient of correlation,

[

we always have || = 1, which shows that we have the error
limit

(2.6) |R| = py
and therefore a fortiori
(2.7) |R|Z (3—a)AB

where .1 s the maximum  deviation of /() from its mean,
and B the maximum deviation of g{x) from its mean, the
deviations being taken regardless of sigm.

The formula (2.2) can be interpreted as the formula ob-
tained by fitting a constant to one of the Sfunctions, say glx) by
least squares over the interval (e, 8), and evaluating (2. 1) under
the assumption that the function in question is equal to this
constant over the domain of integration. The result is evid-
ently independent of which one of the two functions 1is
replaced by a least square determined constant. The procedure
is therefore symmetric in the two functions / and 4.

A natural generalization of this idea would be to replace
one of the two functions [ and g by a least square fitted poly-
nomial over the domain of integration. It will presently appear
that the result thus obtained is independent of which one of
the two functions is replaced by a polynomial. The procedure
is therefore symmetric in the two functions / and g.

A still more general procedure would be to veplace one
of the two funetions 7 and g by a linear form in a set of
given lincarly independent functions wyle), a o) the con-
stants of the form to be determined by least squares over
the interval (&, 3). This is the procedure which shall now be
considered.

We introduce the numerical coctficients

(2.8) i =J alw) ajlz) de.

@
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Since a; is the product moment (over the intervall («, 8))
of the two functions «; () aud w;(x), the symmetrie matrix

oy oy~ ok
F (lyy @y 0 ik
10 1
(2.9) (ay) =
aro py - drr,

is a (A+1) rowed Gram-ian matrix whose determinant

g oy w0 ok
. » 44 47 oy
(k+1) —— 10 411 g
(2. 10) A o
(o ey - Uk

can be expressed in the form'®

g 3 3 g (2g) -+ ar () |?

i

(2.11) (A+1)1 A = /(Zxo [dxl /(Zxk aglzy) - anle)

.
@ % «

4y (v."l'/‘-) oy {,Y?/‘»)

Since the integrand in (2.11) is symumetric in all the
variables, we can drop the left hand side |)1(\f.1(‘r01 {4+ ])’ if

the domain of integration is changed to fdxofdxl jdxk

o Lh—1
- Zar =8 (evidently it does not restrict
generality if we assume « < §).

If the functions «,(x), «;(x) - are linearly independent,
the integrand of (2. 11) cannot vanish identically in ;- ;.
The determinant A*+Y must therefore be positive, not zero.

The elements of the reciprocal of the matrix (2.9) will
be denoted «j. I.e. «fj is the quantity which is obtained by
leaving out the z-th column and the j-th row from the deter-

that is a= 2y =

! See for instanee KowaALpwsKi; Determinantentheorie. Leipzig 1909
p. 321,
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minant A%*Y  then dividing the L rowed determinant obtained
) =
by A®FD and finally multiplying by (-—)*/,
The (uantities

3 3
v »

(2.12) m, = | a.lz)fle)dx and u, :j telz) glx) dx

24 «

will be called the (general) moments of f and g respectively,
taken with vespect to the functions o, over the interval (e, §).
For a,(x)==(r—a)*, my, and n, are the ordinary power moments
taken about the beginning of the interval of integration.

If the linear form

(2.13) Gla)=yg,  aolx)+ - +gr wrlw) = Z. g, - axlx)

where the g, are constants, is fitted to g(z) by least squares
over the interval (e, 8) the coefficients g, are determined by
the linear system

8
j ailx)  (gla)— gy - axl2)) da =0

33

(7i==0,1---7)
that is
(2. 14) S, Qi =Ny
(=0,1--k).

Since A%+ == 0 the system (2. 14) always has a uniquely
determined solution, namely

(2. 15) gi = Ncal. ny
((==0, 1--- k).
If we insert ((x) instead of g(x) in (2.1) and perform

the integration, we get
10—29438. Skandinavisk Aktuarietidskrift 1929.
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O ng np g
oy Uy, Uok
My Aoy Co; - ok
, - ] (tyg yy " 1k
[ P Np— * — 10 1
(2 16) 1/,- “E[‘j?ll[([[j}/j = - My Qyg Qyy A1k
trpolryr - Qkk
My arodrr - Qrk

(k=<0,1,2 ).

Since the right hand side of the last formula is symmetric
in the functions f(z) and g(z) we see that it does not matter
which one of the functions f{x) and g(x) is replaced by a
least square fitted linear form. That is, we have

i _lj
2.17) /fMG@Mx#jlhm&Mx:H

3 a

Flx)=3,f,  a.z) beiﬁg the linear form which is fitted by least
squares to f{x) over the interval (e, §).

If the functions a,(x), a,(x)--- are orthogonal, i.e. if
.‘i . '
/ a(x) aj(w) dw = Jo (“ *./')
e )

the expression for Py reduces to
(2.18) Pr=mgng+mn + - +mpng.

The expression (2.16) respectively (2.18) might be con-
sidered as the A-th order approximation to the integral (2.1).
That is, we may put

I{‘;
(2.19) /j(l) glx) de=D+ Iy,

o
«

Py, being given by (2.16), respectively (2.18) and R) being
the remainder after (£+1) terms. The formula (2. 18) which
holds good when the functions a,(z), a,(r) -+ are orthogonal,
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has the practical advantage that the coefficients of the series
thus obtained, are independent of the number of terms retained
(i.e. independent of £). In practice one would of course
choose functions A,(z), 4,{z)--- which are orthogonal over
some standard interval, say (0, 1), and then put

so that the functions «y(e), « (@) - are orthogonal over the
interval {a, f).
I now proceed to an analysis of the remainder K.

3. The Explicite Expression for the Remainder.

k
Let ['(x) = >\ fi - ailz) and G(x)= D g; ¢(x) be the linear
=0 P
forms in the (A+ 1) functions ¢z} ar(z) (e. ¢. the £-th degree
polynomials) which are fitted by least squares to /{z) and g(x
respectively over the interval («, 8). Further let ¢lz)=/{z)—
—F(x) and () gl -Gl be the deviations of /() and
gle) respeetively from these linear forms.
Finally let » and ¢ be the deviation factors defined by

p= [¢2(x:)clx and qujyg(lr) dx
and let

el

[ ol

” -
ra,

@

be the coefficient of correlation between the deviation of f{¢)
and the deviation of g(x) over the interval (e, 3).

With these notations the explicite expression for the remarnder
Ry of the expansion (2.19) s
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(3. 1) Ry = j plz)yle) da

which can also be written
(3.2 Ry = pqr.

In order to prove this we notice that the integral (3.1)
by virtue of (2. 17) can be written as

g N
(3.3) jf(m) glx)dr—2 Py + j Fle) Gx)do.

@

Since the linear forms F(x) and G{z) are least square
fitted, the moments of these forms, taken with respect to the
functions a., 1. e.

N, = ’ ax(w) Gz} dx

.
@

up to the order x=F% are equal to the moments m, and #n, of
the function f(z) and g(x) respectively. Fitting a linear form
in a set of given functions by moments (taken with respect
* to these functions) or by least squares, namely amounts to
the same. In fact, we have

3 E
M, == / ) X frei{e) e / Y X S alimgd s -

«w «w

(4
i

= 3y X a); ( a(x) ax)de = Z;m; 35 a4, @i

o
3
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JO ()= %)

|1 (j=2)
M, ==m,. Similarly we get N,==, if 0Z 2= L

If the numerical coefficients ¢, in the linear form G (x)
are expressed in terms of the moments n,, the last integral
of (3.3) will therefore be

Now, it O x " /k we have Siapal that is

[I"(x) S ailw) dw = / Flz) - Sy afngaie)de =

« «

. M .
Sy Mg Sgmgalyng s D

This establishes (3. 1).

The formula (3.1) may be looked upon as a generaliza-
tion of the remainder expression (2.4). I now proceed to
establish a lemma by which it is possible to transform (3. 1)
in such a way as to obtain an explicite remainder expression
which is a generalization of (2. 3).

Lemma: Let @(x) and y(x) be two functions, at least one of
which has «ll its moments (taken with respect to the functions
ay(x), a,(x)--) wup to the order k equal to zero. That s, we
have ecther

jax(a:)go(x) dxr=10 or j a.x)y(z)dx=0 or both.
(=0, 1---&).

Then we have the identity

3 3 3

(3.4)  (z-+ 1)1 / pla) () du = / du, / dx, -
tyl) -+ e\ Lg) ) tpleo) -+ na(y) 7 () ,
f

: /. dx, aylwy) - e (y) @ lay) . aole)) - e ) ()

.
[22

[ ol - () () o) - (@) y 2
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where x 15 any of the integers »=1,2---(k+1) and A¥ 4s a x 3 g 3 I H
xrowed determinant of the form (2. 10). Z / d:c(,/ da, - /dxx - D; j plz)ylx)de =
In order to prove (3.4) we notice that we have =0 Y b j v

iexcept
tto(o) -+

aoly) -

3 3

= Z 7! AW:] ¢pla)ylz) de={x+1)! 4™ [(p(x)y(x) dx

=y «

« 24

(e, (/)(1'0) ;

’ Ux—l(x1> 90(1’1) — Z (w)z‘r ])rq)(%_)

re=u

ao(xZ) e (’z—l(x‘x)q/(xZH
which is the left hand side of (3. 4).
Since the integrand to the right in (3.4) is symmetric

in all the variables, we may drop the left hand side prefactor
3

i
B

where D), denotes the minor corresponding to the element
@(x) of the last row. Similarly for the determinant where
the function in the last column is y{z). The right hand side
integral in (3.4) is therefore equal to (x+1)! it the domain of integration is changed to j duy -

3 3 3
Z Z' (“‘)"Tsj dxofdxﬁl [LZJ'X @ (2y) 7 (ws) D,y Ds.
r=0g8=0 .

B3 ‘3
-fdxlwf(lxx, that s e =2, = - =2, = 6.
o T—1

Choosing different values of » in (3.4) we get different
expressions for the remainder R;. The case x=k+1 is of

The general term of this double sum must vanish if » ==s.
We namely have

In fact, if +»=Fs, the product y(xs) D, is independent of x,,
and D, {considered as a function of z,) is a linear form in
ay(xs) -+ @y (), where x—1 = k. Performing the integration
over z, we see that if @(x) has vanishing moments (with
respect to the functions «,(x), a,{x)---) up to the order #, the
term in question must vanish. Similar argument if y(z) has
vanishing moments up to the order £.
of (3.4) therefore reduces to

special interest.

- ar(@,)

- ar(xy)

ay{ao)
(3.5) "-0(9.3'1).
(lo(%l;+1) T (lk(él'/:+1)‘/‘(l'!:+1)

aplwr—r) - ap{wiey) (])(:If/cH)

The right hand side This simply follows from the fact that, 77(x)=:/{0)—¢(s) being

a linear form in «,{x) - «ap{x), we have

v AP ? g } aoly) o anlmy)  Flag) |
Z clxofdcc;--- [dx,, @l ylz) Dy aylz,) caple,)  Flzy) —0
r=={) _‘ : .
tolwnia) - @elwpsn) 1(@p ) |

Performing here first the integration over z, and next the

. . .. S ) identically in @, rpiq.
integration over the remaining =z variables we get by (2.11)

The formula (3.5) also holds good, of course, if ¢ is
replaced by y and /" by g This gives the following explicite
expression for the remainder
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| " i
Ri= (h+2)! ]fﬁn] '/"“’v/ o,
3 g ("*)0) o (’k(xo> ‘f‘(.’E(J } ty (77(\) o flk(xo) U(%)
)

'j.tlxk+l agley) il

“ ((/O(a;k+1> g ) flage) ao(@rss) - arl{@p) glape) |
Collecting the results, we see that if «,(e), «,(x) - is a

sequence of arbitrary functions we have the identity
2
] Sy () dae — P+ Ry,

where P, is given by (2.16) and Ry by (3. 6), the moments
m, and n, and the coefficients «; being defined by (2. 12) and
(2. 8) respectively, and A%*? being defined by (2. 10).

4. Evaluation of the Remainder.

The evaluation of the remainder Ry may be attacked in
two different ways, either by taking the formula (3.2) or the
formula (3. 6) as a point of departure. The first formula gives
an interesting intuitive interpretation of the cirenmstances on
which the closeness of the approximation depends: The ap-
proximation is all the better, the smaller the deviation of each
function from its least .square fitted linear form, and the
smaller the correlation between these deviations. If A is inter-
preted as the maximum absolute deviation of f from its least
square fitted form, and similarly for B, we see from (3. 2) that
(2.7) holds good in the general case.

In the present Section we shall be concerned with the
evaluation obtained from (3.6). The formula (3.2), or rather
the special case (2.5), is utilized for the purpose which we
have in view in Section 7.

We introduce the notation

Sy gl an(ey) .(/(-731)

) (,1‘0) T l— (,1‘())./'(1“) {
(4.2) Flogory-u)=1. . . . . . . l .
S|

aolic) - sl f .

Tn particular £'(xy)=/{sp).  Similarly G (e, ) denotes the
determinant obtained by replacing f{+) by ¢(«) in (4. 2).
Further we shall consider the ratios

g Ly
(4. 3) Sl = ;

Ay

and similarly g(x,., - 0) if £ is replaced by ¢ in (4. 3). In
the next Section 1 shall show that the ratios f{«, %) and
glxy - o) may be looked upon as a generalization of the notion
of divided difference.

In order that we may consider the ratios f{r, - x,) and
glxo---1n) up to the order x==L+1 we introduce a new arbi-
trary function apsi(c) satisfying the same conditions as the
other functions in the set a,(z) - ax(r). This functions az4+1(c)
might be choosen independently of the funetions ay(e) - anle),
and with the only purpose of »squizings the vemainder. This
is possible because the principal term P, does not involve
(l};+1(;lf).

Introducing the ratios flr, -
we get

a4 and glr, - ) in (3.6)

)
1 3

l ‘) .
(-L 4) Ry = (W Al.k+1)j (/.I’Oj (ZTL‘]

42 o

3
- ] deeyr f ey i) glrg o) Ay )

[*4
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A2(x, - a1+1) being non negative, there exists a point (& &)

in the domuain of integration such that

1 3 3

' i
.

(€ . &) glE, - & . . X
i 7;(/<59,(/J:_:4~)1))’~’/(.,l,?Hn:/+1) / dl‘oj dw - /(I;L‘k,HA'(.rm )

That is, by virtue of (2. 11)

. . A(k+2) ) =
(4. 5) B = " /G S 9o Eeva).

But, by (1.1) this expression is equal to

@y, oy f (ty ay e

I 7 ’ ’ ’ ’ !
a, o, di f ay 'y de oy

s - (ra 1) pps - o k+1) 1
(4 (’) P A k) a/;{.ﬂ) ((ﬂ‘h L ‘/(I\fl) : {l&kﬂ) a(]Ile, oy !I(
4.6 D == e — et :
AN g oy ok et a, o (e
’ ’ ’ 7 ’ 1 ’
ay ay dr dre a, oy - ax
L. 11 (k4+1)  (k+1) k11 Ak (k+1)
alli+ ) g g T gtk g T

£ and 9 being two values in the interval («, ). Since A
and A%+2 are positive, and the two determinants in the de-
nominator of (4.6) are of the same sign, according to our
assumptions regarding the set (@) -+ arii(), we see that, if
none of the two functions of x

ag  cae f kg
.. . . . . .| and . e
. k1) et . E+1)
alk+1) al +1)j\k+],» i+ (et )g(k+1)

change sign in the interval (e, 8), the remainder is positive or
negative according as the two functions are of the same sign
or of opposite sign. For a.(x)=z* the two functions in
question are V() and ¢* V() (a part from a positive,
constant factor). For k=0 this ceriterion involves the monotony
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of f and ¢, that is it gives TcereBycnErr's inequality for inte-
grals. For /=1 the criterion involves the convexity of /and
g, and 80 on,

The remainder expression (4.4) can also be written

(1.7) Bo= "t His
where the quantity
2 3
Hy= @——l—_?)_ll;lw:ﬂ / d:’li,,‘/ dax,
2
/ Ao Loy ey Dl ) Ay )

may be looked upon as the average value of the product of
the (general) (4 1)-th order difference of /() and the {general)
(k+1)th order difference of g(z); the average being taken over
the interval (¢, 3) and with the positive weights 17{z, - cra1).

5. A Generalization of the Notion of Difference Operation
and a General Interpolation Formula of Newton’s Type.

Let a sequence of functions a,{¢), ¢, (r) - satistying the
condition of Section 1, be given. Let o (xy-- - x5) and £'(zy - 1)
be the determinants defined by (4. 1) and (4. 2) and let .1 {(x, .
be the determinant obtained from :l{e, - ) by replacing
a,(x) by axr1lx). By (1.9) and the assumptions regarding the
set a,(x), @, («) -~ all the ratios

) : , a, ()
-2 in particular alz,) = l(f-"—
e y (5’»'0)

(B.1) aley - m) = (

are finite. The ¢uantities ale, - 0) are evidently symmetrie
in all the areunments.
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We shall find an expression for the difference
@ ('l'() o [”'/.‘J o '141>_a ("'U T 1"l/] T '1.1)7

where [ ] designates exclusion of the argument in question.
Considering the minors in the determinant A(r, - a,) we
bave by SyrvesTer's theorem

,
{

g g ) A ey

=Alwy Ly Al w).

J

We have here assumed ¢ < j, which is expressed by the fact
that [r;] is written before [} in the string of arguments of
the first quantity .1 on the vight hand side of the last equa-
tion. If 72>j; a minus should be added on one side of the
equation. By virtue of the last equation we get

5.2) alwgfw] - w)—alry [z )=

gol

Ayl L] i) - Ay )

Ay ] a) - Aoy Lyl )

This equation shows that the difference (5.2) can not
vanish provided the arguments x, --x, are distinct and the
functions «,(x), «@,(x) - satisfy the conditions specified in Sec-
tion 1. We assume of course that ¢ «= 74, otherwise the first
determinant in the right hand side numerator of (5.2) would
have no meaning.

Jf (5.2) is written out for the first values of %, we get

Lo llrgry)

~lela) el =50 T )

Ale,) - 4 (',i'{,,lil LE)

—lalagory)— el o,)) =

Alrgry) - ey

‘“(C{ ("-'ovl'l :'1‘._;)"“"(( (.l‘1 ,’1_‘,_,,1_‘3» = | Mk

ote.
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We shall now take the quantities ¢ as a base for the
definition of a gemneral difference operation.

Let /() be a given function.  The zero order difference

. . [lrg)
of flz) for the argument sy is defined as aﬁ(jcoi) It should
0\0

be noticed that the zero order difterence is not simply the
function f itself as in the case of ordinary divided differences.

The first order difference is defined as

f(Jf'u») ﬂ’])

Jz(z ) = ;‘o("’o) "(»('1/’_1) )
Ly Ly ’ ;

aley) — alr)

The second order difference is defined as

5.3)  fluy - x) =

[] designating that the argument in question is omitted.
The weneral differences defined by the recurrence opera-

" tion (5. 3) are uniquely determined. And the explicite expres-

sion for the xth order general difference has the following
simple form

(l‘,(.l‘u\) ey ) S L)

aglay) () fley)

(5 4) /\ ) I"(v"n o -’fz) at)(-"z) o Uy—1 r’/)/“/)
Ll Sl )= [ S L A Ll

Ay ) } o) oty L) ey

olary) - ) s ()

U()("'z) Ty \"'1) (/z(»"z)
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which shows that the definition (9. 3) is independent of the -

choice of the arguments x; and x; which are omitted alter-
nately.

The formula (5. 4) may be proved by complete induction.
In fact, suppose that the formula is exact for (x—1). By the
same argument as in the case of (5.2), we get

Ayl ) Flag )
gl i) - Alrg - g

Taking the ratio between (5.5) and (5.2) we get (5.4) for x.
Since (5.4) obviously holds good in the case »==0, it holds
generally.

It we insert flr)=a.(c) in (5.4) we get a,lry =1,
and if we insert f{x)=a;(r) where 1 < x we get wi(c, - we)=0.
We therefore have the proposition: The x-th order difference
of a.(x), (that s, of the u-th function in the set which defines

the difference operation) is unity aud the higher order differences

of a.x) are zero.

This property will be referred to as the finiteness of the
general difference operation. This property not only illustrates
the character of the general difference operation. It also
throws an interesting light upon the ordinary difference opera-
tion. The fact that the xth order divided difference of a
xth degree polynomial {with unity coeflicient of ) isx equal
to 1, and the higher differences zero, is in reality not charac-
teristic for a polynomial as such. It is rather an expression
for the fact that the ovdinary divided difference operation can
be looked upon as an operation defined by the notion of poly-
nomials of increasing degree. The ordinary divided difference
in Newton's sense is namely the special case a.(r)=p.(c) of
(5. 4) where p,(e) is an arbitrary polynomial of degree x with
unity coefficient of «* For this reason the ordinary divided
differences might be called polyncmial differences as distinguished
from the general differences (5. 4).

Tn the case where the functions «.(r) are polynomials
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of degree x, with unity coefficient of x* the determinant

Az, x) reduces to the VaxpeErmonNDE, determinant!

I Ay I('r "

5 6 ) 1wy o
(6. 6) Ay ) = ‘
[ o 1'2[

J>i

where j runs through the values j=1,2---% and 7 through the
values 2=:0, 1 - (j—1). )

The expression (5. 7) can be looked upon as the decomposi-
tion of the determinant (5. G) in elementary factors. Such a
decomposition in elementary factors is also possible in the
general case (4. 1). We namely have

(i) ay (i) - (i)

(5.98) (l.() ("‘:1) a1<11) .' ‘ ',HZ,([;],)

agle) ay(z) - alr,)

tolro) - aglary) - agla)

("‘()1((((,1'(,)ﬁ‘(’((,1'|)) : ((z(,l',) wle,))

o) —aln))
G el =) - el — el -

Y ('C( (vl‘zf%"‘/.*l,)_atv’ivwl-"/.))

- (=" elegy - wma) =iy - - 2.
Pyt {xe=00 Tk being an arbitrary xz-th degree polvnomial with
Pol@yic s plaey Tay -k
unity cocflicient of a#, we evidently have { - - - « « . | =1|. . . .
Doy ppixg) Lay -y,

My g ror(] 1 ’ Q113 3
This is readily p‘ro\ed by‘ a suitable procedure of column subtractions per-
formed on the left hand side determinant.
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In fact, in the left hand side determinant of (3.8) take
the factor «,(r,) out of the first row, the factor «,(r,) out of
the sccond row ete. This being done, subtract the next to
last row from the last, the third to last from the next to
last ... and finally the first row from the second. In the
determinant thus obtained take the factor —{«(«y)—alur,)) oub
of the second row, the factor —(a(r,)—a(s,)) out of the third
row, an so on. The determinant thus obtained is

In the polynomial case we have

L a ) RN PO | PP FORP) R P

and consequently by (5. 2)

(.10)  aley o) —aley ) )= —.

) @ (o) x ) Introducing this in (5. 8) wee see that (5.7) is the polynomial
e an(’n) ay (o) case of (. 8).

aglrgr;)  aylirer) ax(ig,) The formula (5.10) is also readily verified by noticing
o2, 1) al(tlnz) - ay (@ ws) that we have in the polynomial case

ety (ay—1 ) @t (,:‘xu_l,l-z) St ey ) AT P O R S

In this determinant subtract the next to last row from the ~ In fact, consider the polynomial

last, the third to last row from the next to last ... and

finally the second row from the third. Then take the factor l At 1.
—(a(xya;)—alr,z,)) out of the third row, the factor — («(x u,)— = ) ’
—afr,x,)) out of the fourth row ete. If we continue in this PRO=01 1 %
way, we finally obtain the determinant 1 FEan i
a,{i1,) a, aglr,) On the one side we have plo)=u**t'—(r,+ - +.u) - w4 -,
ay g tylry) iy lry) and on the other side pla)=c**'—a(sy  15) - *4+ . Hence
(5. 9) ag (riy) a, (rya) iy, alr, - ao)=ay+ - 4+
? ty (g ) ) g, 1) Newtons well known interpolation formula
aglrgiry ) ag gy - ) - gy ) Sle)==flag) 4 (i) flrgry) + (=g (i) flaigorpag) + - +

But in this determinant all the elements below the principal ol ol b= flegry o+ He

diagonal are zero, and all the elements in the principal diago-
nal are equal to unity, by virtue of the finiteness of the
general difference operation. This establishes (5.8). We could
also prove (. 8) by introducing the expression (5.2) for each
difference in the right hand side of (5. 8) and multiply together
all these expressions.

where

Ry=(r— )= (=) [y o)

follows immediately from the very notion of divided difference.
In fact, according to the definition of the divided difference
we have

11—294388.  Skandinavisk Aktwarictidskrift 1929.
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P ) ] Al e
1 .LJ, ‘,(.of(xo) i :1,"‘, . JJ‘:'-H i (O 13) Rp=* 1(’9 111)]((10 1L1)
Liel -k fla) fo )
R el B H.J.;:H flrgr, rpir) a aw f
1 'l"li T ;'(;;if(fltk) l 14! k1 a’() C. (L,I.' .f,
1Tt .1,‘}"./]('1) - -
R (.l‘“ ) (If,"' b A t ]) /(L D)
By retaining the term containing Jlx) on the left hand sid.e ey ) | Ca
of the last equation and transposing the rest of the determi- dy o de e
nant to the right hand side, we get immediately L
R I P Al
0 o T

1, ”If»f(xo)
Ly -k flay)

Lk - r})[f(’k) l 1wk .(,‘E
1tk 0

¢ being a value between the largest and the smallest of the
arguments ;- e, and 4 being defined by (4.1). The last
expression in (5. 13) follows immediately from (1. 1). In the
polynomial case the expression (5. 13) reduces to

Lad -k

(6.11) flo)= — + Ry

It having the expression given on the preceding 1.)21,5_;'0. (5. 14) =) b meary) - ()

This is nothing else than Lacraxar’s interpolation formula
with remainder. And carrying out on the denominator and
the first (k+1) rows of the numerator of (5.11) t%le same
manipulation of the rows as we did in the case of (5.9), we
get Negwron’s formula. '

This method can be applied not only in the case of poly-
nomial differences but also in the general case. This leads

to the following interpolation formula of LaaraneE type

/[AH (t)
|

£+ 1)1

which is the well known form of the remainder of Lagrance's
formula.

The function ax+1(r) enters only in the remainder (5.13),
and not in the principa,l term of (5.12). Therefore, if we put
ax(x)=r* for =0, 1-- %, but put ari(r)=g(z). where g(z) is
a function later to be dlsposed of, we still get the ordinary
Laerancr interpolation formula, but the remainder now appears
in the form

(0.15) Ryp=(r—u,) (=) (=) - gl J,M)Zii(g)

coltftia) = GO g ayfag) - anle o

MM%WJ~MWVM)¢MW%QJHMM)+M
N where g(v, - .rxz) is the ordinary (k+ 1)-order divided difference
of the function ¢(x). The presence of this arbitrary function
g(x) in the remainder raises the following minimizing problem:

Given a function f(x) and (k+1) points Too o ay in a
certain intervalle (¢). Determine the function g (w ) which is
such that the maximum of

a.o (;):;;) ayen) - an () flk)

ao(x) a(x) - arlr) O aoler) @y (er) - - arlan)

where
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) = Lo o)LL
g9%¥(x)
in the intervalle (¢), (regardless of the sign of 6(r)) is the least
possible.

The solution of this problem is g(r)=/{r). 1n tact, no
function ¢(s) is such that the maximum of [0(s)] in the in-
terval (;) is less than |f(z,---w)]. By (1.1) there namely
always exists a value & in () such that 0(§)=/lr, - ). No
function g¢(z) can therefore be better than the function g{r)
which keeps 8(r)=constant==F{c, - ), that is g(c)=Flx).

The solution of this problem for the (k+ 2) points wy .y
ought to furnish the best possible error limit for the Lacranee
formula, that is, it ought to give the rigorous remainder for-
mula (z—wy) - {(e—uwy) flrg - wper). That this formula is actually
furnished by the solution of the minimizing problem is im-
mediately verified by putting g(s)==/{r) in (5. 1d).

In practice no advantage is thus gained by the general
solution of the minimizing problem considered. If the type
of solution is limited by introducing convenient side relations,
practical formulae may, however, possibly be obtained, furnish-
ing a better limitation than (5.14) and being at the same
time maniable.

If the manipulation which was used in order to obtain
(5.9) is carried out on the denominator and the first (£+1)
rows of the numerator in the right hand side of (5. 12), this
formulae takes on the Nrwrox' form:

Y he problem of o general expansion ordered in the same way as
NEWTON's formula (as  distinguished from LaGgranais), that is, o general
expansion where the introduction af new terms does not alter the coef-
ficients of those already computed, has been suggested to me by professor
MEIDELL. At the time of my conversation with professor MuipELL he had
himself attacked this problem, however, in a different form, where the points
X, - -, do not enter symmetrically. He had also determined the first few

terms of his expansion, while 1 had worked out the general formulae of
the present Section up to {5.12). The formula (5. 16} to /5. 19) were worked
out subsequently with the purpose of furnishing an expansion more similar

to the one which professor MEIDELL had in view.
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(6.16)  fle) =
1 Gl ale) ale) Sl
o) aglry) o) “o(";)
0 1 tylagay) - alagary)  flagay)
=10 0 I "'("/1(”0"1">/'(’u'1":) F 1
0 0 0 1 Sluguy rr)
aglv) ay () ayle) ax () 0

This formula might be written out in either of the
following two ways

g licy) ay (i)

(6.17)  flo) = Db et el |

I tylry) g lio)

+ay(0) - (a(r)~aley) - (aler)—a (roa)) - flawgiy )
Fagle) (ale)—alry)) - (alra)—aleor)) -
el —alrgr ) Sy gy

Ry being given by (5.13).

The intuitiv significance of the successive steps of approxima-
tion }Which are expressed by either of these formulae, say
(5.17), can be illustrated as follows.

The first approximation in the case of the ordinary New-
roN's formula consists in the assumption that f(z) is a C(;nstant,
or as we shall prefer to express it: that f(x) is proportional
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to a constant. On the contrary, the first approximation in
the general case of formula (5. 17) consists in the assumption
that f(x) is proportional to some function a,(x). The factor
of proportionality is determined in such a way that the expres-
sion obtained coincides with the given function in the parti-
cular point ;. This gives the first term of (5. 17).

When we proceed to the second approximation we aban-

don the hypothesis that f(l) is constantly equal to L(IQ)

aylr) tolixy)
We introduce instead the hypothesis that the deviation
i) -——/i(L—(’) is proportional to the deviation M-—q—’('—%—)
ao(x)  agliy) ag(w)  aglay)
where a,(z) is some new function introduced for the purpose
of the second approximation. And the factor of proportionality
is determined in such a way that the expression obtained
conicides with the given function not only in the point x,
but also in the new point x,. This gives the second term of
(5. 17).

Quite generally: The passage from one approximation to
the next following, consists in putting the remainder equal to
a linear form in the approximation functions already used,
plus a term containing a new approximation function, and
then determining the constants of the form in such a way
that the remainder vanishes not only in all the points previ-
ously used but also in one new point.

If each approximation function is choosen so as to vanish
in all the previously used points but not in the new point;
ie, if a,(r,) =0 and a,(r)=0 for » > 7, then the expansion
(5. 17) reduces to

+ay () - flagm) + asle) - flege o)+ - + Ry
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6. Special Case: Expansion in Terms of Power Moments.

I shall now consider the case where the functions used
for approximating f{x) or g{x) in (2. 1) are polynomials. For
convenience [ shall agssume that the polynomials in question
are ordered in terms of powers taken about the begiuning of
the interval of integration. This means that we have to put
the functions a.(r) of the preceding Sections equal to

a{x)={r—a).

2

This gives for the numerical coefficients (2. 8)

=)+

8
I Q)i e PO
a;j (r—a)*tidr Lt

The determinant (2. 10) is now equal to
(6. 1) Al+0—(8 — g)B+17 Qi+

where C%*1 jg the determinant

11 1
1 2 k+1

. — 1 1 71
(6.2) CTU=1 g g
IR
h+1Ak+2 2k+1

the value of which, by (2.11) is given by

1 1 1
(1)1 Q1) — [dxofdx, | am [ o=
) 0

j >7
0 J

where j runs through j=1, 2---k and ¢ through ¢=0,1---(j—1).
The last formula shows that C**+? is positive not zero. P
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is now a bilinear form in the ordinary power moments of
flo) and g(r) respectively, namely

1 k k ((7»1-1> '13 {'3
6.3) P.=5— ) L——j r—al fle) da ] r—a di
(6.3) P, 5_“E;2lw"@w'( Vi) ‘( Vgx)
where (,lf," I are the clements of the reciprocal of the (k-+1)

rowed determinant C¥+1,

If we put ax(c)= , 5 = Yy ( 5= ) where the ,(x) form
24

a set of polynomials of degree x, which are orthogonal over
the standard interval (0, 1), i.e. polynomials such that

] ‘ Yilw) ) dwe = J (1) (1 #'{) ;

P will be identical with the expression (6.3) but will appear

in the form
8

=)o fa sz

«

(6.4) P.=

ﬂ~a2 [

I now proceed to develop some formulae concerning the

numbers c;]’*) .

For C* we have the following explicite formula

1 1 1
12 k
1 1
6.5 CW=12 3  f+1|=
11 1
e k+1 2k—1

e (OO0
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This expression for the determinant C'*' is obtained as
ollows: Subtract the second column of (' from the first, the
hird from the second... and the k-th from the (k—1)-th.
his operation involves (£—1) column subtractions. In the
eterminant thus obtained subtract the second column from
he first, the third from the second... and the (£—1}-th from
he (k—2)-th. This operation involves (k—2) column subtrac-
ions, and the first (£—2) columns will now have the factor
, which is taken out. Repeat the process. The next step
nvolves (k—3) column subtractions, and the first (£—3) columus
will get the factor 3, which is taken out. The last step will
nvolve only one column subtraction, namely the second column
ubtracted from the first.

This being done, take the factor 1/k! out of the first row,
he factor 1/(k+1)! out of the second row ... and the factor
1/(2k—1)! out of the last row. The result is

or o120 (k—1)!
NP ot RN VR UL I R N1 &
56 W -
(6.6) ¢ e+ (26—D1 0 0 0 0 o
=11k (E+1) - (2k—1)!

In the determinant of (6. 6) take the factor O! out of the
first row and the first column, the factor 1! out of the second

row and the second column ... and the factor (k—1)! out of

the last row and the last column. This gives the following
expression for the determinant in (6. 6)
_ (k—“l
0

) () ©)
ol 0 6 610
Go) (i) G) ()

But the determinant in the last expression is equal to unity.!

! See for instance P. B. FiscHER: Determinanten, Ieipzig 1908, p. 83.
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We therefore have

(L1210 (k—1)1)8
e+ 1)1 (2k—1)!

O =
hence

(6.7) OW — 24+ 1) (2;“)2 o,

From this and CW=1 we infer (6. 5).
The first of the C® have the values

oW
k=1 1
2 1
12
3 1
' 2160
6 048 000
“ 266716 800 000

The formula (6.5) is the special case h=0 of the following
formula

1 1 1
h+1 h+2 Ltk
1 1 1
(6.8) CO ey g h+k+1 |~
R 1
h+k h+k+1 h+2k—1

. L

‘ T W E ) sy e e ek
Wt DY(h+8) - (bt 2 .
(et 1){h-+3) - (et 22 1)(( 1 )( 2 ) ( 1 ))
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This formula may be derived by the same process as that
hich has been used to establish (6.5). For brevity we denote
k-rowed determinant whose elements are z;; (7, j=0, 1---(k—1))
y llz;;]]. The process of column subtractions gives

(1!2!‘;'(k——l)l)g(iw#l)l(IL+2)!~-~(]z+7c—1)!vfi(iz,+z'+j)‘ .
= (ht W+ k+ 1) (h+ 20—1)] /

By h times repeating the process of subtracting from

i h'i‘;"i-J)zi is equal to (L_:])\" which is the previously con-
i !

gidered determinant whose value is 1. We therefore have

2k+h

O — (24 h+1) ( B

9
) O(k%l, h

This together with ("b#=1/(h+1) gives (6. 8).
The formula for C%9 permits to give a simple explicite
We namely have

(-’L) Qk—?) 2
h ey

4 2k—2
(1) ( k—2 )
Hence

(6.9) o = K,

expression for the numbers ('if(',”.

2
R = OR—12) (k) !
00 / - 9
(O

Any minor in the reciprocal of a non singular matrix is
equal to the algebraic complement of the similarly situated
minor in the matrix itself, divided by the determinant value
of the matrix. Since (6.8) furnishes an explicite expression
for any minor in C% which is formed by adjacent rows and

‘adjacent columns, we see that we can give the explicite

expression for any minor in the matrix of the numbers (;J’,
which is such that its complement is formed by adjacent rows
and adjacent columns. This gives in particular the explicite

expression for the nnmbers ¢¥,  and ¢ . In fact we have
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AR k) i
Coo Cr1, ke 0, k—1

(k) . (V{k—2, 2 (k)
—1,0 C OW.

P

¢ i

Now ¢}l = ('](.f’, because the matrix (cg‘”), being the reciprocal

of a symmetric matrix, must be symmetric. Furthermore
(k) . (A—1)/ (YK
Gy v g1/ oW

from which we infer by (6.7)

(610 6Ly, i = (2R—1) (Zkﬁ12)
We therefore have
ip = e (2
(—=)1ef),_, must be positive because the (A—1) rowed deter-

minant (—)** C¥,_ is the Gram-ian determinant (for §—a=1)
of the product moments of (A—1) linearly independent fune-
tions namely (w—c«)'*"* (=0, 1---(k—2)). By taking account
of the sign, we therefore have

(6. 11) ¢k

0, k—1

I (‘Zk—l)(

k—1,0

27c——2).
k—1

An independent explicite check on the computation for
each value of £ is furnished by the following formulae.

Developing the determinant CW after the row f,fi——y
ra

1

1 ¢
PSSR AN

o 1 ®)

k_____ ) = —_

;,()H/Hc,,, 1. (=0, 1 (k—1))
Evidently

k—1 1
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if » is any of the numbers 0,1, - (k—1) with exception
of z.

Developing the determinant C**! after the last row, and
further expanding each of the terms thus obtained after the
last column, we get by (6.7)

2 k\?
I—1 k—1 1 N ( I ) —1

33 i =
VIR N IVIE R R R D (2/‘:_1_1)(3»4)

i jon
k

Since the determinant value of the reciprocal of a non
singular matrix is equal to the reciprocal of the determinant
value of the matrix, we also have

3] (&
Coo ©r Cp, k=)
S = 1/0W,
(ki (&)
Cp—1,0 " Ck—1, k—1
The first of the numbers (;2_’;3\' are
‘]:1}.\’ 7=0 c;.'j‘ y=() 1
i =0 1 7 =0 4 — 0
1 —6 12
c‘”‘ 3=0 1 2
7 =0 9 — 36 30
I =36 192 — 180
2 30 — 180 180

Introducing the differences

(6. 12) d"[:’;." = k1 R

i ij

((,j=0,1 - k) where by convention ¢/=0 for i=k or j=k,
we can write the expansion of the integral (2. 1) in the form
of a servies
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3
, 0 (O) 0(1) . (k-—l) -
ff<x>g<x)cm:1’o+za+~-~+Tk+.m AR VA L
a 0 0 l 1 NV 1
where | 7 ¢ 1 2 k
(*) = i+ C"\k} 1 . L } 1
(6.18) T, = )¢ 2 3 k+1
B It} .
1 k } ‘ . .
‘ém_? Z 2 (]EI;) (3_ aj~+p / (.7_’?“(() f( ) dl.s ] (x——a)7g(x) dx b—1 1 1 1
=0 j=0 . v k—1 T T e
j : : ( ; )" ko k+1 2k—1
and
Putting ¢ = , We get an expansion in terms of the moments
(6. 14) Pe=T,+T,+ - +T. -

taken about the middle of the interval («, ).

. . The first of the coefficients #¥ in this case are
The expression (G.38) for P can of course also be written !

in terms of the moments taken about any other point than e.

I 9 s

It the moments about «+ ¢4 (¢ an arbitrary constant, A=f—a) 677, /=0 b / 0 !
are denoted : == 1 i==0 I 0
10 12

3 g
Mﬂzf(x—(anLgl))”f(x) dz and Nx=f(x-—(a+ ed)f glz)dx

These are the first of the coefficients computed by professor
TEFFENSEN.!

Putting a.(z)=(z—c)* in (4.5) we get by (6.1) and (6.5)
the expression for Py will be

\ . .
k—1 k-1 6. 16) Ry=(3—c)2k+3 &Sy 2(i0+931;+1).
(6. 15) R Z S i M N; o +3)( A)
B ey E+1
1—-0 =0

S& - &+1) and g(& - &+1) being the ordinary (k- 1)-th
order divided differences of the functions f(r) and g(z) for a
set of values & - &1 situated in the interval (¢, 5). By (4. 6)
_the remainder (6.16) can also be written in the form

where the numerical coefficients b}f) are

7 R, B=aP SR gl () ‘
' T2k +3) (k2 (k+3)-- 2k+2)°

or in determinant form

! loc. cit., p. 8.
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It is a well known fact that in many practical cases the
course of the resultant W(¢) will be comparatively smooth even
hough the originator =(f) has pronounced fluctuations. This
s what is known as the damping effect of the process con-

The following table gives an idea of the rapid decrease
of the numerical factors in the remainder terms (6. 16) and

(6.17)

(2% + 3) (‘“2) (2k+3)((k +2)(k+3)- (2k-+2) B sidered.
o 7]“'+1 o - v The idea therefore naturally presents itself to attempt an

k=0 19 1—2 estimate of the resultant by computing it as if the originator

1 150 790 had been constant, say equal to the value of the originator

Y 2 800 100 800 at the beginning of the interval considered., or better equal

- - to the average over that interval. By this procedure one

3 44100 25 401 600 woids the laborious, direct computation of W(t) by (7.1).

4 798 544 10059 033 600 If the originator is rigorously constant, we have

5 11099 088 HTH3 16T 219 200

W(t) = nQ,

7. The Damping Effect. Evaluation of the Remainder _ where n is the constant value of the originator and Q. =

after the First Term.

The damping problem discussed by professor Muipury?
may be outlined as follows.

Consider a function of the time W (¢}, the resultant, which
is generated through a cumulative process, defined by the
equation

The procedure sugeested by the observed damping effect
would therefore be to put = in (7.2) equal to some plausible
mean or extremity) value of #(r) in the interval previous to
, and adopt (7.2) as an approximation to W({t}, even though
(z) is not constant.

The main object of professor MEIDELL's papers was to
how under what conditions such a procedure was legitimate.
n particular he has arrived at important criteria for the mean
eviation of W({#). The object of the present Section is to
stablish criteria for the deviation of W in « geven point, by

tilizing some formulae from Section 2.
t

t 3

(7.1 W(t) = / n(ﬂw(f-—fn)(/z:j.oz(t——g)w(:{)clg.

Y

1) 0

The function of the time 7(f) may be looked upon as the
originator (>Zugang») of the process through which Wit is
generated. And the function of time elapsed w(«) may be
looked wupon as the distrebutor which brings the effect over
from = to W. Numerous instances, to which this point of
view is applicable, might be drawn from the statistical and
actuarial field. '

! Birgrr MuipkLL: Uber periodische und angeniiherte Beharrungs
zustinde. This Journal 1926, and: On damping effects and approach to
equilibrium in certain gencral phenomena. Journal of The Washington
Academy of Science. October 1928.

N
Let N, ——j 1(z) dv be the camulated originator an wy == fl
0
the mean value of the originator over the interval (0, ¢).
0

imilarly let w, = -;"' be the mean value of the distributor
ver the interval (0, ).

12—20438. Skandinavisk Aktuarictidskrift 1929.
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By (2.2) and (2.6) we have the error limit
(7.3) | W(t)—weNe| = peqe

p and ¢ being the deviation factors defined by

{ t

pi = / (n(e)—mn)?dt q = [(w(g)—-w,)ﬂ(zg.

v

i} 0

In (7.2) no use is made of eventually known value of the
resultant. If ¢ ¢, - & are points of time where the resultant
is known, and ¢ a point of time where the resultant is sought,
we get by taking the (£+1) order divided difference of the
expression ( W(t)—w; Vi)

(1.4) W) =wN, +

k i | I
(t—t){t—t,) - [t—t - {t—t) )10, No) + Ry
+ (tx—‘toaj(tzﬂtl) o [fz_t;(} . (fx—“tk) ( LV( ) W, lz) L‘

#x:=0
where 7
Ry = (t—to)(t—t,) (t—tk) R(to oo i t)

and [] designates exclusion of the faector in question.
R(t,t, -t t) is the (k+1) order divided difference of

14

R{t) = [(n(r}——')z,) (w(t—7)—w)dr.

.
0

Ut
=

The approximarion procedure (7.3) can be in'lproved alsio in
another way. In most practical cases the originator n(%) is an
empirical function of the time, which it is I}Ot 'poss1ble to
characterize a priori. On the contrary, the distributor w(z)
is most frequently known a priori. The properties of w(z)
may therefore be characterized once for all, say be computing
a certain number of parameters such as means and deviation
factors over fixed subintervals.
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The resultant can always, rigorously be written in the
form Wi{(t)=n 2. We only have to define

ng = /.w(g)n(t_g)dg/[zu(§)(7§.

By this definition 2% appears as the wecghted average of (1)
over the interval previous to ¢, the weights being the values
of the distributor; (7.3) can be looked upon as the approxima-
tion obtained by replacing the weighted average # be the
ordinary arithmetic average n. This means attributing just
as much weights to the values of the 0riginator which occur
in the remote past (until z==0) as to those which occur in the
moments of time immediately before ¢. This procedure con-
tains an obvious bias if ¢ = «, where a is a positive constant
such that the distributor s (x) is very small, or even rigorously
equal to zero, for « = q.

Instead of attributing equal weights to all the values of
u(z) in the total interval previous to ¢ it would now have been
better to neglect the values of #(z) previous to (t-—a), and to
attribute equal weights to the values of n{z) in the rest of
the interval. This procedure is equivalent with assuming
w(z)=0 for x=a, so that the expression for W(¢) will be

for t = «

4 a

Wi(t) = / 1(t) wlt—1) dz = /11 (t—8 (B at

.
1~ 0

and then approximating this integral by (2.2).

More generally, suppose that the nature of w(x) has been
characterized once for all by dividing the interval (0, «) in
(k+1) subintervals (w;.ci1) (=01 k), with 2,=0 and
Zp+1==%, and computing the means ; and the deviation
factors ¢; defined by
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¥ 41

qi = | (w(&)—w)*dE.

The principle for choosing the division points (their nwumber
being given) should be to have the deviation factors ¢
approximately of the same magnitude (the last deviation factor
i.e. g being, however, equal to zero it w(r)=0 for x> x).

Let j be the subscript defined by « <t = 1550, If W()
is approximated by the expression

- Q— 0, J—1
(7.6) W(t) = f_‘,‘/.ij—-f:/- + D i Ny — Ni—iy )
: [ B
we have the error limit
o J
(1.7) | W— W= S
j=0

where sr; ist the maximum absolute value of the deviation of

the originator from its mean over the interval (b= 41, T—ax),

the interval corresponding to :; being however (0, t—ux).

The limit (7. 7) is readily proved by decomposing the integral
t n f

Wit) = [//(t— Euw(EdE in /+ +/ and approximating

0 o Xy

each of these integrals by (2.2). This gives the error limit
J—1
qui+7rjqf where ¢f is the deviation factor of w(§) over
=0
the interval (z;#). This deviation factor is, however, never
greater than g;, because u deviation factor never decreases by
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an extention of the interval over which it is taken. In fact
let /‘(r/) be o function of 1, and consider the square of its
deviation factor over the interval (a, y)

. . Taking the derivative
with respect to y, we get

Y

a4
dy

@

(0 - f 9 05—} dy = (10— / i a5ly-a)

which is non negative.



